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ABSTRACT Recent advances in image super-resolution have investigated various transformer and CNN
techniques to improve quantitative and perceptual outcomes. Reconstructing high-resolution images from
their low-resolution equivalents by combining the power of transformers and CNN has been a crucial task
in recent times. We propose a novel U-shaped architecture that integrates transformers and convolutional
neural networks (CNNs) to leverage the strengths of both approaches. The network incorporates a novel
Parallel Hybrid Transformer CNN Block (PHTCB) on the backbone of the U-shaped design, ensuring
computational efficiency and robust hierarchical feature representation. Our architecture incorporates triple-
enhanced spatial-attention mechanisms and a Transformer CNN (TCN) Block in PHTCB. The TCN Block
helps preserve sharp edges and intricate details often lost in traditional SISRmethods and enhances the visual
fidelity of the reconstructed high-resolution images. Additionally, we introduce the triple-enhanced spatial
attention (TESA) approach that helps precisely localize of important features. Blurring can be reduced for
crucial features by focusing on these critical areas because of the network’s ability to control features at
various scales. Experiments demonstrate that our proposed method yields better quantitative measurements,
including visually appealing high-resolution image reconstructions, peak signal-to-noise ratio (PSNR), and
structural similarity index (SSIM).

INDEX TERMS CNN, enhanced spatial attention, single-image super-resolution, Transformer.

I. INTRODUCTION
In the rapidly evolving field of image processing and
computer vision, the pursuit of high-fidelity image super-
resolution (SISR) stands as a cornerstone challenge. The
primary goal of SISR is to reconstruct high-resolution images
from their low-resolution counterparts. This task that holds
significant importance across a multitude of applications,
including medical imaging [1], satellite imagery analysis [2],
surveillance [3], and multimedia enhancement [4]. In recent
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years, there has been a surge in research focused on
improving the quantitative metrics and perceptual quality
of super-resolved images. These advancements are central
to the synergistic integration of transformer models and
convolutional neural networks (CNNs), leveraging each
other’s unique strengths to achieve superior results.

Due to the creation of numerous High-Resolution (HR)
images that correspond to a single Low-Resolution (LR)
image, SISR is an ill-posed problem. In recent years, single
image super-resolution (SISR) has seen remarkable advance-
ments, with convolutional neural networks (CNNs) emerg-
ing as the dominant approach. These CNN-based models
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have significantly improved the quality of generated high-
resolution (HR) images, making them themainstreammethod
for SISR tasks. The advent of convolutional neural networks
(CNNs) was pioneered in Super-Resolution Convolutional
Neural Networks (SRCNN) [5], by Dong et al. Following
the SRCNN approach, researchers have delved into various
aspects of image super-resolution, including model frame-
works, up-sampling methods, network design, and learning
strategies in models like FSRCNN [6], VDSR [7], Lap-
SRN [8], MemNet [9], EDSR [10], RCAN [11], NLSN [12]
and DANS [13]. This exploration has yielded a various
sophisticated techniques to enhance the performance and
efficiency of SISR models. However, despite their success,
CNN-based models encounter several limitations, including
constrained receptive fields, the introduction of blurring,
jagged patterns, or over-smoothing. These limitations hinder
their efficiency and scalability, especially when dealing with
large and complex images.

On the other hand, Vision Transformers (ViTs) [14]
have demonstrated superior modeling capabilities and a
larger receptive field, enabling them to capture long-range
dependencies and global context more effectively than CNNs.
ViTs leverage the self-attention mechanism to process the
entire image as a sequence of patches, allowing them tomodel
relationships between distant pixels and capture holistic
image features.While powerful, the self-attentionmechanism
in Transformers is computationally expensive, especially as
the resolution of the input image increases. This high resource
demand can be prohibitive for practical applications, partic-
ularly in environments where computational efficiency and
memory usage are critical considerations. The introduction
of ViT led to several advancements and modifications to
address the challenges associatedwith applying Transformers
to SISR, such as Swin IR [15], Swin Transformer [16]
SRFormer [17], ELAN [18], TCDFN [19], and HNCT [20].
However, the application of Transformers to SISR tasks
comes with its own set of challenges. Notably, Transformers
require extensive computing power and memory, which can
be prohibitive for practical applications. The high resource
demands of Transformers limit their widespread adoption in
scenarios where computational efficiency and memory usage
are critical considerations.

Given the trend towards fast processing devices, minimiz-
ing model size is crucial for achieving rapid and state-of-
the-art (SOTA) comparable results for higher scale factors.
Although CNN and transformers greatly enhance network
performance, they still encounter certain limitations.

(1) Sometimes, these methods can introduce distortions
into super-resolved images, such as jagged patterns, blurring
or over-smoothing in extremely textured regions.

(2) The previously mentioned techniques require sig-
nificantÂ processing power and time and are computa-
tionally expensive. Moreover, processing large datasets or
high-resolution images further exacerbates the computational

burden, potentially leading to longer processing times and
reduced real-time performance.

(3) In some cases, attempts to enhance image resolution
may inadvertently amplify noise or artifacts, resulting in
degraded image quality and increased visual distortion. Con-
sequently, achieving satisfactory super-resolution outcomes
for extremely low-resolution and noisy input images remains
a significant challenge in image processing.

In some cases, attempts to enhance image resolution using
transformers may amplify noise [21], while CNNs may intro-
duce artifacts [22]. Transformers often misinterpret noise
patterns as image features, increasing noise amplification in
the enhanced image [21]. CNNs, on the other hand, can create
artifacts such as ringing or blurring, especially around edges
or high-frequency regions, due to limitations in accurately
reconstructing fine details [23]. Additionally, models trained
on specific datasets may not generalize well, causing quality
degradation on new data shown by [9], [24], [31]. This is
particularly challenging with extremely low-resolution and
noisy images, where algorithmsmay need help differentiating
between true details and noise.

One way to efficiently address these challenges is to merge
the complementary abilities of CNNs and Transformers and
integrate their strengths. Transformers have been proven
to capture long-range dependencies effectively, whereas
CNNs have advanced in enhancing the quality of noisy
images without compromising computational expense. Some
of the Hybrid models have already been proposed, such
as EHNet [25], HNCT [20], and TCDFN [19]. Utilizing
comparable methodologies, we put forth a unique strategy
for single-image super-resolution that combines the CNN
and Transformer in a U-shaped architecture with skip
connections. The U-shaped design with skip connections is
the backbone of our proposed method. It helps the network
to extract features differently from different layers without
increasing the computational burden. The transformer helps
to capture long-range dependencies and global context and
reduce artifacts like jagged patterns or blurring. CNN helps
enhance the quality of noisy images and prevent noise ampli-
fication while restoring noisy images. This synergetic com-
bination allows the model to enhance the super-resolution
performance while reducing its computational burden.

The following is a summary of the primary contributions
made by our suggested model:

(i) Propose a Parallel Hybrid Transformer CNN Block
(PHTCB) with a Transformer CNN (TCN) Block that com-
bines the powers of CNNs and Transformer to capture long
range dependencies, reduce artifacts, and simultaneously
prevent the amplification of noise in super-resolution noisy
images.

(ii) Put forth a Triple Enhanced Spatial Attention (TESA)
block to improve the model’s performance by focusing on
relevant image regions while suppressing irrelevant or noisy
areas.
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(iii) Suggest a U-shaped backbone with a skip connection
to extract features differently from different layers without
increasing the computational burden.

The article’s remaining sections are Section II, which
examines relevant research on the suggested approach, and
Section III, which outlines the network’s methodology. Sec-
tion IV presents the experimental results and a comparative
analysis using cutting-edge techniques. Sections V and VI
contain a discussion, conclusion and suggestions for further
work.

II. RELATED WORK
Throughout the past ten years, image super-resolution (ISR)
has made great strides, mostly due to the development
of various deep learning algorithms. Convolutional neural
networks (CNNs), generative adversarial networks (GANs),
attention mechanisms, and transformer-based models are
some of the major categories into which these developments
can be divided.

The foundation of many advances in ISR has been Convo-
lutional Neural Networks (CNNs). A major turning point in
the discipline was when Dong et al. introduced SRCNN [5],
showcasing deep learning’s potential for super-resolution
applications. Later efforts have concentrated on strengthening
CNNs’ architecture and training methodologies to improve
performance. A significant contribution in this domain is
the Fast Super-Resolution Convolutional Neural Network
(FSRCNN) [6] by Dong et al. FSRCNN [6] was designed to
be a faster and more efficient model than its predecessors.
LapSRN [8], developed by Lai et al., uses a progressive
reconstruction approach via a pyramid of images, improving
training and testing efficiency. A persistent memory network,
MemNet [9], was introduced by Tai et al. to handle the mem-
ory requirements of the network better. Li et al. proposed the
Super-Resolution Feedback Network (SRFBN) [26], which
uses feedback connections to refine feature representations
iteratively, resulting in enhanced super-resolution quality.
To get better results, Kim et al., for example, proposed the
VDSR [7] model, which used extremely deeper CNN layers
and residual learning to enhance super-resolution perfor-
mance. Deeply Recursive Convolutional Network (DRCN)
[27] and Deeply-Recursive Residual Network (DRRN) [28]
by Tai et al. leverage recursive learning to improve depth
and performance with fewer parameters. Li et al.’s Multi-
Scale Residual Network MSRN [29] utilizes hierarchical
information for image SR and adaptive feature extraction,
and the Adaptive Weighted Learning Network AWSRN [30]
for Lightweight Image Super-Resolution efficiently improves
image resolution by utilizing adaptive weighted learning
to balance performance and computational complexity.
DBPN [31] Deep Back-Projection Network for image
super-resolution enhances image quality through iterative up-
and down-sampling processes, refining details and improving
accuracy with each back-projection step. As deeper networks
were not suitable ofr the currect cutting-edge devices,

by deleting pointless modules from conventional CNNs, the
EDSR [10] model by Lim et al. stretched the envelope even
further and produced a more potent and effective network
by improving optimization strategy and winning the New
Trends in Image Restoration and Enhancement (NTIRE)
2017 challenge on single image Super-Resolution: Dataset
and Study. A Multi-Scale Deep Cross Network for Image
Super-Resolution (MDCN) [32] was introduced to handle
multiple scale factors in a single model. RDN [33] Residual
Dense Network for image super-resolution improves image
quality by leveraging dense residual connections and feature
fusion, allowing the network to learn and preserve fine details
and textures effectively. Generative Adversarial Networks
(GANs) introduced a new paradigm in ISR by focusing on
generating more realistic and perceptually pleasing images
to improve the visual quality further. Ledig et al. introduced
SRGAN [34], which utilized GANs for ISR, producing
high-resolution images with sharper details. Subsequent
models, such as ESRGAN [35] by Wang et al., improved
upon SRGAN by incorporating a deeper and more com-
plex generator and discriminator architecture; furthermore
EnhanceNet [36] was also introduced, which led to further
enhancements in image quality.

Attention mechanisms have been pivotal in enhancing
feature representation in ISR models. The integration of
attention mechanisms into ISR models has significantly
improved their ability to focus on important features of
the image. The work by Zhang et al. on the Residual
Channel Attention Network (RCAN) [11] demonstrated the
effectiveness of channel attention mechanisms in enhancing
feature representation. Similarly, Dai et al. proposed the
Second-order Attention Network (SAN) [37], which lever-
ages second-order channel attention to capture more complex
feature interactions. Cross-Scale Non-Local (CSNL) [38]
attention network by Mei et al. captures dependencies across
different scales to enhance the representation of complex
image structures. The Holistic Attention Network (HAN)
[39] by Niu et al. integrates spatial and channel-wise
attention mechanisms at multiple levels of the network to
effectively capture fine-grained details. MFCC [40] lever-
ages multi-frequency information through channel attention,
improving the network’s ability to distinguish between
different textures and details in the image. Mei et al.
developed the Non-Local Sparse Attention Network (NLSN)
[12], which uses non-local operations to capture long-range
dependencies and sparse attention mechanisms to reduce
computational complexity while maintaining performance.
These advancements have shown that attention mechanisms
can significantly boost the performance of CNN-based ISR
models by allowing them to adjust their focus based on the
input image dynamically. DANS [13] refine feature maps
at various stages of the network, significantly enhancing
the quality of super-resolved images, and SENext [41] by
Wazir et al. incorporates advanced channel-wise attention
mechanisms to recalibrate feature responses dynamically,
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FIGURE 1. General architecture of transformer and CNN networks.

improving super-resolution performance while simultane-
ously reducing computational cost and prevents over-fitting.
Howevere, careful consideration and investigation of these
issues are still required.

Enhanced spatial attention mechanisms have been
explored to improve the performance of ISR models. Woo
et al. introduced the Convolutional Block Attention Module
(CBAM) [42], which combines spatial and channel attention
mechanisms to refine feature representations. This approach
has effectively enhanced image quality by allowing the model
to focus on relevant regions and suppress noise. Similarly,
the dual attention mechanism proposed by Li et al. in the
DANet [43]model demonstrated the benefits of incorporating
both spatial and channel attention for image super-resolution
tasks.

Recently, transformer-based models have gained popu-
larity in ISR due to their capability to capture long-range
dependencies and model global context more effectively
than CNNs. Vision Transformers (ViTs) [14], introduced by
Dosovitskiy et al., demonstrated the potential of transformers
in various vision tasks. The Swin Transformer by Liu
et al. [16]. proposed a hierarchical transformer model
with shifted windows, significantly reducing computational
complexity while maintaining high performance. Liang et
al. introduced the SwinIR [15] model, which integrated
the Swin Transformer into a residual network, showcasing
its effectiveness in image restoration tasks. ELAN [18]
architecture is designed to harness the power of long-range
attention mechanisms while maintaining computational effi-
ciency. SRFormer [17] introduces multi-head self-attention
mechanisms to capture complex relationships between distant
pixels, improving the network’s ability to reconstruct fine
details and textures in super-resolved images. SRFormer
incorporates positional encoding, which helps the model
understand the relative positions of pixels, enhancing its

spatial awareness. Hybrid models combining the strengths
of CNNs and transformers have been proposed to leverage
local feature extraction and global context modeling. For
instance, the TransCNN [44] model by Waseem et al.
combined CNN and transformer blocks to achieve state-
of-the-art results in ISR. The IPT [21] model by Chen et
al. used a large-scale pre-trained transformer for various
image processing tasks, including ISR, Hybrid Network
of CNN, and Transformer for Lightweight Image Super-
Resolution HNCT [20] and TCDFN [19] are also some of
the hybrid approaches highlighting the versatility and power
of transformer-based approaches.

The landscape of image super-resolution has been signifi-
cantly enriched by advancements in CNNs, GANs, attention
mechanisms, transformer-based models, hybrid approaches,
and efficient model design. Each of these techniques has
contributed to improving the quality and performance of ISR
models, addressing various challenges such as computational
complexity, memory requirements, and the need for real-time
processing on edge devices. The ongoing research and
development in these areas continue to push the boundaries
of what is possible in image super-resolution, paving the
way for more sophisticated and practical applications. In this
work, a novel approach to U-shaped network architecture
combining CNN and transformer is laid out. These parts
are brought together to improve image super-resolution
performance by utilizing the advantages of both transformers
and CNNs.

To sum up, advances in image super-resolution have been
made possible by deep learning-based methods, CNNs, trans-
formers, and network designs. By combining these methods,
reconstruction quality has significantly improved, allowing
for the creation of more detailed high-resolution images.
Research issues include adapting SR approaches to video
super-resolution, generalizing across domains, and maximiz-
ing computational efficiency. These developments are needed
to realize the full potential of image super-resolution in
various applications, including digital content creation [45],
medical imaging [1], surveillance [3], remote sensing [46],
and facial image super-resolution [47].

III. PROPOSED METHODOLOGY
This section presents our proposed novel hybrid approach
in single image super-resolution by fusion of Transformer
and CNN in a Parallel Hybrid Transformer CNN Block
(PHTCB) in a U-shaped design framework. Furthermore,
we employed enhanced spatial attention in the network
architecture to refine feature representations and allow the
model to focus on relevant regions and suppress noise.
Moreover, the information from PHTCB is transferred using
skip connections to transmit low-frequency information at
each stage of the network to reduce the parameters for the
computation. Finally, we use pixel shuffle to reconstruct the
high-resolution image.

Figure 2 shows our proposed Deep Hybrid transformer
U-Network for Single Image Super-Resolution (DHTCUN)
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FIGURE 2. Deep hybrid transformer CNN U-Net for single image super resolution’s (DHTCUN) proposed network architecture.

consisting of five Parallel Hybrid Transformer CNN Blocks
(PHTCB) described in section IIIA. The initial low-resolution
features are extracted using a normal convolution 1× 1. Then,
the features are transmitted to the U-shaped architecture
designed using the PHTCB. The less complex features are
directly transmitted from the first PHTCB to the last PHTCB
using a skip connection, where the more complex features
traverse through the second PHTCB to the second-last
PHTCB. The higher the complexity of the feature, the more
they traverse through the PHTCB to attain better refinement.
After passing from the U-shaped framework, these features
pass through the Enhanced spatial attention block followed
by a 1 × 1 convolution layer to achieve better refinement by
focusing on the relevant features and and noise suppression.
Finally, the High-resolution image is reconstructed using a
Pixel Shuffle folowed by two layers of the 3 × 3 convolution.
The initial feature extraction is indicated in Equation 1.

H0 = FConv1(HLR), (1)

Here, HLR is the input Low-Resolution (LR) image,
FConv1(.) represents 1 × 1 convolution operation for extract-
ing initial features, and H0 is the output of the convolution
layer.

After passing through the initial feature extraction stage,
the features are transmitted to the PHTCB in the U-shaped
framework.

A. PARALLEL HYBRID TRANSFORMER CNN BLOCK
(PHTCB)
Parallel Hybrid Transformer CNN Block (PHTCB) captures
long range dependencies, reduce artifacts, and simultane-
ously prevents noise amplification in super-resolution of
noisy images. The architecture of PHTCB is shown in
Figure 3. It consists of Triple Enhanced Spatial Attention
(TESA) described in section III A.1 Block and Transformer
CNN (TCN) Blocks described in section III A.2. Since the
hybrid combination of Transformer and CNN is parallelly

connected in this block, that’s why the Block is named as
Parallel Hybrid Transformer CNN Block (PHTCB).

As seen in Figure 3, the PHTCB consists of the TESA
and the TCN Blocks. The input to the PHTCB first passess
through the TESA and then is parallelly distributed through
both the Hybrid TCN Blocks. The TCN block is the Hybrid
block cascading together the Swin Transformer Layer (STL)
and the convolutional layer. Finally, the features pass through
a convolutional layer and pass through a TESA followed by
an arithmetic addition.

The mathematical expression of PHTCB is given in
Equation 2, 3, 4, 5, and 6.

The input to the PHTCB is fed to the TESA block. The
euation of the TESA Block is given by Equation 2.

HTESA = FTESA(HI ), (2)

Here, HI is the input to the PHTCB block, FTESA(.) is the
TESA Block function, and HTESA is the output of the TESA
block.

Equation 3 shows the output of each TCN block, which is
distributed parallel to the TESA block.

HTCN =
(
FSTL(FConv3(HTESA))

)
(3)

Here, FConv3(.) is the 3 × 3 convolution function, FSTL(.)
is the STL function, andHTCN is the output of the TCN block.

In Equations 4 and 5, the outputs of both TCN blocks are
added and passed through the convolution layer.

HConi/p = HTCN1 + HTCN2, (4)

Here, HConi/p is the input to the 1 × 1 convolution layer,
and HTCN1 and HTCN2 are the outputs from both the TCN
blocks. HTCN1 = HTCN2 = HTCN

HCono/p = FConv1(HConi/p ), (5)

Here, HCono/p is the output of the 1 × 1 convolution layer,
and FConv1(.) represents the 1 × 1 convolution operation.
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Finally, all the features are passed through the TESA block.

HPHTCB = FTESA(HCono/p ), (6)

Here, HPHTCB denotes the output of the PHTCB block

1) TRIPLE ENHANCED SPATIAL ATTENTION (TESA) BLOCK
The Triple Enhanced Spatial Attention (TESA), as seen
in Figure 4, consists of three Enhanced Spatial Attention
(ESA) modules stacked together. This approach enhances
image quality by focusing on relevant regions of the image.
TESA employs an iterative approach where the output of
one attention module is refined by subsequent modules,
progressively enhancing the focus on critical features.
Equation 7 shows the output of TESA.

HTESA = FESA(FESA(FESA(Hi/p))), (7)

Here FESA(.) represents the Enhanced Spatial Attention
(ESA) module function, and (Hi/p) is the input fed into the
TESA block, and HTESA is the output of the TESA Block.

FIGURE 3. The structure of parallel hybrid transformer CNN block
(PHTCB).

2) TRANSFORMER CNN (TCN) BLOCK
As already seen in Figure 2, the Transformer CNN (TCN)
Block is a hybrid block formed by cascading the Swin
transformer Layer and the CNN layer. It combines the
powers of CNNS and Transformer to capture long-range
dependencies, reduce artifacts, and simultaneously prevent
the noise amplification in super-resolution noisy images.
In our proposed architecture, we have used two TCNs
connected in paraller in each PHTCH. The output of the TCN
Block is given in Equation 8.

HTCN = FConv3(FSTL(HIn), (8)

Here, FSTL(.) represents the STL function, (FConv3) is the 3
3 convolution operation, HIn is the input of the TCN block,
and HTCN is the output of the TCN block.

FIGURE 4. The structure of triple enhanced spatial attention (TESA) block.

B. ENHANCED SPATIAL ATTENTION (ESA)
Enhanced Spatial Attention (ESA) is a critical components
in image super-resolution (ISR) models, designed to focus
on significant features within an image selectively. This
mechanisms aims to improve the network’s ability to discern
and enhance crucial details, such as edges, textures, and fine
patterns, leading to higher-quality super-resolved images.

Enhanced Spatial Attention mechanisms refine traditional
spatial attention by incorporatingmore sophisticatedmethods
to identify and focus on critical image areas. This selective
focus helps the network preserve and enhance fine details
often lost in conventional methods. ESA dynamically adjusts
the weights assigned to different regions based on the context
and content of the image, allowing for adaptive attention that
responds to varying image characteristics.

FIGURE 5. Enhanced spatial attention (ESA).

Figure 5 shows a diagram representing the ESA mecha-
nism. Attention maps are generated by adding the input fea-
ture maps through convolutional, pooling, and up-sampling
layers. These maps indicate the importance of each spatial
location. The generated attention maps are then multiplied
element-wise, followed by an activation function (often
sigmoid) with the input feature maps, emphasizing the
significant regions while suppressing less important areas.

The mathematical expression of ESA is described in
Equations 9, 10, 11, and 12,

HE1 = Fup(FConv3(Fpool(FConv3(FConv1(HE1i/p))))), (9)
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Here, HE1i/p is the input to the ESA, FConv1(.) is the 1 ×

1 convolution operation, FConv3(.) is the 3 × 3 convolution
operation function, Fup(.) is the up-sampling function, and
HE1 is one of the inputs to the addition operation in ESA.

HE2 = FConv1(HE1i/p), (10)

HE2 is another input for the addition operation in ESA,
as seen in Figure 5.

HE3 = HE1 + HE2, (11)

HE3 is the added output of the addition operation in ESA.

HESA = HE1 × σ (FConv3 (HE3)) (12)

Here, × denotes the element-wise multiplication, σ

denotes the sigmoid function, and HESA is the output of the
Enhanced Spatial Attention (ESA) mechanism.

C. SWIN TRANSFORMER LAYER (STL)
The Swin Transformer layer is the proposed architecture’s
transformer component, designed for efficient and scalable
vision tasks, including image super-resolution. Unlike the
original STL, which uses the components twice, we have
used the components inside STL just once to reduce
the computation for self-attention across the input feature
map. It uses a hierarchical approach to model long-range
dependencies and global context efficiently. We apply global
self-attention across the entire input feature map. After
each self-attention operation, a two-layer MLP is applied to
transform the features further. Layer Normalization preceds
each SW-MSA and MLP block to stabilize and improve the
training process. Residual connections around each SW-MSA
and MLP block enhance gradient flow and mitigate the
vanishing gradient problem.

Shifted Window Multi-Head Self-Attention is a technique
used in the Swin Transformer [16] to balance computational
efficiency and feature interaction. The input image is divided
into non-overlapping windows where self-attention is per-
formed independently, reducing computational complexity.
In the next layer, the windows are shifted by a certain number
of pixels, allowing cross-window interactions. This shift
allows for cross-window interactions, ensuring that pixels
from the boundaries of the initial windows now fall within
the center of the new windows. This mechanism enables
the model to capture long-range dependencies and global
context without significantly increasing computational cost.
By combining local and global feature interactions, the Swin
Transformer Layer enhances performance on various vision
tasks.

Figure 6 represents the STL used in our proposed method.
Equations 13 and 14 give the mathematical expression for
STL.

HS1 = HS1i/p + (FLN (FSWMSA(HS1i/p))), (13)

Here, HS1i/p is the input to the STL, FSWMSA(.) is the
Shifted Window Multi-Head Self Attention function, FLN (.)

FIGURE 6. Swin transformer layer (STL).

is the Layer Normalization function, and HS1 isthe output of
the addition operation.

HSTL = HS1 + (FLN (FMLP(HS1))), (14)

Here, FMLP(.) is a Multi-Layer Perceptron, andHSTL is the
final output of the STL.

IV. EXPERIMENTAL RESULTS
In the experimental results section, we have demonstrated
the results of various qualitative and quantitative experiments
conducted using our proposed method. We have also shown
the comparative analysis of our proposed DHTCUN for
parameters, average PSNR and SSIM, execution time, and
time complexiety of our proposed method. Furthermore an
ablation study has also been conducted by checking different
numbers of PHTCB blocks to be used in the model by
changing the structure of the TCN block and by changing
the configuration of the TCN block in PHTCH, PSNR versus
Multi add analysis and finally, convergence analysis of the
model.

A. EXPERIMENTAL SETUP
This section presents the evaluation metrics, training
specifics, and datasets to test the efficacy of our suggested
model on publicly available datasets. The testing and training
sets are not the same.

1) TRAINING AND TESTING SETUP
Training our model involved randomly cropping low-
resolution patches of 48 × 48. A window size of 24 ×

24 has been selected.For×2,×3,×4, and×8, low-resolution
images were created using MATLAB R2022b. A 24-GB
NVIDIA GeForce GTX 2080ti GPU trains the proposed
network. Python 3.6 and the PyTorch 1.1.0 platform were
used to write the algorithm for the proposed model. Model
training involves obtaining 800 high-quality samples from
DIV2K [48] datasets. We choose an Adam optimizer with
β2 = 0.99 and β1 = 0.90 for optimization. For every
200 epochs, the learning rate of the suggested model is halved
from 10−4.

Five common benchmark datasets, namely Set5 [49], Set14
[50], BSD100 [51], Urban100 [52], andManga109 [53], were
used to test our proposed model. Bicubic kernels are used
to downsample the HR images to produce the LR image.
Each batch size of eight training samples is divided up.
Furthermore, data augmentation produces extra samples for
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the computation by flipping and rotating at random angles
of 90, 180, and 270 degrees. The image intensity range [-1,
1] has been used to compute the Mean Squared Error (MSE).
Standard evaluationmetrics like PSNR and SSIM can be used
to compare our model quantitatively with the most advanced
techniques.

B. QUANTITATIVE EVALUATIONS IN COMPARISON TO
STATE-OF-THE-ART METHODS
Five benchmark test datasets are tabulated and compared
using standard metrics in Table 1. We quantitatively compare
our proposed DHTCUN with seventeen SOTA methods:
Bicubic, LapSRN [8], SENext [41], RCAN [11], Mem-
Net [9], MFCC [40], EDSR [10], HAN [39], SwinIR [15],
and NLSN [12], SRFormer [17], TCDFN [19], HNCT [20],
MSRN [29], AWSRN [30], DBPN [31] and RDN [33]. Our
suggested DHTCUN quantitative results have considerably
surpassed the state-of-the-art techniques regarding PSNR and
SSIM, as indicated in Table 1. For scale factors ×2, ×3,
×4, and ×8, our suggested DHTCUN model performs better
across all test datasets. Additionally, our suggested approach
produced a higher average PSNR/SSIM value on all image
SR test datasets than other SOTA models.

C. COMPARATIVE STUDY USING THE QUANTITY OF
MODEL PARAMETERS
The parameters and PSNR comparison for our suggested
DHTCUNmodel are displayed in Figure 7. The effectiveness
of our suggested model, DHTCUN, with a scale factor of
×2, is assessed using the Set5 [49] test dataset. Lowering
the number of parameters indicates lower computational
costs. The DHTCUN model more effectively reduces the
model’s size when compared to other state-of-the-art deep
learning models. Around 92% fewer parameters are found
in DHTCUN than in EDSR [10], 81% less in RCAN [11],
85% less in RDN [33], 42% less in NLSN [12], and 22%
less in HAN [39]. Comparing our suggested method to five
other cutting-edge approaches, Figure 7 demonstrates that our
suggested method has fewer parameters. This indicates our
model’s efficiency in reducing the computational burden.

To further demonstrate the efficiency of the proposed
model in reducing computational cost, the following points
have been mentioned:

Unlike HNCT and SRFormer, which do not support
×8 super-resolution, DHTCUN excels at ×2, ×3, ×4,
and ×8 magnifications. It provides superior results with
similar computational costs, making it advantageous for high
magnification applications at a lesser cost.

Although DHTCUN has more parameters than HNCT
on ×2 Set 5 [49], it a shows a superior performance of
0.4 dB as compared to HNCT, which itself is a significant
improvement. Additionally, as seen in Figure 11, the time
required by a single epoch for the training our proposed
DHTCUN is less than that of HNCT, which demonstrates
the efficiency of our proposed DHTCUN in reducing the
computational expense.

As for the comparison with SRFormer, it should be
noted that SRFormer is a Transformer-based method whereas
our proposed DHTCUN combines Transformer and CNN
techniques, leveraging the strengths of both. This dual
architecture may result in a higher parameter count but offers
superior performance across various scenarios.

While DHTCUN may have a higher parameter count due
to its dual architecture, the trade-off with performance gains,
especially in high magnification applications, can justify the
increased parametric usage.

FIGURE 7. Analysis of model parameters about PSNR using the
×2 enlargement factor on the Set5 [49] image dataset.

D. COMPARISON OF THE MEAN PSNR AND SSIM OF THE
IMAGE SR DATASETS FOR ×4 AND ×8 ENLARGEMENT
FACTORS.
Using standard objective measures, Figures 8 and 9 compare
the average PSNR and SSIM of various existing image
SR methods on benchmark datasets (Set5 [49], Set14 [50],
BSD100 [51], Urban100 [52], Manga109 [53]) for enlarge-
ment factors of ×4 and ×8. According to the quantitative
results, our proposed DHTCUN outperforms HNCT [20],
SRFormer [17], NLSN [12], RCAN [11], EDSR [10], and
MemNet [9] when it comes to the enlargement factor of ×4,
and SRCNN [5], LapSRN [8], MemNet [9], RCAN [11],
HAN [39], RDN [33], EDSR [10], and AWSRN [30] when
it comes to the enlargement factor of ×8. The average
quantitative PSNR and SSIM values for Figure 8 and Figure 9
are given in Table 1.

E. PSNR VERSUS EXECUTION TIME: A QUANTITATIVE
ANALYSIS
Execution time is required for an ISR model to process
an image and produce a high-resolution output. As seen in
Figure 10, this section displays the DHTCUN’s performance
regarding PSNR versus execution time. The state-of-the-art
techniques were assessed using an NVIDIA GeForce GTX
2080ti GPU with 24GB of memory. Figure 10 illustrates
the trade-off between PSNR and execution time on Set14
[50] scale factor ×4. Our suggested approach outperforms
five state-of-the-art techniques (HNCT [20], SRFormer [17],
NLSN [12], RNAN [53], and RDN [33]) with the highest
PSNR of 29.06.
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TABLE 1. Comparison of the most sophisticated SR methods for upscaling factors ×2, ×3, ×4, and ×8 with our suggested DHTCUN evaluated using
standard metrics. The highest score is displayed in bold and is colored Red. Blue indicates and displays the score that comes in second place.
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FIGURE 8. Comparison of image SR test data sets for PSNR and SSIM
based on ×4 enlargement factor.

FIGURE 9. Comparison of image SR test data sets for PSNR and SSIM
based on an enlargement factor of ×8.

Balancing the trade-off between execution time and
performance in image super-resolution models involves
a combination of approaches, architectural innovations,
hardware acceleration, and careful evaluation of perfor-
mance metrics. By applying these strategies, it is pos-
sible to achieve a model that performs well in terms
of image quality while also being efficient in computa-
tion and suitable for deployment in resource-constrained
environments.

To better understand the trade-off between execution time
and performance, we have shown a tabular comparison
of our proposed DHTCUN with four other state-of-the-art
methods regarding performance, runtime, parameters and
flops. Table 2 shows the comparison of our proposed DHT-
CUN with ELAN [18], SRFormer [17], TCDFN [19], and
HNCT [20].We have separated the transformer-basedmodels
and hybrid models with a horizontal line. As seen in Table 2,
our proposed DHTCUN shows the best performance and
lesser FLOPs compared to other state-of-the-art methods on
Set 5 [49]×4. SRFormer shows the second-best performance
and best runtime but has a very high number of FLOPs.
TCDFN [19] shows the second-best runtime, parameters
count, and flops, but the performance is very low.

Since ELAN [18] and SRFormer [17] are only transformer
based models where as TCDFN [19], HNCT [20] and
our proposed DHTCUN are hybrid methods. Our proposed

TABLE 2. Trade-off for Runtime, #Params, and #FLOPs with performance
on Set5 [49] ×4.

DHTCUN shows better trade-off for performance, runtime,
params and flops.

FIGURE 10. Execution time measurement against PSNR using a scale
factor of ×4 on Set 14 [50].

F. EXAMINATION OF TIME COMPLEXITY
The time needed to finish each training epoch for a deep
learning model illustrates how complex the model is in terms
of time. The time complexity of these algorithms is a crucial
factor, especially when aiming for real-time applications.
The time complexity of image super-resolution is primarily
influenced by the size of the input image (n×m), the network
d depth, and the convolutional kernel k.

Figure 11 displays the time required per epoch in
100 training epochs of the five state-of-the-art methods
TCDFN [19], ELAN [18], HNCT [20], NLSN [12], and
our suggested DHTCUN. The curves show a noticeable
difference, suggesting that our suggested DHTCUN requires
less training time for every epoch. DHTCUN, therefore,
exhibits lower time complexity than the five state-of-the-art
methods.

G. SPACE COMPLEXITY EXAMINATION
We have discussed the memory footprint of each model,
which is crucial for understanding the practical deployment of
these models on hardware with limited resources. Balancing
space complexity with performance is essential for practical
deployment.

Figure 12 displays the memory space required by five
state-of-the-art methods SRFormer [17], TransCNN [44],
HNCT [20], TCDFN [19], and our suggested DHTCUN.
The bar graph shows that our suggested DHTCUN requires
less memory than other state-of-the-art methods. Therefore,
DHTCUN exhibits lower space complexity and has a lesser
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FIGURE 11. Estimation of time complexity on DIV2K [48] dataset for
100 epochs on scale factor ×4.

FIGURE 12. Convergence analysis of our model with the compared to
another hybrid approach.

computational burden than the other four state-of-the-art
methods.

H. A COMPARISON OF VISUAL QUALITY
For image SR test datasets, including Set5 [49], Set14 [50],
BSD100 [51], Urban100 [52], and Manga109 [53], the visual
quality of up-sampling factors ×4 and ×8 is displayed in
Figures 13, 14, 15, 16, 17, 18, 19, and 20. Even so, improving
an image for an enlargement factor of ×8 is challenging. Our
proposedmethod shows finer andmore detail-oriented results
because of the hybrid transformer CNN approach used in the
model.

We used the following images from respective datasets
for scale factor ×4: Img_223061 from BSD100 [51],
Img_098 fromUrban100 [52], ARMS image fromManga109
[53], and zebra image from Set14 [50]. Similarly for the
scale factor ×8, we used Img_119082 from BSD100 [51],
Img_044 from Urban100 [52], the foreman form Set14
[50] dataset, and KuroidoGanka image from Manga109 [53]
datasets. In comparison to other state-of-the-art methods
like Bicubic, MSRN [29], EDSR [10], AWSRN [30],

RCAN [11], NLSN [12], SwinIR [15], SRFormer [17],
TCDFN [19], and HNCT [20] for ×4, better quantitative
metrics (PSNR/SSIM) and aesthetically pleasing patches are
displayed by our proposed DHTCUN. Likewise, for scale
factor ×8 Bicubic, HAN [39], TCDFN [19], LapSRN [8],
MSRN [29], RCAN [11], AWSRN [30], and DBPN [31] are
comparable SOTA methods.

I. ABLATION EXAMINATION
Here, we analyze our proposed model through controlled
experiments. Five Parallel Hybrid Transformer CNN Blocks
(PHTCB) are included in the suggested model. The frame-
work’s pixel shuffle function was utilized for up-sampling.
To make the model lightweight, we finally added a skip
connection. The suggestedmodel’s ablation studywas carried
out using the following methods: (1) By calculating the
PSNR versus Multi-Add, (2) By changing the number of
PHTCBs in the network, (3) by analyzing the number of
ESA for theMulti Enhanced Spatial Attention (MESA) inside
the PHTCB, (4) through an examination of comparisons
with conventional denoising methods, and (5) By calculating
PSNR versus Epoch convergence. We conduct these tests to
see how they affect the suggested model’s performance.

1) ABLATION INVESTIGATION BY CALCULATING THE PSNR
VERSUS MULTI-ADD
In deep learning models, particularly those involving convo-
lutional neural networks (CNNs) and transformers, ‘‘multi
adds’’ typically refer to the multiplication and addition
operations required for matrix multiplications, which are
fundamental to convolutional operations and transformer
mechanisms. These operations are critical in determining
the computational complexity and efficiency of the model.
The total multi-adds for a deep learning model is the sum
of the multi-adds for each layer. This sum provides an
estimate of the computational complexity of the model,
influencing the required computational power and execution
time. Optimizing the number of multi-adds is crucial for
making models efficient, particularly for deployment on
resource-constrained devices like smart edge devices or
embedded systems on chips (SoC). Hence, understanding and
optimizingmulti-adds is essential for developing efficient and
effective deep-learning models.

From Figure 21, it is evident that our proposed
method benchmarks a few representative SR methods like
MSRN [29], RCAN [11], NLSN [12], SRFormer [17],
HNCT [20], TCDFN [19] and EDSR [10] on the metrics of
SR performance (PSNR), model size (number of parameters),
and computation cost (number of Multi-Adds).

2) ABLATION STUDY BY CHANGING THE NUMBER OF
PHTCBs IN THE NETWORK
Table 3 shows the model’s performance and computation
regarding PSNR, SSIM, and Multi-adds. Red represents the
optimal value, while Blue represents the second-best value.
We tried different numbers of Parallel Hybrid Transformer
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FIGURE 13. Zebra image quality improvement on a scale factor of ×4 from the Set14 [50] dataset.

FIGURE 14. Img_223061 quality improvement on a scale factor of ×4 from the BSD100 [51] dataset.

CNN Blocks (PHTCBs) for our network. We trained the
model for 300 epochs and compared the PSNR, SSIM, and
Multi-adds. The number of PHTCBs showing the highest
PSNR and SSIM value with the lowest Multi-Adds count is
chosen for the final training of the model.

As such, it depends on the model’s requirements. The
model with four PHTCBs is the best option if we need
to compute less; however, if we need more performance,
the model with five PHTCBs is the best choice. It displays
the second-lowest Multi-Adds count along with the highest
PSNR and SSIM.

It is to be noted that the Parallel Hybrid Transformer
CNN Blocks are connected in a U-shaped architecture (both
series and parallel connection simultaneously) using skip
connections to separate the high-frequency details (contex-
tual details) and the low-frequency details to reduce the
computational burden. Figure 22 shows better understanding
of the arrangments of PHTCBs in the network as it is clear
from Table 3 that the arrangement with 5 PHTCBs has the
best trade-off for performance and computational expense.
Note: Figure 22 shows a different arrangement of PHTCBs

in the proposed network. The rest of the layers (Con-
volutional, ESA, and Pixel shuffle) remain the same for
all the arrangements as that of the final model shown in
Figure 2.

TABLE 3. Different number of PHTCBs in network.

3) ANALYSING THE NUMBER OF ESA FOR THE
MULTI-ENHANCED SPATIAL ATTENTION (MESA) INSIDE THE
PHTCB
We further experimented to check the most suitable num-
ber of ESA in a PHTCB. The module Triple Enhanced
Spatial Attention (TESA) used in PHTCB comes from
Multi-Enhanced Spatial Attention (MESA). MESA employs
an iterative approach in which multiple ESA are cascaded
together, and the output of one attention module is refined
by subsequent modules, progressively enhancing the focus
on critical features. The experiments included Dual Enhanced
Spatial Attention (DESA), containing two ESA modules cas-
caded together; Triple Enhanced Spatial Attention (TESA),
consisting of three ESA modules cascaded together; and
Quadruple Enhanced Spatial Attention (QESA), consisting of
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FIGURE 15. Img_098 quality improvement on a scale factor of ×4 from the Urban100 [52] dataset.

FIGURE 16. ARMS image quality improvement on a scale factor of ×4 from the Manga109 [53] dataset.

FIGURE 17. Foreman image quality improvement on a scale factor of ×8 from the Set14 [50] dataset.

four ESA modules cascaded together. Table 3 demonstrated
that TESA can be used as MESA inside PHTCB as it gives
better PSNR, SSIM, and Multi-Adds count than DESA or
QESA on the Set5 dataset.

4) ANALYTICAL COMPARISON WITH CONVENTIONAL
DENOISING METHODS
Here, we present a comparative analysis of our proposed
DHTCUN model on the Set5 [49] Dataset for a scale factore

TABLE 4. Evaluation of MESA in the PHTCB for Set5 [49] dataset. Bold
text with the color Red indicates the best quantitative value. The blue
color and underline indicate the second best quantitative value.

of ×2 with other classical denoising techniques, including
Color image denoising via sparse 3D collaborative filtering
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FIGURE 18. Img_119082 quality improvement on scale factor of ×8 from the BSD100 [51] dataset.

FIGURE 19. Img_044 quality improvement on the scale factor ×8 from the Urban100 [52] dataset.

FIGURE 20. KuroidoGanka image quality improvement on the scale factor of ×8 from the Manga109 [53] dataset.

BM3D [55], Weighted Nuclear Norm Minimization with
Application to Image Denoising (WNNM) [56], Denoising
Convolutional Neural Network (DnCNN) [57], and Fast
and Flexible Solution for CNN-Based Image Denoising
(FFDNet) [58]. The Gaussian noise keeping noise level
(σ ) is used in Table 4 to compare performance in terms

of PSNR for the values of σ = 5, σ = 10, and
σ = 15. Our suggested DHTCUN model performs better
at noise level σ = 5, as seen in Table 4, proving that
it reduces noise amplification during the reconstruction.
Thus, our model also shows better performance for noisy
images.
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TABLE 5. Assessment of image noise degradation performance on Set 5 [49] for scale factor ×2. Bold text with the color Red indicates the best
quantitative value. The blue color and underline indicate the second-best quantitative value.

FIGURE 21. Metric assessment of PSNR (dB) versus Multi-adds where the
circle size represents the number of parameters on scale factor ×4.

5) CONVERGENCE ANALYSIS
Training convergence refers to the process by which a neural
network’s learning algorithm iteratively adjusts the model
parameters to minimize the loss function, thereby improving
performance on a given task. Achieving training convergence
is a critical aspect of developing effective deep-learning
models.

In this subsection, we discuss performance evaluation as
our model is being trained. Figure 23 displays the average
PSNR (dB) for each epoch, illustrating how our model
outperforms existing SR models, namely SRFormer [17],
HNCT [20], and TCDFN [19], regarding training conver-
gence. To ensure a fair comparison, we have used the
same GPU for the training, and the hyperparameters remain
unchanged. This analysis is computed for 200 training epochs
with a ×4 enlargement factor on the DIV2K [48] dataset.

V. DISCUSSION
The proposed hybrid model that combines Convolutional
Neural Networks (CNNs) and Transformers in a U-shaped
architecture with skip connections has demonstrated notable
improvements in single-image super-resolution (SISR) tasks.
This novel approach leverages the complementary strengths
of CNNs and Transformers to address several inherent
challenges in SISR, such as computational expense, noise
amplification, and the generation of artifacts like jagged
patterns or blurring. By integrating the capabilities of
both architectures, the model efficiently captures long-range
dependencies and global context while enhancing the qual-
ity of noisy images without compromising computational
efficiency.

Introducing the Parallel Hybrid Transformer CNN Block
(PHTCB) within the proposed framework is a significant
innovation. This block synergizes the strengths of CNNs and
Transformers, enabling the model to capture intricate image
details and reduce artifacts. The Transformer component
excels at modeling long-range dependencies and global
context, which is essential for reconstructing high-fidelity
images from low-resolution counterparts. Concurrently, the
CNN component enhances image quality, particularly in
noisy scenarios, by mitigating noise amplification during the
super-resolution process.

Furthermore, implementing of the Triple Enhanced Spatial
Attention (TESA) block contributes to the model’s perfor-
mance by selectively focusing on relevant image regions
while suppressing irrelevant or noisy areas. This selective
attention mechanism ensures that the model prioritizes cru-
cial features, thereby improving the super-resolved images’
overall quality and perceptual realism. The TESA block’s
ability to enhance the model’s attention to pertinent details
significantly reduces common SISR artifacts.

The proposed U-shaped backbone with skip connections
plays a crucial role in terms of computational efficiency.
This design allows the model to extract features at different
levels of abstraction without substantially increasing the
computational burden. The skip connections facilitate the
flow of information across layers, ensuring that the model
maintains a balance between capturing detailed features and
preserving computational efficiency. This design choice is
particularly beneficial for processing large and complex
images, where computational resources are often a limiting
factor.

The study’s comparative analysis and experimental results
support the efficacy of the suggested strategy. The model
consistently outperforms the most advanced techniques
regarding perceptual quality and quantitative metrics. The
suggested approach performs exceptionally well with var-
ious input image types, including extremely noisy and
low-resolution images. This resilience demonstrates the
model’s adaptability and usefulness in real-world situa-
tions where computational effectiveness and image quality
are crucial.

The proposed hybrid model represents a significant
advancement in the field of SISR. The model addresses
several critical challenges by effectively combining the
strengths of CNNs and Transformers within a U-shaped
architecture, achieving superior image quality with reduced
computational demands. The innovations introduced in the
PHTCB and TESA blocks further enhance the model’s
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FIGURE 22. Combination of different number of PHTCBs in network as given in Table 3.

FIGURE 23. Convergence analysis of our model with the compared to
another approaches.

capabilities, making it a promising solution for high-fidelity
image super-resolution tasks.

VI. CONCLUSION AND FUTURE WORK
In this work, we introduced a novel approach for single-
image super-resolution (SISR) that synergizes the strengths
of Convolutional Neural Networks (CNNs) and Transformers
within a U-shaped architecture with skip connections.
This hybrid model effectively addresses key challenges in
SISR, including computational expense, noise amplifica-
tion, and artifact generation. By leveraging the Parallel
Hybrid Transformer CNN Block (PHTCB) and the Triple
Enhanced Spatial Attention (TESA) block, the model cap-
tures long-range dependencies and global context while
enhancing the quality of noisy images. The U-shaped
backbone with skip connections ensures efficient feature
extraction at multiple levels of abstraction without increasing

computational complexity. Our extensive experiments on
benchmark datasets demonstrate that the proposed model
consistently outperforms state-of-the-art quantitative metrics
and perceptual quality methods. The robust performance
across various image types, including those with extreme
noise and low resolution, highlights our approach’s prac-
tical applicability and versatility. This work represents a
significant advancement in the field of SISR, providing a
promising solution for high-fidelity image reconstruction
in various real-world applications. Subsequent research
endeavors may delve into more refinements and expansions
of this methodology, conceivably integrating supplementary
attention mechanisms or sophisticated training tactics to
bolster efficacy and present our model for introducing
real-time and video super-resolution applications in intricate
scenarios.
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