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ABSTRACT Accurate segmentation of pituitary adenoma lesions is essential for effective diagnosis and
treatment planning. However, traditional algorithms struggle with this task due to the variability in lesion
shape, position, and the presence of extensive background areas. In response to the above challenges,
we develop a segmentation framework for pituitary adenoma that integrates multi-scale residual, channel
attention and spatial attention mechanisms. In the encoding stage of MSR-Net, a multi-scale residual block
is introduced to enhance the ability of channel information extraction across varying scales. In the decoding
phase, we construct two paths: the introduction of channel attention allows for obtaining the nuanced
weighting of the response degree of each channel to key information, and the spatial attention is utilized to
extract the global dependence of features to ease the interference of complex background on segmentation
performance. When tested on the constructed original pituitary adenoma database, the specificity, IoU,
Mcc, and Dice of MSR-Net reached 99.74%, 80.87%, 89.12%, and 89.34%, which were 0.16%, 5.96%,
3.76%, and 3.76% higher than traditional U-Net. Furthermore, we embarked extensive ablative studies on
the original dataset to dissect and evaluate the efficacy of each key modules integrated into our architectural
framework. Finally, we expanded upon the original dataset to create an enhanced database, and the objective
evaluation index further verifies the superiority and advanced nature ofMSR-Net. Compared with other most
advanced segmentation approaches, MSR-Net shows superior segmentation effect and robustness, as well
as great potential in clinical application, which provides an important reference for the future research and
development of medical image segmentation.

INDEX TERMS Image segmentation, U-Net, pituitary adenoma, multi-scale residual, attention mechanism.

I. INTRODUCTION
Pituitary adenoma stands as one of the prevalent intracranial
tumors encountered in clinical practice, and most of its MR
images are characterized by high noise, artifacts, and simi-
larity to surrounding tissues. However, due to the complexity
of the anatomy around the pituitary gland, doctors are often
subject to subjective experience during the diagnosis process,
which may lead to misdiagnosis and subsequent treatment
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challenges. Currently, recent advances in clinical medical
imaging data and artificial intelligence offer promising solu-
tions to address these diagnostic barriers. By using various
image processing algorithms, the interference of subjective
factors can be minimized. Firstly, it greatly improves the
accuracy of segmentation and can more accurately locate
the lesion area. Secondly, analysis based on image process-
ing algorithms can provide doctors with more quantitative
information, so this technology helps to formulate more pre-
cise diagnosis and treatment plan. In summary, integrating
image processing algorithms into medical practice has great
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FIGURE 1. MR images of pituitary adenoma and corresponding gold standard.

potential to improve diagnostic accuracy and patient out-
comes for pituitary adenoma.

Although machine vision-based medical image segmen-
tation technology has achieved good results in theoretical
research and practical application, it still faces the follow-
ing difficulties: 1) interfered by external factors such as
imaging system, lighting conditions, instruments and equip-
ment; 2) the medical lesion tissue also showed characteristics
such as low resolution, high noise, variable location, and
no structural information, as shown in Figure 1. However,
in the face of the above challenges, deep-learning technol-
ogy has become a powerful tool for medical image-assisted
diagnosis [1], [2]. Compared with traditional segmentation
frameworks [3], [4], deep-learning offers a distinct advantage
by autonomously uncovering and assimilating higher-level
image features directly from training data. This inherent capa-
bility notably reduces the need for manual feature refinement
and enables seamless end-to-end image processing within
neural network structures. With the emergence of fully neu-
ral network (FCN) [5], automated medical image analysis
can achieve near-radiologist level performance. Specifically,
by transforming fully connected layers into convolutional
layers, FCN can capture low-level and high-level features
within images. In addition, the up-sampling method is used
for pixel-level prediction, which can assign a category label
or segmentation mask to each pixel. Subsequently, in view
of the characteristics of biomedical images, Ronneberger et
al. [6] introduced U-Net architecture to restore spatial reso-
lution in input images. Among them, the encoder gradually
down-samples feature spatial dimensions, while the decoder
repairs the detail and spatial resolution, and the information
is transmitted between the encoder and the decoder through
a ship connection.

In recent years, more and more researchers have begun to
pay attention to image semantic segmentation of pixel-level
labels, and obtain segmentation performance comparable to
existing methods. Among them, Tang et al. [7] introduced
a groundbreaking end to end network specifically designed
to address the uncertainty inherent in segmentation tasks.
Specifically, initially, a rough segmentation module was uti-
lized to generate initial segmentations alongside uncertainty
graphs. Then, an uncertainty guidance block was designed to
obtain an uncertainty map in the end-to-end network. Thirdly,

the module contains a double attention block, which was
further refined by a feature refinement module to improve
the final segmentation quality. Concurrently, Sun et al. [8]
constructed a double path network based on DeepLabV3+
to tackle the detection and segmentation of thyroid nod-
ules. This mechanism orchestrated a synergistic interplay
between different paths, enabling the model to effectively
leverage both regional and shape-based cues for segmen-
tation. Similarly, Zhang et al. [9] introduced a pioneering
retinal vessel segmentation methodology, drawing upon the
innovative M-Net architecture as its foundation. Firstly, this
method encompassed a double attention mechanism, operat-
ing at both channel and spatial levels, to mitigate the impact
of noise in the input data. Secondly, self-focused mechanisms
from Transformer were incorporated into skip connections,
effectively re-coding features and enhancing feature repre-
sentations. Finally, to harness the unique characteristics of
each layer, a weighted side layer was presented to opti-
mize the utilization of information from different network
depths. Meanwhile, Fu et al. [10] presented a pioneering
automated segmentation technique meticulously crafted for
the unique challenges posed by cardiac MRI images. Firstly,
their approach combined the strengths of CNNs for detailed
feature acquisition and spatial encoding, giving full play to
the ability of convolutional in detail capture. Additionally,
they harness the power of Transformer models to capture
remote dependencies among features across various scales,
further enriching the segmentation process with contextual
information.

Subsequently, many scholars have conducted a lot of
research on the exploration and utilization of multi-scale
features [11], [12]. For example, considering the diverse
shapes and uneven locational distribution of hybridoma
cells, Lu et al. [13] proposed a RA-UNet segmentation net-
work to address these challenges. This framework performs
multi-scale splicing of encoding features using a pyramid
structure, which allows for the capture of information at
various levels of detail. In addition, it employs a non-local
focus mechanism, which improves the overall performance
and accuracy of cell segmentation. Yuan et al. [14] introduced
the McNfm-UNet, a sophisticated segmentation framework
designed to enhance the utilization of feature information
and address the gradient vanishing problem. This framework

119372 VOLUME 12, 2024



Q. Zhang et al.: MSR-Net: Multi-Scale Residual Network Based on Attention Mechanism

employed multi-layer fusion and multi-scale feature mapping
at each stage of the network, and fused with higher-level
abstractions from later layers to maximize the use of all
available feature information. Saeed et al. [15] introduced
an innovative multi-scale feature fusion module designed to
enhance the robustness and discriminative power of feature
representations in image segmentation tasks. Xu et al. [16]
developed an end-to-end model called MEF-UNet, which
includes a sophisticated multi-scale feature fusion module
integrated into the decoder segment. This approach not only
addresses the challenges associated with scaling variations
in feature maps, but also enhances the ability to capture and
combine complex details and broader contextual information
in images.

Inspired by the above algorithms, this article proposes a
framework for pituitary adenoma segmentation by combining
multi-scale residual network and attention mechanism which
can guarantee high segmentation accuracy without increasing
computation time. This makes the network not only make
full use of image features, but also adaptively adjust and
fuse channel information, thus further strengthen the feature
expression ability. The key innovations of our approach are
given as:

1) We design an end-to-end pituitary tumor segmenta-
tion network (MSR-Net), which achieves an optimal balance

between segmentation accuracy and computational effi-
ciency.

2) Our methodology integrates a multi-scale residual mod-
ule to obtain shallow multi-dimensional feature information
of channel matrix, which enhances the ability of extracting
feature information of channel across varying scales, and
overcomes the problem of extracting single channel scale in
deep-learning.

3) Two decoding paths are designed, in which the channel
attention is used to obtain the relative importance of each
channel’s response to key information, and the spatial atten-
tion is utilized to extract the global dependence of features.
Meanwhile, the feature maps of the two paths cooperate with
each other to obtain accurate feature re-presentation.

II. METHODS
A. OVERVIEW OF MSR-NET
At present, the segmentation of pituitary adenoma is faced
with the following challenges: low resolution, high noise,
variable location, and no structural information. The standard
U-Net architecture employs two 3 × 3 convolutional lay-
ers, ReLU activations, max-pooling, up-sampling, and skip
connections, which may not capture the intricate details and
varying scales of lesion features, especially in cases with
heterogeneous and subtle variations. In response to the above

FIGURE 2. Architecture of MSR-Net.
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problems, we develop a segmentation framework for pituitary
adenoma that integrates multi-scale residual, spatial attention
mechanisms and channel attention mechanisms, as illustrated
in Figure 2. Specifically, an image is first input into the
encoder, which consists of a stand U-Net convolution (3 ×

3 convolutional) layer coupled with a multi-scale residual
module, aiming to increase the extraction ability of channel
information across varying scales. Subsequently, the feature
map undergoes refinement through amaximumpooling layer,
strategically employed to augment the receptive field. After
that, the refined features traverse through two parallel atten-
tion decoders, and each step in the decoding path includes a
2×2 up-sampling operation of the feature map inherited from
the preceding layer, which is intricately intertwined with the
feature map obtained from the encoding path. Finally, the two
parallel channel features are connected to realize the adaptive
coordination of the two attention modules and complete the
pixel-by-pixel prediction of pituitary adenoma lesions.

FIGURE 3. Structure of multi-scale residual module.

B. MULTI-SCALE RESIDUAL MODULE
Extensive research has shown the profound impact of network
depth on its expressive capacity and learning prowess. How-
ever, this augmentation comes at a cost. With the increasing
of network depth, the complexity of training network and
the elevated loss value also increase than that of the shal-
low network. Surprisingly, the shallow networks exhibit a
stronger expression ability than the deep network. Moreover,
the choice of convolution kernel size emerges as a pivotal
factor in shaping network performance. Large convolutional
kernels cover many features, so it is easy to extract the feature
map comprehensively. However, small convolution kernels
cover fewer features, so they can extract local details better.
Therefore, inspired by the idea of residuals [17], [18], we con-
struct a multi-scale residual block to harness the strengths of
different convolutional operations, as shown in Figure 3. The

structure has four distinct branches: 1×1, 3×3, and 5×5 con-
volutions, alongside max-pooling. Each branch specializes
in capturing features across varying spatial scales, enriching
the network’s capacity to discern patterns at different levels
of granularity. Following convolution, strategic steps such as
channel reduction through 1 × 1 convolutions and feature
graph normalization are employed to refine and optimize the
extracted features. Then, the feature graph is normalized and
ReLU is used to improve the nonlinear fitting performance.
Finally, to prevent too serious information loss, residual con-
nection is introduced to obtain better network training effect.
This architectural element facilitates the seamless integration
of earlier layer information with subsequent computations,
fostering a more stable and effective training process.

C. CHANNEL ATTENTION MODULE
The attention mechanism, originally pioneered in natural
language processing, has since found application in various
domains, and then realized pixel-level prediction of images
in semantic segmentation tasks [19], [20]. This mechanism
plays a pivotal role in filtering information and can discern
which areas require heightened attention and consequently
assign varying degrees of importance. Among them, channel
attention can suppress useless channel features and enhance
useful channel features by assigning distinct weights to each
channel in the feature map, so that network attention can
focus on critical regions of interest. The channel attention
module proposed in our framework is shown in Figure 4.
Firstly, the two-dimensional image of each channel in the

feature graph is compressed into a value by global maximum
pooling and average pooling, that is, the three-dimensional
feature graph is transformed into a one-dimensional vector.
Secondly, it passes through a multi-layer perceptron contain-
ing two fully connected networks and a ReLU activation.
Thirdly, the outputs of the two paths are superimposed by
elements, and the result is nonlinear mapped by Sigmoid
function to obtain the final channel weight graph. Finally, it is
multiplied with the elements of the corresponding channel in
feature map I to obtain the recalibrated output feature map
IC . The specific calculation process is as follows:

IC = I · σ (W1δ(W0Imax) +W1δ(W0Iavg)) (1)

where W0 and W1 represent the weights associated with the
first and second fully connected layers within multi-layer
perceptron, σ and δ denote the Sigmoid and ReLU functions,
Imax and Iavg are the feature map after global maximum
pooling and average pooling.

D. SPATIAL ATTENTION MODULE
The channel attention operates by dynamically assigning
weights to individual channel of the input feature graph
to determine ‘‘which graph’’ has more feature expression
ability, while the spatial attention, as a complementary mech-
anism to channel attention, pays more attention to ‘‘where’’
of the feature graph is important information, and obtains
more contextual information from local features. Therefore,
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FIGURE 4. Structure of channel attention module.

FIGURE 5. Structure of spatial attention module.

to extract the global dependency of features and alleviate the
interference of complex background on segmentation perfor-
mance, the spatial attention module is strategically integrated
into one of the decoder components, as shown in Figure 5.

Firstly, to aggregate the feature information of each pixel,
the average and maximum pooling of input features I are
performed. Each of these pooling methods serves a distinct
purpose in capturing different facets of the feature map.
Among them, average pooling focuses on the extraction of
overall features in the feature map, and maximum pooling
focuses on the extraction of detailed features within the fea-
ture map. Following this, the resulting feature graphs from
both pooling operations are combined along the channel
dimension and the spatial weights of the feature graphs are
mapped to (0-1) through the 1 × 1 convolution layer and
Sigmoid function. Finally, these weighted coefficients are
applied to the original input features through a multiplication
process to get the output features IS . The formula for this
process is described as:

IS = I · σ (f 1×1[Imax , Iavg]) (2)

where f 1×1 is the convolution operation with kernel size 1.

E. LOSS FUNCTION
In the realm of deep-learning, training networks involves
continuously evaluating the variance between the predicted
outcome and the underlying truth value by using a loss func-
tion. This loss function serves as a guidepost, quantifying
the disparity between predicted and actual values, which is
then utilized to iteratively adjust the model’s parameters via
back-propagation until convergence is achieved. However,
due to the presence of more background areas in MRI images
and the small area occupied by pituitary tumors, there is a
serious class imbalance in the data. Therefore, we incorporate
the dice loss function [21], [22] into the training regimen,

which can offer a strategic solution to the class imbalance
conundrum and enhance the stability of the model training
process. The dice loss function is given as:

Ldice(y, p) = 1 −

2
N∑
i=1

piyi

N∑
i=1

yi +
N∑
i=1

pi

(3)

where N denotes the number of all pixels, pi and yi denote
the ground truth and predicted value of pixel I , with values
ranging from 0 to 1.

III. EXPERIMENTAL RESULTS
This study was conducted in cooperation with Quzhou Peo-
ple’s Hospital, and experts used Labelme annotation tool
to manually label the pituitary adenoma database, with a
total of 2105 images. Given the inherent variability in image
sizes, a standardized resolution of 256 × 256 was adopted to
ensure uniformity across the dataset. In this experiment, the
original pituitary adenoma dataset was divided into training,
validation, and testing subsets through a random selection
process. Specifically, 1400 images were allocated for train-
ing, 305 for validation, and 400 for testing. To address the
challenge of small sample sizes and imbalanced data distri-
bution, advanced enhancement techniques including random
rotation, scaling, panning, cropping, and innovative mosaic
enhancement methods were utilized to extend the original
dataset. The new enhanced database includes 6312 images,
of which 4199 images were allocated for training, 914 images
were set aside for validation, 1199 images were earmarked
for testing. Table 1 provides a detailed overview of the
specifications associated with each dataset. Moreover, all
experiments used the windows 10 64-bit operating sys-
tem, the processor was i7-7700HQ, the memory was 24G,
the graphics card was NVIDIA RTX6000. The software
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environment adopts Tensorflow 2.0 framework for training on
the CUDA10.1 computing platform, and Python3.6 version
is programmed. The Adam optimizer is used in the training
of MSR-Net, the initial learning rate was set at 0.001, train-
ing epoch is set to 200 with a batch size of 16. To uphold
the integrity and efficacy of the training process, a termina-
tion criterion was established, stipulating that training would
cease if the loss function failed to exhibit improvement over
a span of 20 consecutive iterations.

TABLE 1. Descriptions of the pituitary adenoma datasets.

A. EVALUATION METRICS
To verify the validity of multi-scale residual, channel atten-
tion and spatial attention fairly and rationally, and to compare
with other classical algorithms, four indicators including
specificity [23], [24], IoU [25], [26], Mcc [27], [28] and
Dice [29], [30] were adopted, which can be given as:

specificity =
TN

TN + FP
(4)

IoU =
TP

TP+ FN + FP
(5)

Mcc =
TP× TN − FP× FN

√
(TP+ FN )(TP+ FP)(TN + FN )(TN + FP)

(6)

Dice =
2TP

2TP+ FN + FP
(7)

B. PARAMETER SELECTION
Table 2 presents a comprehensive analysis of the performance
metrics obtained by employing various optimizers during the
training phase of MSR-Net on the original pituitary adenoma
dataset. Among the various optimization algorithms eval-
uated, although SGD is widely used for machine learning
optimization, it has not shown the expected efficiency level
in this specific environment. Adamax, Nadam, and RMSprop
are optimization algorithms derived from the Adam opti-
mizer, and each with unique modifications to address specific
optimization obstacles encountered during model training.
It is obvious that they usually show slightly lower perfor-
mance than Adam when compared to the original Adam opti-
mizers. However, despite their commendable performance,
it is discernible that these Adam-derived algorithms typically
exhibit a marginally lower performance profile compared to
Adam optimizer across various evaluation metrics. Notably,
the MSR-Net model attains remarkable specificity, IoU, Mcc
and Dice, reaching an impressive 99.74%, 80.87%, 89.12%,
and 89.34%, respectively. Therefore, Adam emerges as the
optimal choice, which provides a balance of accuracy and
robustness for the MSR-Net model.

TABLE 2. Experiments of MSR-Net with different optimizer on the
original dataset.

The selection of an appropriate learning rate is a critical
aspect of training neural networks, as it directly influences the
convergence speed and stability of the optimization process.
Table 3 provides a comprehensive analysis of the MSR-Net
with different learning rates on the original pituitary ade-
noma dataset. The experiment encompasses a wide range of
learning rates, spanning from 0.0001 to 0.1, to thoroughly
explore their impact on segmentation performance. Notably,
the specificity, IoU, Mcc, and Dice coefficient metrics are
employed to evaluate the effectiveness of each learning rate
setting. At a learning rate of 0.0001, the model achieves
a specificity of 99.50%, IoU of 73.53%, Mcc of 84.44%,
and Dice coefficient of 84.61%.When the learning rate is
increased to 0.0005, the segmentation performance of all
indicators was significantly improved, with a specificity of
99.73%, IoU of 79.58%,Mcc of 88.29%, andDice coefficient
of 88.53%.With the learning rate increased to 0.001, the opti-
mal performance can be obtained, where the specificity was
99.74%, IoU is 80.87%, Mcc is 89.12%, and Dice coefficient
is 89.34%. As the learning rate continued to increase, the
segmentation performance began to deteriorate. When the
learning rate is 0.1, the performance of the model decreases
significantly. The experiment proves that the learning rate
of 0.001 is the most suitable choice for training the original
pituitary adenoma dataset.

TABLE 3. Experiments of MSR-Net with different learning rate on the
original dataset.

C. RESULTS OF MSR-NET
The MSR-Net underwent meticulous training on the original
pituitary adenoma dataset, and its performance was verified
on the test set. The number of iterations for training was 200,
and the curve of loss and accuracy during the network training
phase is provided in Figure 6. Notably, the loss value curve
of the training set can decline quickly and smoothly, converge
on the basis around 20 iterations, and finally stabilize at about
0.067. In the training process, the loss of the verification
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FIGURE 6. Curve evolution of accuracy and loss during training process on the original pituitary adenoma dataset.

set can quickly change with the change of the loss value of
the training set. In addition, the accuracy of the validation
set could closely follow the change of the accuracy of the
training set, which indicated that MSR-Net had strong learn-
ing and prediction ability on the pituitary adenoma images,
showing good segmentation performance. After the network
training, MSR-Net conducts experiment on the test dataset,
with the results showcased in Figure 7. Visually, MSR-Net
realized accurate segmentation of pituitary adenoma, and the

lesion was obtained with complete shape and smooth edges,
effectively excluding different brightness, contrast and other
interference in the image, and was not easily affected by weak
and pseudo-boundaries.

D. ABLATION STUDIES
To thoroughly assess the efficacy of channel attention
(CA) module, spatial attention (SA) module, multi-scale
residual (MSR) module in MSR-Net algorithm, U-Net

FIGURE 7. Visualization results of MSR-Net on the original pituitary adenoma dataset. The first to last rows are
the original images, the corresponding labels, and the segmentation results of MSR-Net.
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TABLE 4. Ablation studies of different structures on the original pituitary adenoma dataset.

FIGURE 8. Ablation studies of MSR-Net on the original pituitary adenoma dataset. (a-b) are the original images with their
corresponding labels. (c-j) are results of Baseline, Baseline+CA, Baseline+SA, Baseline+MSR, Baseline+CA+SA, Baseline+CA+MSR,
Baseline+SA+MSR and Baseline+CA+SA+MSR.

was conducted as the baseline network. Among them,
Baseline+CA, Baseline+SA, and Baseline+MSR indi-
cate that CA, SA, and MSR modules are added to the
U-Net backbone network to provide auxiliary monitor-
ing information; Baseline+CA+SA, Baseline+CA+MSR
and Baseline+SA+MSR indicate that MSR, SA, and
CA modules are removed from the MSR-Net network;
Baseline+CA+SA+MSR indicates the final MSR-Net net-
work structure. The ablation comparative analysis results of
each module combination in pituitary adenoma dataset are

shown in Table 4. Compared with Baseline, Baseline+CA,
Baseline+SA, and Baseline+MSR were all improved in
the indicators of specificity, IoU, Mcc and Dice, and
the MSR-Net network based on Baseline+CA+SA+MSR
showed the greatest improvement. As can be seen from
Figure 8, in the image with large feature difference, low
contrast and fuzzy boundary in the target region, more
accurate detailed boundary of the target region can be
obtained through the fusion of channel attention, spatial atten-
tion and multi-scale residual features. Therefore, the results
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of the ablation experiment underscore the importance of
each module in the MSR-Net framework, which validated
the effectiveness of improving segmentation accuracy and
robustness in the diagnosis of pituitary adenoma.

E. COMPARISON WITH OTHER ALGORITHMS
To thoroughly assess the advanced of MSR-Net, the per-
formance of other methods was quantitatively compared.
In the same experimental environment, U-Net [6], BCDU-
Net [31], OD-Net [32], CLCI-Net [33], DUDA-Net [34],
FF-UNet [35], TAUnet [36], PDC-Net [37], MPSU-Net [38],
and PMENet [39] were trained using the original pituitary
adenoma dataset, and corresponding segmentation results
were obtained. The results of quantitative evaluation are

meticulously documented in Table 5, in which the best results
are in black body. As shown in the table, the MSR-Net
achieved optimal segmentation results for specificity, IoU,
Mcc and Dice, whose values were 99.74%, 80.87%, 89.12%,
and 89.34%. Compared with the second ranked segmenta-
tion method, the segmentation results increased by 0.02%,
1.96%, 1.18% and 1.18%, respectively. After comprehensive
and comparative analysis, our algorithm achieved the best
performance in the lesion segmentation task on the original
pituitary adenoma dataset.

To further analyze the lesion segmentation effect, visual
segmentation and comparison results were performed on the
pituitary adenoma dataset, as depicted in Figure 9. This
examination revealed a myriad of complexities inherent in
the lesion structures within the images, including complex

TABLE 5. Comparative experiments of different networks on the original pituitary adenoma dataset.

FIGURE 9. Visualization comparison results on the original pituitary adenoma dataset. (a) Original images; (b) corresponding labels; (c-m)
are results of U-Net, BCDU-Net, OD-Net, CLCI-Net, DUDA-Net, FF-UNet, TAUnet, PDC-Net, MPSU-Net, PMENet and MSR-Net.
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TABLE 6. Comparative experiments of different networks on the enhanced pituitary adenoma dataset.

FIGURE 10. Visualization comparison results on the enhanced pituitary adenoma dataset. (a) Original images; (b) corresponding labels; (c-m)
are results of U-Net, BCDU-Net, OD-Net, CLCI-Net, DUDA-Net, FF-UNet, TAUnet, PDC-Net, MPSU-Net, PMENet and MSR-Net.

boundaries, irregular shape, and uneven strength of surround-
ing tissues. According to the segmentation results, BDU-Net,
CLCI-Net, DUDA-Net, FF-UNet, TAUnet, PDC-Net, and
PMENet have some mis-segmentation regions, while other
algorithms all lose some contour details at the lesion bound-
aries to varying degrees. In summary, compared with other
networks, the MSR-Net can retain more detailed information
inside the focal area and at complex boundaries without any
post-processing. At the same time, it can effectively avoid the
interference of the uneven strength of the surrounding tissue,
and the segmentation result is closer to the corresponding
labels image.

To showcase the stability and adaptability of MSR-Net,
we conducted a meticulous comparative experiment using
the enhanced pituitary adenoma dataset. As highlighted in
Table 6, there was a noteworthy reduction in performance
indicators for OD-Net and TAUnet, indicating potential

limitations in accurately segmenting pituitary adenoma
lesions with complex shapes and deformations. MPSU-Net
focuses onmulti-path supervision to refine feature extraction,
showing improvements over U-Net but not surpassing the
top-performing models. With its attention mechanisms and
enhanced learning modules, PMENet achieves high perfor-
mance, particularly in the Dice coefficient, indicating better
overlapwith ground truth labels. Conversely, the performance
metrics of other models remained relatively stable. However,
ourMSR-Net integratesmulti-scale residual blocks and atten-
tion mechanisms to capture both local and global features
effectively, which achieve the highest IoU, MCC, and Dice
coefficient scores on the enhanced pituitary adenoma dataset.
The exceptional segmentation accuracy demonstrated by
MSR-Net underscores its potential significance for enabling
precise lesion segmentation and boundary delineation in clin-
ical settings. Furthermore, the visualization results of the

119380 VOLUME 12, 2024



Q. Zhang et al.: MSR-Net: Multi-Scale Residual Network Based on Attention Mechanism

above methods, as shown in Figure 10, provide compelling
evidence for the superior performance of MSR-Net, further
enhancing its confidence and applicability in medical image
analysis.

IV. CONCLUSION
According to the complex characteristics of pituitary ade-
noma, such as variable shape and location, a new seg-
mentation framework based on multi-scale residual, channel
attention and spatial attention was developed to further
enhance the ability of feature expression. The relevant con-
clusions are summarized as: firstly, a multi-scale residual
module is designed to enhance the capability to extract chan-
nel features at different scales. Secondly, two paths of channel
attention and spatial attention are constructed to obtain the
response weight and global dependence of each channel to
key information. Experiments show that MSR-Net achieves
99.74% of specificity, 80.87% of IoU, 89.12% of Mcc,
89.34% of Dice on the original pituitary adenoma dataset
and 99.67% of specificity, 80.96% of IoU, 89.12% of Mcc,
89.42% of Dice. These results significantly outperform other
state-of-the-art algorithms, underscoring the effectiveness
and superiority of the proposed method in the segmentation
of pituitary adenoma.

Although MSR-Net performs well in the segmentation of
pituitary adenomas, its efficiency and adaptability still need to
be explored and improved. In future work, further refinement
of the framework will be explored, along with its application
to other types of medical imaging tasks. Additionally, the
integration of this framework with other diagnostic tools and
its potential for clinical adoption will be studied to improve
the overall accuracy and efficiency of the diagnosis and treat-
ment of pituitary adenoma.
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