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ABSTRACT Hardware implementation of new neuron models or improved conventional neuron models has
made a significant contribution to neuromorphic development. One of the important factors considered to
improve the conventional neuron models is to explore the impact of electromagnetic energy on neurons.
In this work the efficient FPGA implementation of memristive Wilson (MW) neuron model using two
approximate MW model is presented. For the first approximate MW (AMW1) model in a hybrid method,
piecewise linear (PWL) and CORDIC functions have been used to provide a multiplierless and accurate
model. The PWL approximation method is used to provide the second approximate MW (AMW2) model.
Results of the FPGA implementation for both the MW and AMW models illustrate that, the AMW1 model
with an overall saving of 79%, and the AMW2 model with an overall saving of 69% are appropriate options
for large scale implementations. The average NRMSE for the AMW1 model is 0.57%, while for the AMW2
model it is 1.23%. Themaximum frequency of AMW2model is 91.5% better thanAMW1model and realizes
high frequency implementation.

INDEX TERMS Memristive Wilson neuron model, piecewise linear model, electromagnetic radiation,
hyperbolic transformation.

I. INTRODUCTION
The brain, with all its complexity, is made up of billions
of neurons. To understand the complex functioning of the
brain, one must understand the structure and performance
of neurons [1], [2], as well as how neurons communicate
through synaptic pathways [3], [4]. Therefore, various
mathematical models have been presented for neurons.
These models often consist of coupled differential equations
that relate the main variables of a neuron [5], [6], [7],
[8], [9], [10], [11], [12], [13], [14], [15]. Based on the
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resemblance of the neuron model to an actual neuron, the
ability to produce various output patterns and the level of
computational complexity, neuron models can be categorized
into three distinct groups. The first category includes basic
biological models whose parameters are calculated based on
the measurable variables of neurons. Complex and precise
models such as Hodgkin-Huxley [5], [6] or simple and
descriptive models such as Integrate and Fire [7], [8] are in
this category. The second category is related to non-biological
models whose parameters are defined in such a way as to
generate diverse spiking patterns. The most famous model of
this category is Izhikevich neuron model [9], [10]. The third
category includes hybrid models, which increase the benefits
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of the obtained model by combining the equations of two
different neuron models [16], [17].
Every since the very first neuron models emerged, the

research community has worked on new and improved
models to reduce computational complexity and more closely
describe neuronal dynamics. In general, neural models
are fine-tuned to enhance the performance of one of the
following:

• Implementing neuron models in hardware to enable
the extensive deployment of such models on a large
scale. This hardware implementation is being pursued in
analog [18], [19] and digital form, and among the digital
options, FPGA [20], [21] with its extensive capabilities
is commonly used due to its flexibility.

• Use of neuron models in spiking neural networks [22],
[23], [24].

• Software simulation of neuron models on a large scale
to obtain a software of brain or on a small scale to study
neural cells for correctly understanding their behavior to
elucidate some common brain diseases [25], [26] or to
connect the brain to external hardware.

This paper investigates a memristive Wilson model [14] to
show an improvement over the 2D Wilson [27], [28] model.
It should be noted that this improved model considers the
effect of electromagnetic coupling [29] as a very important
environmental factor and thus improves the neurodynamics
of the Wilson model. From the practical point of view, this
paper implements the improved MW model on FPGA for
the first time and two approximation of the improved MW
model is presented to reduce the overhead of the hardware
implementation and to get closer to large-scale hardware
implementation. The arrangement of this paper is outlined as
follows. The MW neuron model is introduced in Section II.
AMW1 and AMW2 models are presented in Section III as
two approximations of the original MW model. Section IV
discusses the behavior of an individual neuron through
dynamic analysis. The interaction between two coupled
MW/AMW neurons are explored in Section V. The FPGA
implementation of the MW and AMWmodels are showcased
in Section VI, and Section VII concludes this paper.

II. MEMRISTIVE WILSON NEURON MODEL
In 1952, a detailed and complex model of the neuron was
developed by Hodgkin and Huxley. Subsequent models pri-
marily consist of a simplified version of the Hodgkin-Huxley
model. The 2D Wilson model, which is a simplified form of
Hodgkin-Huxley’s model, is described by

dv
dt

=
1
Cm

(−m∞(v)(v− ENa) − gK r(v− EK) + Ist)

dr
dt

=
1
τr
(−r + r∞(v)).

(1)

In system (1), m∞(v) and r∞(v) define the Na+ ion
activation system and equilibrium state of recovery variable

FIGURE 1. The nullclines for the MW system based on the Cm = 1,
ENa = 0.5, gK = 26, EK = −1, Ist=0, τr = 4, and τφ = 0.5, a = 1, b = 3,
k = 6 and k1 = 1.

which are formulated as{
m∞(v) = 17.8 + 47.6v+ 33.8v2

r∞(v) = 1.24 + 3.7v+ 3.2v2,
(2)

where v represents the neuron’s membrane potential and r
is the recovery variable. Cm, ENa, EK, gK, Ist and τr denote
the membrane capacitor, reversal potentials of Na+ ion
channel, reversal potentials of K+ ion channel, the maximal
conductance ofK+ ion channel, external stimulus current and
activation time of K+ ion channel, respectively. To enhance
the capability of the Wilson neuron model in simulating
real-world phenomena, the effect of electromagnetic (EM)
radiation is incorporated into theWilson model by employing
a flux-controlledmemristor. The conversion of the 2DWilson
neuron model into a memristive model involves the incorpo-
ration of the effect of EM radiation through the addition of
the EM induction current Imf = kW (φ)v = k(a − b|φ|)v
to the system (1). In this equation, φ is the EM flux variable,
W (φ) = a−b|φ| represents the memductance of the memris-
tor. The equations of memristive Wilson neuron model are as

dv
dt

=
1
Cm

(−m∞(v)(v− ENa) − gK r(v− EK)

+ Ist + k(a− b|φ|))
dr
dt

=
1
τr
(−r + r∞(v))

dφ

dt
=

1
τφ

(k1v− φ),

(3)

in which, τφ defines the time scale of the EM flux changes.
Formulating the v-nullcline and r-nullcline is

accomplished using the equilibrium value of φ = k1v. rn1 =
1

26(v+ 1)
(−33.8v3−30.7v2+6v+14.9−18|v|)

rn2 = 3.2v2 + 3.7v+ 1.24

(4)

Based on the system (4), nullclines of the v and r are
illustrated in Fig. 1.

III. PROPOSED MULTIPLIERLESS MW MODELS
The nonlinear structure and the presence of multiple
multiplications in the equations of system (3) increase
the FPGA implementation cost of MW model and also
decrease its processing frequency. In order to reduce FPGA
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FIGURE 2. PWL approximation of r1 and r2 for AMW1 model.

implementation costs and increase the operating frequency,
it has been tried to provide two approximate models for the
original MW model, each of which meets different levels of
accuracy and speed and can be used for different hardware
implementation scenarios.

A. FIRST APPROXIMATE MW MODEL
As seen in Fig. 2, AMW1 model approximates r1 =

−33.8v3−30.7v2+6v+8.9 and r2 = 3.2v2+3.7v+1.24with
6 lines using the piecewise linear (PWL) approximation
method. Equations containing multiplication in the original
MW system are approximated by cosh expressions. The
r1 and r2 are approximated in AMW1 model by r11 and r21.

r11 =



−107.75v+58.609375 if v>0.59375
−32.75v+14.078125 if 0.125<v<0.59375
15.25v+8.078125 if − 0.625<v<0.125
−26.25v−17.859375 if − 1.125<v<−0.625
−124.25v−128.109375 if − 1.75<v<−1.125
−238.25v−327.609375 if v<−1.75

(5)

r21 =



7.0625v+ 0.15625 if v > 0.375
4.3125v+ 1.1875 if − 0.125<v<0.375
1.3125v+ 0.8125 if − 0.625 < v<−0.125
−1.4375v− 0.90625 if − 1 < v<−0.625
−4.1875v− 3.65625 if − 1.5<v < −1
−7.1875v− 8.15625 if v < −1.5

(6)

and by converting r11 and r21 into the form of absolute value
functions, AMW1 model is formulated as

dv
dt

= (−134.5 − 173v− 37.5|v− 0.59375|

− 24|v− 0.125| + 20.75|v+ 0.625| + 49|v
+ 1.125| + 57|v+ 1.75| + Ist
+ (0.5gK cosh(r−v−1))−0.5gK cosh(r + v+ 1))
+ akv+ 0.5bk(cosh(v− |φ|) − cosh(v+ |φ|))

dr
dt

= 0.25(−0.0625v+ 1.375|v+ 1|

+ 1.375|v− 0.375| + 1.5|v+ 0.125|
+ 1.375|v+ 0.625| + 1.5|v+ 1.5| − r − 4)

dφ

dt
= 4(k1v− φ)

(7)

FIGURE 3. Output simulation results for the MW and AMW1 models.
(a) Ist = 0, (b) Ist = 0.1, (c) Ist = 0.2.

FIGURE 4. PWL approximation of r1 and r2 for AMW2 model.

Fig. 3 shows the spiking simulation results of the AMW1
and MW models, based on the distinct stimuli. In order to
check the behavioral similarity of the AMW1 model with the
MW model, we must check the response of both models to
the different stimulus current to see if they have the same
behavior in terms of the spiking type and the location of the
spikes. As shown in Fig. 3, both AMW1 and MW models
have responded tonic spiking to Ist = 0, Ist = 0.1 and
Ist = 0.2, and the similarity of spike timing in all three
simulations is acceptable. In Ist = 0.2, this similarity has
reached its peak.

B. SECOND APPROXIMATE MW MODEL
As can be seen in Fig. 4, in AMW2model, r1 and r2 are again
approximated with 6 lines by r12 and r22 (r12 and r22 are a
slight different compared to r11 and r21). According to the
noticeable matching of v and φ graphs which is evident in
Fig. 5, the v|φ| term can be approximated by v|v| and finally
by the linear relationship of 0.715v. The equations of AMW2
model are described by (8).

dv
dt

= −172.75v− 37|v− 0.5625| − 24.5|v− 0.125|

+ 19.5|v+ 0.75| + 49|v+ 1.125| + 57.5|v
+ 1.6875| − 0.5r − 11(v+ 1) + Ist + kav
− kb(0.75φ) − 134

dr
dt

= (−r − 3.875 + 1.5|v+ 1| + 1.375|v− 0.375|

+ 1.5|v+ 0.125| + 1.375|v+ 0.5625|
+ 1.5|v+ 1.5|)0.25

dφ

dt
= 2(k1v− φ)

(8)

Fig. 6 explains the output of the AMW2 model and the
MW model, showcasing the influence of varying stimulus
currents. According to the Fig. 6, both the AMW2 and MW
models exhibited tonic spiking in response to Ist = 0,
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FIGURE 5. Noticeable matching of v and φ output patterns and a low cost
approximation for v |φ|.

FIGURE 6. Output simulation results for the MW and AMW2 models
(a) Ist = 0 (b) Ist = 0.1 (c) Ist = 0.2.

TABLE 1. Controlling parameters for error analysis.

Ist = 0.1 and Ist = 0.2. The similarity of the spike timing
in all three simulations was found to be satisfactory.

C. ERROR ANALYSIS
To validate the proposed models, one of the methods involves
computing the discrepancy between the output patterns of
the proposed AMW models and the MW model. The output
patterns of the original MW model compare with the AMW
models using root mean square error (RMSE) and the
normalized RMSE (NRMSE). If vMW and vAMW represent
the membrane potential of theMWmodel and AMWmodels,
RMSE and NRMSE are formulated as

RMSE(vAMW, vMW) =

√∑n
i=1(vAMW − vMW)2

n
(9)

NRMSE =
RMSE

vmax − vmin
. (10)

The controlling parameters for error calculation of AMW
models are illustrated in Table 1.

The erreor analysis results for AMW models are depicted
in Table 2. The AMW1 model demonstrates a mean NRMSE
of 0.57%, while the AMW2 model exhibits a mean NRMSE
of 1.23%.

IV. SINGLE NEURON DYNAMIC ANALYSIS
In order to investegate the dynamic characteristics of the
MW and AMW models, the value of φ is assumed to be
constant, and in the remained 2D system, interactions of the
v-nullclines and r-nullclines explain the transition between
the resting and spiking modes [17]. The computation of the
Jacobian matrix for the MW model is performed using the

TABLE 2. Error analysis results.

TABLE 3. Equilibrium points of the original MW and proposed AMW
models.

FIGURE 7. Dynamic analysis of the original MW model for (a) Ist = 0.
(b) Ist = 0.2. (c) Ist = 0.4.

following equation.

JMW =

 ∂ v̇
∂v

∂ v̇
∂r

∂ ṙ
∂v

∂ ṙ
∂r

 (11)

where 

∂ v̇
∂v

=
1
Cm

(−101.4v2 − 61.4v+ 6)

∂ v̇
∂r

=
1
Cm

(−26v− 26)

∂ ṙ
∂v

=
1
τr
(6.4v+ 3.7)

∂ ṙ
∂r

=
−1
τr

(12)
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FIGURE 8. Dynamic analysis of the AMW1 model for (a) Ist = 0.
(b) Ist = 0.2. (c) Ist = 0.4.

FIGURE 9. Dynamic analysis of the AMW2 model for (a) Ist = 0.
(b) Ist = 0.2. (c) Ist = 0.4.

The fixed points which are satisfied the ∂ v̇
∂v +

∂ ṙ
∂r < 0 are

stable, otherwise, they are unstable. The phase portraits of
MW,AMW1 andAMW2models for various Ist are illustrated
in Fig. 7, Fig. 8 and Fig. 9. Based on the dynamic alalysis
results, equilibrium points (EPs) type and EPs value of MW
and AMW models are presented in Table 3. The likeness
between the MW and AMW models regarding the EP type
(under the same stimulation conditions, EP type of the MW

and AMWmodels is nodal sink (NS)) and EP value, confirms
the similarity of the excitability of the MW and the proposed
AMW models.

V. SYNAPTIC COUPLING OF TWO MW/AMW NEURONS
The performance of the complex network of the brain is
dependent on the synaptic connection between neurons.
Synapse is a bioelectrical or biochemical signaling pathway
between neurons that can be formulated as [20]. τ s

dz
dt

= [1 + tanh(Ss(vpr − hs))](1 − z) −
z
ds

Isyn = ks(z− z0),
(13)

In the synaptic coupling of two neurons, when the presynaptic
neuron reaches the threshold voltage, according to the
parameters of the synapse function, a current pulse is sent
to the postsynaptic neuron and establishes the connection
between the two neurons. If the synaptic coupling between
two MW neurons is similar in behavior of the synaptic
coupling of two AMW neurons, it is another confirmation
of the compatibility of the proposed AMW models with the
MWmodel. The coupling between two original MW neurons
is formulated as

dvpr
dt

=
1
Cm

(−m∞(vpr)(vpr − ENa)

− gK r(vpr − EK) + Ist + k(a− b|φpr|))
drpr
dt

=
1
τr
(−rpr + r∞(vpr))

dφpr

dt
=

1
τφ

(k1vpr − φpr),

τ s
dz
dt

= [1 + tanh(Ss(vpr − hs))](1 − z) −
z
ds

Isyn = ks(z− z0)
dvpo
dt

=
1
Cm

(−m∞(vpo)(vpo − ENa)

− gK r(vpo − EK) + Isyn + k(a− b|φpo|))
drpo
dt

=
1
τr
(−rpo + r∞(vpo))

dφpo

dt
=

1
τφ

(k1vpo − φpo),

(14)

where vpr, rpr and φpr represent the presynaptic neuron
variables and vpo, rpo and φpo define the postsynaptic neuron
variables.

Simulation results of two coupled MW/AMW neurons
when exposed to different input current from the presy-
naptic neuron are illustrated in Fig. 10. As the stimulus
current increases, the synchronization decreases and the full
synchronization state occurs for the Ist = 0.01 and ks = 0.5.

Investigation of the neuron network behavior is very
essential. As it depicted in Fig. 11, a network scale ofMWand
AMW neurons using 1000 randomly connected neurons, are
simulated and the raster plot results show a good agreement
between MW and AMW networks behavior.

Fig. 12 simulates the random firing activity of the MW and
AMWneurons. The relative error (RE) of themth spike for the
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FIGURE 10. Phase portraits and spiking patterns of two interconnected
original MW, AMW1, and AMW2 neurons when exposed to different input
excitation current from the presynaptic neuron. (a) Two coupled MW
neurons. (b) Two coupled AMW1 neurons. (c) Two coupled AMW2
neurons. (v1/v2 represents the membrane potential of the
presynaptic/postsynaptic neuron).

FIGURE 11. Network activity of 1000 randomly connected neurons of the
(a) Original MW model. (b) AMW1 model. (c) AMW2 model.

nth AMWneurons is defined by
∣∣∣1tnm
tnm

∣∣∣ [20], and then average
value of these calculations is obtained as mean relative
error (MRE). The MRE of a set of randomly connected
1000 neurons for the proposed AMW1 and AMW2 models
are 6.7% and 8.3% respectively.

MRE(%) =

∑i
n=1

∑j
m=1

∣∣∣1tnm
tnm

∣∣∣
i× j

× 100 (15)

VI. FPGA IMPLEMENTATION
The FPGA implementation paves the way for the large scale
implementation of neuron models and finally designing a

FIGURE 12. Simulated firing plot of the original MW and proposed AMW
models.

prototype of a hardware brain. Fig. 13 shows the proposed
architecture for FPGA implementation of the AMW models.
Input unit, control unit, neuron unit and output unit are the
main subsystems in the proposed architecture. The input unit
provides the required space to store the input parameters
of the system. The control unit approximates the original
MW model with AMW2 model using PWL approximation
method. The CORDIC part of FPGA alongwith PWLmethod
are applied by control unit to approximate AMW1 model.
Within this subsystem, comparators utilize the values of v
and other constants to choose the approximate function of
v using multiplexers. The approximations obtained from the
control unit are used in the neuron unit and it calculates the
digital values of the variables using the designed pipelines.
The output unit, while storing the calculated values for the
digital variables, provides the conditions for calling these
variables to display the output pattern.

A. SYSTEM DISCRETIZATION AND PIPELINE DESIGN
The digital implementation of differential equations requires
the discretization of these equations, and it has been realized
using Euler method [1]. The discrete type of AMW1 and
AMW2 equations are formulated as (16) and (17).

d1 =



v[n+ 1] = v[n] + dt (−134.5 − 173v[n]
− 37.5|v[n] − 0.59375| − 24|v[n] − 0.125|
+ 20.75|v[n] + 0.625| + 49|v[n] + 1.125|
+ Ist + (0.5gK cosh(r[n] − v[n] − 1))
− 0.5gK cosh(r[n] + v[n] + 1))
+ akv[n] + 0.5bk(cosh(v[n] − |φ|)
− cosh(v[n] + |φ|) + 57|v[n] + 1.75|)

r[n+ 1] = r[n] + 0.25dt (−0.0625v[n]
+ 1.375|v[n] + 1| + 1.375|v[n] − 0.375|
+ 1.5|v[n] + 0.125| + 1.375|v[n] + 0.625|
+ 1.5|v[n] + 1.5| − r[n] − 4)

φ[n+ 1] = 4dt (k1v[n] − φ[n]) + φ[n]

(16)
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FIGURE 13. Proposed architecture of the digital AMW1 and AMW2
models. (a) general overview (b) The Input Unit. (c) Control Unit.
(d) Neuron units (e) Output unit.

d2 =



v[n+ 1] = v[n] + dt (Ist − 172.75v[n]
− 37|v[n]−0.5625|−24.5|v[n]−0.125|
+ 19.5|v[n]+0.75|+49|v[n]+1.125|
+ 57.5|v[n]+1.6875|−0.5r[n]+kav[n]
− 11(v[n] + 1)−kb(0.75φ[n])−134)

r[n+ 1] = 0.25dt (−r[n] − 3.875
+ 1.5|v[n] + 1| + 1.375|v[n] − 0.375|
+ 1.5|v[n] + 0.125| + 1.375|v[n]
+ 0.5625|+1.5|v[n] + 1.5|) + r[n]

φ[n+ 1] = 2dt (k1v[n] − φ[n]) + φ[n]

(17)

The coefficients of AMW1 and AMW2 equations are
chosen in such a way that they can be replaced by the sum
of powers of 2 and finally they can be implemented with shift
and add units. Pipeline of AMW1model is designed based on
the (16) and is depicted on Fig. 14. As it illustrated in Fig. 15,
digital pipeline of the AMW2 model has presented based on
the (17).

B. BIT WIDTH DETERMINATION
simulation results of the AMW1 and AMW2 models shows
the following variation for v, r , φ and Ist.

0 < Ist < 0.5
−1 < v < 0.5
0.2 < r < 0.8
−0.8 < φ < 0.1

(18)

FIGURE 14. AMW1 pipeline for (a) v variable (b) r variable (c) φ variable.

FIGURE 15. AMW2 pipeline for (a) v variable (b) r variable (c) φ variable.

Based on the range of variables, parameters value,
maximum shifts in the pipeline diagram, the bit width (BW)
is calculated as follows.

• The Maximum of (A,B) is considered as BW of integer
part. A is the maximum left shifts (7 bits) in the pipline
structure and B represents the highest value among the
variables and parameters of the AMWmodels (5 bits for
gk = 26).

• TheMaximum of (C,D) is considered as BWof fraction
part. C is the maximum right shifts (8 bits) in the
pipline structure and D corresponds to the minimum
value within the variables and parameters of the AMW
models (5 bits for φ = 0.1).
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TABLE 4. Device utilization for the original MW, AMW1 and AMW2
models.

FIGURE 16. Digital output of implemented AMW1, AMW2 and original
MW models (a) spiking pattern of AMW1 and original MW (b) spiking
pattern of AMW2 and original MW.

• One bit is defined as sign bit and inorder to prevent the
possible overflow, one additional bit is considered.

Therefore, the BW of the AMW models is 17.

C. IMPLEMENTATION RESULTS
Fig. 16 illustrates the digital created patterns of the AMW
models and the MW model implemented on a Virtex-5
XC5VLX20T FPGA. Digital data are converted by a DAC
with 8-bit bitrate and displayed on the oscilloscope. Table 4
presents a comparison of FPGA resource utilization between
theMWandAMWmodels. To compare the results of Table 4,
it is important to pay attention to the following points.

• FPGA’s resources usage rate. For this purpose, the overal
saving criterion has been used [17].

• The limiting factor between hardware resources used
by FPGA. The limiting factor is related to the highest
utilization percentage among FPGA resources.

• Maximum available frequency in FPGA implementation
of a neuron model.

Overall saving is a criterion to show the total percentage
of FPGA resources used in the implementation of a neuron
model. If we add up the FPGA resources utilizationand and
subtract the result from 100, the overall saving of FPGA
hardware resources is obtained. A larger overall savingmeans
fewer hardware resources are used. The overall saving of
original MW model, AMW1 model and AMW2 model are
16.4%, 79% and 69% respectively and it shows that the
original MWmodel has the highest hardware implementation
cost and AMW1 model has the lowest hardware cost. The
limiting factor for the MW model is DSP48Es sets with
58.3% utilization, for the AMW1 model is Bonded IOBs
with 10.5% and for the AMW1 model is Slice LUTs with
10.7%. This means that the limiting factor allows the FPGA
implementation of only one neuron using originalMWmodel
and 9 neurons with AMW1 and AMW2 models. Maximum
frequency of original MWmodel is 139.06MHz, and AMW1

and AMW2 models reache the 116.63 MHz and 223.4 MHz
maximum frequency. Therefore, AMW1 model is used when
high accuracy and lower hardware implementation cost are
needed, but processing speed is a lower priority. AMW2
model with acceptable accuracy and implementation cost,
is sutable for high frequency cases and both AMW1 and
AMW2models, with the ability to implement neurons 9 times
more than the original MW model, are suitable options for
large sclae implementation.

VII. CONCLUSION
In this work a MW neuron model and two approximate
MW (AMW1 and AMW2) models are implmented on
FPGA platform. AMW1 model using the PWL functions
and hyperbolic transformation approximates the orginal MW
model. The hardware overhead of the accurate AMW1model
is significantly reduced with an overall saving of 79% but
the maximum frequency of this model is 116.63 MHz which
shows a lower frequency than the implemented AMW2 and
the original MW models. AMW2 model with an overall
saving of 69% and the maximum frequency of 223.4 MHz
provide a low cost and high frequncy FPGA implementation.
The number of neurons that can be implemented by AMW1
andAMW2models, is 9 times that of the originalMWmodel,
which shows these two models are suitable for large scale
implementation.
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