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ABSTRACT Wind Driven Optimization (WDO) Algorithm is a novel metaheuristic algorithm inspired by
the continuous flow of air resulting from differences in air pressure until the air reaches a state of pressure
balance. Owing to its simple structure, few parameters, intuitive nature, and straightforward programming,
WDOhas garnered increasing attention from scholars since its inception.WDO’s novelty lies in its utilization
of aerodynamic principles to orchestrate the search process, WDO draws on the dynamics of wind and
atmospheric pressure differences to propel the search for optimal solutions. However, WDO has limitations
such as sensitivity to algorithm parameters and premature convergence. Consequently, variousWDOvariants
have been proposed to overcome the limitations of the original WDO. To identify potential avenues for
further research and to develop WDO for future investigation. This article systematically reviews WDO
and its variants from multiple perspectives. Initially, the principle of WDO is outlined. Subsequently, the
impact of modifications to the WDO on its overall effectiveness is investigated. Furthermore, the distinctive
characteristics of WDO variants and their practical applications are analyzed. Moreover, the conclusions
of the review are summarized, and future research directions for WDO variants and their applications are
described.

INDEX TERMS Wind driven optimization, metaheuristic algorithm, optimization, convergence, algorithm.

I. INTRODUCTION
Optimization is a foundational disciplinewithinmathematics,
which revolves around the task of identifying the most
favorable solution from a given set of feasible solutions.
It has broad applications across various disciplines, such as
engineering design and maintenance [1], finance [2], [3],
business [4], economics [5], [6] and computer science [7].

There are two broad categories of optimization meth-
ods, which are deterministic optimization and stochastic
optimization [8]. Specifically, deterministic optimization
is relatively more mature, but engineering conditions are
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often demanding, and it is difficult to handle large-scale
problems, which has led to the rapid development of
metaheuristic optimization algorithms. As a result, meta-
heuristic algorithms have attracted considerable attention
from researchers [9], [10], [11], [12]. These algorithms
derive inspiration from the behavior observed in biological
or physical systems in nature [13], they represent advanced
and versatile strategies for conducting searches, capable
of effectively addressing specific optimization problems
[14]. The two most predominant and successful classes or
directions in bio-inspired algorithms involve evolutionary-
based methods and swarm-based methods, which are inspired
by natural evolution and collective behavior in animals,
respectively. However, this has been further refined to classify
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algorithms based on their specific area of inspiration from
nature, thereby enhancing a broader perspective within the
domain, they are broadly classified into three categories:
ecology-based methods, evolutionary-based methods, and
swarm-based methods [15].

Natural ecosystems offer a rich array of mechanisms
that can inspire and inform the design and resolution of
challenging problems in engineering and computer science.
These systems include both living organisms and the
non-living components of their environment, such as air, soil,
and water, with which they interact. The interactions within
these ecosystems can be intricate and diverse, occurring both
between different species and within the same species. The
nature of these interactions can range from cooperative to
competitive, adding layers of complexity to the dynamics
of ecosystems. Ecology-based methods are based on the
methodology proposed in natural ecosystems. Ecology-based
methods include Biogeography-Based Optimization(BBO)
[16], Invasive Weed Colony Optimization(IWCO) [17],
Flower Pollination Algorithm(FPA) [18], Turbulent Flow
of Water-based Optimization(TFWO) [19], Wild Geese
Algorithm(WGA) [20], Circulatory System Based Opti-
mization (CSBO) [21], Ivy algorithm (IVYA) [22], Lung
performance-based optimization (LPO) [23], and others.

Evolutionary-basedmethods are grounded in the principles
of biological evolution, which have shaped the design of all
living beings on Earth, as well as the strategies they employ
to interact with one another. In evolutionary-based methods,
organisms evolve mainly through selection and mutation,
with popular algorithms including Genetic Algorithm (GA)
[24], Paddy Field Algorithm (PFA) [25], and Differential
Evolution(DE) [26], Harmony search algorithm (HSA) [27].
Swarm-based methods represent a recent and emerg-

ing paradigm in bio-inspired computing, employed for
implementing adaptive systems. Swarm-based methods the
utilization of collective intelligence exhibited by groups of
simple agents, drawing inspiration from the behavior of
real-world insect swarms, as a problem-solving tool. Well-
known examples include Particle SwarmOptimization (PSO)
[28], [29], [30], Shuffled Frog Leaping Algorithm(SFLA)
[31], [32], Cuckoo Search (CS) [33], [34], [35], [36], [37],
[38], Bat algorithm(BA) [39], Dragonfly Algorithm(DA)
[40], Sparrow Search Algorithm(SSA) [41], and others.
The details are revealed, as shown in Figure 1. WDO has
demonstrated successful applications in real-world engineer-
ing optimization problems, particularly in domains such as
electromagnetic devices [42], photovoltaic power generation
systems [43], reservoir operation [44], segmentation and
extraction of a carotid ultrasound image in medicine [45], the
path planning of mobile robot [46], among others, and it has
demonstrated remarkable results. It demonstrates exceptional
practicability throughout the research and experimental
processes, which can be implemented in any domain and
application that uses GA, PSO or any evolutionary strategy
[47]. WDO has some unique advantages: (1) Clear physical

significance: The update equations of WDO are based on the
simulation of a simplified model of the forceful motion of
an air mass. It combines Newton’s second law and the ideal
gas equation of state to derive the update equations for the
velocity and position of the air mass at each iteration, which
makes the algorithm physically meaningful. (2) Strong global
search capability: WDO automatically compensates for
atmospheric pressure imbalances by modeling atmospheric
flow. It can effectively explore the potential optimal solution
in the search space and has a faster convergence speed.
(3) Easy to understand and implement: WDO has a clear
concept and is easy to understand and implement [44],
[48], it also has high search accuracy [49], and it does
not require complex parameter settings. Since its inception,
WDO has garnered considerable scholarly attention and
rapidly developed and applied recently [50].

Ezugwu et al. [51] compiled a comprehensive table of
209 metaheuristic algorithms, documented in the literature
as of 2021, categorized by their respective impact factors.
This data reveals that WDO possesses an impact factor of 83,
placing it 97th in the ranking. PSO possesses an impact factor
of 14588, placing it 3rd in the ranking. However, in contrast
to the PSO, WDO has actual physical significance. WDO,
as its name implies, is inspired by the dynamics of wind,
specifically the movement of air parcels within the Earth’s
atmosphere. This natural phenomenon has been effectively
translated into a computational model designed to navigate
the search space in optimization problems. Analogous to the
PSO approach, WDO conceptualizes air parcels as particles,
each characterized by a position vector and a velocity vector.
These particles are engaged in an iterative optimization
process, during which their velocities and positions are
continuously updated. A key distinction between WDO and
PSO lies in the specific equation governing the update of the
particles’ velocities. In WDO, this equation is meticulously
derived from a physical model that accurately reflects the
dynamics of wind movement. This differentiation not only
underscores the unique nature of WDO but also enhances its
capability to effectively mimic the complex patterns of air
movement in solving optimization problems. The integration
of such physical principles into the algorithm’s core design
is a testament to its innovative approach in the realm of
computational optimization. The potential lies in refining the
abstraction of its foundational physical model, which could
significantly enhance its capability to devise more effective
search strategies [52]. Therefore, WDO has potential for
further in-depth research and study.

One of the highlights of WDO is the process of gen-
erating new solutions, i.e., the population-based solution
construction method, where new solutions are constructed by
stochastic operations to avoid being trapped in local optima,
which improves the construction of high-quality solutions
across the population [53]. WDO, compared to other
heuristic algorithms such as GA and PSO, can implement
constraints within the search area, in WDO, air particles
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FIGURE 1. Different metaheuristic algorithms.

are characterized by their position and velocity, which
correspond to a candidate solution and the degree of position
displacement, respectively. However, WDO distinguishes
itself by incorporating additional elements in the velocity
update equation, notably gravitational and Coriolis forces.
The gravitational force acts as a beneficial perturbation,
assisting air particles in avoiding prolonged entrapment at
the search space’s boundaries and aiding in their reintegration
into the search area. Conversely, the Coriolis force uniquely
influences a specific dimension of an air particle based on a
different dimension of anothermember within the population.
WDO is like other natural heuristics, but WDO’s code is
simpler and easier to run than the other algorithms, and it
requires fewer control variables to be adjusted [54].

WDO was initially introduced by Bayraktar et al. in 2010.
The algorithm draws inspiration from the dynamic airflow
patterns observed on earth, which arise from variations in air
pressure and gradually tend towards equilibrium. WDO is an
efficient population-based iterative metaheuristic global opti-
mization algorithm [55], [56]. Although it is comparatively
simple to implement, in contrast to other nature-inspired
optimization algorithms, it is not exempt from limitations.
One such limitation is its increased vulnerability to premature
convergence when confronted with complex optimization
problems [42], [57], and its accuracy is relatively low [58],
[59]. Additionally, the no free lunch theorem [60], implies
that a metaheuristic algorithm cannot solve all optimization

problems [48], [61]. Given these limitations, the literature
has introduced several variants of WDO to enhance its
performance and mitigate its shortcomings. These variants
have been applied in different fields and have yielded better
results. For instance, some variants of WDO have focused
on enhancing the algorithm’s parameters, while others have
aimed to hybrid WDOwith other metaheuristic algorithms to
improve its performance.

II. RESEARCH METHODOLOGY
Derived from the principal objective of the literature review,
the research questions are elucidated in Table 1.

To ameliorate potential research bias and elevate the
academic robustness of the research methodology this
section articulates the review protocol, encompassing critical
components such as the search strategy, paper selection
criteria, and related methodologies.

A. SEARCH STRATEGY FOR THE PRIMARY STUDY
Six scientific databases were meticulously chosen as the
primary resources for comprehensive exploration, and their
details are elucidated in Table 2. The delineation of search
terms is as follows:(1) WDO, (2) WDO variant, (3) improved
WDO, (4) WDO parameter improvement, (5) hybrid WDO,
(6) adaptive WDO, (7) binary WDO, (8) real-world applica-
tions of WDO, (9) theoretical applications of WDO, and (10)
review of WDO.
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TABLE 1. Research questions for the literature review.

TABLE 2. Resource of reviewed articles.

B. PAPER SELECTION CRITERIA
In addressing the extensive corpus of research on WDO,
this paper employs a targeted selection criterion, adhering to
the methodological guidelines delineated in [62] and [63].
The primary sources for this literature review are ACM,
IEEE, SCOPUS, Science direct, springer and Wiley Online
Library, with a focus on a comprehensive range of search
keywords. The range of publication years was determined
to be from 2010 to 2023, including both conference and
journal papers. From the preliminary search, a huge number
of research papers were found. The distribution of papers
within the database is succinctly outlined in Table 3.
The quality of the papers was assessed based on the title,

abstract, introduction, experiments and results as delineated
in Table 4.

The key contributions of this review article are summarized
as follows:

1. A thorough and critical examination of WDO and its
variants are presented. This review identifies the limitations
inherent in currentWDOvariants and offers insightful recom-
mendations to address these shortcomings. Additionally, the
paper provides clear guidance, outlining the essential steps
necessary for developing robust, novel WDO variants.

2. This paper endeavors to deliver an exhaustive review
of the applications of WDO, given their critical significance
in the field of artificial intelligence. This comprehensive
approach ensures a robust and detailed understanding of
WDO’s development, advancements, and multifaceted appli-
cations across various disciplines.

3. Five promising research directions are proposed to
further augment the optimization efficacy of WDO.

The remainder of this paper is structured as follows:
Section II describes the research method used in this paper.
Section III presents an in-depth description of the standard
WDO, encompassing its inspirations, primary parameters,

and algorithmic steps outlined in the flowchart. Section IV
elaborates on the various improvements of WDO. Section V
explores the diverse applications of WDO in numerous
research domain. Section VI provides the discussion of the
findings and limitations of the current research on WDO and
its variants. Finally, Section VII offers concluding remarks on
the potential of WDO for practical applications and suggests
future research directions.

III. BASIC CONCEPTS OF WDO
In this section, the fundamentals, main parameters, mathe-
matical model of WDO are described, which will answer the
research question, RQ1.

A. FUNDAMENTALS OF WDO
The fundamentals of WDO are derivations of velocity
and position update equations during the movement of air
particles. Specifically, the determination of a starting point
for an air particle necessitates the application of Newton’s
Second Law of Motion. This law states that the total force
exerted on an air particle is directionally proportional to its
acceleration. The simplified form of Newton’s Second Law
is as follows:

ρa =

∑
Fi (1)

where a is the acceleration, ρ is the air density of a very small
air particles, and Fi is the force acting on the air particles.
To equate the air pressure with the density and temperature of
the air particles, we will also use the ideal gas law equation:

P = ρRT (2)

where P is the pressure, R is the ideal gas constant, and T is
the temperature.

The motion of the atmosphere occurs under a combination
of forces, the most important of which include the gravita-
tionalFG, pressure gradient forceFPG, Coriolis forceFC and
the four forces of frictionFF . Among them, gravity generally
refers to the force pointing vertically to the center of the
earth, and if the problem is mapped to the N-dimensional
space, gravity points to the center of the coordinate system;
the air pressure gradient force is the force formed due to the
difference in the pressure of each region, and its direction is
directed from high-pressure regions to low-pressure regions;
the Coriolis force refers to the rotation of the earth, and the
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TABLE 3. Distribution of papers in resources with given search terms.

TABLE 4. Assessment criteria.

position and speed of the air particles point in the current
dimension are affected by any other dimension. The physical
equations for these four forces are as follows:

FG = ρδVg (3)

FPG = −∇PδV (4)

FC = −2� × u (5)

FF = −ραu (6)

where δV represents the finite volume of air particle, g
represents the gravitational acceleration, ∇P represents the
air particle pressure gradient, � is the angular velocity of
rotation of the earth, u represents the velocity vector of the
wind, and α is the coefficient of friction.

By substituting these four forces into Equation (1), the
resulting equation is as shown in Equation (7):

ρ
1u
1t

= (ρδVg) + (−∇PδV ) + (−2� × u) + (−ραu) (7)

where the acceleration a in Equation (1) is replaced with
1u
1t . For simplification purposes, we set 1t = 1. For a very
small air particle, we define δV = 1. The simplified form of
Equation(7) is as follows:

ρ1u = (ρg) + (−∇P) + (−2� × u) + (−ραu) (8)

Based on Equation (2), the density ρ can be replaced
according to the pressure, so that Equation (8) can be written:

1u = g+ (−∇P
RT
Pcur

) + (
−2� × uRT

Pcur
) + (−αu) (9)

Herein, Pcur represents the pressure value at the current
position. It is assumed that during the execution of WDO,
each iteration in the population will result in changes to both
its position and velocity.

Therefore, 1u can be replaced by 1u = unew − ucur.
where unew represents the velocity of the air particles at the
next iteration, and ucur represents the current velocity of the
air particles. g and ∇P are vectors that can be divided into
direction and magnitude by equations such as g = |g| (0 −

xcur ),−∇P =
∣∣Popt − Pcur

∣∣ (xopt−xcur ).WherePopt denotes
the optimal point of the pressure so far, and xopt denotes
the optimal position so far, and xcur is the current position,
substituting the above two equations to update Equation (9)
gives Equation (10).

unew = (1 − α)ucur−gxcur

+

(
RT
Pcur

∣∣Popt − Pcur
∣∣ (xopt − xcur )

)
+

(
−2� × uRT

Pcur

)
(10)

There are three additional replacements. Firstly, the
velocity of the air particles u is replaced by this velocity
uother dimcur . Secondly, all constants are combined and expressed
as c = −2 |�|RT . Thirdly, since in some cases the pressure
values may become extremely large, the velocity will also
become meaningless due to being too large, which will
directly lead to a less efficient operation of WDO. Therefore,
the actual value of the pressure is replaced by an ordering
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based on the pressure value of the air particles, so that the
velocity is updated as in Equation (11) and the position is
updated as in Equation (12).

unew = (1 − α)ucur−gxcur

+ (RT

∣∣∣∣1 −
1
i

∣∣∣∣ (xopt − xcur )) + (
cuothercur

i
) (11)

xnew = xcur + (unew × 1t) (12)

where i denotes the ranking of the pressure value of this
air particle among all air particles and xnew denotes the new
position for the next iteration.

Based on Equation(11), the term one indicates that the
air particles persist in their trajectory along the previous
path, albeit encountering resistance from the frictional force.
The term two represents the gravitational force, which
exerts an attraction on the air particles towards the center
of the coordinate system. The term three delineates the
force acting on air particles, propelling them towards the
location of highest pressure. This highest-pressure point
symbolizes the global best position in the context of WDO
optimization problem. The term four represents the Coriolis
force, which acts as a deflecting force in WDO. This force
influences the movement of air particles in one direction
based on their movement in another direction, contributing
to the complexity of their trajectories in the optimization
process.

B. MAIN PARAMETERS
WDO aims to replicate the movement of air resulting
from differences in air pressure across different locations,
ultimately leading to an equilibrium of air pressure. The
algorithm involves a small number of parameters that are
easy to implement and fine-tune for different optimization
topologies [55]. R stands for universal gas constant and T for
temperature. The range of values forRT is generally [1.0,2.0],
c = −2 |�|RT ,and it generally takes values in the range
[0.6,0.7]. The parameter g represents the acceleration of grav-
ity and typically assumes values within the range of [0.6,0.7],
which influences the gravitational forcemagnitude and serves
the purpose of preventing air particles from persisting at the
boundaries for prolonged durations by pulling them back
into the search space. The parameters c and g are carefully
fine-tuned to enhance robustness and offer additional degrees
of freedom for fine-tuning diverse optimized topologies. α

is the coefficient of friction, the range of values is generally
[0.8,0.9], and it influences the magnitude of the frictional
force.

C. MATHEMATICAL MODELING
WDO commences by initializing key parameters, including
the number of air particles, the maximum number of itera-
tions, and other relevant factors such as c, g, α, RT and umax .
Subsequently, the positions and speeds of each air particle are
assigned randomly, and a pressure function is formulated to
direct the movement of the air particles. This function enables

the air particles to move randomly at different positions and
velocities and evaluates the pressure value of each air particle
at its current position. The population is subsequently ranked
based on these pressure values. In each iteration, the velocity
and position of each air particle is adjusted to move toward
the optimal position. The algorithm continues to iterate
until reaching the final cycle, which represents the optimal
solution. To execute WDO, there are three main phases,
initialization of the algorithm, updating the local optimal
position, and finalization of the global optimal position.
Figure 2 presents a flowchart depicting the sequential steps of
WDO. The main steps of the algorithm can be summarized as
follows:

1) DEFINE THE PROBLEM AND INITIALIZE PARAMETER
VALUES
The main goal of the optimization process is to determine
the maximum or minimum value of the objective function.
For instance, in the case of seeking the minimum value, the
objective function takes the following form:{

min f (x)
s.t.xi ∈ Xi, i = 1, 2, 3, . . . ,N

(13)

The objective function is denoted by f (x), where x
represents the solution vector consisting of decision variables
x1, x2, x3, . . . , xN (i.e., i = 1, 2, 3, . . . ,N ), and the value
range of each decision variable is represented by Xi.

The initialization process of WDO involves initializing
each parameter to their respective values. These parameters
include the population size (N ), the maximum number
of generations (G), the gravitational acceleration (g), the
constant (c), the coefficient of friction (α), the maximum
allowed speed (umax),and RT coefficient (RT ).

2) INITIALIZE THE POPULATION
An initial population of N air particles is generated,
where each particle possesses D dimensions. Random
locations and velocities are assigned to each particle.
Subsequently, the pressure for each air particle is evaluated.
This population can be represented by a matrix denoted
as:

P(N ,D) =


k11 k21 . . . kD1

k12 k22 . . . kD2

. . . . . . . . . . . .

k1N k2N . . . kDN

 (14)

3) GENERATE A NEW SOLUTION
To generate a new solution Xi = (x1, x2, x3, . . . , xN ), veloc-
ity updates are performed using four distinct parameters,
namely: c, g, α and RT . Based on Equation (11), each new
velocity is generated using one of these parameters and the
resulting position update equation is based on Equation (12).
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FIGURE 2. Flowchart of WDO.

4) UPDATE LOCATION
To prevent excessive movement of the search position of
the air particles during each iteration, it is crucial to limit
the position of the air particle within the range of [−1, 1].
Additionally, it is necessary to restrict the update speed,
which is calculated based on Equation (15).

u∗
new =

{
umax unew > umax
−umax unew < −umax

(15)

where umax and −umax represent the upper and lower limits
of air particle speed, respectively.

5) CHECK THE ALGORITHM TERMINATION CONDITION
If the algorithm reaches the maximum number of iterations,
the computation will be terminated. However, if it does not
reach the maximum number, the algorithm will continue
generating new solutions until convergence is attained.

This section introduces a new, iterative heuristic approach
to global optimization known as WDO. Drawing inspiration
from the atmospheric phenomena observed on Earth, where
wind flows from areas of high pressure to those of low
pressure, aiming to achieve a balance in air pressure. InWDO,
the motion and positioning of air parcels, influenced by the
dynamics of wind, are continuously adjusted in accordance
with the physical principles that govern atmospheric activity.

IV. IMPROVEMENTS OF WDO
In this section, the limitations of the basic WDO are
presented, improvements to the basic WDO are discussed,
the mainstream methods of improving WDO is shown in
Figure 3, and steps to verify the validity of WDO variants
are presented, this will answer questions RQ2-RQ5.

A. HYBRIDIZED WDO
A wide range of metaheuristic algorithms has been proposed
and applied in diverse fields such as engineering, industry,
and science applications [64]. These metaheuristics, include
GA, PSO, Cuckoo Search(CS) [65], and WDO. However,
no single optimization algorithm among these heuristics can
stand out from the large family of nature metaheuristics, each
metaheuristic has its strengths and weaknesses.

In recent years, due to the limitations of using single
heuristic algorithms in certain applications, researchers
have combined these algorithms based on their respec-
tive characteristics to achieve complementary advantages,
improve algorithm performance, and apply them to practical
problems. These hybrid algorithms have demonstrated higher
efficiency and effectiveness in tackling complex optimization
problems [66], [67], [68]. For instance, hybrid algorithms
based on GA and PSO are applied to the design of
recurrent neural networks and fuzzy neural networks [69].
In the domain of robotics, a hybrid algorithm combining
Attractive Potential Field (APF) and improved ACO was
used for collaborative multi-robot formation control and
global path optimization, demonstrating the combination of
different heuristic algorithms to achieve optimal solutions in
robotics [70]. Additionally, in the context of vehicle routing
problems, a study explored the synergy between GA and
ACO, demonstrating the potential of combining different
heuristic algorithms to address complex problems [71].This
section highlights the combined utilization of WDO with
other outstanding metaheuristic algorithms.

WDO also has its limitations, it may suffer from rapid
convergence, leading to premature convergence to a local
optimum. This limitation needs to be addressed to enhance
the performance of WDO when dealing with complex
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FIGURE 3. WDO mainstream improvement methods.

optimization problems. WDO update equations contain
numerous inherent parameters that require careful fine-tuning
by the user to achieve optimal performance.

In [57], Bao et al. have proposed a novel hybrid
algorithm called WDO-DE, WDO-DE, a two-population
evolutionary strategy, half of the population particles are
run using WDO, which generates velocity according to
Equation (11) and position according to Equation (12), the
other half of the population particles are run using the DE,
which performs a mutation operation according to one of
the Equations (16-20), a crossover operation according to
Equation (21), after the mutation operation is completed,
DE will utilize crossover operation to generate a vector
Ui,G = (u1i,G, u2i,G, u3i,G, . . . , uDi,G), then a selection operation
according to Equation (22).

Vi,G = Xr i1,G
+ F · (Xr i2,G

− Xr i3,G
) (16)

Vi,G = Xbest,G + F · (Xr i1,G
− Xr i2,G

) (17)

Vi,G = Xi,G + F · (Xbest,G − Xi,G) + F · (Xr i1,G
− Xr i2,G

)

(18)

Vi,G = Xbest,G + F · (Xr i1,G
− Xr i2,G

) + F · (Xr i3,G
− Xr i4,G

)

(19)

Vi,G = Xr i1,G
+ F · (Xr i2,G

− Xr i3,G
) + F · (Xr i4,G

− Xr i5,G
)

(20)

where r i1, r
i
2, r

i
3, r

i
4, r

i
5 are unique integers, each distinctly

exclusive of the other, and they lie within the specified range
bounded by [1,NP] and F is the scale factor of difference
vector.

uji,G =

{
V j
i,G if randj[0, 1) ≤ CR or(j = jrand )

x ji,G others
(21)

where CR ∈ [0, 1] it is a crossover constant. jrand is a random
integer within the range [1,D].

Xi,G+1 =

{
Ui,G if f (Ui,G) ≤ f (Xi,G)
Xi,G others

(22)

Mutation, crossover, and selection operations of DE ensure
population diversity, and WDO-DE combines WDO and
DE, with individuals of the DE guiding the evolution of

individuals of WDO to reduce the risk of falling into local
optima. This collaboration between the DE andWDO ensures
that the WDO-DE maintains population diversity, thereby
improving search performance and robustness. Although they
tested the performance of the WDO-DE using 15 benchmark
functions, which include unimodal, multimodal, low dimen-
sional and high dimensional unconstrained test functions,
their performance on realistic optimization problems was not
investigated.
Zhou et al. [72] introduced a new optimization algorithm

called quantumWDO (QWDO) for solving the path planning
problem of unmanned combat air vehicles (UCAVs). The
algorithm incorporates quantum rotation gate and quantum
non-gate strategies to enable individual variation within
the population. Comparative analysis with other algorithms
demonstrates that QWDO outperforms them in terms of
performance, making it a promising approach for UCAVs
path planning, but QWDO has only tested two test instances,
the QWDOwas not thoroughly tested using other benchmark
functions to prove its effectiveness.
Mahto and Choubey [73] introduced a novel hybrid opti-

mization algorithm combining Invasive Weed Optimization
(IWO) and WDO for nulling pattern synthesis in antenna
arrays. The focus is on achieving minimal side lobe level
(SLL) and beam width in uniform linear arrays (ULA) and
non-uniform circular array (NUCA). The paper proposed a
hybrid IWO/WDO. The innovation lies in integrating the
strengths of IWO (good exploration and diversity properties)
with the systematic and directed search capabilities of WDO.
The initial positions of the algorithm’s solutions, referred

to as seeds, are distributed throughout the search space in a
manner akin to the established Invasive Weed Optimization
approach, ensuring a uniform spread across the potential
solution domain, as shown in Equation (23):

σnew =

(
itermax − iter

itermax

)n

· (σinitial − σfinal) + σfinal (23)

The position of the new seed is determined as:

xnew = xtemp + rand · σnew (24)

where rand is uniformly distributed between zero and one.
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WDO guides the initial seed position using its velocity and
position equations, while IWO dictates the further progres-
sion of the algorithm. The algorithm has improved perfor-
mance in synthesizing broad nulls, minimizing SLL, control-
ling beam width, and achieving faster convergence compared
to other evolutionary algorithms like GA, PSO, and BFO.
Results were validated against six standard benchmark func-
tions, showing that the IWO/WDO converges faster and more
effectively than the other algorithms considered. However,
the IWO/WDO needs more to be tested on high dimensional
problems.

Mahto and Choubey [74] presented a hybrid algorithm
integrating IWO and WDO for antenna array pattern
synthesis, the specific hybrid algorithmic process is the
same as article [73], the location updates for the feasible
options are based on Equation (23) and Equation (24). The
main contribution lies in the algorithm’s ability to synthesize
array patterns with minimal SLL and controlled beamwidth,
enhancing interference minimization. The experimental
results show significant improvements in SLL reduction
and null control compared to conventional methods. The
application is pertinent to antenna design in communication
systems, where interference minimization is critical. The
IWO/WDO performs well in terms of convergence, However,
the IWO/WDO needs more to be tested on high dimensional
problems.

To solve the 0-1 knapsack problem, Zhou et al. [75]
introduced a complex-valued encoding method and a greedy
strategy to WDO, compared to a range of established
algorithms such as the complex-valued CS, greedy GA,
WDO, binary CS, BA, and PSO, the CWDO demonstrates
superior performance, stability, and robustness. Empirical
simulation results indicate that the CWDO is an effective
and feasible approach for addressing the complexities of
the 0-1 knapsack problem. The test functions used by
Zhou et al. are three types of test cases with 10 instances
of each test function. The CWDO needs to test thor-
oughly using other benchmarking functions to prove its
effectiveness.

Yahia and Elkamchouchi [76] introduced a com-
bined nature-inspired optimization algorithm—Gravitational
Search Algorithm(GSA), IWO, and WDO—targeting accu-
rate real antenna array calibration. The algorithm aims
to optimize the array pattern synthesis and null control
while minimizing the beam width, side lobe level, and
interference. The algorithm’s efficacy is demonstrated
through simulations, showing improvements in perfor-
mance metrics like side lobe level minimization and
null control, compared to existing methods. However,
the GSA/IWO/WDO is untested on diverse benchmarking
functions, it also needs to be tested on high dimensional
problems.

In the refined algorithm, the gravitational constant g,
a pivotal parameter in WDO, is substituted with the
iterative acceleration acur of the ith seeds, as shown in
Equation (25), a concept derived and adapted from the

GSA.

unew = (1 − α)ucur + acur(t)xcur

+ RT

∣∣∣∣1z − 1

∣∣∣∣ (xopt − xcur) +
cuotherdimcur

z
(25)

where the variable z is defined as the index denoting the
position of the pressure (fitness) value in its current state.

To address the challenge of managing energy consumption
more efficiently in smart grid systems. Javaid et al. [77]
introduced a novel hybrid algorithm called GWD, which
combines the principles of WDO and GA. In GWD, the
velocity update process of global air pressure is replaced
by crossover and mutation operations from the genetic
algorithm. The experimental results reported in their study
demonstrate that the proposed GWD outperforms other
heuristic algorithms based on the selected performance
indicators. The GWO verified its superior performance com-
pared to other heuristics, but the GWO was not thoroughly
investigated using other benchmarking functions to prove its
effectiveness.

To improve global search capability and prevent being
trapped in local optima. Sinha and Choubey [78] presented
an enhanced version ofWDO combined with GA for adaptive
filtering in digital signal processing, specifically for Adaptive
Channel Equalizer (ACE) and System Identification (SI). The
method shows superior performance over the original WDO,
GA, and the Least Mean Square (LMS) algorithm in terms
of convergence speed and error rates, particularly in handling
inter-symbol interference and random noise.

To address Demand Side Management (DSM) in the
Smart Grid. Qureshi et al. [79] proposed hybrid Enhanced
Differential Harmony WDO (EDHWADO). EDHWADO
incorporates the characteristics of the Harmony Search
Algorithm (HSA), Enhanced Differential Evolution (EDE),
and WDO. In their proposed algorithm, the initial population
is generated following the procedure of HSA. The initial
harmony is created according to the following Equation (26).

Xi,j = Lj + randb() · (Uj − Lj) (26)

In the equation referenced above, Xi,j represents the
element located in the ith row and jth column of the initial
population matrix. U signifies the upper bound limit, which
has a maximum value of 1, while L denotes the lower bound
limit, with a minimum value of 0. Generating the initial
population in accordance with the HSA guarantees that the
population values are confined within the boundaries set by
U and L.
They substitute component unew in Equation (11) with the

mutation and crossover techniques from EDE, as specified in
the following equation.

Vi,G+1 = Xr1,G + F · (Xr2,G − Xr3,G) (27)

They select the best possible solution from five generated
vectors or solutions, in accordance with the criteria set out in
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the equation below.

Uj,i,G+1 =

{
Vj,i,G if rand(j) ≤ 0.3
xj,i,G others

(28)

Uj,i,G+1 =

{
Vj,i,G if rand(j) ≤ 0.6
xj,i,G others

(29)

Uj,i,G+1 =

{
Vj,i,G if rand(j) ≤ 0.9
xj,i,G others

(30)

Uj,i,G+1 = randb(j) · xj,i,G (31)

Uj,i,G+1 = randb(j) · vj,i,G + (1 − randb(j)) · xj,i,G (32)

EDHWADO can effectively reduce costs while controlling
Peak Average Ratio (PAR), WDO, and HSA are proven to
be cost effective for PAR, while EDE is effective for PAR
control. The EDHWADO verifies superior performance on
real-world problems compared to other heuristics, but the
EDHWADOhas not been thoroughly investigated using other
benchmarking functions to prove its effectiveness.
Sawant and Manoharan [80] introduced a novel band

selection approach for hyperspectral images using a modified
WDO(MWDO). This approach addresses the curse of
dimensionality and aims to improve classification accu-
racy by effectively selecting optimal bands and feeding
them into a deep learning architecture. The MWDO is
designed to prevent premature convergence and balance
exploration-exploitation in the search process. The method
demonstrated high classification accuracy on three standard
datasets, indicating its potential for hyperspectral image
processing. However, MWDO increases the computational
cost and has not been thoroughly tested on high dimensional
problems.
To increase population diversity, the particle swarm

algorithm was used to dynamically compute air particle
origins, as shown in Equation(33).

unew = (1 − α)ucur − g(xor − xcurr)

+

[
RT

∣∣∣∣1 −
1
i

∣∣∣∣ (xnew − xcurr)
]

+

[
−cuotherdimcurr

i

]
(33)

where xor signifies the origin point of an air particle, its
position meticulously determined by employing
Equation (34).

xnew = xj + vjnew (34)

The velocity of each particle can be updated as:

vjnew = w · vj + c1r1(Pbest − xj) + c2r2(gbest − xj) (35)

where w represents the inertia weight, confined within the
range [0, 1], ensuring a balanced momentum during the
search process. Both r1 and r2 are randomvariables uniformly
distributed in the interval [0, 1], introducing stochastic
elements to the search. Meanwhile, c1 and c2 serve as

cognitive and social learning rates respectively, guiding the
particles through the problem space by blending personal
insights with collective experience.

Sinha et al. [81] showcased the Hybrid IWO/WDO’s
application in synthesizing linear array antennas by optimiz-
ing key parameters like excitation amplitude, position, and
complex weight. The specific hybrid algorithmic process is
the same as article [74], the location updates for the feasible
options are based on Equation (23) and Equation (24).
It emphasizes placing single and multiple nulls strategically
to reduce interference. The algorithm aligns with modern
communication demands by ensuring high gain, low SLL,
minimal beam width, and directed nulls. The efficiency of
this hybrid approach is validated through four examples,
with results favorably compared to other soft computing
optimization techniques reported in the literature. However,
the IWO/WDO needs to test thoroughly using diverse
benchmarking functions and high dimensional problems to
prove its effectiveness.

To address the issue of WDO getting trapped in local
optima during the early stages, Gao et al. [82] proposed
a hybrid approach that combines quantum computation of
single coding with WDO, known as the Quantum WDO
(QWDO). Furthermore, to solve the nonlinear optimization
problem of three-dimensional (3D) Time-Difference-of-
Arrival (TDOA) cooperative location, they incorporated the
Chan algorithm into the QWDO framework, resulting in
the Chan-QWDO. The probability amplitude of a qubit is
utilized to represent the position of an air particle. To update
this position, they employ a quantum rotation gate strategy,
which is intricately combined with a quantum rotation angle
and a chaotic equation. This approach significantly enhances
the diversity of the population and effectively prevents
premature convergence. However, the Chan-QWDO needs
to test thoroughly using diverse benchmarking functions and
high dimensional problems to prove its effectiveness.

Initiate the process by establishing the set of quantum
air particles. Subsequently, determine an initial quantum
position in accordance with the Chan algorithm. Following
this, allocate the remaining initial positions and velocities in
a randommanner. Proceed to update the quantum position for
each quantum air particle. This paper employs two distinct
strategies to facilitate the updating of quantum positions.

The first approach involves the quantum rotation gate
strategy, with the update process unfolding as follows:

ut+1
i,j = abs(ut+1

i,j cos(vt+1
i,j ) +

√
1 − (uti,j)

2 sin(vt+1
i,j )) (36)

The second strategy employs a quantum rotation angle
method, which is intricately combined with a chaotic
equation. The update equation for the quantum rotation angle
is expressed as follows:

θ t+1
ij = c1sti,j(u

t
g,j − uti,j) + c2s

−t
i,j (b

t
j − uti,j) (37)

c1 and c2 represent constants that indicate the extent of
influence exerted by the global optimal quantum position
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and the local optimal quantum position on quantum air par-
ticles, respectively. utg,j denotes the global optimal quantum
position, while btj refers to the local quantum position. The
chaotic variables, designated sti,j an s

−t
i,j , respectively adhere

to the chaotic equations sti,j = 4st−1
i,j (1 − st−1

i,j ) and s−ti,j =

4s−t−1
i,j (1 − s−t−1

i,j ).
The procedure for updating the quantum position of an air

particle, which involves the use of the quantum rotation angle
in conjunction with a chaos equation, unfolds as follows:

ut+1
i,j = abs(uti,j cos(θ

t+1
i,j ) +

√
1 − (uti,j)

2 sin(θ t+1
i,j )) (38)

Compared to the Chan, GA, and PSO algorithms, the
Chan-QWDO demonstrates greater effectiveness in finding
solutions. This method is both reliable and practical for
solving the 3D cooperative Time Difference of Arrival
(TDOA) location problem involving multiple Unmanned
Aerial Vehicles (UAVs). However, the Chan-QWDO has
not been thoroughly investigated using other benchmarking
functions to prove its effectiveness.

Despite their strong search capabilities and minimal
control parameters, both WDO and CS algorithms are
susceptible to premature convergence due to the loss of
population diversity. Sawant and Manoharan [83] proposed
WDOMCS, which combines WDO and CS with a Chaotic
map, the proposed methodology utilizes the Chebyshev
chaotic map for initializing the population at the initial stage,
according to the following equation.

Xt+1 = cos(a. cos−1(Xt )) (39)

Subsequently, the population is segmented into two distinct
subgroups. For each subgroup, WDO and CS strategies are
independently implemented.

Half of the population particles are run using WDO, which
generates velocity according to Equation (11) and position
according to Equation (12), the other half of the population
particles are run using the modified version of CS, which
performs an operation according to the Equation (40).

Xi(t + 1) = Xi(t) + αi(t + 1) ⊕ levy(λ) (40)

where, α is finite constant.
This bifurcation allows the subgroups to exchange perti-

nent information and leverage each other’s strengths, thereby
mitigating premature convergence and facilitating the attain-
ment of the optimal solution. Moreover, in the CS algorithm,
the Levy flight step size is adaptively adjusted, considering
the fitness value and the current iteration number. This
adjustment significantly enhances the convergence speed
of the algorithm, and this algorithm can avoid premature
convergence and obtain the optimal solution. Although the
WDOMCS algorithm was tested on standard benchmark
hyperspectral datasets, Indian pines, Pavia University and
Botswana for comparison with GA, PSO, GWO, WDO, and
CS with good results, it has led to improved optimization
performance and robustness, WDOMCS still needs to be

investigated using diverse benchmarking functions and high
dimensional problems to prove its effectiveness.

The research introduced a dual-objective optimization
model focusing on enhancing wind and solar absorption
rates and ensuring reliable operation by aligning the interests
of Battery Swapping Stations (BSS) and DC distribution
entities. A hybrid algorithm combining Genetic Algorithm
GA and WDO is proposed by Wang et al. [84], employing
CPLEX and GA-WDO for solving upper and lower models,
respectively. Results indicate that the model significantly
reduces operational costs and increases renewable energy
utilization, demonstrating its practical efficacy and validity.
However, GA-WDO only compared with WDO and GA,
it still needs to be investigated using diverse benchmarking
functions and high dimensional problems to prove its
effectiveness.

Singh et al. [85] introduced a Hybrid WDO (HWDO),
which designs to generate a reliable workflow schedule
while maintaining the budget within specified limits. The
algorithm’s performance was evaluated using WorkflowSim
with real-world scientific applications. The results demon-
strate that the HWDO achieves a 9%–17% improvement in
schedule reliability compared to other algorithms, all the
while adhering to the budget constraints. However, to prove
the effectiveness of HWDO thoroughly, it needs to be
investigated using diverse benchmarking functions and high
dimensional problems.

To address the challenge of accurately modeling the per-
formance of photovoltaic (PV) modules, Ibrahim et al. [86]
proposed a hybrid wind driven-based fruit fly optimization
algorithm(WDFO), FO optimized the four hyper parameters
of WDO, Firstly, the air particles’ velocity and position are
updated using Equation (11) and Equation (12), respectively.
In each iteration, the hyper-parameters of the WDFO are
meticulously tuned and updated in accordance with the
requirements of the subsequent phase. Secondly, the update
of the direction and distance toward the optimal values
of the hyper-parameters is governed by Equation (41) and
Equation (42). Once theminimum error threshold is achieved,
these optimal values are then applied in a subsequent cycle
to initiate a re-evaluation of the air parcels, thereby refining
the preceding results. The iterative process of updating
both the hyper-parameters and the modeled velocities and
positions is brought to a halt upon meeting a predetermined
termination criterion. Notably, the strategic adjustment of
the hyper-parameters plays a pivotal role in balancing the
global and local search capabilities, thereby facilitating a
more expedient attainment of the optimal solution, the
WDFO improved the convergence speed and accuracy of
WDO, but it still needs to be investigated using diverse
benchmarking functions and high dimensional problems to
prove its effectiveness.

Xnewaxis = X (bestIndex) (41)

Y newaxis = Y (bestIndex) (42)
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where bestIndex is obtained from the following
Equations (43)-(50).

Xnewaxis = rand(LR) (43)

Yaxis = rand(LR) (44)

Xi = Xaxis + rand(LR) (45)

Yi = Yaxis + rand(LR) (46)

disi =

√
X2
i + Y 2

i (47)

Si =
1
disi

(48)

Smelli = fitness(Si) (49)

[bestSmell, bestIndex] = min(Smell) (50)

To addresses the problem of premature convergence and
getting trapped in local optima, which are common issues
in WDO, Tang et al. [87] introduced an innovative selection
strategy, founded on a fitness-distance balance, to supplant
the conventional selection method in WDO. Additionally,
it incorporates a chaotic local search mechanism, which
intelligently selects a chaoticmap based on amemory compo-
nent, thereby significantly enhancing the algorithm’s search
efficacy. Remarkably, the proposed algorithm maintains the
same computational time complexity as the standard WDO.
In their rigorous analysis, optimal parameter settings for the
new algorithm were determined. Comparative experiments
were conducted using the CEC 2017 benchmark functions
to assess the algorithm’s effectiveness. The results from
these experiments unequivocally demonstrate that the newly
proposed algorithm exhibits superior performance in compar-
ison to the traditional WDO, particularly noted in its ability
to achieve gradual convergence in function optimization
tasks. Furthermore, the practical applicability, the robustness
and versatility of the algorithm are substantiated through
its deployment on six real-world optimization problems.
However, in higher-dimensional scenarios, CFDBWDO does
not exhibit a marked superiority over AWDO. To prove
the effectiveness of HWDO thoroughly, it needs to be
investigated using diverse benchmarking functions.

Athira and Sasikala [88] presented a security framework
for distributed cloud computing, focusing on secure Data
Deduplication (DD) and Data Portability (DP). The proposed
method enhances data security by dividing files into blocks,
selecting optimal Cloud Servers (CS) using a Hybrid Forest
Genetic Algorithm based on file and CS attributes, and
employing the Whirlpool algorithm for hash code generation
and deduplication through hash chaining. The framework
further secures data using the Levy Flight-WDO(LF-WDO)
algorithm for DP. In the LF-WDO approach, the introduction
of the Levy Flight Distribution (LFD) replaces traditional
randomness, resulting in more efficient DP processes. In the
LF-WDO, the position (x) and velocity (v) of air parcels are
determined based on the LFD are shown in equations.

L(x) = t(−x) 0 < x ≤ 2 (51)

L(x) = t(−v) 0 < v ≤ 2 (52)

where, L(•) signifies the LFD, t indicates the time of task
completion. Subsequently, the velocity of each air parcel is
updated as follows:

v̂new = (1 − λ) · L(v)−gL(x)

+

(
αT

∣∣∣∣1r − 1

∣∣∣∣ (L′(x) − L(x))
)

+

(c · v
r

)
(53)

where v̂new denotes the velocity at iteration s + 1, g denotes
gravitational acceleration, L′(x) denotes the air parcel’s
optimal location, and represents the parcel’s rank among the
entire group as well as c indicates the coefficient.

Following the velocity update, the position of each air
parcel is recalibrated as:

x̂new = L(x) + v̂new · s (54)

where, x̂new denotes the updated position.
Experimental results demonstrate the efficacy of the

proposed approach in enhancing data security in distributed
cloud environments. However, to prove the effectiveness of
LF-WDO, it needs to be investigated thoroughly using diverse
benchmarking functions and high dimensional problems. The
different Hybridized WDO and their limitations are shown in
Table 5.

B. IMPROVEMENTS IN ADAPTIVE WDO
Boulesnane and Meshoul [52] proposed an adjustment to the
gravitational parameter in their study. They introduced an
automatic adaptive mechanism for setting the gravitational
parameter, where the value of the gravitational parameter
is randomly selected from the range [0,1]. The improved
algorithm MWDO exhibits superior performance in terms of
accuracy and robustness compared to the original algorithm.
However, the performance of MWDO on practical engineer-
ing problems has not been studied.

Suzuki et al. [47] changed the way four inherent terms
of c, g, α and RT through these two methods. In the first
method, the values of the four terms are randomized at each
iteration by selecting a value from a uniform distribution
in the range of [0, 1].The second method is to utilize the
Covariance Matrix Adaptation Evolution Strategy (CMAES)
[89], [90] to optimize the values of the parameters c, g, α

and RT at each iteration, a new group of values is assigned
for the next iteration. The population size of CMAES should
be identical to that of WDO, and four parameters in WDO
need to be adaptive, so CMAES will apply to these four
parameters and the dimensions should be limited to four,
so that WDO implementation can be a parameter-free adap-
tive optimization algorithm. AWDO utilizes four renowned
numerical benchmark functions, namely Sphere, Rastrigin,
Griewank, and Rosenbrock. Numerical tests indicate that the
proposed algorithm exhibits faster convergence and yields
superior results, thereby enhancing overall performance.
However, AWDO does not consider constrained real-world
optimization problems, and its performance on realistically
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TABLE 5. Hybridized WDO and their limitations.
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TABLE 5. (Continued.) Hybridized WDO and their limitations.

constrained optimization problems needs further investiga-
tion.

Bayraktar and Komurcu [91] proposed an adaptive WDO
to achieve multi-objective, this algorithm still uses CMAES
optimize the values of the parameters c, g, α and RT
at each iteration. While the MO-AWDO has showcased
efficient performance across five multi-objective numerical
benchmark functions with varying dimensions, its appli-
cability to all benchmark functions remains incomplete.
Further investigation is necessary, particularly in assessing its
performance on real engineering problems.

In their study, Xia et al. [92] introduced a modified version
of WDO called MWDO. MWDO select the optimal control
coefficients in WDO with Levy distribution and uniform
distribution The coefficient values are specified as follows:

α = 0.1 ∗ rand_L (55)

RT = 0.1 ∗ rand_L (56)

g = 0.1 ∗ rand_L (57)

c = 2.5 ∗ rand_U (58)

where the random number rand_U follows a uniform
distribution between 0 and 1, while the random number
rand_L adheres to a Levy distribution.

f (x; µ; γ ) =

√
γ

2π
e−γ /2(x−µ)

(x − µ)3/2
(59)

where µ represents the location parameter and γ represents
the scale parameter. µ = 0 and γ = 0.001.

An advanced implementation algorithm for GRFT is pre-
sented, leveraging the innovative BMWDO (BSSL Learning-
Based MWDO) framework, which is itself grounded in the
principles of MWD. Central to the BMWDO method is
the integration of a BSSL learning procedure, specifically
designed to effectively address the challenges posed by BSSL
phenomena. When benchmarked against the conventional
BPSO, this novel approach exhibits enhanced detection capa-
bilities, achieving superior performance while maintaining
a computational cost that is on par with its predecessor.
The efficacy of this method is further substantiated through
a series of comprehensive numerical experiments, under-
scoring its practical viability and robustness. However, the
proposed variants still need to be thoroughly investigated
using other benchmarking functions to prove their validity.
The proposed variant still needs to be thoroughly investigated
using other benchmarking functions to prove its validity.

Shaheen et al. [93] represented these parameters of c, g,
α and RT as uniformly distributed pseudo-random numbers
within a specified range as follows Table 6.

TABLE 6. Parameter range.

The simulation outcomes vividly demonstrate the effec-
tiveness of the proposed MWDO in addressing the ORPD
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problem. Its performance not only surpasses that of the stan-
dard WDO but also outshines various other methodologies
documented in the literature, particularly in the context of
minimizing power loss. This superiority is a testament to the
advanced capabilities and efficiency of the MWDO approach
in optimizing power systems. However, MWDO was not
studied using other benchmarking functions.

Nagar et al. [94] presented a comprehensive analysis and
application of the Adaptive WDO (AWDO), comparing it
to the classical WDO in continuous-valued electromagnetic
problems. The main contribution lies in AWDO’s ability to
automatically determine inherent parameters, making it a
self-adaptive and efficient algorithm that outperforms WDO
without requiring a priori knowledge of optimal parameter
values. The AWDO integrates the classical WDO with
the Covariance Matrix Adaptation Evolutionary Strategy
(CMA-ES), enhancing performance and ease of use. The
CMA-ES is configured tomaintain a population size identical
to that of WDO. The scope of the optimization problem is
confined to a four-dimensional parameter space, specifically
defined by the inherent parameters: c, g, α and RT .
In every iteration, CMA-ES systematically generates and
returns a novel set of values for these inherent parameters,
corresponding to each member within WDO population.
The effectiveness of AWDO is demonstrated through its
superior performance in optimizing a linear antenna array
problem compared to WDO, highlighting its potential in
complex, real-world engineering problems. However, the
AWDO only compared with WDO, it needs to be compared
with other heuristic algorithms. To prove the effectiveness of
AWDO, it needs to be investigated thoroughly using diverse
benchmarking functions and high dimensional problems.

Madipalli et al. [95] presented a fully automatic tech-
nique for segmenting the Intima Media Complex (IMC)
in ultrasound images of the Common Carotid Artery
(CCA) using Adaptive WDO(AWDO). It introduces an
innovative denoising and enhancement process in the pre-
processing stage, followed by a robust segmentation method.
The AWDO adaptively selects parameters to improve the
segmentation process, this process is facilitated by the
CMAES algorithm. The proposed method’s effectiveness is
demonstrated through a comparative analysis with state-of-
the-art methods, showing superior results in segmenting the
IMC. However, to prove the effectiveness of AWDO, it needs
to be investigated thoroughly using diverse benchmarking
functions and high dimensional problems.

Bayraktar [96] introduced Adaptive WDO (AWDO),
a nature-inspired, metaheuristic method, applied to training
feedforward artificial neural networks for digit classification
using the MNIST dataset. The main contribution lies in
integrating AWDO with a black-box solver, the CMAES,
to adaptively tune parameters, this resulted in the formation
of a versatile, adaptive algorithm. First successful application
of AWDO to numerical classification.

Ibrahim et al. [97] introduced an AdaptiveWDO (AWDO),
aiming to enhance parameter extraction for single-diode PV
cell models. The AWDO integrates the CMAES, strategically
tailoring the optimization process to suit the specific charac-
teristics of each problem. This methodical selection of inher-
ent terms significantly enhances the algorithm’s adaptability
and precision in tackling diverse optimization challenges.
The algorithm’s design aims to accurately identify global
parameter values under varying conditions and solve complex
multi-modal and multi-dimensional optimization problems.
The main contribution lies in AWDO’s ability to adaptively
handle parameter extraction with improved accuracy and
computational efficiency, compared to traditional methods.
However, to prove the effectiveness of AWDO thoroughly,
it needs to be investigated using diverse benchmarking
functions and high dimensional problems.

Wang et al. [98] introduced and evaluates the Adap-
tive WDO(AWDO) algorithm for parameter estimation in
single-diode PV cell models. It stands out for its adaptability
and efficiency in parameter extraction, especially under vary-
ing weather conditions. The AWDO, integrating CMAES,
showcases enhanced convergence and accuracy compared to
traditional methods. AWDO still needs to be investigated
using diverse benchmarking functions and high dimensional
problems to prove its effectiveness.

Ibrahim et al. [53] presented the development and
application of an Improved WDO (IWDO) algorithm for
identifying parameters of a triple-diode photovoltaic (PV)
cell model. The IWDO enhances WDO by CMAES. This
results in a more accurate and faster method for finding
the global optimum, balancing exploration, and exploitation.
The algorithm’s performance is demonstrated using data
from commercial photovoltaic technologies and is validated
against other optimization methods, showing improved accu-
racy, convergence speed, and feasibility. IWDO still needs
to be investigated using diverse benchmarking functions and
high dimensional problems to prove its effectiveness.

Liu et al. [43] introduced an enhanced Maximum Power
Point Tracking (MPPT) method for photovoltaic systems
using an Adaptive WDO(AWDO). It addresses the ineffi-
ciencies of traditional MPPT methods by improving tracking
speed, accuracy, and stability in varying environmental
conditions. The AWDO dynamically adjusts its parameters,
offering a significant improvement over the standard WDO
by reducing oscillations at the Maximum Power Point (MPP)
and ensuring fast and precise tracking. The effectiveness
of the AWDO is validated through MATLAB/Simulink
simulations, demonstrating superior performance in tracking
accuracy and stability compared to traditional methods.
To prove the effectiveness of AWDO, it needs to be investi-
gated thoroughly using diverse benchmarking functions and
high dimensional problems.

The adaptive weights are introduced in the gravity
and Coriolis force expressions, and the adaptive weight
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expressions are given in the following equations.

λ1 = λ2 =

∣∣xopt − xcur
∣∣

xopt
×

1
100

(60)

unew = (1 − α)ucur − λ1gxcur

+

(
λ2cuotherdimcur

i

)
+

(
RT

∣∣∣∣1 −
1
i

∣∣∣∣ (xopt − xcur)
)

(61)

In [99], an innovative method for estimating solar PV
parameters i.e. WDO combined with CMAES is introduced.
To determine the reliability, timeliness, and dynamics
of the process, they used three different datasets. The
performance of solar PV models characterized by single
and double diode parameters was carefully evaluated.
The results show that the proposed method can com-
pute the solar PV parameters efficiently and effectively.
To prove the effectiveness of proposed method thoroughly,
it still needs to be investigated using diverse benchmarking
functions.

Abd El-Mageed et al. [100] presents an Improved Binary
Adaptive WDO (iBAWDO) for Feature Selection (FS) in
supervised classification tasks. iBAWDO integrates evolu-
tionary crossover techniques and SA with WDO to enhance
feature selection efficiency. The algorithm’s effectiveness is
validated across 18 benchmark datasets and compared with
11 other meta-heuristic approaches. Statistical validation
is conducted using Wilcoxon’s rank-sum test, confirming
iBAWDO’s significant effectiveness on both small and large-
dimensional datasets. To prove the effectiveness of iBAWDO
thoroughly, it still needs to be investigated using diverse
benchmarking functions.

Mathew et al. [101] presented a novel approach for
parameter estimation of organic photovoltaic (OPV) cells
using a three-diode model combined with an adaptive WDO.
The work primarily addresses the challenge of accurately
modeling OPV cells to replicate their I-V characteris-
tics, particularly the kink effect. The main contribution
is the effective use of WDO for parameter estimation,
which outperforms traditional methods by achieving pre-
cise parameter values with fast convergence and minimal
error. The hybrid algorithm’s efficacy is demonstrated
through extensive testing under various conditions, show-
ing its superiority in terms of accuracy and computa-
tional efficiency. However, to prove the effectiveness of
adaptive WDO, it needs to be investigated thoroughly
using diverse benchmarking functions and high dimensional
problems.

Based on the reviewed literature, we summarize the
improvement process of the adaptive WDO algorithm, which
focuses on adapting one to four parameters in the speed
update formula of theWDO. Figure 4 illustrates the flowchart
of the adaptive WDO. Table 7 shows the improvements and
limitations in adaptive WDO.

C. IMPROVEMENTS OF PARAMETERS AND
INTRODUCTION OF NEW PARAMETERS
Bayraktar et al. [55] detailed a numerical study for parameter
tuning and employs statistical methods to evaluate algorithm
performance, suggesting WDO’s suitability for both dis-
crete and continuous optimization problems. They proposed
parameter ranges based on a numerical study conducted on
unimodal and multi-modal test functions, as shown in Table8.
However, to prove the effectiveness of the method they
proposed, it needs to be investigated thoroughly using diverse
benchmarking functions and high dimensional problems.

Segundo et al. [102] presented an enhanced WDO, incor-
porating Lévy flights for global continuous optimization,
dubbed WDOLE. It demonstrates the algorithm’s superior
performance over the standard WDO by comparing their
results on benchmark functions. The hybridization with Lévy
flights allows for better exploration and exploitation, leading
to faster convergence and improved solutions. This approach
significantly outperforms the classical WDO, particularly
in avoiding local optima and achieving closer to optimal
solutions. However, the performance ofWDOLE on practical
engineering problems has not been studied. They changed the
way the four inherent terms of c, g, α and RT through these
equations. Details are shown as follows:

α = (0.7
aij

max it
+ 0.9)

√
2.4
2π

exp
(

−2.4
(rand. − 10−6)2.5

)
(62)

RT = 4(0.4
aij

maxit
+ 0.5)

√
2.4
2π

exp
(

−2.4
(rand. − 10−6)2.5

)
(63)

g =

√
L
2π

exp
(

−2.4
(rand. − 10−6)2.5

)
(64)

− 2�RT



4

√
3.4
2π

exp
(

−3.4
(rand. − 10−6)2.5

)
;

rand. > 0.5

4
(
0.4

aij
max it

+ 0.2
)

;

any other value of rand.

(65)

where max it represents the maximum number of iterations,
and L represents the step lengths. The step lengths (L) are
drawn from a Levy distribution with L > 0.

L =

√
γ

2π
e

−γ

2(s−µ)3.5 (66)

where γ represents a scale factor with values γ > 0, µ

represents a shift parameter, and this distribution is valid for
large steps 0 < µ < s < ∞.
The optimization of WDO has been enhanced by introduc-

ing new parameters by researchers. For example, Boulesnane
and Meshoul [52] proposed the modified WDO (MWDO).
In Equation (61), the velocity update equation incorporates
a rank-based term to express pressure, but this approach
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TABLE 7. Improvements and limitations in adaptive WDO.
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FIGURE 4. Flowchart of the adaptive WDO.

TABLE 8. Recommended parameter range.

may not be suitable when there is a large number of
airborne particles, potentially impacting the Coriolis force
negatively. To further improve the algorithm’s search capa-
bility, in the model equation, they replaced the rank-based
term with a pressure-based term, as depicted in the following
equation. The MWDO exhibits superior performance in
terms of accuracy and robustness compared to the original
algorithm. However, the performance of MWDO on practical
engineering problems has not been studied.

uit+1 = (1 − α)uit−gx
i
t

+

(
RT

∣∣∣∣PbestPi
− 1

∣∣∣∣ (xopt − x it )
)

+

(
cuother dimt

Pi

)
(67)

That is, i is replaced by Pbest and Pi in Equation (67).
Where Pi is the following equation:

Pi = exp(−D ∗
f (xi) − fworst

sum
) (68)

And sum =

N∑
j=1

(
f (xj) − fworst

)
+ (fbest − fworst) (69)

where fbest is the best value of objective function achieved up
to now, and D represents the problem dimension.

fworst = max(max(f (x1), f (x2), f (x3), . . . , f (xN )), fbest )

(70)

fworst is the worst value of test function achieved up to now,
N represents the number of particles.

D. IMPROVEMENTS OF WDO USING BINARY ALGORITHM
According to the limited research, WDO is a continuous
optimization method, most of the research on WDO mainly
focuses on the optimization of continuous space, and only a
few studies on binary problems.

To address the issue of emitted beamforming in oppor-
tunistic array radar, Zhang et al. [103] performed a novel
binary version of the multi objective WDO for beamforming
in opportunistic array radar, framing it as a multi objective
optimization problem. It proposes a new definition of
position vectors and integrates grey relational grade (GRG)
to evaluate similarity between solutions, optimizing for
a balance between main beam width and sidelobe level.
The method outperforms conventional PSO in reducing
sidelobe levels and computational time. However, to prove
the effectiveness of the proposed method, it needs to be
investigated thoroughly using diverse benchmarking func-
tions and high dimensional problems. In the binary WDO
the velocity updating is similar to the standard WDO, but
position updating in the binary WDO is based on the sigmoid
function, the subsequent equation demonstrates the stated
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relationship.

S(unew) =
1

(1 + exp( − unew))
(71)

Xnew =

{
0 if S(unew) ≤ rand; 0 ≤ rand ≤ 1
1 if S(unew) > rand; 0 ≤ rand ≤ 1

(72)

Zhou et al. [75] introduced a novel complex-valued
encoding WDO (CWDO) with a greedy strategy for solving
the 0-1 knapsack problem. They integrated a complex value
encoding method to enhance global optimization and a
greedy strategy to improve local search efficiency. This
hybrid approach is designed to increase population diversity
and avoid premature convergence. Through experimental
validation across standard, small-scale, and large-scale test
cases, CWDO demonstrated superior performance, stabil-
ity, and robustness compared to existing algorithms like
complex-valued CS, greedy GA, binary CS, BA, and
PSO. The statistical methodology utilized to evaluate the
algorithm’s effectiveness included ANOVA tests, showcasing
the CWDO’s efficacy in solving the 0-1 knapsack problem
with better search performance. However, to prove the
effectiveness of the CWDO, it needs to be investigated
thoroughly using diverse benchmarking functions and high
dimensional problems.

Ranjan et al. [104] introduced a novel binaryWDO applied
to the design of a six-band ultra-thin, polarization-insensitive
pixelated metamaterial absorber. The research focuses on
synthesizing the unit cell structure of the metamaterial
absorber by optimizing the presence of each unit pixel
in a Frequency Selective Surface (FSS). The optimization
demonstrates six distinct absorption bands with absorptivity
over 90% at frequencies ranging from 7.6 GHz to 16.7 GHz.
The novel approach includes a reinterpretation of the velocity
vector in the binary WDO, incorporating ‘‘memory’’ to
enhance optimization by considering the current binary state
in updates. The study validates the design through numerical
simulations and experimental results, showing a close match
between the two. The methodology employs Finite Element
Method (FEM)-based solver interfacing with MATLAB for
simulation, highlighting the absorber’s effectiveness across
a wide angle of incidence and its polarization insensitivity.
However, to prove the effectiveness of the proposed method,
it needs to be investigated thoroughly using diverse bench-
marking functions and high dimensional problems. They give
a redefinition of velocity in binary WDO, the velocity of
the air particle represents the probability that the current
binary state will change to its complement. In this way the
velocity in the binary WDO has the property of memory,
influenced by the previous velocity state, and plays a crucial
role in the renewal of air particles, as shown in the following
equation:

S(Vmn,t ) =
1

1 + exp( − Vmn,t )
(73)

The function S(Vmn,t ) in its space domain, is defined as
[−Vmax , Vmin].

S(Vmn,t ) =



1
1 + exp(Vmn,t )

= 0, if Vmn,t → −Vmax

1
2
, if Vmn,t = 0

1
1 + exp( − Vmn,t )

= 1, if Vmn,t → Vmax

(74)

The value of S(Vmn,t ) obtained by Equation (74) is subset
of (0,1). A uniformly distributed random number is generated
within (0,1) and it is compared to S(Vmn,t ). The nth bit of the
mth air particle, is updated according to:

Xmn,t =

{
Xmn,t−1 if rmn,t ≥ S(Vmn,t )
Xmn,t−1 if rmn,t < S(Vmn,t )

(75)

where, Xmn,t−1 is complement binary state of Xmn,t−1. This
new definition of position update brins memory to the
optimization method, as next binary state of position is
dependent on its present state.

For the given rmn,t , the probability that the nth bit equals to
its complement binary state is:

P(Xmn,t = Xmn,t−1) = S(Vmn,t ) (76)

Ranjan et al. [105] presented the synthesis of two
wideband metamaterial cross-polarizers (MCPs) using the
binaryWDO(BWDO). This advanced technique modifies the
traditional wind-driven optimization to suit electromagnetic
(EM) problems requiring binary solutions. TwoMCP models
were developed, exhibiting high polarization conversion
ratios (PCR) across broad bandwidths, achieved through
meticulous optimization iterations. The study emphasizes
the binary adaptation of WDO for pixelated structures,
interfacing MATLAB with Ansys HFSS for efficient design
and simulation. Experimental validation confirms the simu-
lated performance, highlighting the BWDO’s effectiveness
in synthesizing wideband MCPs for potential X-band appli-
cations. However, the BWDO still needs to be investigated
using diverse benchmarking functions and high dimensional
problems to prove its effectiveness. In BWDO, the air
particle’s location can be represented by binary values ‘‘1’’
or ‘‘0’’, and its velocity indicates the likelihood of this binary
state. The relationship between the position and velocity
of the air particles is defined by the following equation.
Additionally, the probability that it remains in its current
binary state is:

P(Xmn,t = Xmn,t−1) = 1 − S(Vmn,t ) = S(−Vmn,t ) (77)

where S(Vmn,t ) is the Equation (73). From Equations (68)
and (70), it is evident that the probability of a bit being flipped
is higher when it differs from the corresponding bit in the
global best solution.

Within the limitation of S(Vmn,t ) ∈ −[−Vmax ,Vmax] and
expressed as Equation (74).
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The value of S(Vmn,t ) is evaluated by Equation (78).
Consider the mth air particle xmn,t ,the position of the nth bit is
upgraded as:

Xmn,t =

{
0 if rmn,t ≥ S(Vmn,t )
1 if rmn,t < S(Vmn,t )

(78)

where rmn,t is defined as the threshold value. Robustness
of BWDO on optimization problems is experimentally
demonstrated.

When a given data set has a large number of characteristics
of a given data set, traditional methods usually difficult to
find a good solution to improve the overall classification
accuracy, Abd El-Mageed et al. [100] presented an Improved
Binary Adaptive WDO (iBAWDO) for feature selection in
supervised classification, integrating evolutionary crossover
and simulated annealing to enhance search capability and
solution quality. This approach significantly reduces feature
dimensionality while maintaining or improving classification
accuracy, tested on 18 benchmark datasets against 11 binary
meta-heuristic methods. The iBAWDO’s effectiveness is
confirmed through statistical analysis, including Wilcoxon’s
rank-sum test, demonstrating its superiority in handling both
small and large-dimensional datasets for feature selection.

Ranjan et al. [106] presented the synthesis of two
wideband metamaterial cross-polarizers (MCPs) utilizing the
Binary WDO (BWDO) technique. The BWDO, an advanced
version of WDO, is specifically adapted for electromagnetic
problemswith binary string variables. Themain contributions
include the successful synthesis of two wideband MCP mod-
els, each exhibiting high polarization conversion ratios (PCR)
over broad frequency ranges. The research demonstrates the
effectiveness of the BWDO technique in optimizing pixelated
unit cell structures, providing a more efficient alternative
to traditional trial-and-error methods. However, to prove
the effectiveness of the BWDO, it needs to be investigated
thoroughly using diverse benchmarking functions and high
dimensional problems.

The improvements of WDO using binary algorithm are
presented in Table 9.

E. SUMMARY OF IMPROVEMENTS OF WDO
Each heuristic algorithm has its own limitations, and so does
WDO. Complex optimization problems can cause premature
convergence. WDO has several parameters that need to be
adjusted by the user according to the specific problem. This
section evaluates the enhancement of WDO through various
approaches, including parameter refinement, integration of
other heuristics and mechanisms, utilization of adaptive
methods, introduction of new parameters, and adoption
of binary coding. WDO has gained increasing attention
from scholars who have made two major improvements:
a) introducing other strategic mechanisms and combining
them with other metaheuristics, b) enhancing the algorithm’s
performance by adjusting its parameters. This section reviews

recent and historical WDO variants and identifies their
limitations.

Table 10 provides a comprehensive overview of the
published papers corresponding to each improved method of
WDO. It is summarized that the following steps are required
to verify the validity of WDO variants:

1) INNOVATIVE APPROACH DEVELOPMENT
Facilitates the creation of a novel methodology, incorporating
groundbreaking concepts, strategic parameter adjustments,
or hybridization techniques. Ensures a balance between
exploration and exploitation by integrating diverse heuristic
algorithms and strategies and modifies control parameters for
optimal algorithm performance.

2) BENCHMARK FUNCTION TESTING OF NEW WDO
VARIANTS
Selects a range of standardized benchmark optimization
functions such as CEC2023 test suite, unimodal, multi-
modal, and composite benchmarking functions to assess
the effectiveness of the new WDO variants. Evaluates the
quality and efficiency of the algorithm’s solutions through
rigorous testing, examining various aspects of algorithmic
performance.

3) REAL-WORLD ENGINEERING PROBLEM TESTING
Identifies relevant problem domains in engineering where
WDO variants can be applied. Implements these algorithms
in actual engineering scenarios to verify their practical utility
and efficacy in solving complex, real-world problems.

4) COMPARATIVE ANALYSIS WITH ESTABLISHED
ALGORITHMS
Conducts comparative evaluations of the new WDO variants
against well-known WDO variants and other meta-heuristic
approaches. Performs this analysis under uniform testing
conditions to ensure fairness and accuracy in benchmarking.

5) PERFORMANCE IN HIGH-DIMENSIONAL TEST
A variant of WDO may exhibit robust performance in
tackling low-dimensional problems, yet its efficacy might
diminish significantly when applied to high-dimensional
challenges. Consequently, it is imperative to rigorously
assess the new variant’s proficiency across both low and
high-dimensional problem scopes. Typically, a WDO vari-
ant’s performance tends to wane with the escalation of
problem dimensions, underscoring the necessity to meticu-
lously evaluate the performance of any new WDO variant,
particularly in the context of high-dimensional problems.

6) SENSITIVITY ANALYSIS
Conducts a comprehensive sensitivity analysis to determine
the impact of varying algorithmic parameters on the perfor-
mance of the new WDO variants. Reveals which parameters
significantly influence the outcomes, thereby understanding
the robustness of the algorithm.
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TABLE 9. Improvements of WDO using binary algorithm.

7) CONVERGENCE ANALYSIS
While average fitness and standard deviation are crucial
metrics for assessing the performance of an optimization
algorithm, conducting a convergence analysis is essential to
comprehensively demonstrate the algorithm’s capability to
avoid local optima and effectively converge towards a global
optimum.

8) STATISTICAL ANALYSIS
Applies advanced statistical methods to analyze the data
obtained from testing and real-world applications. Utilizes
techniques like t-tests, ANOVA, Wilcoxon rank-sum test,
Friedman test, and regression analysis to validate the
statistical significance and reliability of the results.

V. APPLICATIONS OF WDO AND ITS VARIANTS
The above articles improve on the standard WDO and
compensates for its shortcomings, making it more robust and
accurate. This section provides an overview of the enhance-
ments made to WDO, including the concepts, mechanisms,
and outcomes of these improvements, both in terms of
practical and theoretical applications in electromagnetism,
computer science andmeteorology,as shown in Figure 5. This
answers questions RQ6-RQ7. A summary of the different
fields of WDO is shown in Table 11-Table 20.

A. ENGINEERING
Bayraktar et al. [56] utilized WDO to address electro-
magnetics engineering problems and successfully applied

it to solve real-world optimization problems. Through
experiments, they demonstrated the effectiveness ofWDO for
solving optimization problems. Furthermore, they validated
its effectiveness by employing it in the optimized design of a
thin double-sided AMC surface operating at 10 GHz.

In their study, Bayraktar et al. [107] utilized WDO
to optimize the antenna geometry, specifically the length,
position of stubs, and other design parameters. The results
indicated that by applying WDO, an optimized stub-loaded
inverted-F antenna (SLIFA) could be achieved, resulting in a
lower profile and a notable gain improvement of 8.2 dB.

To address electromagnetism optimization problems,
Bayraktar et al. [55] employed WDO. They found that
WDO outperformed other algorithms when dealing with
problems involving a combination of discrete and real-valued
parameters.

Bhandari et al. [108] utilized WDO to select the optimal
threshold for optimal multilevel thresholding using Kapur’s
entropy. This approach resulted in reduced computational
costs and improved computational efficiency.

Mahto et al. [109] employed WDO to optimize array
antennas for achieving high performance. Experimental
results demonstrated that WDO outperformed both the PSO
and the comprehensive learning particle swarm optimization
(CLPSO) methods in terms of performance. To validate
the effectiveness of WDO in electromagnetic field design,
Mahto et al. [110] applied WDO to place a broad null
at the desired direction in array pattern synthesis, while
considering specific design constraints. Comparative analysis
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TABLE 10. Improvements in WDO.

FIGURE 5. WDO application fields.

with other algorithms revealed that WDO outperformed
them in terms of achieving a minimum signal-to-noise ratio
and exhibiting faster convergence speed. Zhang et al. [103]
introduced a binary multi-objective WDO to address the

emitted beamforming problem in opportunistic array radar.
Through simulations, the results demonstrated that the
proposed method outperformed PSO in terms of beam
optimization.
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The main contribution of paper [73] is the development
and application of a novel hybrid IWO/WDO for efficient
and effective nulling pattern synthesis in antenna arrays,
demonstrating superior performance over existing methods
in terms of convergence rate, SLL minimization, and beam
width control. Mahto and Choubey [74] introduced a novel
optimization algorithm, the IWO/WDO, tailored for the
synthesis of linear sparse array patterns with uniformly
excited elements. This advanced algorithm aims to minimize
interference by adeptly controlling the SLL and beam width
through precise element position optimization. Efficacy is
demonstrated with three varying element counts, showcasing
superior SLL reduction and null depth levels compared
to standard algorithms like IWO, WDO, PSO, CLPSO,
DE, and BBO. Remarkably, it achieves minimum SLLs of
−23.5 dB,−13.22 dB, and−19.7 dB across different element
arrays and exhibits rapid convergence within approximately
100 iterations, outperforming six other algorithms in null
control, SLL, beam width, and convergence rate.

Yahia and Elkamchouchi [76] proposed unified
GSA/IWO/WDO optimization algorithm—a synergy of
gravitational search algorithm, invasive weed optimization,
and wind-driven optimization—capitalizes on the unique
strengths of each nature-inspired component. This fusion
not only enhances the calibration accuracy but also
significantly improves the synthesis of array patterns and
null control, ensuring minimized beam width. Empirical
simulations underscore its efficacy, particularly inside lobe
level reduction, interference suppression, and beam width
minimization, thereby elevating the overall performance of
real antenna array systems in terms of pattern synthesis
resolution under stringent beam width constraints. To reduce
the influence of symbol interference and random noise, Sinha
and Choubey [78] combined the advantages of GA to improve
WDO and carry out adaptive filtering, and the enhanced
WDO demonstrates superior performance compared to other
algorithms. Dwivedi et al. [111] emphasized the superiority
ofWDO in improving the transient performance of automatic
generation control in interconnected multi-source power
systems, considering various physical constraints like
governor dead band and generation rate constraints. The
research finds WDO more effective than BSA in optimizing
the PI/PID controller parameters for AGC.

Nagar et al. [94] tackled the challenge of manually select-
ing the inherent parameters of WDO in electromagnetism
applications by integrating adaptive strategies with WDO.
The adaptive WDO demonstrated comparable or superior
performance to the traditional WDO when applied to con-
tinuous value electromagnetic problems. Jevtic et al. [112]
addressed the combined economic emission dispatch (CEED)
problem by integrating adaptive strategies with WDO.
Notably, the adaptive WDO does not require manual
adjustment of coefficients. Comparative analysis with other
algorithms revealed that the adaptive WDO outperformed
them in terms of accurately and effectively solving the

CEED problem. Sankar et al. [113] focused on utilizing
WDO for CEED problems in power systems, aimed to
optimize fuel costs while minimizing emissions. The study
evaluates WDO against other algorithms across various test
systems, emphasizing its efficiency and rapid convergence.
Sankar et al. [114] investigated the application of WDO in
economic dispatch problems within power systems, aiming
to minimize fuel costs. It compares WDO’s performance
against other algorithms across various test systems, showing
its potential to efficiently handle complex optimization
problems in the energy sector.

Mahto et al. [115] presented an efficient WDO for the
pattern synthesis of uniform linear arrays (ULA). The focus
is on achieving maximum sidelobe level (SLL) suppression,
constrained on dynamic range ratio (DRR) beam width,
and null control by manipulating the amplitude-only and
position-only of array elements. WDO, inspired by natural
phenomena, is compared with other techniques like PSO,
BBO, COA, CSA, CPSO, ILPSO, CLPSO and DE, demon-
strating its superior performance in terms of SLL suppression,
beam width control, null control, and convergence rate.
Sawant andManoharan [80] presented an enhancedWDO for
band selection in hyperspectral image analysis. Additionally,
they incorporated a deep learning architecture to further
improve the classification accuracy of hyperspectral images.
The proposed method achieved impressive overall accuracies
of 93.26%, 94.76%, and 95.96% for the Indian Pines, Pavia
University, and Salinas datasets, respectively. Sinha et al. [81]
presented a hybrid IWO/WDO for optimizing linear array
antenna parameters, aiming to enhance antenna design by
achieving high gain, minimal side lobe level, and precise
null placement. It offers a comprehensive solution to today’s
communication challenges. The algorithm’s efficiency is
validated through multiple design examples, showcasing
its superiority in parameter optimization and array pattern
synthesis. Liu et al. [116] introduced WDO and developed
an enhanced prediction pursuit flood disaster resilience
evaluation system. This system aimed to establish a suitable
evaluation index system for regional flood disaster resilience.
Comparative analysis with other algorithms revealed that
WDO exhibited faster convergence and superior performance
in this context. To enhance the flood control strategy
for NamOon Reservoir, Thailand, Kangrang et al. [117]
introduced a novel methodology integrating WDO approach
with a simulation model. This integrated framework was
meticulously designed to minimize the objective function
defined as the average excess water. The effectiveness of the
proposed approach was rigorously evaluated by determining
the optimal flood rule curve for the reservoir. The model was
used to determine the optimal flood rule curve for NamOon
Reservoir, Thailand, and the results showed that the flood
scenario of the optimal flood control rule curve is smaller than
its current rule curve both in the present and future.

Moayedi et al. [118] incorporated WDO to enhance the
prediction capability of neural networks in soil shear strength

VOLUME 12, 2024 120045



L.-L. Mao et al.: Systematic Review of Wind Driven Optimization Algorithms and Their Variants

simulation. By integrating WDO with neural networks, this
approach reduced the training error by 28.25% and demon-
strated significant improvements in pattern recognition.

To enhance the accuracy of hyperspectral band identifica-
tion, Sawant and Manoharan [83] combined WDO with CS
and Chaotic map for band selection. The results demonstrated
the superiority of this method over the standard WDO
and CS approaches in accurately identifying hyperspectral
bands. To solve the phased array radar transmit beam
problem, Xu and Zhang [119] proposed an Improved WDO
(IWDO)algorithm for transmitting beamforming of phased
array radar, and this method allows for more accurate peak
power. Recioui et al. [120] introduced WDO and applied it to
the design of optimized planar antenna arrays. In this paper,
the authors usedWDO to design an optimized planar antenna
array to ensure minimal side flaps and high directivity.
By using only multiple excitation types of amplitude, phase,
or both, the results of the optimized values show that the
different antenna configurations suppress the sidelobe level
well while the directivity is no worse than that of a uniform
antenna.

Ramli et al. [49] employed WDO to address non-convex
economic dispatch problems, aiming to enhance the effi-
ciency of economic scheduling in power systems. Simulation
results revealed that WDO successfully determined the
optimal generation value with minimal generation cost and
reduced power loss, indicating its effectiveness in optimizing
economic dispatch. Mezhoud et al. [121] discussed WDO
method for solving Optimal Power Flow (OPF) and Emission
Index (EI) issues in electric power systems. It aims to
minimize an objective function to balance energy production
and consumption, considering constraints. The method,
tested on IEEE 30-bus and IEEE 57-bus systems, showed
promising results, indicating its effectiveness and robustness.

Li et al. [122] detailed the development of a near-infrared
H2S leakage detection system utilizing tunable diode laser
absorption spectroscopy (TDLAS) and a novel algorithm
named WDO-ELM. The system enhances signal-to-noise
ratio and telemetry distance for more accurate detection
of H2S gas concentrations. It integrates a digital lock-in
amplifier with a discrete wavelet transform filter for signal
processing and employs WDO-ELM algorithm for global
optimization, achieving significant improvements in detec-
tion limits and system sensitivity. He et al. [50] introduced
a methodology that leverages a Wavelet Neural Network
(WNN) as the surrogatemodel, in conjunctionwithWDO, for
the purpose of updating structural finite element models. This
approach was initially applied to the finite element model
updating of a continuous beam structure with three equal
spans, to evaluate its viability. The outcomes indicate that the
WNN proficiently captures the non-linear interplay between
the structural responses and their respective parameters,
demonstrating superior simulation capabilities. Concurrently,
WDO exhibits exceptional optimization prowess, signif-
icantly enhancing the efficiency of the model updating
process. Subsequently, the methodology was implemented to

update an actual bridge model. The results affirm that the
finite element model, revised through the integration ofWDO
and WNN, is effectively applicable to the multi-parameter
bridge model updating. This holds substantial practical value
in the engineering domain, presenting a method that is
not only efficient but also reliable in finite element model
updating. Table 11 provides a literature review highlighting
the applications of WDO in various engineering domains.

B. MANUFACTURING
Ayala et al. [123] introduced WDO, and its improved
version, Lévy WDO (LWDO), which used Lévy flight, and
multi-objective LWDO to solve transformer design opti-
mization (TDO) problems. It performs better than standard
WDO and the Non-dominated sorting Genetic Algorithm
II (NSGA-II), it converges more efficiently and maintains
diversity of solutions on the Pareto front. Through simulation
experiments, the effectiveness of LWDO in dealing with
multi-objective problems is proved, which shows that this
method has a promising prospect in such optimization tasks.

Di Barba [124] applied WDO to address multi-objective
functions and optimization problems in computational elec-
tromagnetics. Using WDO, successful optimization and
synthesis of magnet current distribution were achieved,
leading to optimal results in the given context.

Ho et al. [125] proposed a method for optimizing the
robustness of electromagnetic devices in the presence of
interval uncertainty. Their approach utilized a new uncer-
tainty quantization formula and an enhanced version of
WDO. By incorporating these advancements, the method
successfully obtained the global optimal solution for the
design problem under interval uncertainty in a single run.

To address the issue of premature convergence in WDO,
Ho and Yang [126] introduced an improved approach. They
incorporated a dynamic and random competition mech-
anism to overcome premature convergence. Additionally,
a probabilistic mutation was designed, which utilized the
latest information accumulated from the search history to
guide the exploration of potential solutions and enhance the
convergence of the algorithm.

To optimize the cost function in the design of multilayer
microwave absorbers, considering both normal and oblique
incidence of waves, Ranjan et al. [127] proposed a specialized
cost function. This cost function was designed to provide
optimal performance for normal and oblique incidence under
various polarization conditions. WDO was employed to
obtain improved numerical results in terms of wave thickness
and oblique incidence for the optimization problem.

Ranjan et al. [104] utilized WDO to synthesize a six-band
Metamaterial Absorber (MA). They optimized the presence
of each unit pixel on the pixelated Frequency Selective
Surface (FSS) to achieve the desired unit cell structure for the
MA, the designed absorber exhibited excellent performance.

The document [128] is a comprehensive study on the
application of WDO for Load Frequency Control (LFC) in
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TABLE 11. Literature review of WDO application in engineering.
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TABLE 11. (Continued.) Literature review of WDO application in engineering.

interconnected power systems, considering the nonlinearities
of Generation Rate Constraint (GRC) and Governor Dead
Band (GDB). The main work involves the development and
evaluation of WDO in optimizing LFC, demonstrating its
effectiveness compared to other evolutionary algorithms.

Ranjan et al. [105] introduced a novel binary version
of WDO, named Binary WDO (BWDO), designed for
binary-valued problems like antenna array and metasurface
synthesis. The paper validates the BWDO with standard
benchmark functions and demonstrates its efficiency through
examples of thinned antenna array andmetasurface synthesis.

Yang et al. [42] developed a WDO-based vector optimizer
to tackle the multi-objective design problem in electromag-
netism. Their approach effectively addresses both inverse

and optimization problems. Experimental results demonstrate
the favorable performance of this method in solving such
complex electromagnetic problems.

Ranjan et al. [106] presented the development of two
wideband metamaterial cross-polarizers (MCPs), Model-I
andModel-II, utilizing the BinaryWDO (BWDO) technique.
The work’s key contributions are the successful design and
synthesis of these MCPs with high polarization conver-
sion ratios (PCRs) across a broad frequency range. The
hybrid algorithm, BWDO, efficiently optimizes pixelated
structures for electromagnetic applications. The perfor-
mance of the MCPs is validated through close agreement
between simulated and experimental results, showcasing
the algorithm’s effectiveness. Table 12 provides a literature
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TABLE 12. Literature review of WDO application in manufacturing.

review highlighting the applications of WDO in the field of
manufacturing.

C. ENERGY SCHEDULING
Naseem et al. [129] discussed the problem of scheduling
residential appliances in smart grids to reduce cost and
peak to average ratio (PAR) by using four different heuris-
tic algorithms: Bacterial Forging Optimization Algorithm
(BFOA), GA, Binary PSO (BPSO) and WDO. The authors
compared the performance of these algorithms on a home
energy management (HEM) system with 10 different appli-
ances categorized into three groups: shiftable interruptible,
shiftable uninterruptible and regular appliances. The authors
evaluate the performance of the algorithms in terms of
cost reduction, PAR reduction, and computational time.
The results concludes that WDO can effectively address
the residential load scheduling problem and achieve the
objectives of cost reduction, but increase the PAR

To design an efficient Demand Side Management (DSM)
controller, Javaid et al. [77] proposed a hybrid genetic wind
driven (GWD) approach. The results demonstrate that the
GWD scheme reduces the power cost by approximately 10%
and 33% compared to the GA and WDO, respectively.

Similarly, to effectively control the Peak Average Ratio
(PAR) and minimize costs, Qureshi et al. [79] introduced a
hybrid Enhanced Differential Harmony WDO (EDHWDO).
This approach combines the characteristics of the Harmony
Search Algorithm (HSA), Enhanced DE (EDE), and WDO,
resulting in significant cost reduction.

To enhance the performance of the Load Frequency
Controller (LFC), Alhelou et al. [128] employed WDO for
tuning the LFC parameters. The results demonstrate that this
approach significantly improved the performance of the LFC,
particularly in terms of maximum deviation and settling time.

To enhance the efficiency of solar photovoltaic (PV)
systems, Mathew et al. [130] utilized WDO to optimize
the parameters of a twelve-parameter Double Diode Model
(12p-DDM) for solar PV systems. Through experimental
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verification, the authors demonstrated the accuracy and
flexibility of the proposed method.

Shaheen et al. [93] introduced a modified WDO (MWDO)
algorithm, focusing on optimal reactive power dispatch
(ORPD) in power systems to minimize power loss. The
MWDO, inspired by atmospheric wind patterns and adapting
control parameters dynamically, shows superiority over
standard WDO and other methods in literature, achieving
significant power loss reduction in test systems like IEEE
14, 30-bus, and West Delta Network. The algorithm’s
performance is validated through comparative simulations,
demonstrating its effectiveness and robustness in optimizing
power systems.

Injeti and Kumar [131] focused on optimizing the deploy-
ment of Distributed Generators (DGs) and
D-STATCOM(DSCs) in radial distribution systems. The
main work involves formulating a weighted objective
function to minimize daily power loss, improve voltage
profiles, and maximize net annual savings. WDO, inspired
by the atmospheric motion of wind, is utilized to find optimal
locations and sizes for DGs and DSCs. The effectiveness
of this methodology is validated by considering various
scenarios and conducting a detailed outcome analysis.

Ermis et al. [132] utilized WDO to tackle the optimal
power flow problem. The results indicate that WDO is
effective in resolving voltage deviations, reducing calculation
time, minimizing total active power losses, and optimizing
fuel costs associated with the power flow problem.

To improve the efficiency of the global Maximum Power
Point Tracking (MPPT) technique of photovoltaics system
(PVS), Abdalla et al. [58] used WDO to optimize the MPPT
technique, and by comparison, the MPPT technique based on
WDO is more efficient.

Ibrahim et al. [97] introduced an Adaptive WDO (AWDO)
algorithm for efficiently extracting parameters of the
single-diode PV cell model. The results obtained from this
approach showed promising performance.

Ibrahim et al. [53] proposed an improved version of WDO
by using CMAES. This enhanced algorithm demonstrated
improvements in terms of accuracy, convergence speed, and
feasibility.

Mathew and Rani [99] presented an innovative approach
for parameter estimation of Solar PV models using WDO.
The main work involves testing WDO’s performance for
estimating parameters in single and double diode solar
PV models. The algorithm’s effectiveness is assessed using
three different datasets, including experimental data for
specific PV models and manufacturer’s datasheet values.
The key contribution is the introduction of WDO for solar
PV parameter estimation, demonstrating its superiority over
existing methods through lower Root Mean Square Error
(RMSE) values, indicating higher accuracy and efficient
convergence.

Wang et al. [84] presented a novel GA-WDO hybrid
algorithm to optimize operations in DC distribution networks
with Battery Swapping Stations (BSS). It aims to minimize

operational costs while maximizing the utilization of wind
and solar energy, addressing the variability and uncertainty
in renewable energy sources. The study showcases the
model’s effectiveness in balancing energy demand, optimiz-
ing resource use, and improving system reliability.

Ibrahim et al. [133] introduced a multi-objective WDO to
optimize the stand-alone PV power generation system for
mobile network base stations. The objective was to determine
the optimal number of PV modules and cell capacity. The
results of the study demonstrated the effectiveness of the
proposed method in achieving good optimization outcomes.

Similarly, to improve the efficiency of the PV power
system, Liu et al. [43] introduced a fast and accurate tracking
method of the maximum power point, which is the Adaptive
WDO(AWDO) algorithm and introduces adaptive weights
into gravity and Coriolis force expressions, the results show
that this method tracks quickly and accurately, and reduces
steady-state oscillations.

Liu et al. [44] proposed an improved WDO, known as
IWDO, to optimize reservoir operation. This algorithm incor-
porated a dynamic adaptive random mutation mechanism
and a search space reduction strategy. The application of
IWDO resulted in enhanced search efficiency and improved
scheduling results in terms of quality.

Makhadmeh et al. [134] discussed the integration of WDO
with Smart Home Battery (SHB) systems for optimizing
power scheduling in smart homes. The focus is on reducing
electricity bills and peak power demand while enhancing
user satisfaction. The study demonstrates the effectiveness
of WDO in comparison to the Bacterial Foraging Opti-
mization Algorithm (BFOA), showcasing WDO’s superior
performance in optimizing power scheduling objectives in
smart homes.

Senthilkumara et al. [135] presented the application of
WDO to solve the Optimal Power Flow (OPF) problem in
power systems, specifically focusing on reducing the fuel cost
of generation. WDO’s efficacy is demonstrated on the IEEE
30 bus test system, achieving significant cost reductions, and
showcasing its capability to handle complex optimization
problems effectively.

Ibrahim et al. [86] proposed a hybrid approach called wind
driven-based fruit fly optimization (WDFO) to identify the
unknown parameters of a double-diode PV cell module. The
results indicate that the hybrid WDFO algorithm enhances
computational accuracy and convergence speed.

Mathew et al. [101] introduced an adaptive WDO for
parameter estimation of three-diode organic PV cells. The
adaptive WDO is employed to accurately determine the PV
parameters. Table 13 presents a literature review of WDO
applications in energy scheduling.

D. COMPUTER SCIENCE
To rationalize and efficiently allocate resources and improve
utilization, Sun et al. [136] used a combination of auc-
tion models, neural networks, and intelligent optimization
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TABLE 13. Literature review of WDO application in energy scheduling.
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TABLE 14. Literature review of WDO application in computer science.

techniques, and used WDO for function optimization, this
method can effectively improve resource utilization.

Boulesnane and Meshoul [137] proposed a novel strategy
for collision avoidance in dynamic environments using an
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improved WDO. They introduced the concept of multiple
regions and a new collision avoidance technique. The perfor-
mance of the algorithm was evaluated using the Moving Peak
Benchmark, and the results showed superior performance
compared to other algorithms in terms of collision avoidance.

Zhou et al. [72] introduced a new optimization algorithm
called quantumWDO (QWDO) for solving the path planning
problem of unmanned combat air vehicles (UCAVs). The
algorithm incorporates quantum rotation gate and quantum
non-gate strategies to enable individual variation within
the population. Comparative analysis with other algorithms
demonstrates that QWDO outperforms them in terms of
performance, making it a promising approach for UCAV path
planning.

To solve the bi-level programming problem, Xu and
Teng [138], [139] introduced a hierarchical algorithm, which
consisted of two WDOs and figure out the optimal solution
by invoking each other. Experimental results show that
the proposed algorithm is effective for solving bi-level
programming problems.

Xia et al. [92] introduced a fast algorithm based on the
Generalized Radon-Fourier Transform (GRFT) for detecting
weak maneuvering targets in radar systems. The main
contributions include the development of a modified WDO
(MWDO) approach, which incorporates blind speed side lobe
(BSSL) learning to improve detection performance while
maintaining computational efficiency. The MWDO adjusts
optimization coefficients using Levy and uniform distri-
butions, demonstrating superior performance over previous
methods, such as the PSO, especially in noisy environments.
The effectiveness of the proposed algorithm is validated
through numerical experiments, showing better detection
capabilities with comparable computational costs.

To address the real problems in a dynamic environment,
Boulesnane and Meshoul [140] introduced the wind driven
dynamic optimization (WDO), which is an enhanced multi
region modified WDO(MR-MWDO) model, compare with
MR-MWDO,WD2O shows better performance and achieves
the best performance in high-dimensional problems.

Pandey and Parhi [46] presented a hybrid Fuzzy-WDO
for autonomous mobile robot navigation and collision
avoidance in unknown static and dynamic environments.
The novel approach integrates WDO to optimize the
input/output membership function parameters of the fuzzy
controller. This integration results in enhanced navigation
performance, demonstrated through computer simulations
and real-time experiments using the Khepera-III mobile
robot. The algorithm showcases significant improvements
in path planning and control, providing a promis-
ing solution for complex navigational challenges in
robotics.

To solve the 0-1 knapsack problem, Zhou et al. [75]
introduced a complex-valued encoding method and a greedy
strategy to WDO, and the experimental results show that
CWDO has better performance, stability, and robustness
compared to other algorithms.

To optimize the scheduling of jobs in the computing grid
system,Ghosh andDas [141] usedWDO to optimize schedul-
ing jobs in a computational grid system, and when compared
with GA and PSO, WDO shows better performance.

To design the optimal portfolio, Kaushal and Singh [142]
used WDO to design the optimal portfolio, compare with
the results of GA, WDO outperforms GA in portfolio
optimization.

In [96], the innovative Adaptive WDO (AWDO), a nature-
inspired metaheuristic approach, is applied to train feedfor-
ward artificial neural networks, highlighting its potential in
deep learning research. An examination using the MNIST
dataset for digit classification demonstrates AWDO’s unique
performance, a derivative-free method, in contrast to the
traditional gradient descent approach. The study provides
insights into AWDO’s future integration with deep neural
networks, setting a foundation for subsequent explorations in
this emerging field.

Gao et al. [82] proposed a single chain encoding quantum
WDO combined with Chan algorithm (Chan-QWDO) to
address the challenge of determining the 3D position
information of unmanned aerial vehicles (UAVs) in the
absence of GPS. Through comparative analysis with other
algorithms, it was observed that Chan-QWDO exhibited
stable performance, rapid convergence, and high accuracy
in UAV positioning, making it a reliable solution for this
location problem.

Bej et al. [143] focused on optimizing the navigation
of a four-wheeled ground robot (FWGR)using WDO. The
algorithm is designed tominimize the travel path length of the
robot in various environmental conditions. WDO’s efficacy
is demonstrated by comparing it with PSO and GA, showing
its superiority in achieving shorter path lengths and efficient
navigation in complex scenarios.

Singh et al. [85] presented a hybrid WDO(HWDO)
for scheduling scientific workflow applications on cloud
systems. The main contribution of this paper is to address
the reliability issue in workflow scheduling under budget
constraint, which is a challenging problem in cloud environ-
ment. The objective of the proposed algorithm is to generate
reliable workflow schedule by minimizing the failure factor
and the execution time, while satisfying the user-defined
budget limit. The results show that the proposed algorithm
outperforms BGA, BPSO, BAT by achieving 9%–17%
higher reliability. Meanwhile the HWDO demonstrated a
notable ability to generate reliable schedules with the shortest
possible makespan while adhering to budget constraints,
outperforming the BGA, BPSO, BAT in this regard.

Athira and Sasikala [88] introduced a security framework
for data deduplication and data portability in distributed
cloud environments. It emphasizes enhancing data security
by splitting files into blocks, selecting suitable cloud servers
using a Hybrid Forest Genetic Algorithm, and applying the
Whirlpool algorithm for data hashing and deduplication.
The Levy Flight-WDO (LF-WDO) is employed for data
portability, aiming to improve cloud data security. The
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TABLE 15. Literature review of WDO application in medicine.

TABLE 16. Literature review of purely improved WDO.

approach has improved performance and security compared
to existing methods, with the use of advanced hashing and
optimization algorithms.

To minimize cmputational costs and enhance the classi-
fication accuracy of a given dataset, Abd El-Mageed et al.
[100] integrated a crossover technique and the simulated
annealing algorithm into WDO framework. This incor-
poration resulted in notable improvements in the perfor-
mance and effectiveness of the method. Table 14 shows
the literature review of WDO application in computer
science.

E. MEDICINE
In the research of the medical field, WDO has been applied in
different work, mainly in image processing, Kotte et al. [144]

used an adaptive approach to improve WDO and used this
Adaptive WDO (AWDO) for optimal multilevel thresholding
selection for brainMRI image segmentation, the optimalmul-
tilevel threshold is determined by maximizing the variance
(Otsu method), which is Otsu-AWDO, it exhibits a supe-
rior segmentation effect and outperforms other algorithms
significantly.

Similarly, Madipalli et al. [95] introduced a full-automatic
segmentation method for intima media complex(IMC), they
used adaptive WDO technology and CMAES, so people
do not need to manually select parameters, based on the
correlation coefficient and IMT± std, this method is superior
to other methods.

Nagaraj et al. [45] used a WDO for the segmentation of
IMC based on automated region-of-interest (ROI) extraction
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TABLE 17. The main application areas of WDO and its variants.

and Otsu’s thresholding technique. This method shows better
performance and robustness.

Madipalli et al. [95] introduced a fully automated tech-
nique for the segmentation of the IMC in ultrasound images
of the CCA, leveraging the AWDO. The efficacy of the
proposed methodology is assessed using a dataset comprising
60 ultrasound images and is benchmarked against contem-
porary state-of-the-art techniques. The empirical outcomes
underscore the superiority of the proposed method, demon-
strating enhanced performance metrics when juxtaposed with
existing methodologies.

To enhance the robustness of ultrasound image segmenta-
tion results and mitigate the impact of noise, Wang et al. [98]

proposed an improved approach. They employed a fully
automatic algorithm for estimating Intima-Media Thickness
(IMT) using an enhanced Otsu method combined with
adaptive wind-driven optimization. The experimental results
demonstrated the effectiveness of this method, with an
absolute error of only 10.1 ± 9.6 m (mean ± standard
deviation). Moreover, the method achieved a high correlation
coefficient of 0.9922 and a minimal bias of 0.0007. These
findings indicate that the proposed method exhibits strong
robustness and provides accurate IMT estimates.

Laishram and Rabidas [145] discussed an advanced
computer-aided detection/diagnosis (CAD) system for iden-
tifying and diagnosing mammographic masses. The system
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TABLE 18. WDO variants for different application areas.

FIGURE 6. Improvements of WDO.

incorporates innovative techniques like multilevel image
thresholding, WDO, and texture-based multi-gradient local
quinary pattern (M-GQP) feature extraction. The methodol-
ogy is rigorously tested on benchmark databases, exhibiting
promising results and indicating a significant advancement
over existing state-of-the-art methods.

TABLE 19. Improved algorithms by using two strategies.

To enhance the effectiveness of medical image sign-
cryption technology, Anupama et al. [146] introduced a
novel WDO based medical image encryption (WDOA-MIE)
technique, this technique utilizes the principles of WDO
to achieve improved security in medical image encryp-
tion. The experimental results demonstrated the superiority
of WDOA-MIE, with a significant increase in the peak
signal-to-noise ratio (PSNR) reaching 60.7036dB. For a
comprehensive overview of WDO applications in the field of
medicine, please refer to Table 15.

F. THEORETICAL APPLICATIONS
The literature reviewed in this paper indicates that approx-
imately 9% of the papers solely focus on improving WDO
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TABLE 20. Different WDO improvement strategies utilized in practical applications.

FIGURE 7. Major application categories in WDO.

FIGURE 8. Number of theoretical application publications over the years.

without applying it to any practical scenarios. These papers
propose enhanced variants of WDO for theoretical purposes
only.

From the literatures [52], [57], [91], and [102], improve-
ments to the application ofWDO theory have revolved around
adaptively setting parameters to overcome the disadvantage
of WDO requiring the manual setting of the values of c, g, α
and RT .
Segundo et al. [102] utilized Levy flights automatically

adjust c, g, α and RT parameter values, which Improved the
convergence speed of WDO.

FIGURE 9. Number of real-world application publications over the years.

There is abundant literature evidence showcasing the
utilization of various approaches to enhance the performance
of WDO. One such approach involves parameter tuning and
hybridization with other metaheuristics like DE [57]. These
techniques have been empirically proven to enhance the
convergence speed, accuracy, and robustness of WDO.

Boulesnane and Meshoul [52] introduced a novel mod-
ification to the original WDO model by introducing a
pressure-based term to replace the rank-based term. This
modification resulted in improved performance of WDO.
The introduction of the pressure-based term allows for more
efficient exploration of the search space, leading to enhanced
optimization outcomes.

To handle multi-objective optimization problems, Bayrak-
tar and Komurcu [91] introduced Pareto dominance into
adaptive WDO. This incorporation of Pareto dominance
enables the algorithm to effectively explore and optimize
multiple conflicting objectives simultaneously.

The analyzed literature presents a diverse range of
approaches aimed at enhancing the theoretical applications
of WDO. These include mixing WDO with other algorithms,
introducing new parameters, setting adaptive values, and
combining two improvement strategies, however, no binary
improvements or parametric improvements have been used
in the application of WDO theory, as shown in Table 16.
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G. SUMMARY OF APPLICATIONS OF WDO AND ITS
VARIANTS
In this section, we categorized the applications of WDO
into several domains, including engineering, manufacturing,
energy scheduling, computer science, and medicine. The
improved WDO shows better performance than the basic
WDO and other algorithms such as GA, PSO, and DE in the
above application areas. Table 17 provides a comprehensive
summary of the practical applications of WDO in real-world
scenarios, as well as the theoretical enhancements proposed
by researchers. Table 18 comprehensively summarizes the
principal applications of WDO, delineating the specific
variant of WDO employed and citing key publications for
each application domain. A critical observation fromTable 18
is that distinct WDO variants are associated with different
application areas, this implies that each PSO variant is
uniquely tailored to efficiently solve particular problem sets,
indicating a specialized focus in their design and application.

VI. DISCUSSION
In this section, WDO improvements, application areas of
improved WDO, and WDO-related publications will be
summarized, which will answer RQ8.

According to this recent literature review, the integration
of WDO with other optimization techniques, such as meta-
heuristics, has shown significant advancements. Additionally,
the application of adaptive techniques, along with parameter
enhancements and the introduction of new parameters, has
further enhanced the performance of WDO. Moreover, the
utilization of binary algorithms has been illustrated to be
effective, WDO is enhanced by applying different strategies
as depicted in Figure 6.
Table 19 presents a summary of recent research on

improving WDO. Notably, several studies have explored the
use of multiple techniques to enhance WDO’s performance,
such as combining it with other optimization mecha-
nisms [43], introducing adaptive algorithms, introducing new
parameters [52], introducing adaptive parameters [53], and
utilizing binary encoding [100]. For example, one study
utilized a combination of binary encoding and adaptive
algorithms, while another incorporated a mix of different
optimization mechanisms and adaptive parameters. These
multi-method approaches have shown promise in improving
WDO’s effectiveness in solving complex problems.

Through various studies, it has become evident thatWDO’s
limitations can be effectively addressed through parameter
improvements, the incorporation of other algorithms or
mechanisms, and the use of adaptive algorithms. For instance,
the use of adaptive algorithms eliminates the need for manual
setting of WDO parameters, addressing one of its drawbacks.
To avoid premature convergence and local optima problems,
a combination of other algorithms and mechanisms can be
employed. Improved parameters aid in selecting optimal
parameters, thereby enhancing performance.

Table 20 presents various WDO improvement strategies
applied in practical applications and theoretical research.

It is observed that the engineering field and theoretical
research adopt multiple improvement strategies to optimize
WDO. On the other hand, improved WDO based on
binary methods are mostly used in engineering [103], and
manufacturing [105], [106]. The improved WDO based on
the introduction of new parameters are commonly used
in energy scheduling [43] and theoretical research [52].
The introduction of new parameters is typically used in
combination with other improvement strategies.

Over the past few years, the utilization of different variants
of WDO has experienced a significant rise. These variants
have found applications in various fields, with engineering
emerging as the leading area of implementation. Energy
scheduling and computer science also demonstrate notable
usage, as depicted in Figure 7. These observations indicate
the broad applicability and potential of WDO and its variants
in addressing diverse real-world problems.

Until 2016, several theoretical improvements had been
made to WDO, albeit with limited progress. Notably, there
have been no further theoretical applications of WDO since
2016. Figure 8 illustrates the trend of theoretical application
publications over the years. WDO variants have been applied
in practical settings prior to 2017, and the volume of practical
applications has remained relatively consistent since then.
Figure 9 depicts the progression of real-world application
publications over the years.

VII. CONCLUSION
This comprehensive and systematic analysis of nearly
100 high-quality literature pieces presents the development
trajectory of WDO, including its variants with improved
parameters, mixed with other mechanisms, introducing new
parameter variants, introducing adaptive algorithm variants,
and introducing binary mechanism variants. Additionally,
practical applications and theoretical research are analyzed
from various perspectives. Existing literature demonstrates
that the improvement of WDO primarily revolves around two
key approaches: amalgamating it with other metaheuristic
algorithms and enhancing its parameters. Some WDO
variants employ both techniques to enhance the algorithm’s
performance.

The review of this paper indicates an increasing applica-
tion of WDO in various real-world domains, prominently
including engineering, manufacturing, energy scheduling,
computer science, and medicine. Theoretical research appli-
cations have revealed that the basic WDO’s inherent short-
comings necessitatemodification of parameters or integration
with other metaheuristic algorithms. This integration is
crucial for enhancing the algorithm’s performance. This
article provides a comprehensive overview of WDO and its
application fields, guiding researchers in applying WDO to
optimization problems. However, researchers should be cog-
nizant ofWDO’s advantages and limitations. The algorithm’s
ease of integration with other metaheuristic algorithms is
evident from the multitude of hybrid optimization methods.
More critically, WDO’s sensitivity to algorithm parameters
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and premature to converge to local optimum are notable
drawbacks. These limitations can be mitigated to some extent
through hybridization with other metaheuristic algorithms.
Therefore, it is imperative for researchers to judiciously
leverage WDO’s strengths and weaknesses. By drawing
insights from various fields, a balanced approach can
be adopted for potential enhancements. Through rigorous
theoretical research, new WDO variants can be proposed for
application in engineering, which currently dominates the
real-world application of WDO.

To answer question RQ9, the following suggestions
offer potential avenues for future research to researchers
interested in WDO and its diverse applications: 1. Stan-
dard WDO and its recent variants can be synergistically
combined with high-performance metaheuristics like Dung
beetle optimizer(DBO) [147],One-to-One-Based Optimizer
(OOBO) [148], Gold rush optimizer (GRO) [149], Snake
Optimizer (SO) [150],Artificial gorilla troops optimizer
(GTO) [151], and Whale Optimization Algorithm (WOA)
[152] for improved optimization capabilities. 2. Future
research could focus on the discrete WDO. By employing
various discretization strategies, we can adapt WDO for
solving problems that are characterized by discrete-valued
design variables. Some of the binary WDO variants given in
Section IV and Section V are used for solving engineering,
manufacturing, and the electromagnetic domain problem,
which can be considered for more applications, among
which the hardware and software partitioning problem is an
application area worth considering. 3. The performance of
WDO variants on high-dimensional problems has not been
well studied and new WDO variants can be investigated
on high-dimensional problems. 4. There are several WDO
variants that solve the multi-objective problem in Section IV,
and the development of newWDOvariants capable of solving
the multi-objective problem is also a research direction worth
considering. 5. It is likely to take the new WDO variant and
apply it to a wider range of real-world optimization problems
such as the field of industrial control, medical image analysis,
disease diagnosis and prediction, treatment optimization and
planning, and healthcare resource allocation.
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