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ABSTRACT The time-difference-of-arrival method is popular for indoor tracking systems due to its simple
usage, efficiency, performance, and power economy. To solve the non-linear optimization problem of tag
coordinates calculation from number of measurements on synchronized anchors, often a low complexity
linear least square technique or one of its more advanced variants are used: e.g. two-step weighted
least squares or constrained weighted least squares methods. However, these techniques suffer from an
ill-conditioned problem for a specific anchors and tags locations, so a new Parametric Three-stage Weighted
Least Squares algorithm is proposed. New algorithm identifies a family of solutions and works even in
rank deficient conditions, ensuring accurate and reliable estimates for core areas of the anchor nodes mesh
cells. To achieve the best performance outside the core area, the hybrid algorithms are also introduced
utilizing the eigenvalue ratio and independent parameter correlation criteria to switch between algorithms.
The performance of the proposed algorithms was analyzed for Gaussian noise, reference and non-reference
anchors desynchronization errors, and multipath shadowing environment for square, hexagon, and triangular
anchor node mesh patterns.

INDEX TERMS TDoA localization, linear least square, 2WLS, P3WLS, ill-conditioned problem.

I. INTRODUCTION
Things localization is still an active and popular topic in the
research domain despite having GPS available worldwide
and using it in airplanes, agriculture, phones, watches, and
other smart things. The problem with GPS is that it does
not work indoor, it has limited accuracy in standard mode,
and it requires comparably a lot of energy to determine
position. There are still many use-cases available that need
something simpler, cheaper, and more efficient, that works in
limited area of a room, building, warehouse, or car e.g. Over
the past decade, several localization technologies have been
developed utilizing popular ISM radio band: WiFi-, BLE-,
Radar- based solutions. Usually, these solutions measure
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signal strength, signal delay and/or channel transfer function
converting them into the distance and direction of arrival
estimates later used for location calculation based on tri-
angulation, trilateration, or fingerprinting (mapping signal
patterns in considered areas) techniques [21].

With deploying UWB tags by Apple [25] and later by Sam-
sung, intensification of work on UWB standardization [22]
and speeding up BLE channel sounding (CS) technol-
ogy [23], [24] development, the simplicity and effectiveness
of indoor localization techniques noticeably improved while
number of requests and application ideas rapidly increased.
Since UWB distance measurement devices already present
on the market, many solutions stop their choice on this
technology. But major question remains – how to build the
system and which methods should be used for the optimal
functioning and for the lower cost.

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 119829

https://orcid.org/0009-0006-4693-6578
https://orcid.org/0000-0003-2110-4661
https://orcid.org/0009-0006-2024-2789
https://orcid.org/0000-0002-3816-505X
https://orcid.org/0000-0002-4447-1758


I. Kravets et al.: New Parametric Three Stage Weighted Least Squares Algorithm

To determine location of a tag or device in a large open
space area, usually a number of anchors with known positions
are used. In such a system, the relative position of the tag
should be calculated and the commonly used approach in a
set of practical use-cases is the Time Difference of Arrival
(TDoA). It is a very popular and efficient technique for
devices localization when there is a large network of anchors
available. The anchors themselves in the system must be
synchronized, but tags/devices should not. The functionally,
in this case is limited to tags unique packet broadcasting when
tag location is required. The anchors in the system register
the time of the packet arrival, the system determines time
difference in relation to a reference anchor and calculates the
tag position using this information.

TDoA brings several advantages for location systems:
• Tags do not communicate with each anchor individually.
In comparison to the two-way ranging (TWR), where
a tag must establish separate messages exchange with
each available anchor, in the TDoA scenario only one
locationing message should be transmitted by a tag to
locate its position by a system. This leads to signifi-
cant decrease of number of communication events and
increase the tag’s battery life.

• Also, because tags do not need to know the available
anchors, their configurations, positions, addressing as
for the case of the TWR system, the number of anchors
operating in the system are fully scalable. Adding more
anchors does not require any reconfiguration of the tags.
All changes are made in a real-time locating system
(RTLS) server, which just provide the tag position to a
requestor.

• Tags use only short portion of time to send a locationing
message, therefore higher number of tags can work in
the vicinity simultaneously, significantly exceeding pos-
sibilities of TWR-based approaches.

In some way, the location calculation for a TDoA system
is similar to trilateration [5], where the system estimates
tag’s location based on circles intersection, but rather with
hyperbolic curves intersection [6]. Solution of this task is
not mathematically trivial as the locationing problem deals
with a nonlinear function of tag coordinates and is consid-
ered as a non-convex optimization problem. The solutions
based on Maximum Likelihood iterative Gauss-Newton,
Steepest Descent, and Levenberg-Marquardt algorithms are
computationally complex and not always converge [7]. The
conventional method of linearization based on Taylor series
decomposition [5], [9], [27] does not guarantee convergence
and a step of initial guessing is required which accuracy
influences the performance.

Neural network-based approaches [12] can also tackle this
problem showing good results, but solution is fixed to unique
anchors nodes mesh configuration and changes in the sys-
tem are not allowed. If any anchor position is changed, the
neural network should be completely retrained. The similar
technology used in [13] for multi-static system. The NN often
proposed to use in UWB TDoA systems for a determined

position refining, but the methods need usually channel
impulse response measuring [14], [15]. Often tracking with
IMU sensors [16] or signal mapping/fingerprinting [17] is
applied.

There are several approaches that use geometrical prop-
erties analysis where relations between hyperbolic lines
and their intersection points [18] are considered. The circle
shrinking method is based on iterative founding of distance
circle radiuses with intersection area in range of a specified
threshold [2], [19]. This method can be quite computation-
ally intensive [20]. Large number of computations also can
require iterative approaches like semidefinite programming
methods [28].

In very popular and low complexity linear least squares
(LLS) based methods [5], [8], [28], the system is linearized
by adding an additional variable with breaking a relationship
between it and a tag position. This allows to solve linear
systems but increases error level. More advanced variants:
two-step weighted least squares (2WLS) [1], [6] and con-
strained weighted least squares (CWLS) [10] techniques try
to return in calculation the relations between the variables.
However, a matrix ill-conditioned problem [2], [3] occurs for
some tag location and specific anchors configurations. The
Separated CWLS method instead of eliminating the addi-
tional variable proposes an algorithm of estimation it from
a quadratic equation [3]. But it is not always successful in
determination of a global optimal solution.

The matrix ill-conditioned problem in WLS-based meth-
ods can be considered as negligible one, because the anchors
geometric configuration can be easily modified to break the
symmetry in most of the cases. But the ill-conditioned prob-
lems can appear also for non-symmetric systems when noise
or NLoS conditions are present and distort the measurements
in a specific way. Considering that the WLS-based methods
are easy to implement and widely used, the question of deal-
ing with the problem is still actual. This paper proposes a new
Parametric Three-stage Weighted Least Squares (P3WLS)
algorithm, which extends the ill-conditioned problem solving
with some geometrical analysis of a system and shows a way
how to determine a solution in such case.

The rest of the paper is organized in the following way. The
second section includes basics of TDoAmethods and analysis
of widely-used least squares calculation approach. The third
and fourth sections describe the proposed new three-stage
least squares algorithm. Sections V-VII provide information
about algorithms performance investigation under different
variations and configurations. The last section presents con-
clusions, and future prospects.

II. TIME-DIFFERENCE-OF-ARRIVAL
A lot of ultrawide-band indoor tracking systems use the Time-
Difference-Of-Arrival principle based on measuring times
when a packet from a tag (Tx) is received by anchors Rxi,
i = 2..N , N – number of anchors (Fig. 1). Since receivers
are mutually synchronized, it is possible to capture a specific
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moment when transmitter/source tag signal reaches the spe-
cific receiver ti and the relative time delays τi1 = ti − t1 can
be calculated between the signal arrival at time t1 at reference
receiver located in the axis origin (x1= 0,y1= 0) and the
signal arrival at other anchors in known locations (xi, yi).

FIGURE 1. Example of TDOA location setup.

For convenience, let’s express relative distance between
transmitter and receiver as:

di = ∥Rxi−Tx∥ , (1)

where Rxi =

[
xi
yi

]
and Tx =

[
x
y

]
. Note, the first relative

distance d1 = ∥Rx1 − Tx∥ = ∥Tx∥ = d, where d =√
x2 + y2. The TDoA system of equations is this case will

be defined as:

cτi1 = di − d1 = di − d = ∥Rxi−Tx∥ − ∥Tx∥ , (2)

where c – speed of signal propagation. This system of equa-
tions is a nonlinear one. Thus, locating the source is not a
trivial task because the TDOA measurements are nonlinear
functions of the source coordinates.

A. LINEAR LEAST SQUARES ALGORITHM
To avoid non-linearities the Linear least squares approach has
been proposed. It takes advantages of the linear operation via
the introduction of an additional variable. Without consider-
ing the known relationship of this variable with the source
position, it is estimated together with the source position by
solving a system of linear equations. One version of such
algorithm, namely, two-step weighted least squares [6] is
the most interesting solutions of TDoA nonlinear system of
equations. It was investigated extensively by NASA John-
son Space Center for lunar / Mars rover proximity tracking
applications and is simple and efficient enough to be reused
for indoor positioning [1]. The 2WLS method idea is to
return back in the computation the ignored relations between
variables at the second stage of the algorithm. The whole flow
is shown below.

By taking d as an independent variable, the LLS method
creates a linear set of equations for the [x, y, d] variables:

2xxi + 2yyi + 2dcτi1 = x2i + y2i − (cτi1)2 (3)

In this way (3) can be expressed in a matrix form:

G1p1 ≈ h1, (4)

where:

G1 = 2


x2 y2 cτ21
x3 y3 cτ31
...

...
...

xN yN cτN1

 , h1 =


x22 + y22 − (cτ21)2

x23 + y23 − (cτ31)2

...

x2N + y2N − (cτN1)
2

 ,

p1 =

 x
y
d

 .

The minimal number of anchors we need for the system
to be solved in 2D case equals to four. In this case the
system has only one solution and can be evaluated in the
following way:

p̂1 = G−1
1 · h1 (5)

However, in a case of N > 4, the system is overdetermined
and has no unique solution. Correspondingly, the optimal
solution should be defined by additional constrains (e.g.
Lagrange multipliers).

The 2WLS method [1] is used to solve overdetermined
system of linear equations. In the first stage we search p̂1
(source location and additional variable) which minimizes
least squares error ε1 = h1 − G1p1 variance:

p̂1 = argmin
p1

εH1 ε1. (6)

To make solution more precise weighted error εH1 W1ε1 is
recommended.Weighting factor in this caseW1 can be chosen
in the form:

W1 =
1
4c2

B−1
1 Q−1B−1

1 , (7)

where TDOA measurements error is assumed to be a
Gaussian random vector with covariance matrix Q such
that

τ ∈ η(0,Q), (8)

and

B1 = I


d2
d3
...

dN

 . (9)

Least squares weighted solution estimate for given conditions
is equal to:

p̂1 =

(
GH1 W1G1

)−1
GH1 W 1h1. (10)

Stage II of the 2WLS method exploits the relationship
between the additional variable d and the source position.
So, in order to satisfy the d2 = x2 + y2 relationship, the
following equation must hold:

G2p2 ≈ h2, (11)
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where

G2 =

 1 0
0 1
1 1

 , p2 =

[
x2

y2

]
, h2 = p̂21.

Least squares method is used to solve linear system of equa-
tions (11) by minimizing the estimation error ε2 = h2−G2p2
variance. To make solution more precise, a weighting fac-
torW2 might be used. In this case we minimize the weighted
noise εH2 W2ε2, with:

W2 =
1
4
B−1
2 GH1 W1G1B

−1
2 , (12)

where B2 = Ip1.

B. MATRIX ILL-CONDITIONED PROBLEM
In general, 2WLS method provides estimation performance
close to Cramér–Rao lower bound at sufficiently small noise
conditions with relatively small resources requirement [1].
However, a matrix ill-conditioned problem occurs when the
distances from the tag to some receivers are identical, approx-
imately the same, or source is located on some of the lines
of symmetry. The error for such conditions increases signifi-
cantly. For example (Fig. 2), when the tag is located at or near
the centroid of the receivers whose geometry is close or equal
to a uniform circular array, the 2WLS performs poorly. The
reason is the system matrix which defines a solution of the
linear equations (GH1 · G1) is singular or ill-conditioned. The
similar situation is for the case of four anchors located in the
middle of each wall in the rectangular room or four anchors
in four corners of a square room (Fig. 2). The ill-conditioned
problem occurs when source is located on two hyperbolic
curves for the first case and on the two lines of symmetry
for the second.

FIGURE 2. Examples of 2LS matrix ill conditioned problem locations.
Lighter color mark places where 2LS calculated position will have large
systematic error. Small crosses mark anchors positions, star – a reference
anchor.

Matrix ill-conditioned problem appears in specific loca-
tions when there is no dependency between one or more tag
location coordinates and the independent variable. In such a
case the solution might be simplified as the matrix (GH1 ·G1)
rank is smaller than the matrix size. But the level and an
approach of simplification is difficult to evaluate because
there might be only one coordinate independent on the dis-
tance, two, or three (if 3D space is considered). Someonemay
test dependencies and simplify system of equations accord-
ingly but taking into account the time estimation error, it is
nearly impossible to choose proper system simplification as
there always will be all tiny (caused by measurement noise)

correlations between independent variables. There are several
methods to improve 2WLS in case of ill-condition problem
happens [3], but in general they try to find a better location
estimation during the first stage. Unfortunately, in case of
ill-conditioned problem there is no best estimate because
there exists a whole family of possible solutions that must
be taken into account.

III. PARAMETRIC THREE STAGE WEIGHTED LEAST
SQUARES ALGORITHM
The Parametric Three-Stage Weighted Least Squares method
is a variation of NASA 2WLS algorithm improved to work
in the ill-conditioned configurations. The P3WLS method
instead of searching unique solution during the first and
second stages works with the whole family of best solutions.
The family is described as a function of some parameter α and
is used during the third stage to determine the best solution.
Fig. 3 shows the basic idea of P3WLS: the first estimate of
one of the possible system solutions (point 1), defining the
set of solutions for given conditions (line 2), finding the best
solution in the set (points 3) as an intersection with a conic
surface representing coordinates-distances relations.

FIGURE 3. P3WLS algorithm stages: point 1 – the initial estimation of one
of possible solutions, line 2 – the set of possible solutions, points 3 – the
best solutions.

A. THE FIRST STAGE
During the first stage of P3WLS any solution of the linear
system (4) is calculated. We can use any of existing methods
to obtain the best guess estimate [4], for example, Tikhonov
regularization approach [11]. Alternatively, we can set a value
of the independent variable to any good prediction. In the
Fig. 3, for example, the d = 0 value (marked 1) is selected
as the first estimate. At this stage the goal is to obtain the
estimated value as close to ground truth as possible to mini-
mize errors on the next stages. This can be done in different
ways such as using 2WLS methods, average room distance
estimate, or by using previous tracking distance estimate.
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B. THE SECOND STAGE
During the second stage we estimate a family of solutions
which describes given configuration in the best way. Specifi-
cally, we search not for the unique solution which minimizes
weighted estimation error εH1 W1ε1, but rather for the set of
solutions p̂1 which provide the smallest error possible:

ε̂H1 W1ε̂1 =
(
h1 − G1p̂1

)H W1
(
h1 − G1p̂1

)
< min

p1
<

(
εH1 W1ε1

)
+ δ, (13)

where δ is a small parameter limiting solutions family
dimension.
Lemma: In case of the ill-condition problem, the least

squares solutions p̂1 of the TDoA system of linear equations
G1p1 ≈ h1 forms a line in the direction of the linear span of
the GH1 W1G1 matrix eigenvector with a smallest eigenvalue.

Proof: Suppose p̂1 is the weighted least squares solution
of a system of linear equations G1p1 ≈ h1. In such a way:

p̂1 = argmin
p1

εH1 W1ε1,

and the following equality holds:

GH1 W1G1p̂1 = GH1 W1h1.

In case of the ill-conditioned problem, the matrix GH1 W1G1
suffers rank deficiency, and there is at least one zero eigen-
value λmin = 0 with corresponding eigenvector vmin. The
eigenvalue definition (GH1 W1G1vmin = λminvmin) defines the
equality GH1 W1G1vmin = 0.
It means, that any other p̂∗

1 = p̂1 +αvmin, α ∈ R is also the
least squares solution of the linear equations system, because:

GH1 W1G1p̂∗

1 = GH1 W1G1
(
p̂1 + αvmin

)
= GH1 W1G1p̂1 + αGH1 W1G1vmin
= GH1 W1G1p̂1 = GH1 W1h1.

End of proof

Note, (Fig. 4), the least squares solutions p̂1 (red dots) are
located around the direction of the linear span of theGH1 W1G1
matrix eigenvector also in a case of large stiffness ratio of the
system which is a typical case for the TDoA systems. The
stiffness ratio of the linear system of equations is defined as
the ratio of the largest and smallest eigenvalues of the matrix
and is large in case of strong dependencies between linear
equations [26].

Let vmin be the eigenvector of GH1 W1G1, that corresponds
to the smallest eigenvalue λmin = min

∣∣λk ∣∣, among all eigen-
values λk . The least squares error change is minimal along
the direction of vmin. So, if p̂1 is the TDoA system solution
estimation at the first stage, the family of other solutions p̂2
will be located around the spatial line expressed as:

p̂2 = p̂1 + αvmin, (14)

where vmin =

 vx
vy
vd

, p̂1 =

 x̂(1)

ŷ(1)

d̂ (1)

, p̂2 =

 x̂(2)

ŷ(2)

d̂ (2)

, and α is

an independent parameter of the parametric line.

FIGURE 4. Example of the solutions family created due to matrix
perturbations or measurement noise.

C. THE THIRD STAGE
During the third stage of the P3WLS algorithm the finest
solution estimation of the TDoA system of equations is iden-
tified as an intersection of family line p̂2 with the conic
surface:

d2 = x2 + y2. (15)

There can be none, one, two, or infinite number of solutions.
But in case of sufficient number of anchors and relatively
small measurement noise, there are two solutions which can
be determined as roots of the quadratic equation:

aα2
+ bα + c = 0, (16)

where a = v2x + v2y − v2d , b = 2vx x̂(1) +2vyŷ(1) −2vd d̂ (1), and

c =
(
x̂(1)

)2
+

(
ŷ(1)

)2
−

(
d̂ (1)

)2
. The solution of the quadratic

equation provides an estimate of the TDoA fine solutions:

p̂3 = p̂1 + α1,2vmin, (17)

where α1,2 =
−b±

√
b2+2ac
2a and p̂3 =

 x̂(3)

ŷ(3)

d̂ (3)

.

Points p̂3 represent the intersections of the line 2 and the
conic surface (Fig. 3). Variety of cases occur in practical
configurations, and it is often not easy to certainly determine
the right solution. The most common conditions during the
data processing are following (shown for four anchors in a
square room example in Fig. 5):
1. α1,2 are real solutions and the family line intersects both

positive and negative branches of the cone. The correct
solution is the one with d̂ (3)> 0.

2. α1,2 are real and equal. There is a one solution only. In case
of noisy data α1,2 might be complex numbers. It means
the line does not intersect any branch of the cone. In such
a case it is recommended to locate the closest cone points
to the family line.
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FIGURE 5. Example of the common conditions during the data processing
for four anchors in corners of a square room.

3. α1,2 are real solutions and all d̂ (3)> 0. The family line
intersects only positive branch of the cone. Correct solu-
tion with shorter distance can be identified as one which
minimizes the estimation error ε2.

4. α1,2 are real solutions and d̂ (3)> 0. The family line inter-
sects only positive branch of the cone. Correct solution
with longer distance can be identified as one which mini-
mizes the estimation error ε2.

In case of complex α1,2 the solution can be estimated as the
cone point closest to the line (one unique solution). Updated
parameter α1,2 then might be equal to

α1,2 = −
vx x̂(1) + vyŷ(1) − vd d̂ (2)

v2x + v2y − v2d
, (18)

where new distance d̂ (2) =
−b̂±

√
b̂2+2âĉ
2â is a solution of

quadratic equation:

â
(
d̂ (2)

)2
+ b̂

(
d̂ (2)

)
+ ĉ = 0, (19)

where â = v2x + v2y, b̂ = 2vd
(
vx x̂(1) + vyŷ(1)

)
and ĉ =

v2d
((
x̂(1)

)2
+

(
ŷ(1)

)2)
−

(
vx ŷ(1) − vyx̂(1)

)2
. There are two pos-

sible locations of the line touching the cone: one appears for
distance increasing and one for distance decreasing. Because
of the fact we are searching solution for positive cone branch
the larger distance should be chosen.

IV. P3WLS ALGORITHM PROPERTIES AND
IMPROVEMENTS
To understand the P3WLS algorithm behavior in comparison
to the 2WLS algorithm let’s analyze location of anchors in
the vertices of the 10 × 10 m square under 10 ps Gaus-
sian measurement noise. For each point in the area we did
1000 measurements, and the 95% confidence interval C0.95
was estimated for the distance to true location:

1d =

√(
x̂(3) − x

)2
−

(
ŷ(3) − y

)2
, (20)

P1d (1d ≤ C0.95) = 0.95. (21)

Near the major symmetry lines, we obtain the ill-condition
problem which dramatically increases the error for the 2WLS
algorithm (Fig. 6). Note, location estimation error is increased
not only on the symmetry lines but also near them due to the
noise which may cause ill-condition problem to appear there.

FIGURE 6. Example of error 95% confidence interval for the 100 ps
Gaussian error for the 10 × 10 m 4 anchor’s locations. The closest anchor
(-0.5,-0.5) is chosen as the reference anchor.

In contrast, the P3WLS algorithm has no problems with
the ill-conditioned system, because the solution family in this
case is in the direction of the minimal eigenvalue eigenvector
span and the algorithm error is minimal. But as soon as
there is a strong relationship between tag coordinates and the
distance to the reference, the system stiffness is minimal and
solution family is not stretched along the minimal eigenvalue
eigenvector span which leads to higher error in comparison
to the 2WLS algorithm. Note, points where distance is more
dependent on the coordinates are typically located outside the
anchor’s perimeter along conditions 2 and 4 (Fig. 5).

Summarizing the above, P3WLS has advantage in core
area but has a minor disadvantage vs 2WLS outside the
anchor’s perimeter behind the closest anchor. Thus, solution
clarification along the minimal eigenvalue eigenvector span
should be done only in cases where is smaller relationship
between independent parameter and coordinates. The obvi-
ous criteria for choosing the proper second and third steps
is the matrix stiffness. In case the TDoA system stiffness
is larger than a predefined threshold - choose estimation
based on the family line evaluation, in other cases - use WLS
method. An error plot example of a Hybrid Weighted Least
Squares algorithm based on the stiffness criteria (HWLS(λ ))
applied to the 10 × 10 m square anchor configuration under
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FIGURE 7. Example of error 95% confidence interval for the 100 ps
Gaussian error for the 10 × 10 m 4 anchor’s locations. The closest anchor
(-0.5,-0.5) is chosen as the reference anchor.

10 ps Gaussian measurement noise is shown in Fig. 7.
The algorithm properly switches to the family evaluation
approach in case of the ill-condition problems on the sym-
metry lines and uses WLS in all other cases. Unfortunately,
the stiffness criterion is not useful to choose an algorithmwith
smaller error in other points.

More appropriate criteria to recognize the poor relationship
between the independent parameter and coordinates is the
angle between family line and the XY plain. The larger the
angle is the smaller the dependency on the XY coordinates.
An error plot example of Hybrid Weighted Least Squares
algorithm based on the angle criteria (HWLS(α)) applied to
the 10 × 10 m square anchor configurations under a 10 ps
Gaussian measurement noise is shown in Fig. 7. The criterion
based on the angle behaves much better in choosing the
optimal second and third algorithm stages and only struggles
in area where both solutions provide comparable errors.

Special attention should be given to the reference anchor
selection. More careful inspection of the Fig. 6 and Fig. 7
reveals the asymmetry in the error plots. In case the source
is located closer to the reference anchor, the error increases.
Looks like the optimal choice is the furthest anchor but this is
not true in case of the strong noises when the furthest anchor
may be the one with the largest noise. The optimal solution is
to choose that reference anchor which provides the smallest
error. One of the possible ways how to choose an optimal
reference anchor is to use the angle between the family line

and the XY plain as the criteria. The closer the angle is to
the 45 degrees the larger the location error we expect to have.
This is caused by the fact that solution the family intersection
with the cone will have larger intersection ambiguity.

V. SIMULATION ENVIRONMENT DESCRIPTION
The P3WLS algorithm was tested in three environments with
anchors located in the three different mesh patterns: square,
hexagon, and triangular (Fig. 8). During a source motion
the nearest anchors are selected for localization procedure.
In case of the square pattern, there are two possible scenarios:
if the source is in the middle of the mesh cell, the four nearest
vertex/anchors are chosen forming a smaller square cell; if
the source is next to a vertex, the five nearest anchors are
selected which form larger square cell with the middle vertex
in the center. Other cell configurations in the mesh pattern
are not discussed because if signal can reach further anchors
that means the solution is not optimized from cost perspective
(number of anchors can be decreased). Smaller and larger
square cells intersect each other and in case of a proper
tracking algorithm the source is always located inside the core
cell area (marked in grey). In case of a non-optimal tracking
scenarios, the source may exit the core cell, and the whole
cell should be analyzed. In case of a non-optimal tracking
scenario, we estimate location errors up to the middle of the
neighbor cells.

FIGURE 8. Three anchors location scenarios: a) square mesh pattern,
b) hexagon mesh pattern, c) triangular mesh pattern.

In case of the hexagon mesh pattern there are also two
possible scenarios: a hexagon cell if we are located closer
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TABLE 1. 95% confidence interval localization error, m.

to the middle of the mesh cell, and a triangular cell in case
the source is closer to the edge of the cell. In both scenarios
the core region forms a hexagon area. The third anchor’s
pattern we analyze in the paper is the triangular mesh pattern.
The two scenarios for this case: a rhomb cell in cases the
source is between vertexes, and a hexagon cell with vertex
in the middle in cases the source is next to any vertex. For
the triangular pattern the core region also forms a hexagon
region, but with much smaller area than in the case of the
hexagon mesh pattern.

Note, length of the mesh pattern edges is chosen in such
a way that results in an equal number of anchors per square
area, to have similar solutions cost. Therefore, the hexagon
mesh pattern has smaller edge length than the square mesh
pattern (0.875x), and a triangular mesh pattern edge is larger
than the square mesh pattern edge in 1.074x.

VI. SIMULATION NOISE/MEASUREMENT
ERROR MODELS
There are several different perturbation scenarios that can
occur in real-life applications: Gaussian noise, anchors
desynchronization and shadowing.

The most common measurement error in the TDoA sys-
tems is the Gaussian white noise, which is usually created by
the thermal electronic noise and/or by interference with exter-
nal radio signals. In ideal case scenarios ith receiver capture
the exact moment of signal arrival ti. Subsequently, TDoA is
calculated relative to a jth reference receiver ToA: τij = ti− tj.
However, in real-world scenarios, achieving distortion-free
signal measurements is unattainable thus in our simulations
we introduce time jitters 1ti, 1tj added to each time of
arrival ti and tj correspondingly: 1ti = N

(
0, σ 2

)
, 1tj =

N
(
0, σ 2

)
, where σ is 0.01, 0.1, or 1 ns.

TDoA system requires high-accuracy time synchronization
between all anchors and even small synchronization mistakes
can cause large localization error. Receiver desynchroniza-
tion appears in a TDoA system as a systematic error effecting

time of arrival and usually depends on the time since the last
anchor nodes synch. Desynchronization can be observed in
non-reference & reference anchors with different effect on
the TDoA system operation. Non-reference anchors desyn-
chronization has only impact on its own TDoA and can be
described by time of arrival offset uniform distribution:1ti =

U (−τ, τ ), where τ is a maximal possible desynchronization
(0.01, 0.1, or 1 ns in our experiments). Reference receiver
desynchronization has impact on all TDoA measurements
and can be described by time of arrival offset uniform dis-
tribution: 1tj = U (−τ, τ ).
A TDoA system in a complex environment suffers from a

multipath propagation and LoS shadowing. In such case the
systemmay report a reflected (longer) path time delay instead
of the true one. In the paper we evaluate the shadowing effect
on the one of the anchors and describe this phenomenon by
time of arrival offset uniform distribution: 1tj = U (0, 1/c),
where c is the speed of light, and 1 is maximal possible
distance offset (0.5, 1, or 2 m).

VII. PERFORMANCE OF THE P3WLS METHOD
Table 1 contains 95% confidence interval of the error for
2WLS and P3WLS algorithms in case of Gaussian Noise
perturbations, reference and non-reference desynchroniza-
tion and a shadowing for different mesh-cell scenarios. Small
square cell dimension in this case was selected to be 10m and
all other cells sizes were selected in a way to keep the solu-
tions cost identical. Obviously the 2WLS algorithm shows
the worst performance because of the ill-condition problem
in case of small square and hexagon cells where error is
extremely large and commensurate with the cell size. In case
of the triangular and rhombus cells, the estimated localization
error was quite large, although the ill condition problem is
not expected to appear in the core region of the cells, but
strong perturbations distort the matrix so significantly, so the
ill-condition problem sometimes is observed even in the core
region.
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The P3WLS algorithm shows a significant advantage vs
2WLS algorithm for all cells except the large square cell and
hexagon with core node were both algorithms shows compa-
rable results. In general, the P3WLS algorithm shows ∼1 cm
error for 10 ps Gaussian noise floor, ∼10 cm error for
100 ps noise and ∼1 m for 1 ns. Reference and non-reference
desynchronization perturbations are less affecting the TDoA
system. Expected error is less than 0.3 cm for 10 ps desync,
∼3 cm for 100 ps, and ∼30 cm for 1 ns. Note, the refer-
ence synchronization affects only one reference anchor but
is as serious as effect of all non-reference synchronization
anchors. Accordingly, the commonmode perturbations are as
dangerous as the random one. The worst location errors we
obtain in case of shadowing perturbations. Shadowing offset
of 0.5 m results in ∼ 40 cm error, 1 m offset - in ∼80 cm, and
2 m offset results in 1-2 m error.

An optimal mesh configuration for the 2WLS algorithm is
triangular with expected error 2 m in LoS scenarios and∼4 m
in nLoS scenarios. Hexagonal and square mesh patterns are
not recommended due to the ill-condition problem. Whereas
P3WLS algorithm can operate in any mesh environment
resulting in <1 m error for LoS and <2 m for nLoS for core
regions of the cells which implies optimal neighbor anchors
scenario.

In case of proper cell is difficult to localize due to the strong
nLoS environment or source tracking is not possible, we may
expect a wrong cell is selected and the area outside the core
region is analyzed. In such case the P3WLS algorithm may
operate in third and fourth conditions (Fig. 5) where hybrid
algorithms are recommended.

To analyze the behavior outside the core cell region the
root mean square (RMS) error was calculated for 2WLS,
P3WLS and for hybrid algorithms in different mesh scenar-
ios with Gaussian noise (Fig. 9-11). The hybrid HWLS(λ )
and HWLS(α) algorithms use eigenvalues and angle crite-
ria to switch to a proper algorithm, and the decisions are
made based on the criteria value comparison with predefined
thresholds. The thresholds are optimized for each cell sepa-
rately to obtain a best performance. Simulations within the
core region are referred as an optimal switching scenario
which implies the proper cell is chosen all the time the source
moves outside the previous core cell area. A non-optimal
switching scenario implies situations when the source track-
ing faces some issues and incorrect anchors are used from the
neighbor cells.

Because the ill-condition problem mainly appears in the
core region, the 2WLS algorithm results in the smaller error
for the non-optimal switching due to the smaller ill-condition
problem probability in the larger region. Such behavior is
typical for the square and the hexagon mesh patterns, but
in case of the triangular mesh pattern, an optimal switching
scenario has a huge advantage vs non-optimal one because of
the ill-condition region lies outside the core region.

There is no advantage in usage the hybrid algorithms for
the optimal switching scenarios as the P3WLS algorithm
has no issue in the core cell area. That’s exactly why the

FIGURE 9. Algorithms localization error for square mesh pattern.

FIGURE 10. Algorithms localization error for triangular mesh pattern.

FIGURE 11. Algorithms localization error for hexagon mesh pattern.

HWLS(α) algorithm performance fully coincide with the
P3WLS one for the optimal switching scenario. However,
in case of non-optimal switching scenario the HWLS(α)
algorithm provides up to 25% smaller error for a square
mesh pattern by switching to 2WLS algorithm outside the
cell. Unfortunately for the triangular and hexagon mesh pat-
terns the advantage is minimal. In contrast, the HWLS(λ )
algorithm shows the best performance for the hexagon mesh
but is slightly worse for the square mesh pattern.

Table 2 summarizes the simulation results and reports
the ratio of averaged noise floor across all simulation vs
the best possible result achievable for the P3WLS (and
HWLS(α)) algorithm and the triangular mesh pattern. The
2WLS algorithm can be used in case of the triangular pattern
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TABLE 2. Algorithms comparison for different conditions, error ratio,
times.

and the optimal switching scenario only with a 3x larger error
in comparison to the P3WLS algorithm which can be used
with any mesh pattern. The HWLS(λ ) algorithm is recom-
mended only for the square mesh pattern with the optimal
switching scenario. In case of the non-optimal switching
scenario, the HWLS(α) algorithm in the square mesh pattern
is recommended with the 4.3x error increase vs the optimal
switching scenario.

There is no preferable mesh pattern as soon as the
proper algorithm is used for the optimal switching scenarios.
Expected error differences are less than 10%. But if the
optimal source tracking cannot be guaranteed and we may
select incorrect anchors for TDoA measurements, the square
pattern with the HWLS(α) algorithm is preferable. The error
increase is expected to be close to 4x in this case.

VIII. CONCLUSION
Time difference of arrival is a very popular and efficient
technique for devices localization when a network of syn-
chronized anchors is available. Such a technology is strongly
demanded by the warehouse/manufacturer businesses for
asset tracking because it can easily work with thousands of
tags covering large areas, with minimal requirements to tags
power sources that work by simple power-efficient broad-
casting of small-period location messages. The cost of such
TDoA systems is mostly defined by the number of anchors
in the mesh, therefore a requirement to lower the solutions
cost demands understanding of optimal mesh configuration
and performance that can be reached. Unfortunately decreas-
ing the number of anchors in such systems leads to regular
mesh pattern cells formation with symmetry susceptible to
the ill-condition problems for the classical low complexity
2WLS algorithms. The paper proposes a new set of algo-
rithms developed to solve the ill-condition problem without
switching to more computationally complex approaches. The
developed P3WLS algorithm utilizes a family of solutions
that are formulated during an additional step in the solution
flow analyzing relations between an independent variable
introduced in the 2WLS approach and source coordinates.

The P3WLS algorithm fully solves the problem for the core
region of the anchor mesh cells. Unfortunately, the P3WLS
algorithm has its own weaknesses and outside the anchor’s
cell sometimes results in slightly worse results. To deal with
the problems outside the cells, two hybrid algorithms were
developed which switch between several methods based on
the proposed eigenvalue ratio and independent parameter
correlation criteria.

The verification of the proposedmethods was done by sim-
ulation TDoA localization system for various anchor mesh
patterns under different perturbations such as Gaussian noise
to emulate thermal noise and external noise interference,
reference and non-reference anchor desynchronization, and
node shadowing. The P3WLS algorithm shows significant
advantage vs 2WLS for all cases, including multipath con-
ditions with a shadowing.

One of the experiments considers situations where the
system uses a non-optimal set of anchors (not closest ones)
to determine a tag position. It happens in case of multipaths,
shadowing, noise influence or synchronization problems. It is
possible in this cases that a tag appears outside of anchors
perimeter that noticeably decreases accuracy of tag location
determination. The results of simulations give understanding
of optimal mesh configuration for different mesh patterns
and switching scenarios. For an optimal switching scenario
all mesh patterns with the same number of nodes per square
shows similar results for the best P3WLS and HWLS(α)
algorithms. In case of the non-optimal scenario, when the
source may appear outside the cell, the square mesh pattern
shows the best performance with the 4.3x degradation in
comparison to the optimal scenario.

In the following work we plan to accomplish additional
simulation and provide complete comparison with other
algorithms for TDoA location determination, especially the
NN-based, deeper analyze a question of an optimal selection
of the best anchor nodes set and reference node selection cri-
teria, advantages of tracking capabilities and UWB channel
impulse response data usage for better accuracy in case of
large number anchor nodes mesh networks.
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