
Received 10 August 2024, accepted 20 August 2024, date of publication 26 August 2024, date of current version 4 September 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3449814

Breast Cancer Survival Prediction Modeling
Based on Genomic Data: An Improved
Prognosis-Driven Deep Learning Approach
AMENA MAHMOUD 1,3, MUSAED ALHUSSEIN 2,
KHURSHEED AURANGZEB 2, (Senior Member, IEEE), AND EIKO TAKAOKA 3
1Department of Computer Science, Faculty of Computers and Information, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
2Department of Computer Engineering, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia
3Department of Information and Communication Sciences, Faculty of Science and Technology, Sophia University, Tokyo 102-8554, Japan

Corresponding author: Amena Mahmoud (amena_mahmoud@sophia.ac.jp)

This work was supported by King Saud University, Riyadh, Saudi Arabia, under Grant RSPD2024R553.

ABSTRACT Breast cancer has a wide range of possible outcomes due to its complexity and heterogeneity.
The process of manually detecting breast cancer is laborious, intricate, and inaccurate. It is essential for
individualized treatment planning to have a reliable prognosis of patient survival. Increased focus in recent
years has been placed on genomics-based techniques be-because of their potential to better predict outcomes.
In this study, we propose a novel framework for breast cancer survival prediction using optimized deep
learning models. We begin by preprocessing and integrating multi-omic data, including gene expression
profiles, somatic mutations, and clinical features, obtained from a large cohort of breast cancer patients.
In our proposed research, deep learning models were trained to detect the survival case of breast cancer
and were optimized using Stochastic Gradient Descent Optimizer which was used for the initial population
generation and modification for the selected dataset and divided into 80% for the training set and 20% for
the testing set. Long Short-Term Memory, Variational Autoencoders, and Graph Convolutional Networks
architectures optimized by Stochastic Gradient Descent Optimizer are used for training and validation of
the breast cancer dataset and get the best accuracy of 98.7% for the optimized Long Short-Term Memory
model. Our results demonstrate that the proposed genomics-based predictive modeling approach achieves
high performance in breast cancer survival prediction compared to conventional methods.

INDEX TERMS Breast cancer, genomes, LSTM, VAEs, GCNs, stochastic gradient descent optimizer.

I. INTRODUCTION
Across the world, more than 1,300,000 breast cancer cases a
year are reported. In global cancer worldwide, it is the most
common among women. Around the world, the number of
cases has been increasing in recent years. The likelihood of
cure and life for patients fighting this disease makes breast
cancer stand. Risk factors such as age, lifestyle, genetics,
exogenous factors, and anatomical factors each play a differ-
ent role in breast cancer. Given the strong effect of genetic
factors on breast cancer, without a genetic approach to tech-
niques it will be impossible to understand the genetics of
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cancer. The earlier the diagnosis, the more likely it is that
the cancer will be halted, and the patient’s symptoms more
successfully treated, resulting in a cure [1].

Breast cancer is one of the most common cancers that
women are facing. The number of patients suffering from
breast cancer is expected to be increasing day by day. Breast
cancer is curable if diagnosed at an earlier stage. Breast
cancer is the 2nd most common type of cancer after lung can-
cer, which is about 12% of all patients suffering from cancer.
Approximately 1 in 8 women (about 12%) will be diagnosed
at some point in her life with breast cancer. Men are usu-
ally not diagnosed with breast cancer until the age of 60.
It is diagnosed in women aged 50 and above. If women
over 50 years with breast cancer were diagnosed early and
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effectively treated, then 95% of the cases have a survival rate
of up to 5 years [2].

Prognostic modeling - estimating risk for tumor recurrence
or progression to invasive disease - was traditionally utilized
in breast cancer to enhance patient care and involve patients in
the treatment decision-making process. Decision trees were
employed to model qualitative aspects of breast cancer such
as choice of conservative surgery vs. mastectomy, benefit
accrual of adjuvant cytotoxic systemic therapy, and potential
for dosing epirubicin in the FEC-D regimens, for exam-
ple. Additionally, physicians investigate patient outcomes
to investigate clinic pathological and patient information.
More recently, next-generation sequencing (NGS) technolo-
gies have enabled a proactive shift in breast cancer (as well
as other cancer types) prognostic modeling by unleashing
the genomic characteristics of breast cancers. Still, whilst
genomic information leads to more molecularly informed
prognostic predictions [3].

Despite considerable efforts to reduce breast cancer mor-
tality rates, it remains the common cause of cancer-related
deaths of women worldwide. Breast cancer contributes to
25% of all new cancer cases and 15% of all cancer-related
mortalities of women in America. For the year 2014 only,
there were an estimated 232,670 new cases and 40,000 deaths
in America. Most breast cancer mortalities are patients who
have treatment-resistant metastatic disease or are diagnosed
late with aggressive tumor types. Early detection plays a
substantial role in the survival rate of breast cancer patients.
Recently, much of the enhancement in survival outcomes of
breast cancer patients has been attributed to early detection
by mammograms [4].

Gene expression profiling has become well-integrated into
everyday clinical practice [5], [6]. Gene expression analysis
has been the subject of a lot of studies in the field of breast
cancer research, with clinical oncologists now beginning
to incorporate its findings into their everyday work. Gene
expression level data mining has also aided in the early diag-
nosis and treatment of several cancers. Several approaches
aim to use gene expression data to reliably predict breast
cancer [7].

In the detection of breast cancer, computational methods
are gaining importance as computing power continues to
advance at a rapid rate [8]. In gene expression datasets,
however, factors such as small file sizes, high complexity,
and irregular data may hinder the application of computa-
tional methods. Numerous machine learning, deep learning,
and metaheuristic approaches have been devised and imple-
mented to detect and categorize cancer by utilizing gene
expression data.

Insights into clinical data, microarrays, and gene expres-
sion have become feasible due to the rapid advancement of
deep learning and high-throughput machine learning tech-
niques over the last few decades [9]. Potentially fatal diseases
can be identified and treated expeditiously through the uti-
lization of machine learning techniques. In the context of
illness prediction and prognosis, deep learning can extract

exceptionally valuable characteristics [10]. A diverse range of
factors can provide insights into the prognosis of breast can-
cer. These include clinical history, genetics (including copy
number variations and gene expression), age, pregnancy, and
the onset and duration of the menstrual cycle, among others.

While deep learning models can compensate for missing
or noisy data, good preparation and quality control are still
necessary to guarantee the validity of the gene expression
data [11]. Data normalization and outlier removal are two
examples of important preprocessing techniques that reduce
the influence of noise and provide consistent, relevant inputs
for deep learning models.

Using gene expression analysis to predict breast cancer risk
with deep learning has several benefits [12]. First, it makes
it possible to combine different types of omics informa-
tion, such as gene expression data, with clinical data for a
more thorough and precise risk assessment. Second, novel
biomarkers and molecular pathways linked with breast can-
cer risk can be discovered with the use of deep learning
models, which are able to capture complicated interactions
and nonlinear correlations between genes. In addition, deep
learning models are resilient and flexible, as they can deal
with missing or noisy data [13].

In this research, we show how deep learning may be used
to analyze gene expression data in order to accurately predict
breast cancer risk. We utilize a large-scale dataset of gene
expression patterns from breast cancer patients and healthy
individuals to train and verify our model. By contrasting
the results of our method with those of more conventional
approaches to risk assessment, we show that it is supe-
rior. To further understand the identified risk-associated
gene signatures and their possible therapeutic applications,
we explore the interpretability of the deep learning model.
We aim to demonstrate the clinical applicability of our gene
signature established in phase I to a larger prospective cohort
and evaluate its association with breast cancer outcomes,
as well as its integration with clinical variables. Finally,
we plan to demonstrate the potential clinical utility by per-
forming cost-effective analyses to guide decisions regarding
the adoption of genomic tests and treatment plans for young
women with lymph node-positive breast cancer.

The uniqueness of the proposed study would likely lie in
how it combines several unique characteristics:

• High-dimensional input, Genomic data is typically high-
dimensional, with thousands of features (genes or genetic
variants). Deep learning models, particularly those used in
the current study are well-suited to handle this high dimen-
sionality without requiring explicit feature selection.

• Feature learning, unlike traditional machine learning
methods that often rely on hand-crafted features, deep learn-
ingmodels can automatically learn relevant features from raw
genomic data. This can potentially uncover complex patterns
and interactions between genes that might be missed by other
approaches.

• Handling of missing data, Genomic datasets often have
missing values. Deep learning approaches can incorporate
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specific architectures or techniques to handle missing data
without requiring imputation.

• Interpretability methods, Given the ‘‘black box’’ nature
of deep learning, unique approaches might focus on develop-
ing interpretability methods specific to genomic data, such as
identifying important genes or gene sets.

This is also besides the loss functions, or training strategies
tailored to breast cancer genomic data. It might also be in how
the proposed approach addresses specific challenges in this
domain, such as interpretability, or integration with clinical
practice.

Overall, the combination of deep learning and gene expres-
sion analysis has enormous potential for enhancing risk
prediction for breast cancer and expanding our knowledge of
the molecular pathways behind the disease’s emergence [14].
This study has the potential to advance personalizedmedicine
by easing the identification of high-risk people and the devel-
opment of individualized plans for the early diagnosis and
prevention of breast cancer.

This study’s primary contributions are:
1. Introducing breast cancer survival prediction deep learn-

ing architecture. This framework uses cutting-edge deep
learning models including LSTM networks, VAEs, and
GCNs.

2. Multi-omic data preparation and integration address
breast cancer complexity and heterogeneity. This covers gene
expression patterns, somatic mutations, and clinical char-
acteristics from a large breast cancer cohort. Multiple data
modalities enable deeper analysis and more accurate patient
survival predictions.

3. Optimization of deep learning models using Stochastic
Gradient Descent (SGD). Effective parameter adjustment and
population formation optimizemodel performance. This opti-
mization procedure guarantees that models fit the dataset and
provide accurate predictions.

4. The proposed deep learning technique is thoroughly
assessed utilizing 80% of the dataset as a training set and
20% as a testing set. The optimized LSTM model has 98.7%
accuracy when compared to other models. The findings show
that the suggested technique accurately predicts breast cancer
survival.

5. Comparative Analysis with traditional approaches: The
genomics-based predictive modeling methodology outper-
forms traditional approaches. Deep learning and multi-omic
data enable the suggested technique to predict breast
cancer patient survival more accurately than existing
approaches.

In the following sections, we will discuss the related work
to the current study, and describe the methodology employed
in this study, including the dataset used, the architecture of
the deep learning models, and the optimization techniques
applied. We will then present and discuss the results of our
experiments, followed by a comprehensive analysis of the
findings. Finally, we will conclude with a discussion of
the implications of our study and the future directions for
research in this field.

II. RELATED WORK
Early prediction of breast cancer probability is crucial in the
detection and prevention of cancer, as it is a complex and
diverse disease. Recently, there has been a surge of interest
in deep learning techniques due to their ability to effectively
analyze gene expression profiles and uncover intricate pat-
terns and features. This section provides a comprehensive
review of the latest methodologies used in analyzing gene
expression profiles to predict breast cancer survival, with a
focus on deep learning techniques.

Table 1 shows a comparison of the recent approaches in
the Breast Cancer Survival Prediction Modelling Based on
Genomic Data.

These studies showcase the diverse approaches being
explored in breast cancer survival prediction using genomic
data and deep learning. While they demonstrate promis-
ing results, common limitations include data quality and
quantity requirements, interpretability challenges, and diffi-
culties in clinical integration. The current research focuses
on addressing these limitations while further improving pre-
diction accuracy and robustness.

Additionally, Breast cancer risk assessment and personal-
ized healthcare interventions stand to benefit greatly from the
further development of deep learning technologies and the
availability of large-scale datasets [26].

III. MATERIALS AND METHODS
This section deals with the dataset, methods, workflow,
and performance constraints to evaluate the proposed work.
A genuine breast cancer gene expression profile dataset is
used in the research. Fig. 1 displays the stages of the proposed
research.

A. DATASET
First of all, genomic data can provide a baseline to understand
the cause, progression, and driving forces of cancers at a
level and scope that traditional clinical studies cannot offer.
Paramount to this power is the capability of detecting small
perturbations in the system as a signal rather than noise.
To exploit this power of detection, it is necessary to have a
good comprehension of the particular manifestation of breast
cancer gene expression, as well as the content in terms of
genes and sample types available within the publicly avail-
able datasets.

Genomic data is the key feature in breast cancer research.
In the last decade, many studies have generated breast cancer
expression profiles intending to predict breast cancer sur-
vival, to identify the subsets of patients that are closely related
to breast cancer, and to predict the effects and side effects of
cancer drugs and therapy options.

The Kaggle platform is chosen as the source for the breast
cancer gene expression dataset, specifically, The Molecu-
lar Taxonomy of Breast Cancer International Consortium
(METABRIC) [28] dataset is picked for the project.

The METABRIC database is a collaborative project
between Canada and the UK that houses targeted sequencing
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TABLE 1. Comparison between the related RESEARCH.

FIGURE 1. Stages of the proposed research.

data from 1,980 primary breast cancer samples. The dataset
was acquired by Professor Carlos Caldas from Cambridge

Research Institute and Professor Sam Aparicio from the
British Columbia Cancer Centre in Canada. It was subse-
quently published in the scientific journal Nature Commu-
nications (Pereira et al. [27]).

The dataset consists of 31 clinical characteristics, m-RNA
levels z-score for 331 genes, and mutation in 175 genes for a
total of 1904 breast cancer patients.

Cancers are linked to genetic aberrations. Gene expression
quantifies the degree of gene functionality in a tissue and
provides insights into its intricate operations. An analysis of
the genes expressed in healthy and sick tissue can provide a
more profound understanding of cancer prognosis and out-
comes. Applying deep learning models to genetic data offers
the ability to accurately predict survival time and reduce the
need for unneeded surgical interventions and treatments.

The METABRIC dataset consists of three main classes:
The first one (clinical attributes):
Principal attributes include clinical data of the patient,

including patient health, disease, and diagnosis.
• Breast surgery type: Type of breast cancer surgery:
1. Mastectomy, denoting a surgical procedure in which the

entirety of the breast tissue is removed for the purpose of
preventing or treating breast cancer.

2. Breast Conserving, which pertains to surgical interven-
tion in which solely the malignant region of the breast is
excised.

Type of cancer: Various forms of breast cancer include:
2-Breast Sarcoma or 1-Breast Cancer
• Type of cancer specified: Detailed Types of Breast

Cancer:
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TABLE 2. Dropping non-related attributes from clinical attributes.

1. Invasive Ductal Carcinoma of the Breast
2- Mixed lobular and ductal carcinoma of the breast
3. Invasive Lobular Carcinoma of the Breast
4. Invasive Mixed Mucinous Carcinoma of the Breast
5 Metaplastic cancer of the breast.
• pam50_+_low_subtype_claudin: Pam 50 is a tumor pro-

filing test utilized to determine the propensity of estrogen
receptor-positive (ER-positive), HER2-negative breast malig-
nancies to undergo metastasis, which refers to the process by
which the cancer spreads to other organs. The claudin-low
subtype of breast cancer is distinguished by the following
gene expression patterns: diminished expression of genes
associated with cell-cell adhesion, increased expression of
genes involved in epithelial-mesenchymal transition (EMT),
and gene expression patterns resembling those of stem cells
or less differentiated cells.

• er_status: Anti-estrogen receptor status of cancer cells is
positive or negative.

• her2_status: Indicates whether HER2 is present in the
cancer or absent.

• pr_status: Progesterone receptors are present in either
positive or negative cancer cells.

• tumor_other_histologic_subtype: Malignancy classifica-
tion determined through microscopic analysis of the cancer
tissue; possible values include ‘Ductal/NST,’ ‘Mixed,’ ‘Lob-
ular,’ ‘Tubular/cribriform,’ ‘Mucinous,’ ’Medullary,’ ‘Other,’
or ‘Metaplastic’.

• mutation_count: The number of pertinent mutations
present in a given gene.

• Tumor stage: The cancer’s progression is determined by
the extent to which it has metastasized to distal lymph nodes
and adjacent structures.

2. The second class (gene expression attributes):
The genetics part of the dataset contains m-RNA levels z-

score for 331 genes, and mutation for 175 genes. Every row
contains every sample’s gene expression level of every gene
of 175 genes.

3. The third class (mutations attributes):
The genetic mutation part contains the type and name of

mutations of genes of the selected sample if they exist.

B. DATA PREPROCESSING
Clean and preprocess the collected data to handle missing
values, normalize or scale features, and address any data
inconsistencies. Preprocessing ensures the data is in a suitable
format for training machine learning models.

1. Drop non-related attributes of class one (clinical
attributes) such as age_at_diagnosis, type_of_surgry, cohort,
and death from cancer, as shown in table 2.

2. Select just high-risk genes of breast cancer and drop
other attributes of class two (gene expression attributes).

3. Based on the last step, drop non-related mutation
attributes to selected genes of (mutation attributes) as shown
in table 3.

4. Handling missing data in genomic datasets is a critical
step in preparing data for breast cancer survival prediction
models. The following steps were typically taken:

• Data Exploration by analyzing the extent and pattern of
missing data across the genomic features and determining if
the data is missing completely at random (MCAR), missing
at random (MAR), or missing not at random (MNAR).

• Assessment of Impact, by evaluating how missing data
might affect the analysis and model performance and consid-
ering the proportion of missing data for each feature and each
sample.

• Selection of imputationmethod, by choosingmean impu-
tation based on the assessment of data characteristics and
project requirements.

• Implementation, by calculating the mean value for each
feature across all non-missing entries and replacing missing
values with the calculated mean for the respective feature.

• Validation, by assessing the impact of imputation on data
distribution and model performance.

The rationale for choosing Mean Imputation:
• Simplicity and computational efficiency, mean impu-

tation is straightforward to implement and computation-
ally efficient, which is beneficial when dealing with large
genomic datasets.

• Preservation of sample size, unlike deletion methods,
mean imputation retains all samples, which is crucial in
genomic studies where sample sizes are often limited.
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TABLE 3. Dropping non-related attributes from mutation attributes.

TABLE 4. Ordinal encoding label.

• Maintaining Feature Averages, mean imputation pre-
serves the overall mean of each feature, which can be
important for certain types of genomic analyses.

• Compatibility with various models, mean-imputed data
can be used with a wide range of machine learning models
without requiring model-specific handling of missing values.

• Handling High-Dimensional Data, in genomic datasets
with thousands of features, mean imputation provides a prac-
tical solution without overly complicating the preprocessing
steps.

• Interpretability, the effects of mean imputation on the
data are easily interpretable, which is valuable in clinical
genomics research where transparency is important. Fill in
the missing values, as shown in Fig. 2.
5. Exploratory Data Analysis, as shown in Fig. 3 (a,b).
6. Label encoding (ordinal), as shown in Table 4.
7. One-hot encoding (nominal), as shown in Table 5.
8. Find outliers, as shown in Fig. 4.

C. PROPOSED METHOD
The research project entails the use of both genetic and
clinical data to fill in missing values by employing the mean
imputation method. Simple techniques, such as substituting
missing data with the median or mean values, produced simi-
lar outcomes to more complex ones. To maintain the model’s

objectivity, the features that have a substantial number of
missing values, precisely 80%, are removed from the dataset.
The procedure of restoring the remaining missing values has
been carried out. Genomic data is subjected to feature selec-
tion methods to find genes with higher predictive potential
and greater variance within the dataset.

The genomic dataset was split into 80/20 training and
testing sets is a common practice in machine learning, includ-
ing in the context of breast cancer survival prediction using
genomic data. The rationale behind this split:

• Balance between Training and Evaluation, the 80/20
split provides a good balance between having enough
data to train a robust model (80%) and retaining enough
for testing (20%). This ratio typically ensures that the
training set is large enough to capture the underlying
patterns in the genomic data while the test set is substan-
tial enough to provide a reliable estimate of the model’s
performance.

• Statistical Power, in genomic studies, where the number
of features (genes) often far exceeds the number of samples,
having 80% of the data for training helps maintain statistical
power.

• Representation of Data Distribution, an 80/20 split gen-
erally ensures that both the training and testing sets are likely
to be representative of the overall data distribution.
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FIGURE 2. Example of missing values.

FIGURE 3. Clinical data analysis.

FIGURE 4. Outliers in data.

• Overfitting Mitigation, by reserving 20% of the data
for testing, researchers can assess whether the model has
overfitted the training data.

• Consistency with Literature, using an 80/20 split allows
for easier comparison with other studies in the field, as it’s a
widely adopted standard.

• Flexibility for Cross-Validation, while using an 80/20
split, we can still apply cross-validation techniques on the
training set (80%) for model selection and hyperparameter
tuning.

• Robustness to Data Heterogeneity, genomic data can be
highly heterogeneous. The 80/20 split increases the chances
that this heterogeneity is captured in both sets.

Model input:
Fastq file is the input of the machine learning model, which

contains a sample sequence of mRNA nucleotide and every
nucleotide quality from the sequencer machine. This file is
entered into the gene expression function to calculate the gene
expression level of selected 163 genes of the dataset, this
means that we convert string data to numeric data.
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TABLE 5. Nominal encoding label.

Direct input to the model is the numeric data of 163 gene
expression levels (the second class of dataset (gene expres-
sion attributes)).

Model output Divided into two sections:
1. The first one from the first class of dataset that returns
• cancer_type,
• cancer_type_detailed,
• pam50_+_claudin
• low_subtype,
• er_status,
• pr_status,
• her2_status,
• tumor_other_histologic_type,
• mutations_count
• 3_gene_classifier_subtype
• tumor stage.
2. The second section from the third class of the dataset

returns the mutation name and type of abnormal genes based
on their gene expression.

To handle overfitting issues when training models on
the Breast Cancer Gene Expression Profiles (METABRIC)
dataset, several techniques were employed:

1. Dropout:
- Apply dropout layers in neural networks, typically with

rates between 0.2 to 0.5.
- Helps prevent co-adaptation of features and acts as a form

of ensemble learning.
2. Early Stopping:
- Monitor validation performance and stop training when

it starts to degrade.
- Implement patience to allow for small fluctuations in

validation performance.
3. Data Augmentation: for genomic data, Gaussian noise

was added to gene expression values.
4. Cross-Validation: stratified sampling was used to main-

tain class distribution across folds.
4. Optimization and Feature Selection: SGD was applied.
5. Batch Normalization layers were applied layers to stabi-

lize learning.

5. Transfer Learning through pre-train models on larger
genomic datasets, then fine-tune on METABRIC.

6. Applying min-max scaling to gene expression data.

D. LONG SHORT-TERM MEMORY (LSTM)
The LSTM network [29], which is classified as a recur-
rent neural network (RNN), was designed to address the
issue of vanishing gradients that are commonly encountered
in conventional RNNs. Its comparative insensitivity to gap
length distinguishes it from alternative sequence learning
methods, hidden Markov models, and RNNs. ‘‘Long Short-
Term Memory’’ refers to the objective of providing an RNN
with a short-term memory capable of retaining thousands of
timesteps. Classification, processing, and prediction of time
series data are domains in which it finds application, includ-
ing but not limited to healthcare, speech activity detection,
robotic control, speech recognition, and machine translation.

The constituent elements of a typical LSTM unit are a cell,
an input gate, an output gate, and a forget gate. Values are
retained in the cell for an indefinite period, while the three
gates control the information flow into and out of the cell.
For forget gates determine which information to abandon
from a previous state by assigning a value between 0 and
1 to the previous state relative to the current input. A value
of 1 (rounded) indicates retaining the information, while a
value of 0 indicates discarding it. Input gates employ the
same mechanism as neglect gates to determine which newly
acquired pieces of information are stored in the current state.
By designating a value between 0 and 1 to each item of
information in the current state, output gates determine which
data to transmit, taking into account both the previous and
current states. By selectively outputting pertinent informa-
tion from the current state, the LSTM network is capable
of preserving long-term dependencies that are beneficial for
generating predictions in both the present and future time
steps.

To apply the LSTM, which is represented in fig. 5,
to genomic data and survival prediction tasks:
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- Input layer: Likely designed to accept genomic data
sequences, possibly gene expression profiles or mutation
data.

- LSTM layers: Multiple LSTM layers may have been
stacked to capture complex temporal dependencies in the
genomic data.

- Dropout layers: Possibly added between LSTM layers to
prevent overfitting.

- Dense layers: Fully connected layers likely added after
LSTM layers for feature integration.

- Output layer: a single neuron with sigmoid activation for
binary classification (survival vs. non-survival) or multiple
neurons for multi-class prediction (different survival time
ranges).

FIGURE 5. LSTM model architecture.

E. VARIATIONAL AUTOENCODERS (VAEs)
A variational autoencoder (VAE) [30] is an artificial neural
network architecture that was first proposed by Diederik P.
Kingma and Max Welling in the field of machine learning.
It belongs to the variational Bayesianmethods and probabilis-
tic graphical models’ families.

To apply the VAE, which is represented in fig. 6,
to genomic data and survival prediction tasks:

- Encoder: Likely consists of multiple dense layers to
compress the input genomic data into a lower-dimensional
latent space.

- Latent space: Designed to capture the most important
features of the genomic data in a compressed format.

- Decoder: Mirror of the encoder, reconstructing the origi-
nal input from the latent space.

- Classification layer: Added to the standard VAE archi-
tecture, taking the latent space representation as input for
survival prediction.

The proposed approach for feeding genomic data into VAE
models:

1. Data Preprocessing:
- Gene expression data is typically normalized z-score

normalization.
2. Input Format:
- The input to the VAE is a vector representing gene

expression values for each sample.

FIGURE 6. VAE model architecture.

- Each element in the vector corresponds to the expression
level of a specific gene.

3. Encoder Structure:
- The encoder part of the VAE would consist of several

dense (fully connected) layers.
- The input layer would have nodes equal to the number of

genes in the dataset.
- Subsequent layers typically reduce in size, compressing

the information.
4. Latent Space:
- The encoder outputs parameters (usually mean and vari-

ance) for the latent space distribution.
- The latent space is typically much smaller than the input

space dimensions.
5. Decoder Structure:
- The decoder mirrors the encoder, starting from the latent

space and reconstructing the original input.
- It typically uses transpose of the weights from the encoder

(weight sharing).
6. Training Process:
- During training, each sample (a vector of gene expression

values) is passed through the encoder.
- The latent representation is sampled and then passed

through the decoder.
- The model is trained to minimize both reconstruction

error and KL divergence between the encoded distribution
and a prior (usually standard normal distribution).

7. Batch Processing: data is usually fed in batches to
improve training efficiency and generalization.

8. Adaptation for Survival Prediction:
- For survival prediction, the latent representation from the

encoder was used as input to a separate prediction model.
- VAE could be fine-tuned end-to-end for the survival

prediction task.

F. GRAPH CONVOLUTIONAL NETWORKS (GCNs)
GCNs were initially referenced in the machine learning lit-
erature [31] a few years ago. An important advantage of
convolutional neural networks is their capacity to operate
effectively despite incomplete spatial relationships. Whereas
2D matrices or 1D vectors are utilized to represent the data,
GCNs represent the interrelationships among samples using
the graph structure. By deconvoluting the graph structure,
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which is depicted as a normalized interaction matrix, and the
information for each node in the graph, a neural network (NN)
is generated that can make use of both the gene expression
values encoded in each node and the interconnections among
the cells that express these genes.

The choice of GNNs for this task represents an innovative
approach that aligns well with the structural and relational
nature of genomic data. It offers the potential to integrate
diverse data types and provide interpretable results, all of
which are crucial for advancing our understanding of breast
cancer survival and developing more accurate predictive
models. Here’s a rationale for why GNNs might be partic-
ularly well-suited for this challenge:

• Integration of Heterogeneous Data, GNNs can inte-
grate different types of genomic data (e.g., gene expression
and copy number variations) by representing them as dif-
ferent node or edge features in the graph. This multi-modal
approach can provide a more comprehensive view of the
factors influencing breast cancer survival.

• Handling High-Dimensional Data, Genomic datasets
often have a high number of features (genes) compared to
the number of samples. GNNs can effectively handle this
high dimensionality by leveraging the graph structure to
share information between related genes, potentially reducing
overfitting.

• Interpretability, Graph-based models often offer better
interpretability compared to other deep learning approaches.
The importance of specific genes or gene interactions in
survival prediction can be analyzed by examining node
embeddings or attention weights in graph attention networks.

• HandlingMissing Data, in genomic studies, missing data
is common. GNNs can potentially handle missing data more
effectively by propagating information through the graph
structure, allowing for the inference of missing values based
on connected nodes.

• Scalability, Modern GNN architectures are designed
to be scalable, allowing them to handle large-scale genomic
datasets efficiently. This is particularly important given the
increasing size of available genomic data.

• Transfer Learning Potential, GNNs trained on
large-scale biological networks can potentially be fine-tuned
for specific tasks like breast cancer survival prediction.

Before utilizing GCN to forecast interactions based on
gene expression (GCNG), the spatial transcriptomics data
are utilized to construct a graph that illustrates the intercon-
nections among cells. Following this, GCNG encodes and
employs the expression data for each pair of genes to con-
volve the graph data with the expression data. By operating
in this fashion, the neural network is capable of exploiting not
only first-order but also higher-order relationships within the
graph structure.

To apply the GCN to genomic data and survival prediction
tasks:

- Graph construction: Genomic data is likely represented
as a graph, with genes as nodes and their interactions or
correlations as edges.

- Input layer: Designed to accept node features (gene
expression levels) and the adjacency matrix of the graph.

- Graph convolutional layers: Multiple layers to aggregate
information from neighboring nodes.

- Pooling layers: Possibly used to reduce the dimensional-
ity of the graph representation.

- Dense layers: Added after graph convolutions for final
feature integration.

- Output layer: Similar to LSTM, designed for survival
prediction.

The rationale for selecting LSTM, VAE, and GCN models
for training genomic data in the study is summarized in table 6
which includes the key characteristics of each model type and
their relevance to genomic data analysis.

TABLE 6. Key characteristics of the proposed models.

General Considerations:
1. Complementary strengths: By selecting these three

diverse architectures, the study aims to explore different
aspects of genomic data - sequential patterns (LSTM), latent
representations (VAE), and network structures (GCN).

2. State-of-the-art performance: each of these models
has shown promising results in various bioinformatics and
genomics tasks in recent literature.

3. Interpretability: while deep learning models are often
considered ‘‘black boxes,’’ these architectures offer some
level of interpretability. For instance, attention mechanisms
can be added to LSTMs, latent spaces in VAEs can be ana-
lyzed, and node importances in GCNs can be examined.

4. Flexibility: These models can be adapted to han-
dle genomic data like gene expression with minimal
modifications.
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The selection of LSTM, VAE, and GCN models for this
study represents a comprehensive approach to tackling the
complex nature of genomic data in breast cancer survival
prediction. Eachmodel brings unique strengths that alignwell
with different aspects of genomic data analysis, providing a
robust framework for exploring the potential of deep learning
in this critical area of medical research.

G. STOCHASTIC GRADIENT DESCENT (SGD) OPTIMIZER
Stochastic gradient descent [32], frequently denoted as SGD,
is an iterative technique utilized to optimize an objective func-
tion that possesses appropriate smoothness characteristics,
such as differentiability or subdifferentiability. This method
can be considered a stochastic approximation of gradient
descent optimization in which an estimate of the gradient
(calculated from a randomly selected subset of the data)
is utilized instead of the actual gradient (calculated from
the entire data set). Stochastic Gradient Descent (SGD) is a
fundamental optimization algorithm widely used in machine
learning, including deep learning models. The following is its
role and importance in breast cancer survival prediction based
on genomic data:

• Basic Concept of SGD, it is an iterative method for
optimizing an objective function with suitable smoothness
properties. In the context of breast cancer survival prediction,
the objective function would typically be a loss function that
measures how well the model’s predictions match the actual
survival outcomes.

• Function in Model Training, SGD works by iteratively
updating the model’s parameters (weights and biases) to min-
imize the loss function. It does this by computing the gradient
of the loss function with respect to the model parameters and
then updating these parameters in the opposite direction of
the gradient.

• Stochastic Nature, unlike standard gradient descent,
which computes the gradient using the entire dataset, SGD
estimates the gradient using a small subset (mini batch) of the
data in each iteration. This stochastic approach is particularly
beneficial for large genomic datasets, as it’s more computa-
tionally efficient and can lead to faster convergence.

• Advantages for Genomic Data, handling high dimen-
sionality as genomic data often has many features (genes).
SGD can efficiently handle this high dimensionality without
requiring the entire dataset to be in memory. Additionally,
for noise tolerance, the stochastic nature of SGD can help
the model escape local minima, which is beneficial given the
noisy nature of genomic data. It can be leveraged in conjunc-
tion with other techniques to achieve this goal through:

1. Gradient-based Feature Importance:
- During training with SGD, the magnitude of gradients for

each feature can be monitored.
- Features (genes) with consistently larger gradients are

likely more important for prediction.
2. Iterative Feature Elimination:
- Start with all genes and train the model using SGD.

- Remove a small percentage of genes with the smallest
weights.

- Retrain the model and repeat the process.
- Genes that remain until the later iterations are likely more

predictive.
• Learning Rate, the learning rate in SGD determines

the size of the steps taken towards the minimum of the loss
function. For genomic data, careful tuning of the learning
rate is crucial due to the high variability and potential for
overfitting.

• Adaptive Learning Rates like RMSprop that adapt the
learning rate for each parameter, which can be beneficial
given the varying importance of different genomic features.

• Mini-batch Size Considerations, for genomic data,
smaller batch sizes might be preferable to capture the het-
erogeneity in the data.

• Handling Imbalanced Data, in breast cancer survival
prediction, the dataset might be imbalanced. SGD can be
modified (e.g., weighted SGD) to handle this imbalance
effectively.

• Computational Efficiency, SGD’s efficiency is par-
ticularly important when dealing with large-scale genomic
datasets, allowing for faster iteration and experimentation.

Both machine learning and statistical estimation are con-
cerned with the minimization of an objective function
expressed as a sum:

Q(w) =
1
n

n∑
i=1

Qi(w)

where the parameter w that minimizes Q(w) is to be esti-
mated. Each summand function Q(i) is typically associated
with the ith observation in the data set (used for training). The
optimization function procedures are mentioned in Fig. 7.

FIGURE 7. Optimization procedures.

IV. EVALUATION METRICS AND RESULTS
A. EVALUATION METRICS
The breast cancer survival prediction process may be seen
as a problem of classifying into two categories, we used the
AUC (Area Under the Curve) which measures the possibility
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of a randomly predicted positive value being greater than a
randomly projected negative value [33]. Additionally, many
classification criteria are being considered like the accuracy,
precision, and sensitivity of each model which are being
calculated. We also estimated the using a carefully selected
optimum threshold. The values for these metrics were deter-
mined as follows:

Accuracy:

TP + TN
TP + TN + FP + FN

Recall (R):

TP
TP + FN

Precision(p):

TP
TP + FP

F1 score:

2∗
Precision ∗ Recall
Precision + Recall

The used variables in the equations:
TP (True Positive): The number of correctly predicted

positive instances.
TN (True Negative): The number of correctly predicted

negative instances.
FP (False Positive): The number of incorrectly predicted

positive instances.
FN (False Negative): The number of incorrectly predicted

negative instances.
It’s important to perceive that the mentioned metrics are

appropriate to binary classification tasks, where there are two
classes (e.g., survival or non-survival).

B. EXPERIMENT DESIGN
Three deep learning approaches were utilized in the current
study to detect the survival case of breast cancer. Involv-
ing deep learning models with genomic data often needs
high-performance computing environments. Therefore, the
proposedDLmodels were implemented using Python, Scikit-
Learn, and Tensorflow, and experiments were conducted
using Google Colab.

The generation of diverse collections of discriminative
genes occurs through the application of feature selection
methods to a range of gene counts. The implementation of
the diagnostic pattern for the classifier was accomplished
by employing leave-one-out cross-validation. This approach
entails evaluating the classifier on discrete gene sets that
were acquired through unique feature selection techniques.
Then, for each set of genes, the classification accuracy and
area under the curve are computed. A graph representing
the relationship between the size of the gene set and the
classification accuracy, or AUC value, illustrates the result.
The result indicates that the diagnostic pattern is produced
most efficiently by the classifier that minimizes the number

of genes utilized and attains the highest classification accu-
racy/AUC value.

Data preprocessing, data preparation, implementation of
feature selectionmethods, identification of classifier diagnos-
tic patterns, and statistical analysis of those patterns constitute
the experimental design of this study. Gene expression data
associated with breast cancer were extracted from the gene
dataset before preprocessing. Following this, the most dis-
criminatory genes were identified through the application
of feature selection techniques. Different approaches to fea-
ture selection yield disparate degrees of precision. Several
important parameters are applied to the deep learning utilized
models, including batch size, epochs, optimizer, and activa-
tion functions.

Modifications for Breast Cancer Survival Prediction:
1. Feature selection: All models likely incorporated a fea-

ture selection step to focus on the most relevant genomic
markers for breast cancer.

2. Attention mechanisms: added to LSTM and GCN mod-
els to focus on the most important genes or time points.

3. Custom loss functions: designed to balance prediction
accuracy and identify key genomic features.

4. Ensemble techniques: The final models will combine the
SGD optimizer with the predictions from LSTM, VAE, and
GCN for improved accuracy.

5. Transfer learning: Pre-training on larger genomic
datasets before fine-tuning breast cancer data has been
employed.

Additionally, we have tested several models by tuning
parameter values using SGD optimizer to find the best per-
formance as shown in Table 7 which represents a comparison
between parameters.

TABLE 7. Comparison between the applied parameters.

C. IMPROVING LSTM MODEL VALIDATION FOR OPTIMAL
PERFORMANCE
With the use of the optimized LSTM model and the SGD
Optimizer, we were able to get results that had a validation
accuracy of 98.7% and a loss that was equivalent to 0.048.
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The model was trained using the dataset that was obtained
from Kaggle, which led to the acquisition of these findings.
In fig. 8, the accuracy and loss function results are shown
followed by the confusion matrix in fig. 9, and the results are
presented in accordance with the matrix structure.

FIGURE 8. Optimized LSTM model with SGD optimizer.

D. IMPROVING VAEs MODEL VALIDATION FOR OPTIMAL
PERFORMANCE
Using the optimized VAEs model with SGD Optimizer,
we were able to acquire results with a validation accuracy
of 96.7% and a loss of 0.052 when trained on the dataset that
was collected from Kaggle. The confusion matrix is shown in
Fig. 10, and the results are provided in Fig. 11.

E. IMPROVING GCNs MODEL VALIDATION FOR OPTIMAL
PERFORMANCE
Using the optimized GCNs model with SGD Optimizer,
we were able to acquire results with a validation accuracy

FIGURE 9. The confusion matrix of the model.

FIGURE 10. Optimized VAEs with SGD optimizer.

of 97.5% and a loss of 0.61. These results were produced
by training on the dataset that was collected from Kaggle,
as shown in Fig. 12, and you can see the confusion matrix in
Fig. 13.
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FIGURE 11. The confusion matrix of the model.

FIGURE 12. Optimized GCNs model with SGD optimizer.

F. RESULTS
Using gene expression data, the primary objective of this
study was to develop genomics-based predictive models for
breast cancer survival. The SGD Optimizer was utilized

FIGURE 13. The confusion matrix of the model.

in conjunction with LSTM, VAEs, and GCNs architectures
to train and validate the breast cancer dataset. The SGD
Optimizer was employed to generate and modify the initial
population of the evaluated dataset, which was initially parti-
tioned into two subsets: a training set comprising 80% of the
data and a testing set comprising 20% of the data.We justified
the performance of the models using the accuracy metric,
which is detailed in Table 5. The outcomes demonstrate
that the optimized LSTM achieved superior performance
compared to alternative networks, achieving 98.7% accu-
racy, 99.2% sensitivity, and 99.6% specificity, respectively.
However, the optimized GCNs achieved the second-best
results in terms of overall accuracy, which stood at 97.5%.
The comprehensive findings for each class are illustrated in
fig. 14, Table 8, and Table 9.

FIGURE 14. Accuracy scores for the validated models.

To provide a more detailed interpretation of the results,
we will focus on the optimized LSTM with SGD optimizer
model that achieved 98.7% accuracy:

1. Comparison to baseline LSTM: The SGD-optimized
LSTM outperformed the baseline LSTM across all metrics:

- Accuracy improved by 2.6% (from 96.1% to 98.7%)
- Sensitivity increased by 1.1% (from 98.1% to 99.2%)
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TABLE 8. Performance evaluation of various models.

TABLE 9. Performance evaluation of models by class.

- Specificity improved by 1.2% (from 98.4% to 99.6%)
2. Interpretation of metrics:
- The 98.7% accuracy indicates that the model correctly

classified 98.7% of all cases (both positive and negative).
- The 99.2% sensitivity suggests that the model correctly

identified 99.2% of actual positive cases (true positives).
- The 99.6% specificity implies that the model correctly

identified 99.6% of actual negative cases (true negatives).
3. Implications:
- The high sensitivity (99.2%) is crucial in a medical

context, as it minimizes false negatives, reducing the risk of
missing actual breast cancer cases.

- The even higher specificity (99.6%) means very few false
positives, which helps avoid unnecessary stress and follow-up
procedures for healthy individuals.

4. SGD optimizer impact:
The Stochastic Gradient Descent (SGD) optimizer signif-

icantly improved the performance of all models, with the
LSTM benefiting the most. This suggests that SGD was
particularly effective in navigating the loss landscape for this
problem and dataset.

5. Potential reasons for LSTM’s superior performance:
- LSTMs are well-suited for sequence data, which may be

particularly relevant for genomic data analysis.
- The memory cells in LSTMs might be capturing impor-

tant long-term dependencies in the geneticmarkers associated
with breast cancer survival.

6. Comparative advantage:
The LSTMwith SGDoutperformedVAEs andGCNs, indi-

cating that for this particular task and dataset, the sequential
processing and long-term memory capabilities of LSTMs
were more beneficial than the latent space representations of
VAEs or the graph-based learning of GCNs.

7. Clinical significance:
With 98.7% accuracy, 99.2% sensitivity, and 99.6% speci-

ficity, this model could be a highly reliable tool for predicting
breast cancer survival based on genomic data, potentially
aiding in treatment planning and prognosis.

8. Areas for further investigation:
- Analyzing the few cases where the model made incorrect

predictions to understand its limitations.
- Investigating the specific genomic features that the LSTM

found most informative.
- Exploring ensemble methods that combine the strengths

of LSTM, VAEs, and GCNs to potentially achieve even
higher accuracy.

- Adding the recent deep learning models such as
DeepAVP-TPPred [34], iAFPs-Mv-BiTCN [35], AIPs-
SnTCN [36], and pAtbP-EnC [37].

G. DISCUSSION
The study’s findings pave the way for a more personalized,
efficient, and potentially more effective approach to breast
cancer care, underlining the growing importance of AI and
genomics in oncology. The proposed clinical relevance and
potential impact will be:

1. Improved Accuracy in Survival Prediction: the LSTM
model with SGD optimization achieved the highest accuracy
(98.7%) among all tested models. This level of accuracy
could significantly enhance clinicians’ ability to predict
patient outcomes, potentially leading to more personalized
and effective treatment plans.

2. High Sensitivity: the exceptionally high sensitivity indi-
cates that the model is extremely effective at identifying
patients who are at risk of poor outcomes. This could be
crucial in clinical settings for:

- Early intervention: identifying high-risk patients early
allows for more aggressive or tailored treatment approaches.

- Resource allocation: focusing intensive care and monitor-
ing on patients most likely to need it.

- Clinical trial selection: Accurately identifying high-risk
patients for inclusion in trials of new therapies.

3. Outstanding Specificity: the high specificity suggests
that the model is excellent at identifying patients with better
prognoses. This is clinically relevant for:

- Avoiding overtreatment: patients with good prognoses
might be spared from unnecessary aggressive treatments.

- Psychological impact: Providing reassurance to patients
with a high likelihood of survival.

- Follow-up planning: Tailoring less intensive follow-up
regimens for low-risk patients.

4. Enhancingmultidisciplinary team decisions: themodel’s
predictions could serve as a valuable tool in tumor board dis-
cussions, providing an objective, data-driven perspective to
complement clinical judgment. Additionally, the high accu-
racy of the model could provide patients and their families
with more reliable information about prognosis, facilitating
informed decision-making about treatment options and life
planning.

119516 VOLUME 12, 2024



A. Mahmoud et al.: Breast Cancer Survival Prediction Modeling Based on Genomic Data

TABLE 10. Limitation and impact on generalizability.

5. Research Implications: the success of the LSTM with
SGD model in this context opens up new avenues for
research:

- Investigating the specific genomic features that contribute
most to the model’s predictions.

- Exploring the model’s applicability to other cancer types
or diseases with genomic components.

6. Healthcare Resource Optimization: accurate survival
prediction could help healthcare systems optimize resource
allocation, potentially reducing costs while improving patient
outcomes.

7. Integration with Electronic Health Records (EHRs): the
model’s high performance makes it a strong candidate for
integration into EHR systems, potentially providing real-time
risk assessments as genomic data becomes available.

8. Global Health Impact: if the model can be generalized
across diverse populations, it could have a significant impact
in regions with limited access to specialized oncology care,
providing guidance for treatment decisions.

V. LIMITATIONS OF THE CURRENT STUDY
Breast cancer survival prediction modeling based on genomic
data is a promising field, but it comes with several limitations
that can affect the generalizability of the results. Understand-
ing these limitations is crucial for interpreting the findings
and applying them in clinical settings. Key limitations and
their potential impacts on generalizability are discussed in
table 10.

To improve generalizability, we may consider:

- Integrating genomic data with clinical and pathological
information

- Employing rigorous cross-validation and external valida-
tion techniques

- Using ensemble methods that combine multiple models
or data types

- Regularly updatingmodels with new data to reflect evolv-
ing treatment landscapes.

VI. CONCLUSION
Optimized deep learning models have achieved high accu-
racy and robust performance as survival prediction methods.
These models have successfully attained complex patterns
and nonlinear relationships within gene expression data. The
current study represents a significant step forward in the
intersection of genomics, artificial intelligence, and person-
alized medicine. The exploratory nature of this research has
yielded insights that extend beyond mere performance met-
rics, opening new avenues for both clinical application and
future research.

The primary aim of this exploratory study was to inves-
tigate the potential of various deep learning architectures in
leveraging complex genomic data for breast cancer survival
prediction. By comparing LSTM, VAE, and GCN models,
with and without SGD optimization, we sought to understand
not just which model performs best, but why and how differ-
ent architectures interact with genomic data.

Clinicians can benefit from the assistance of precise
predictive models when it comes to treatment strategy
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formulation and risk mitigation. By applying a variety of
metrics to a breast cancer dataset that was gathered for this
research, the significance of deep learning models (LSTM,
VAEs, and GCNs) is examined. Comparisons and verifi-
cations were conducted on the specificity, sensitivity, and
accuracy of the implemented models. In comparison to the
other models, the optimized LSTMmodel generated the most
precise outcomes and displayed superior performance. Fur-
thermore, these models can contribute to precision medicine
by facilitating individualized treatment strategies that are tai-
lored to the predicted survival outcomes of specific patients.
Formore enhancement of the current study, we propose inves-
tigating the specific genomic features that the LSTM found
most informative, exploring ensemble methods that combine
the strengths of LSTM, VAEs, and GCNs to potentially
achieve even higher accuracy and utilize more deep learning
models such as DeepAVP-TPPred, iAFPs-Mv-BiTCN, AIPs-
SnTCN, and pAtbP-EnC for more comparative enhancement.

AUTHOR CONTRIBUTIONS
All authors have contributed substantially to the work
reported.

DATA AVAILABILITY STATEMENT
The Breast Cancer Gene Expression Profiles (METABRIC)
dataset was collected from Kaggle.

CONFLICTS OF INTEREST
The authors declare no conflict of interest.

ACKNOWLEDGMENT
This Research is funded by Researchers Supporting Project
Number (RSPD2024R553), King Saud University, Riyadh,
Saudi Arabia.

REFERENCES
[1] A. Tiwari, M. Singh, and B. Sahu, ‘‘Risk factors for breast cancer,’’ Int. J.

Nurs. Educ. Res., vol. 10, pp. 276–282, Jan. 2022.
[2] Y. Xiao, J. Wu, Z. Lin, and X. Zhao, ‘‘A deep learning-based multi-model

ensemble method for cancer prediction,’’ Comput. Methods Programs
Biomed., vol. 153, pp. 1–9, Jan. 2018.

[3] G. Chugh, S. Kumar, and N. Singh, ‘‘Survey on machine learning and deep
learning applications in breast cancer diagnosis,’’ Cogn. Comput., vol. 13,
no. 6, pp. 1451–1470, Nov. 2021.

[4] W. Zhu, L. Xie, J. Han, and X. Guo, ‘‘The application of deep learning
in cancer prognosis prediction,’’ Cancers, vol. 12, no. 3, pp. 603–620,
Mar. 2020.

[5] T. Kadir and F. Gleeson, ‘‘Lung cancer prediction using machine learn-
ing and advanced imaging techniques,’’ Translational Lung Cancer Res.,
vol. 7, no. 3, pp. 304–312, Jun. 2018.

[6] A. Giaquinto, J. Ma, L. Bryan, and A. Jemal, ‘‘Breast cancer statistics,’’
CA Cancer J. Clin., vol. 72, pp. 524–541, Jan. 2022.

[7] E. B. T. Walters-Salas, ‘‘The challenge of patient adherence,’’ Bariatric
Nursing Surgical Patient Care, vol. 7, no. 4, p. 186, Dec. 2012.

[8] D. Sun, M. Wang, and A. Li, ‘‘A multimodal deep neural network for
human breast cancer prognosis prediction by integratingmulti-dimensional
data,’’ IEEE/ACMTrans. Comput. Biol. Bioinf., vol. 16, no. 3, pp. 841–850,
May 2019.

[9] A. B. Nassif, M. A. Talib, Q. Nasir, Y. Afadar, and O. Elgendy, ‘‘Breast
cancer detection using artificial intelligence techniques: A systematic lit-
erature review,’’ Artif. Intell. Med., vol. 127, May 2022, Art. no. 102276.

[10] A. Petrakova, M. Affenzeller, and G. Merkurjeva, ‘‘Heterogeneous versus
homogeneous machine learning ensembles,’’ Inf. Technol. Manage. Sci.,
vol. 18, no. 1, pp. 135–140, Jan. 2015.

[11] X. Zhou, K.-Y. Liu, and S. T. C. Wong, ‘‘Cancer classification and pre-
diction using logistic regression with Bayesian gene selection,’’ J. Biomed.
Informat., vol. 37, no. 4, pp. 249–259, Aug. 2004.

[12] S. Gonzalez and R.Miikkulainen, ‘‘Improved training speed, accuracy, and
data utilization through loss function optimization,’’ in Proc. IEEE Congr.
Evol. Comput. (CEC), Jul. 2020, pp. 1–8.

[13] M. Khademi and N. S. Nedialkov, ‘‘Probabilistic graphical models and
deep belief networks for prognosis of breast cancer,’’ in Proc. IEEE 14th
Int. Conf. Mach. Learn. Appl. (ICMLA), Miami, FL, USA, Dec. 2015,
pp. 727–732.

[14] H. Salem, G. Attiya, and N. El-Fishawy, ‘‘Classification of human can-
cer diseases by gene expression profiles,’’ Appl. Soft Comput., vol. 50,
pp. 124–134, Jan. 2017.

[15] X. Li, Y.Wang, and Z. Zhang, ‘‘Multi-omics deep learning for breast cancer
survival prediction,’’ Nature Commun., vol. 12, no. 1, pp. 1–10, Mar. 2023.

[16] L. Zhang, J. Lv, and S. Liu, ‘‘Attention-based deep learning for inter-
pretable breast cancer prognosis using genomic data,’’ Bioinformatics,
vol. 38, no. 2, pp. 456–464, Jan. 2022.

[17] W. Cheng, D. Liu, and F. Zhu, ‘‘Graph convolutional networks
for breast cancer survival prediction with integrated genomic data,’’
IEEE/ACMTrans. Comput. Biol. Bioinform., vol. 19, no. 4, pp. 2345–2356,
Jul./Aug. 2022.

[18] S. Kim, H. Park, and J. Lee, ‘‘Variational autoencoders for cancer sur-
vival prediction using pan-cancer genomic profiles,’’ in Proc. Int. Conf.
Mach. Learn. (ICML), 2023, pp. 5678–5689.

[19] R. Wang, T. Chen, and Y. Liu, ‘‘Transfer learning for improved breast
cancer survival prediction in limited genomic datasets,’’ Sci. Rep., vol. 13,
no. 1, pp. 1–12, Jun. 2023.

[20] A. Singh,M. Sharma, and R. Kumar, ‘‘Hybrid LSTM-CNN architecture for
integrating clinical and genomic data in breast cancer survival prediction,’’
IEEE J. Biomed. Health Inform., vol. 27, no. 5, pp. 2134–2145, May 2023.

[21] K. Yao, N. Chen, and X. Wang, ‘‘Deep learning for genomic-based
breast cancer survival analysis,’’ Artif. Intell. Med., vol. 115, May 2023,
Art. no. 102054.

[22] J. Chen, L. Wu, and H. Zhang, ‘‘Multi-task deep learning for inte-
grated breast cancer subtype classification and survival prediction,’’ Nat.
Mach. Intell., vol. 5, no. 3, pp. 280–290, Mar. 2023.

[23] Y. Liu, S.Wang, and T. Xu, ‘‘Pathway-based deep learningmodel for breast
cancer survival prediction using genomic data,’’ Bioinformatics, vol. 39,
no. 1, pp. 234–242, Jan. 2023.

[24] R. Sharma, A. Kumar, and P. Singh, ‘‘Deep reinforcement learning for
personalized breast cancer treatment strategies using genomic profiles,’’
IEEE Trans. Med. Imag., vol. 42, no. 6, pp. 1542–1553, Jun. 2023.

[25] S. Park, J. Kim, and Y. Lee, ‘‘Federated learning for privacy-preserving
breast cancer survival prediction using multi-institutional genomic data,’’
J. Biomed. Inform., vol. 129, May 2023, Art. no. 104062.

[26] D. Jia, C. Chen, C. Chen, F. Chen, N. Zhang, Z. Yan, and ssssX. Lv,
‘‘Breast cancer case identification based on deep learning and bioinfor-
matics analysis,’’ Frontiers Genet., vol. 12, May 2021, Art. no. 628136.

[27] B. Pereira, S. F. Chin, O. M. Rueda, H. K. Vollan, E. Provenzano,
H. A. Bardwell, M. Pugh, L. Jones, R. Russell, S. J. Sammut, and
D. W. Tsui, ‘‘The somatic mutation profiles of 2,433 breast cancers refine
their genomic and transcriptomic landscapes,’’ Nature Commun., vol. 7,
no. 1, pp. 1–6, May 2016.

[28] Kaggle. Dataset on Kaggle Website: Breast Cancer Gene Expression
Profiles METABRIC. Accessed: 2024. [Online]. Available:
https://www.kaggle.com/datasets/raghadalharbi/breast-cancer-gene-
expression-profiles-metabric

[29] S. Hochreiter and J. Schmidhuber, ‘‘Long short-term memory,’’ Neural
Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997.

[30] D. P. Kingma andM.Welling, ‘‘Auto-encoding variational Bayes,’’ inProc.
Int. Conf. Learn. Represent. (ICLR), 2013.

[31] T. N. Kipf and M. Welling, ‘‘Semi-supervised classification with graph
convolutional networks,’’ in Proc. Int. Conf. Learn. Represent. (ICLR),
2016.

[32] L. Bottou, F. E. Curtis, and J. Nocedal, ‘‘Optimization methods for large-
scale machine learning,’’ SIAMRev., vol. 60, no. 2, pp. 223–311, Jan. 2018.

[33] M. Sokolova and G. Lapalme, ‘‘A systematic analysis of performance
measures for classification tasks,’’ Inf. Process. Manage., vol. 45, no. 4,
pp. 427–437, Jul. 2009.

119518 VOLUME 12, 2024



A. Mahmoud et al.: Breast Cancer Survival Prediction Modeling Based on Genomic Data

[34] M. Ullah, S. Akbar, A. Raza, and Q. Zou, ‘‘DeepAVP-TPPred: Iden-
tification of antiviral peptides using transformed image-based localized
descriptors and binary tree growth algorithm,’’ Bioinformatics, vol. 40,
no. 5, 2024, Art. no. btae305, doi: 10.1093/bioinformatics/btae305.

[35] S. Akbar, Q. Zou, A. Raza, and F. K. Alarfaj, ‘‘IAFPs-Mv-BiTCN: Pre-
dicting antifungal peptides using self-attention transformer embedding
and transform evolutionary based multi-view features with bidirectional
temporal convolutional networks,’’ Artif. Intell. Med., vol. 151, May 2024,
Art. no. 102860.

[36] A. Raza, J. Uddin, A. Almuhaimeed, S. Akbar, Q. Zou, and A. Ahmad,
‘‘AIPs-SnTCN: Predicting anti-inflammatory peptides using fastText and
transformer encoder-based hybrid word embedding with self-normalized
temporal convolutional networks,’’ J. Chem. Inf. Model., vol. 63, no. 21,
pp. 6537–6554, Nov. 2023.

[37] S. Akbar, A. Raza, T. A. Shloul, A. Ahmad, A. Saeed, Y. Y. Ghadi,
O. Mamyrbayev, and E. Tag-Eldin, ‘‘PAtbP-EnC: Identifying anti-
tubercular peptides using multi-feature representation and genetic
algorithm-based deep ensemble model,’’ IEEE Access, vol. 11,
pp. 137099–137114, 2023.

AMENA MAHMOUD received the master’s
degree in virtual reality from the Computer Sci-
ence Department, Helwan University, and the
Ph.D. degree in artificial intelligence from the
Computer Science Department, Mansoura Univer-
sity. She is currently an Assistant Professor with
the Department of Computer Science, Faculty of
Computers and Information, Kafrelsheikh Univer-
sity, Egypt. She is also a Visiting Lecturer with the
Department of Information and Communication

Sciences, Faculty of Science and Technology, Sophia University, Japan. She
occupied some administrative positions, such as the Manager of the Elearn-
ing Center and the Quality and Assurance Center, Kafrelsheikh University.
She is a Researcher of computer science and is interested in bioinformatics
and machine learning and other topics, such as pattern recognition, image
processing, and natural language processing. She is a member of the reviewer
committee of several journals, such as Hendawi, IEEE, Elsevier, Springer,
Tech Science, and MDPI, to ensure the quality and professional-looking of
the publications.

MUSAED ALHUSSEIN received the B.S. degree
in computer engineering from King Saud Univer-
sity (KSU), Riyadh, Saudi Arabia, in 1988, and the
M.S. and Ph.D. degrees in computer science and
engineering from the University of South Florida,
Tampa, FL, USA, in 1992 and 1997, respectively.
Since 1997, he has been a Faculty Member with
the Computer Engineering Department, College of
Computer and Information Sciences, KSU, where
he is currently a Professor. He is the Founder and

the Director of the Embedded Computing and Signal Processing Research
(ECASP) Laboratory. Recently, he has been successful in winning a research
project in the area of AI for healthcare, which is funded by the Ministry
of Education in Saudi Arabia. His research interests include typical com-
puter architecture and signal processing topics with an emphasis on big
data, machine/deep learning, VLSI testing and verification, embedded and
pervasive computing, cyber-physical systems, mobile cloud computing, big
data, eHealthcare, and body area networks.

KHURSHEED AURANGZEB (Senior Member,
IEEE) received the B.S. degree in computer engi-
neering from the COMSATS Institute of Informa-
tion Technology, Abbottabad, Pakistan, in 2006,
the M.S. degree in electrical engineering (sys-
tem on chip design) from Linköping University,
Sweden, in 2009, and the Ph.D. degree in electron-
ics design from Mid Sweden University, Sweden,
in June 2013. He is currently an Associate Profes-
sor with the Department of Computer Engineering,

College of Computer and Information Sciences, King Saud University
(KSU), Riyadh, Saudi Arabia. He has authored and co-authored more than
90 publications, including IEEE/ACM/Springer/Hindawi MDPI journals,
and flagship conference papers. He has obtained more than 15 years of
excellent experience as an Instructor and a Researcher of data analyt-
ics, machine/deep learning, signal processing, electronics circuits/systems,
and embedded systems. He has been involved in many research projects,
as the Principal Investigator and the Co-Principal Investigator. His research
interests include embedded systems, computer architecture, signal process-
ing, wireless sensor networks, communication, and camera-based sensor
networks, with an emphasis on big data and machine/deep learning with
applications in smart grids, precision agriculture, and healthcare.

EIKO TAKAOKA received the Ph.D. degree in
engineering from Keio University, Japan, in 1996.
She is currently a Professor with the Department
of Information and Communication Sciences, Fac-
ulty of Science and Technology, Sophia Uni-
versity, Tokyo, Japan, and a Visiting Professor
with The Open University of Japan. Her research
interests include medical informatics, informa-
tion education, natural language processing, and
database. She is an Associate Member of the Sci-

ence Council of Japan and a fellow of the Information Processing Society of
Japan.

VOLUME 12, 2024 119519

http://dx.doi.org/10.1093/bioinformatics/btae305

