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ABSTRACT Orthogonal time frequency space (OTFS) modulation is introduced as a modulation technique
known for its strong performance in high-Doppler scenarios. This two-dimensional modulation method
involves multiplexing information symbols in the delay-Doppler (DD) domain. This study presents a deep
learning (DL) based signal detection for OTFS non-orthogonal multiple access (NOMA) communication
networks. In this work, the OTFS known as a popular sixth-generation (6G) candidate solution with enhanced
spectral efficiency in high-mobility environments, is combined with NOMA over Rayleigh fading channels.
In addition, a DL-based signal detection approach for the OTFS-NOMA scheme is proposed, where the
network is trained to distinguish and decode the signals effectively. This enhances the overall system
performance and paves the way for more efficient and reliable communication in high-mobility wireless
environments. In our study, signal recovery employs a bidirectional long short-term memory (BiLSTM)
network. The comparison of the message passing (MP) algorithm and the BiLSTM technique regarding
symbol error rate (SER) performance for detecting signals over near and far users is evaluated. Furthermore,
we examine the impact of the three common optimizers on the SER achievement for training optimizer
selection. Moreover, the numerical results show that the root mean squared propagation (RMSprop)
outperforms the other optimizer selection techniques regarding SER. Finally, the performance of the
BiLSTM technique is observed to be better than that of the MP, except for the stochastic gradient descent
(SGD) optimizer. RMSprop and the adaptive momentum optimizer (Adam) yield a maximum training
accuracy of 99.9%.

INDEX TERMS BiLSTM, deep neural networks, delay-Doppler domain, OTFS-NOMA, RMSprop
optimizer.

I. INTRODUCTION
The sixth-generation (6G) wireless network is required to
support high-quality wireless communication service for
high-mobility environments, such as unmanned aerial vehicle
(UAV) communications, high-speed railways, and vehicle-to-
vehicle communications [1]. Orthogonal frequency division
multiplexing (OFDM) is an important waveform utilized
in broadband wireless communication systems similarly,
digital subscriber line (DSL), fourth-generation (4G) long-
term evaluation (LTE), and fifth-generation (5G) networks.

The associate editor coordinating the review of this manuscript and

approving it for publication was Frederico Guimarâes .

Nonetheless, because the orthogonality of OFDM is dis-
rupted, intercarrier interference (ICI) occurs in such envi-
ronments due to high Doppler. Although the subcarrier
bandwidth of OFDM is flexible in the 5G, it is still limited
due to several other constraints to adjust to the conditions of
the wireless communication channels [2], [3], [4].

In order to solve the limitation of OFDM, a solution
acknowledged orthogonal time frequency space (OTFS) has
been developed in recent years. A systematic analysis of the
considerable performance advantages of OTFS over OFDM
was carried out in the literature [5]. The new concept converts
time-varying channels into equivalent time-invariant sparse
expressions. OTFS sends data symbols in the delay-Doppler
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TABLE 1. Summary of the existing literature related to signal detection.

(DD) domain while OFDM utilizes the time-frequency (TF)
domain. It is known that the DD domain may generate
sparse portrayals over time-varying channels, resulting in a
considerable improvement in bit error rate (BER) success
in the OTFS approach. The sparsity can also be adjusted to
refine signal detection and channel estimation [6], [7], [8].

The multiple access mechanism used in an OTFS system
with multiple users is an important aspect. The approaches
proposed in the literature are classified as orthogonal
and non-orthogonal multiple access (OMA and NOMA)
techniques [9], [10]. Users are multiplexed in the DD domain
in OTFS-OMA and just a single user is allowed to use one
particular resource block at a time. Owing to the Doppler
spread, the users experienced multi-user interference (MUI)
which can be minimized by guard-bands addition. However,
this situation has a negative effect on spectral efficiency
(SE) [11]. OTFS-NOMA is an alternative method that allows
users to share the same source block, and to multiplex in
the code or the power domain [12]. NOMA is a well-known
approach that can provide better SE than OMA and is
recognized as a potential procedure for improving spectrum
utilization and user connectivity. In recent years, a variety
of OTFS-NOMA methods that use either code domain [13]
or power-domain [14] have been recommended in the
literature. Power-domain NOMA approaches which employ
successive interference cancellation (SIC) and superposition
coding (SC) are proven to reach Gaussian broadcast channel
capacity.

Improving the efficiency of the OTFS-NOMA network
relies significantly on channel equalization and signal
detection. Signal detection depends on distinguishing the
transmitted symbols from noise and interference. Effective
signal detection helps in correctly identifying and decoding
the transmitted information. In general, signal detection tech-
niques are classified into linear and nonlinear detection
methods. In practical applications, linear signal detection
algorithms similarly, the linear minimum mean squared
error (LMMSE) and zero-forcing (ZF) are characterized

by a notable level of complexity [15], [16]. The Markov
chain Monte Carlo [17] and message passing (MP) [5]
algorithms are Bayesian-based nonlinear algorithms based on
the assumption that they are subject to Gaussian distributed
noise. The complexity of nonlinear algorithms is significantly
higher compared to the complexity of the LMMSE algorithm,
even though these methods can approach optimal perfor-
mance with many iterations.

With the introduction of new concepts, the demand for
much more complicated procedures expanded significantly,
and these demands do not appear to be achievable depending
on theoretical considerations [18]. Machine learning tech-
niques have tremendous potential to overcome advanced
challenges and enhance signal detection performance in
wireless communication [19]. While the sample size is large,
deep learning (DL) based algorithms are qualified to address
the issues effectively [20]. Recently, DL-based approaches
have been recognized for their value in communication net-
works. DL-based solutions can be applied to communication-
related problems, including resource allocation, channel
estimation, and signal detection. Researchers studied the
receiver’s channel equalization and demodulation approach
with a fully connected deep neural network (FC-DNN)
in the OFDM system [21]. The study reveals that the
DNN-based receiver is more dependable than the traditional
approaches. [22] suggested a long short-term memory
(LSTM) based signal detection method. In [23], the authors
used a bidirectional long short-term memory (BiLSTM)
scheme with the recurrent neural network (RNN) to detect
signals. After training, the numerical results indicate that
the model accurately traces the channels’ features and
effectively recovers signals with accuracy and robustness.
Reference [24] offers a hybrid channel estimation and
signal detection method based on DL in the OFDM-NOMA
network. By utilizing a semi-blind joint method for signal
detection and channel estimation, they demonstrate that the
proposed DL-based detector (DLD) shows advantageous
BER success in multi-user OFDM-NOMA scenarios. In [25],
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FIGURE 1. OTFS general modulation/demodulation block diagram.

the CNN with the skip connections BiLSTM technique are
introduced as a DL-aided neural network for signal detection
in underwater acoustic (UWA) OTFS communication. The
suggested method outperformed the FC-DNN, MP, and
2D-CNN signal detection algorithms in the UWA-OTFS
in terms of BER performance. [26] introduces a signal
modulation type recognition approach that utilizes feature
fusion and the ResCNN model, specifically designed for
scenarios involving fractal noise. In [27], the authors present
a novel target recognition method for carrier-free ultra-wide-
band radar where the experimental results demonstrate that
this approach significantly outperforms existing methods,
including CNN. The summary of existing surveys related to
signal detection for 5G and beyond applications is presented
in Table 1.

II. MAIN CONTRIBUTIONS
As far as observed in the literature, it can be said that there are
not many publications on the achievement improvements for
the multi-user OTFS-NOMA network. Based on the previous
considerations, the objective of the paper is to improve the
symbol error rate (SER) of multi-user OTFS-NOMA systems
through a DL-based technique. The key contributions of this
work are summarized as follows.

• First, the power-domain downlink OTFS-NOMA sys-
tems’ error rate performances have not been extensively
studied. Therefore, we investigate the OTFS-NOMA
network for high-mobility users in our article covering
channel model and system architecture with delay-
Doppler impact. We present a signal detection method

based on DL for two users downlink OTFS-NOMA over
Rayleigh fading channels.

• Next, in our studyMP algorithm and BiLSTMDL-based
method have been broadly inspected regarding NOMA
users’ SER results for signal detection. To the best
of our knowledge, this study is one of the very few
publications that proposed in DL-based signal detector
for the OTFS-NOMA network in the literature.

• Then, when the signal recovery is carried out using
a BiLSTM network, we evaluate the SER of three
common optimizers for training optimizer selection:
the stochastic gradient descent (SGD) optimizer, the
adaptive momentum (Adam) optimizer, and the root
mean square propagation (RMSprop) optimizer.

• Furthermore, extensive data has been generated by
providing the training accuracy and training loss in
detail.

The structure of the paper is formed as follows. In
Section III, the proposed OTFS-NOMA system model is
submitted. In Section IV, the MP algorithm and BiLSTM
are outlined for OTFS-NOMA signal detection. In Section V,
numerical outcomes are provided to assess the effective-
ness of the suggested DLD in downlink OTFS-NOMA.
In Section VI, discussions are presented and the study is
concluded. Finally, in the last part of the manuscript, a list
of abbreviations and acronyms used throughout the paper is
given after the VI. Conclusion Section.

III. OTFS-NOMA SYSTEM MODEL
In the OTFS-aided power domain NOMA system framework,
high-speed mobile users utilize dissimilar transmission
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power while employing the equivalent DD domain source.
Figure 1 characterizes an OTFS-assisted downlink NOMA
structure including a base station S, three reflectors, and
two destination users K = 2, namely near and far, Ui, i ∈

{1, 2}, respectively [28]. The signal, the target users get
is a consolidation of postponed, degraded, and Doppler-
shifted copies. The delay is relative to the dimension of each
propagation line. In contrast, the Doppler shift is caused by
the corresponding act of the receiver and reflectors in the
scenario where the transmitter is treated immobile.

A. TF DOMAIN AND DD DOMAIN
TF and DD domains are efficiently employed by OTFS-
NOMA [5], [29]. A discrete TF domain is obtained using the
period T for sampling and frequency interval f as shown,

3TF = {(nT ,m1f ), n = 0, · · · ,N − 1,m = 0, · · · ,M − 1},

(1)

whereN ,M > 0. As a result, the discrete DD domain is given
as

3DD = { (k/NT , l/M1f ) ,

k = 0, · · · ,N − 1, l = 0, · · · ,M − 1}, (2)

where N and M indicate the total number of time intervals
and frequency subcarriers, respectively.

B. CHANNEL MODEL
Under the presumption of a multi-user wireless commu-
nication system with K users, τ delay, and v doppler
shift, hi (τ, v) is the channel response for 1 ≤ i ≤ K
in the DD domain. Mobile channel sparsity in the DD
domain is handled to clarify channel estimation and signal
perception in OTFS. It is assumed that the propagation lines
between the sender and the end user are limited in this case.
In the DD domain, the channel impulse response is defined
as

hi(τ, v) =

Pi∑
p=1

hi,pδ
(
τ − τi,p

)
δ
(
v− vi,p

)
. (3)

The parameters Pi and τi,p stand for the number of
propagation lines between the sender and user i, respectively.
The Doppler shift in the propagation line is characterized
by vi,p, and the Dirac delta function is defined by δ.
The independent and identically distributed (i.i.d) complex
Gaussian channel gain is symbolized by hi,p ∼ CN (0, 1/Pi).
It is possible to determine the OTFS resolution of Doppler
and delay as 1/(M1f ) and 1/(NT ), respectively.We consider
M and N to be adequately large enough to disregard the
impact of delay and Doppler shift. Therefore, the indices
corresponding to discrete delay and Doppler shift taps are as
follows

τi,p = li,p/(M1f ), vi,p = ki,p/(NT ). (4)

C. GENERAL PRINCIPLES OF OTFS
In Figure 1, the OTFS general modulation/demodulation
block diagram is presented. x [k, l] is indicated as the
information bits which are transmitted as M × N quadrature
amplitude modulation (QAM) symbols. The DD domain
signal x [k, l] is then converted into the TF domain signal
X [n,m] through the inverse symplectic fast Fourier transform
(ISFFT). The s(t) signal is acquired and sent to the communi-
cation channel after the Heisenberg transformation is applied
to the X [n,m] matrix. The Wigner transform is first utilized
on the time domain signal r(t) at the receiver to generate
the TF domain signal Y [n,m]. A symplectic fast Fourier
transform (SFFT) is implemented in the demodulation
section to acquire the DD domain signal y[k, l]. Ultimately,
the signal disclosure technique is employed to detect the
signals [5].

The OTFS transmitter sends the symbols of xi[k, l] in the
DD domain, which may be defined with the Xi[n,m] signal
in the TF domain as

Xi[n,m] =
1

√
NM

N−1∑
k=0

M−1∑
l=0

xi[k, l]e
j2π

(
nk
N −

ml
M

)
, (5)

where xi[k, l] indicates the matrix for the i-th user. The
Heisenberg transform is then applied to the TF signal matrix
Xi[n,m] to generate a continuous-time signal. The signal of
the i-th NOMA user is defined

si(t) =

N−1∑
n=0

M−1∑
m=0

√
ξiαiXi[n,m]gtx(t − nT )ej2πm1f (t−nT ),

(6)

where ξi is the transmission power of i-th user, T = 1/1f is
the symbol duration and gtx(t) is the pulse shaping waveform
for transmission [29]. Here, αi defines the power allocation
(PA) coefficient and

∑K
i=0 αi = 1. Owing to the necessity for

quality of service, the far user is given high priority, α2 > α1.
The signal si(t) is sent over a channel, yielding the following
expression

ri(t) =

∫ ∫
hi(τ, v)si(t − τ )ej2πv(t−τ )dτdv+ wi(t). (7)

Herewi(t) denotes the complex additive white Gaussian noise
(AWGN) term and σ 2

i is the variance. For the i-th user,
the discrete-time signal is ri = His + wi, where wi is the
MN × 1 complex AWGN vector and Hi is the MN × MN
channel matrix of the i-th user, formed from the impulse
responses. The below cross-ambiguity function is computed
in a matched filter at the receiver, as defined in the following
equation,

Yi(t, f ) =

∫
g∗
rx

(
t ′ − t

)
ri

(
t ′
)
e−j2π f (t

′
−t)dt ′, (8)

where g∗
rx(t) indicates the received waveform. By sampling

Y (t, f ) for the i-th user, the matched filter’s output can be
given as

Yi[n,m] = Yi(t, f )|t=nT , f=m1f . (9)

119108 VOLUME 12, 2024



I. Umakoglu et al.: Deep Learning-Assisted Signal Detection for OTFS-NOMA Systems

FIGURE 2. Deep learning-aided OTFS-NOMA communication.

The Wigner transformation is represented by the above
expressions, (8) and (9). Following that, SFFT is accom-
plished on Yi[n,m] samples, and the symbols yi[k, l] are
derived in the DD domain as

yi[k, l] =
1

√
NM

N−1∑
n=0

M−1∑
m=0

Yi[n,m]e
−j2π

(
nk
N −

ml
M

)
. (10)

The received signal can be designed as follows, assuming that
the sent and received pulses are perfectly orthogonal.

Yi[n,m] = Hi[n,m]Xi[n,m] +Wi[n,m], (11)

where Wi[n,m] indicates AWGN in the TF domain. Here,
Hi(n,m) =

∫∫
hi(τ, v)ej2πvnT e−j2π (v+m1f )τdτdv. Finally,

the sent signal can be retrieved as x̂[k, l] through signal
detection and demodulation.

IV. BiLSTM-BASED SIGNAL DETECTION FOR OTFS-NOMA
In this study, we investigated two different approaches for
signal detection in the OTFS-NOMA network, namely the
MP algorithm and BiLSTM. First of all, similar to the
study mentioned in [5], we examine the MP algorithm for
OTFS-NOMA, which experienced testing within the context
of OTFS. In the MP algorithm, the messages conveyed
from observation nodes to variable nodes consist of the
mean and variance of the interference terms. Conversely,
the information transmitted from a variable node to the
observation nodes comprises the probability mass function
(pmf). A comprehensive explanation of the MP algorithm is
provided in [5].

The suggested DL-aided OTFS-NOMA communication
model is shown in Figure 2. Here, the DL network is designed
to perform signal detection, and this component is replaced
by BiLSTM. In the detection component, we presume that
the channel impulse response (CIR) is known. The suggested
DL network comprises five layers: an input layer, a BiLSTM

layer, followed by an FC layer, then a softmax layer and a
classification layer at the end. x̂1, x̂2, x̂3, x̂4 symbols for near
and far users are estimated as seen in Figure 2. The operations
within each layer are outlined as follows:

• The DL network operates using real numbers rather than
complex numbers. Hence, the input layer receives both
the in-phase (I) and quadrature (Q) components of the
received data. Subsequently, the input layer’s signal is
then conveyed to the LSTM layer.

• The LSTM layer is composed of 600 hidden cells. The
selection of the LSTM layer in this paper is based on its
capability to learn long-term relationships among time
steps in sequence and time series data.

• The signal from the LSTM layer is multiplied by a
weight matrix in the FC layer.

• In addition to the aforementioned three layers, two
layers are handled: a classification layer and a softmax
layer.

Algorithm 1 shows the proposed signal detection of the
OTFS-NOMA scheme and outlines the process of generating
the dataset for training.

The BiLSTM layer of the neural network comprises two
LSTM networks, LSTM-F and LSTM-B, that present in
opposite directions, as seen in Figure 3. The inputs are
routed into LSTM-F in a forward direction and LSTM-B in a
reverse direction. From the beginning to time t , the forward
layer does the computation. For each time step, the forward
hidden layer’s output is acquired and saved. On the time
axis, the backward layer is computed in reverse. Every time,
the backward concealed layer’s final result is retrieved and
maintained. In the end, the forward and backward layer output
values may be combined at each time to get the final output,
which can be represented as [25]

hFt = f (w1x̃t + w2ht−1) , (12)
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Algorithm 1 The Proposed Signal Detection for OTFS-
NOMA Scheme
The inputs: N ,M ,Mmode,Mbit ,Nfr , SNR, αfar , αnear

for iesn = 1 : length(SNR) do
for ifram = 1 : Nfr do

• Generate random data information bit and convert
information bit into symbols

• Modulate infosym with 4-QAM and calculate xi[k, l]
• Compute the signal of the NOMA users using αfar , αnear
in (1)

• OTFS modulation:

si(t) =

N−1∑
n=0

M−1∑
m=0

√
ξiαiXi[n,m]gtx(t − nT )ej2πm1f (t−nT )

• Generate Rayleigh channel according to taps, delay-
taps, Doppler-taps and chan-coef

• OTFS demodulation:

ri(t) =

∫ ∫
hi(τ, v)si(t − τ )ej2πv(t−τ )dτdv+ wi(t)

• Decomposition of real part and imaginary part of the
output signal r (I ) and r (Q)

• Decomposition of calculated QAM symbols x(I )i [k, l]
and x(Q)i [k, l]

end for ifram
end for iesn

• Training with deep learning model
Parameters: input r(2, 1), output x(2, 1)
# BiLSTM Classifier

for each sample in r(t) do

Calculate Forward Pass of r(t)
Calculate Backward Pass of r(t)
Calculate y(t)

end for each sample in r(t)

• Calculate loss function

L( loss ) =
1
NB

NB∑
i=1

[
x̂(i) − x(i)

]2
• Obtain OTFS-NOMA output symbols y(t) with test
model

• Compute SER = xor(y(t), infosym)
The outputs: L, SER

hBt = f (w3x̃t + w4ht+1) , (13)

xBit = ot
(
w5hFt + w6hBt

)
tanh (Ct) , (14)

where hFt , h
B
t and xBit indicate the production of the forward

and backward computation at time t , and the final output
of the BiLSTM, respectively. Here, in LSTM, Ct stands
for the cell state and ot shows the forgetting factor. x̃
defined present LSTM’s input while ht−1 and ht+1 are
the last LSTM’s output and the output of LSTM in the
reverse directions, respectively. w1,w2,w3,w4,w5,w6 are
matching weights for the variables. Here, tanh(·) indicates the
hyperbolic tangent activation function. Because BiLSTM is
capable of learning by analyzing past and future data, it is
possible to learn a better intrinsic correlation of the input
series signal. Therefore, it holds the potential to improve the
signal detection performance in OTFS-NOMA.

BiLSTM is a structure that is composed of multiple
LSTM cells. It is a form of recurrent neural network
(RNN) architecture which extends the traditional LSTM by
processing input sequences. Figure 3 also depicts the basic
architecture of the LSTM cell. In order to obtain the ft for the
cell state update, the LSTM forget gate first decides which
data to discard. After then, the input gate renovates the crucial
data it and decides which information is beneficially retained
for the candidate cell state C̄t . The status of the cell can be
defined as [22]

Ct = ftCt−1 + it C̄t . (15)

Ultimately, the output gate computes the forgetting factor
ot based on ht−1 and the input data x̃. It derives the final
output ht from ot and the cell state Ct

ot = σ (wo (ht−1, x̃t) + bo) , (16)

ht = ot tanh (Ct) , (17)

where bo exhibits ot ’s bias and wo expresses ot ’s weight.
The BiLSTM layer has a good strength to obtain time

series data interaction. Utilizing the gate structure enables
the system to not just retain related data while disregarding
unrelated information, but also allows for the extraction
of properties from both the forward and reverse aspects.
Consequently, when dealing with the signal identification in
interfering subsequent data, BiLSTM enhances the memory
of the neural network and facilitates the extraction of valuable
information by considering sequentially conveyed symbols
from prior to the future [25].

The training procedure has a serious impact on the
performance of a neural network. To begin, the loss function
should be appropriately produced in order to supply an
accurate estimate. The training approach tries to decrease the
difference between the transmitted data and the deep learning
model’s signal detection output. The half mean squared error
loss (HMSE) function can be defined as [24],

L( loss ) =
1
NB

NB∑
i=1

[
x̂(i) − x(i)

]2
, (18)

where NB is the batch size. Furthermore, hyperparameters
relating to network topology and training will have an impact
on neural network capabilities. The learning rate influences
the DL network’s convergence rate and results.
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FIGURE 3. BiLSTM architecture.

V. NUMERICAL RESULTS
This section presents the SER achievement of the power
domain downlink OTFS-NOMA with the proposed signal
detection approaches, namely theMP algorithm and BiLSTM
using 4-QAM modulation in a Rayleigh distribution. The
PA coefficient for the far user is considered to be 0.85 and
0.15 for the near user. The program is developed in theMatlab
environment on a workstation equipped with an Intel(R)
CoreTM i7-10700K central processing unit (CPU) running at
3.80 GHz, 64 GB of RAM, and an NVIDIA GeForce RTX
2060 graphics processing unit (GPU).

TABLE 2. Simulation parameters for OTFS-NOMA.

TABLE 3. Training parameters for OTFS-NOMA.

With the aid of the references, [25] and [35], the
computational complexity of the BiLSTM can be expressed
as O((NM )2) where (NM) is the OTFS frame size for the
network input.

Table 2 shows a list of the simulation parameters. Here,
M = 8,N = 8 represents the DD grid size, and the
number of propagation paths is assumed to be Pi = 4.
fD = υ(fc)/c characterizes the carrier frequency offset. In this
formula, c denotes the light speed, υ represents themovement
speed between the transceivers, and fc defines the carrier
frequency. The Doppler shift for every path, vi, is expressed
as vmax cos (θi), where θi is uniformly distributed over the
range of (−π, π), and vmax = 1.875 kHz represents the
maximum Doppler shift associated with a maximum speed
of 506.25 kmph.
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FIGURE 4. SER of BiLSTM for SGD optimizer.

FIGURE 5. SER of BiLSTM for Adam optimizer.

FIGURE 6. SER of BiLSTM for RMSprop optimizer.

The training parameters are shown in Table 3. The
effectiveness of neural networks is impacted by the hyperpa-
rameters linked to both their structure and training process.
The convergence rate and the output of the DL network are
modified by the learning rate. The starting learning rate in
our training is set at 0.001, the minimum and maximum
batch sizes are 1024 and 16000, the sequence length is 2,
and the training sample is 1248. The input parameters of

FIGURE 7. The training accuracy for the SGD optimizer.

FIGURE 8. The training accuracy for the Adam optimizer.

FIGURE 9. The training accuracy for the RMSprop optimizer.

the dataset are taken as symbols in the receiver section, and
the symbol at the input of the transmitter is taken as the
output parameter. The BiLSTM trains the data over four
classes (0, 1, 2, 3) for modulation type 4-QAM. These class
values represent the signals 00, 01, 10, and 11, respectively.
The class values indicate the decimal value of the message
signals transmitted in end-to-end communication systems.
The LSTM layer consists of 600 hidden cells. The training
process utilizes 80% of the dataset, with the remaining 20%
allocated for testing the trained network.

We assessed the efficacy of three widely used optimizers
for training: SGD, Adam, and RMSprop optimizers. Figure 4
illustrates the SER performances of near and far users for
the SGD optimizer. While the BiLSTM method yields better
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FIGURE 10. The training loss for the SGD optimizer.

FIGURE 11. The training loss for the RMSprop optimizer.

FIGURE 12. The training loss for the Adam optimizer.

results than theMPmethod for the near user, the performance
ofMP is superior when considering the far user. This situation
may be attributed to the slow learning of SGD.

In Figure 5, upon evaluating the SER performance with
respect to signal-to-noise ratio (SNR), better outcomes are
noted with the Adam optimizer in comparison to the SGD
optimizer. Figure 6 provides the SER performance varying
with SNR for the RMSprop optimizer. As seen in the figure,
RMSprop demonstrates significantly better results compared
to the other two optimizers.

Figures 7-9 illustrate the training accuracy for the SGD,
Adam, and RMSprop, respectively. In the training stage,
SGD, Adam, and RMSprop have led to training accuracies
of 83.72%, 99.9%, and 99.9%, respectively. To facilitate

the classification of sequence data through the training of
a deep neural network, an LSTM network was employed.
An LSTM network lets users enter sequence data into a
network and make guesses based on the separate time steps
of the data array. The generation of the distinct predictions
for every time step of the sequence data is utilized by a
sequence-to-sequence LSTM network. In addition, at each
time, a bidirectional LSTM layer learns using the entire
sequence. This makes it highly effective in understanding
and predicting patterns in sequential data. During the training
of the deep model, the low-level loss function performed
at high accuracy levels. This training state overcomes
the limitations of the sequence-to-sequence prediction of
the SER.

Figures 10-11 demonstrate the training loss for the SGD,
Adam, and RMSprop, respectively. The loss of the suggested
neural network fails to converge efficiently when employing
the SGD optimizer during the training phase. In the context
of convergence, the Adam optimizer demonstrated superior
performance compared to the SGD optimizer, while the
RMSprop optimizer surpassed both of them.

VI. CONCLUSION
This study examines the SER performance comparison
between the MP detector and a BiLSTM-based neural
network designed for signal detection in OTFS-NOMA com-
munication. The numerical results demonstrate that the SER
performance of BiLSTM is better for the RMSprop optimizer
than the MP signal detection method in OTFS-NOMA. The
simulation results illustrate that the system’s performance is
notably influenced by the PA coefficient, delays, and Doppler
effects.

While our investigation primarily focused on assessing
the SER performance of OTFS-modulated NOMA systems
in a high-mobility environment with two destination users,
it is feasible to expand the analysis to yield more gener-
alized insights applicable to emerging 6G mobile network
technologies. This includes the integration of reconfigurable
intelligent surfaces (RIS), unmanned aerial vehicles (UAVs)
[31], integrated sensing and communications (ISAC) and
non-terrestrial networks. Incorporating the above-mentioned
technologies into NOMA systems over OTFS holds promise
for advancing the scope of our future research. Additionally,
exploring cognitive radio architectures [32], [33] presents
an alternative scenario. Investigating secondary user signal
detection algorithms aimed at improving spectral efficiency
in high-speed mobile environments is another subject for our
research. Furthermore, our upcoming work plans encompass
exploring channel estimation strategies, reliability, and phys-
ical layer security investigation [34] specifically tailored for
OTFS-modulated NOMA systems.
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ACRONYMS
4G Fourth Generation.
5G Fifth Generation.
6G Sixth Generation.
Adam Adaptive Momentum.
AWGN Additive White Gaussian Noise.
BER Bit Error Rate.
BiLSTM Bidirectional Long Short-Term Memory.
CIR Channel Impulse Response.
CNN Convolutional Neural Network.
CPU Central Processing Unit.
DD Delay-Doppler.
DLD Delay-based Detector.
DNN Deep Neural Network .
DSL Digital Subscriber Line.
FC-DNN Fully Connected Deep Neural Network.
GPU Graphics Processing Unit.
ICI Intercarrier Interference.
IRS Integration of Intelligent Surfaces.
ISAC Integrated Sensing and Communications.
ISFFT Inverse Symplectic Fast Fourier Transform .
LMMSE Linear Minimum Mean Squared Error.
LSTM Long Short-Term Memory.
LSTM-B Long Short-Term Memory - Backward.
LSTM-F Long Short-Term Memory - Forward.
LTE Long-Term Evaluation.
MP Message Passing.
MUI Multi-User Interference.
NOMA Non-Orthogonal Multiple Access.
OFDM Orthogonal Frequency Division Multiplexing.
OMA Orthogonal Multiple Access.
OTFS Orthogonal Time Frequency Space.
PA Power Allocation .
QAM Quadrature Amplitude Modulation.
ResCNN Residual Convolutional Neural Network.
RMSprop Root Mean Squared Propagation.
RNN Recurrent Neural Network.
SC Superposition Coding .
SE Spectral Efficiency.
SER Symbol Error Rate.
SFFT Symplectic Fast Fourier Transform.
SGD Stochastic Gradient Descent.
SIC Successive Interference Cancellation.
SNR Signal-to-Noise Ratio.
TF Time-Frequency.
UAV Unmanned Aerial Vehicles.
UWA Underwater Acoustic.
ZF Zero Forcing.
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