
Received 30 June 2024, accepted 16 August 2024, date of publication 26 August 2024, date of current version 4 September 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3449704

XAI-VSDoA: An Explainable AI-Based Scheme
Using Vital Signs to Assess Depth of Anesthesia
NEERAJ KUMAR SHARMA 1, SAKEENA SHAHID 2, SUBODH KUMAR 3, SANJEEV SHARMA4,
NAVEEN KUMAR 5, TANYA GUPTA 5, AND RAKESH KUMAR GUPTA6
1Department of Computer Science, Ram Lal Anand College, University of Delhi, Delhi 110021, India
2Department of Computer Science, Sri Guru Tegh Bahadur Khalsa College, University of Delhi, Delhi 110021, India
3Department of Data Science and Analytics, Central University of Rajasthan, Ajmer, Rajasthan 305817, India
4Department of Anesthesia, Atal Bihari Vajpayee Institute of Medical Sciences and Dr. Ram Manohar Lohia Hospital, Delhi 110001, India
5Department of Computer Science, University of Delhi, Delhi 110021, India
6Department of Microbiology, Ram Lal Anand College, University of Delhi, Delhi 110021, India

Corresponding author: Subodh Kumar (subodh.kumar@curaj.ac.in)

This work was supported by the Indian Council of Medical Research (ICMR), New Delhi, India, under the Extramural Research Program
under Project 2021-13397.

ABSTRACT Administration of anesthesia is essential in surgical procedures, ensuring patient unconscious-
ness and safety. Traditional Depth of Anesthesia (DoA) assessment methods rely heavily on the clinical
expertise of anesthesiologists and patient physiological responses, which can vary widely due to age,
weight, and ethnicity. This variability poses significant challenges in maintaining appropriate anesthesia
levels and making timely decisions in critical situations. To address these challenges, we propose XAI-
VSDoA, an explainable AI model using vital signs designed to augment DoA assessment by providing
accurate predictions and interpretable insights. In this work, we experimented with various machine learning
classifiers, including XGBoost, CatBoost, LightGBM, Random Forest, ResNet, and Feed-forward Neural
Networks. Among these, the XGBoost model achieved the highest accuracy, with 99.34% on the University
of Queensland dataset and 93.07% on the VitalDB dataset. Statistical testing confirmed that XGBoost
outperformed the other models.We employed explainable AI techniques such as LIME and SHAP to identify
the top 10 features significantly influencing the model’s predictions, ensuring the model’s transparency and
reliability. These methods consistently highlighted the same influential features, reinforcing the model’s
interpretability. Our proposed scheme demonstrated exceptional performance using numeric vital signs, with
XAI techniques validating the key features. This interpretability boosts confidence in the model, enhancing
its utility to augument and support the clininal observations of anethesiologiss in anesthesia management.
Our findings underscore the potential of XAI-VSDoA as a valuable tool for clinical use, enhancing patient
safety and decision-making in anesthesia.

INDEX TERMS Depth of anesthesia, Bispectral Index, local interpretable model-agnostic explanations
(LIME), machine learning, SHapleyAdditive exPlanations (SHAP), explainable artificial intelligence (XAI),
vital signs.

I. INTRODUCTION
The administration of anesthesia during surgery is an essen-
tial and crucial aspect of contemporary medical practice.
It allows patients to undergo surgical procedures with
minimal pain and discomfort while ensuring their safety
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throughout the operation. Depth of Anesthesia (DoA) is the
degree to which a general anesthetic agent suppresses the
Central Nervous System (CNS) [1]. Prudent management of
anesthesia is crucial as its inappropriate dosages can lead
to intraoperative and postoperative complications. An exces-
sive administration of anesthesia can lead to cardiac and
respiratory problems, delayed emergence from anesthesia,
and an extended period of recuperation [2]. In contrast,
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administering too little anesthesia can result in the patient
regaining consciousness during surgical stimulus, inadequate
pain relief, heightened stress levels, and the ability to remem-
ber the surgical procedure [3]. This inability to properly
adjust the anesthetic depth may result from patient-specific
drug requirements, patients’ inability to tolerate sufficient
anesthesia due to factors like poor cardiac function, masking
of physiological indicators by certain medications, and
compromised drug delivery systems due to equipment issues
or misuse [4]. Consequently, inappropriate DoA can lead
to patient discomfort and potential safety concerns. Despite
constant monitoring of physiological parameters (vital signs)
such as pulse, blood pressure, heart electrical activity, airway
pressure, and gas concentrations, instances of awareness have
been documented [3]. This signifies that the task is not
inherently straightforward.

Anesthesiologists are responsible for assessing and main-
taining an appropriate level of anesthesia throughout the
perioperative period by adjusting the anaesthetic dose based
on physiological parameters (for instance, heart rate and
blood pressure) and other factors like lachrymation, move-
ment, and response to verbal stimuli. Traditionally, anes-
thesiologists have mainly relied on their clinical expertise
and measurements of physiological symptoms to ascertain
DoA. However, dealing with large volumes of diverse
data with multiple modalities is a practical challenge for
anesthesiologists.

Fortunately, advancements in medical technology have
led to the development of specialized monitoring devices
explicitly designed to assess DoA. The most widely used
device for assessing DoA is the Bispectral Index (BIS)
monitor, which produces a BIS value between 0 to 100 [5].
The value is generated by analyzing electroencephalogram
(EEG) signals [6]. A value of 0 signifies a lack of brain
activity, while 100 indicates a state of wakefulness. Values
below 40 indicate a profound state of hypnosis. BIS values
greater than 60 indicate light sedation. BIS values ranging
from 40 to 60 indicate appropriate levels of general anesthesia
for surgical procedures that maintain a desirable equilibrium
between unconsciousness and safety. Studies indicate that
BIS monitoring reduces the amount of anesthesia used in
surgeries, the likelihood of nausea and vomiting, and recovery
room duration by a moderate amount. The BIS monitor
is notably expensive for developing countries and poses a
significant financial challenge for healthcare facilities and
professionals seeking to integrate this technology into their
practices. Another aspect contributing to the hesitant use
of BIS monitor is the undisclosed nature of its underlying
algorithm [7], [8]. Anesthesiologists, reliant on the BIS
device to assess DoA, express concerns over their inability to
discern the specific criteria influencing the BIS value. This
can potentially impact the trust in the reliability of infor-
mation guiding anaesthesia administration. It is worth men-
tioning that there are several other DoA monitoring devices
available in the market, such as the Patient State Analyser

4000, Score of Neonatal Acute Physiology (SNAP) monitor,
Central Function Analyzing Monitor (CFAM), Narcotrend
Monitor, Cerebral State Monitor (CSM), Entropy-Module,
Auditory Evoked Potential (AEP) monitor, and Index of
Consciousness (IoC) monitor. However, similar to the BIS
monitor, these devices are hard to adopt as a standard device
because of their setup and maintenance cost, further fueled
by the lack of explanations for the values displayed [9].

Artificial Intelligence (AI) has emerged as a practical
approach to address the limitations of existing monitors
for assessing the DoA. By leveraging large quantities of
collected data, Machine Learning (ML) algorithms can
identify patterns and connections that contribute to precise
DoA evaluation. These algorithms can incorporate diverse
inputs, including vital signs such as heart rate, blood pressure,
blood oxygen saturation, respiratory rate, and bio-signals
such as electroencephalogram (EEG) and electrocardiogram
(ECG) signals with which they develop predictive models for
DoA monitoring [10].

In the past, several research works have assessed the
DoA using AI. Sadrawi et al. [11] employed artificial neural
networks (ANNs) to estimate the DoA using multiple
physiological parameters (or vital signs) as inputs. They
utilized empirical mode decomposition (EMD) to separate
the electroencephalography (EEG) signal from the noise.
Following this, they trained their models using these refined
signals alongside the average values of essential vital signs
such as electromyography (EMG) and heart rate. Using the
ANNmodel, they achieved a Mean Absolute Error (MAE) of
6.54 with a standard deviation of 6.69, thus outperforming the
BIS monitoring system, which had an MAE of 12.31 with a
standard deviation of 13.06. Zhan et al. [12] employed Deep
Neural Network (DNN) to distinguish between different
anesthesia states using the features derived from Heart Rate
Variability (HRV). They extracted 4 features from HRV to
be used as input and the assessment of consciousness level
from clinical experts as output. Their trained DNN achieved
an accuracy of 90.1%. Liu et al. [13] utilized a boosting
framework algorithm for training a series of weak learners
into strong learners by assigning different weights based
on their classification accuracy. They used four types of
clinical monitoring data, including EMG, end-tidal carbon
dioxide partial pressure, remifentanil dosage, and flow rate
as input and the expert’s predicted levels of consciousness
as the target to train different models such as decision
tree, k-nearest neighbour, and support vector machine. Their
scheme achieved amean-squared error (MSE) of 0.06, amean
absolute error (MAE) of 0.16 and a higher R-square value of
0.94. Liu et al. [14] introduced the similarity and distribution
Index (SDI) for assessing anaesthesia depth using heart rate
variability (HRV). The SDI derived from 32-second HRV
segments were modelled using Artificial Neural Networks.
An ensemble ANN provided an effective depth of anesthesia
assessment, and the SDI, computed from ECG record-
ings, robustly correlated with expert anaesthesiologists’
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evaluations. Subramanian et al. [15] examine autonomic
dynamics during propofol sedation to differentiate induction
from emergence, evaluate historical data’s impact, and
discern post-sedation baseline from pre-sedation. Data from
eleven volunteers, comprising HRV indices, were analyzed.
The results of logistic regression, LASSO for pruning, and
10-fold cross-validation show an AUC (Area Under the
Curve) of 0.706 between induction and emergence. Later,
Subramanian et al. [16] delved into autonomic changes
during loss and regain of consciousness (LOC and ROC)
in general anesthesia. They used multimodal autonomic
indices: heart rate variability (HRV), blood pressure (BP),
and electrodermal activity (EDA) in 9 volunteers who were
under propofol sedation. They employed trained logistic
regressionmodels with LASSO regularization and leave-one-
subject-out cross-validation. Their results indicate effective
differentiation of pre- and post-LOC/ROC periods with an
AUC of approximately 0.8. Table 1 summarises research
works that have employed vital signs to assess DoA.

Several alternative input data have been studied in the
existing literature that do not incorporate vital signs as
primary inputs and opt for using artificial intelligence
algorithms in evaluating DoA. Chowdhury et al. [17]
conducted a study that employed deep learning techniques to
predict the DoA by analyzing electrocardiogram (ECG) and
photoplethysmography (PPG) signals. They converted the
ECG and PPG signals into heat maps. Further, taking these
heatmaps as input and the corresponding BIS value as the
target, they trained various deep learning models, including
VGG19, AlexNet, and 6, 8, and 10-layered Convolution
Neural Networks (CNNs). Their experimental results reveal
that their 10-layered CNN model achieved the highest
accuracy of 86%. Bahador et al. [18] proposed a multimodal
spatio-temporal-spectral information fusion-based technique
to enhance the accuracy and reliability of deep learning
models. They fused EEG time-frequency data with ECG
signal data and utilized pre-trained deep learning models
such as SqueezeNet, GoogLeNet, Inceptionv3, ResNet18,
and AlexNet to determine the DoA. Their experimental
results reveal that their SqueezeNet model achieved the
best precision value of 94.14%. Liu et al. [19] employed
the Short-Time Fourier Transform to convert the EEG
signal into spectrograms. Further, taking spectrograms as
input and the BIS value as output, they trained three
CNN models: CifarNet, AlexNet, and VGGNet. Their
scheme using VGGNet achieved an accuracy of 93.50%.
Chen et al. [20] proposed a method for monitoring anes-
thetized patients during surgery, focusing on characterizing
the state of consciousness using EEG analysis and compared
the performance of two frequency analysis techniques,
namely Empirical Mode Decomposition (EMD) combined
with Fast Fourier Transform (FFT), and Hilbert-Huang
Transform (HHT). The results indicate agreement between
the two techniques. Gonzalez et al. [21] addressed the
issue of adapting opioid infusion during anesthesia by
evaluating the Analgesia Nociception Index (ANI) as a

guidance variable. Using machine learning classifiers trained
on data from 17 patients undergoing cholecystectomy, the
inclusion of minimum ANI values significantly improved
predictive accuracy, demonstrating its potential to outperform
traditional signs and anticipate dose changes for preventing
hemodynamic events. Wang et al. [22] proposed a model
known as KRDGB-CNN, which combined several machine
learning techniques, including K-Nearest Neighbors (KNN),
Random Forest, Decision Tree, Gaussian Naive Bayes, and
Backpropagation Neural Network (BP). These components
were integrated within a convolutional neural network (CNN)
framework to form the decision layers. Their model achieved
an accuracy rate of 92.2%. Similarly, Anand et al. [23]
investigated the relationship between EEG signals and the
bi-spectral index over time. They extracted the time-domain
features and trained various machine learning models to
achieve the highest accuracy of 83%.

Using machine learning algorithms to monitor the depth of
anesthesia provides a multifaceted approach that outperforms
traditional procedures in multiple key aspects. First, machine
learning is highly effective in dealing with the intricacies of
anesthesia management such as the use of multiple drugs with
varying pharmacokinetics. Machine learning can be used
to understand the effect of the combination of EEG, heart
rate, blood oxygen saturation, and blood pressure (and other
physiological parameters) data to comprehensively under-
stand anesthetic depth. Second, in contrast to conventional
techniques that depend on explicit rules, machine learning
adopts a data-centric approach, acquiring knowledge of
patterns and relationships without pre-established thresholds.
Third, as high-dimensional datasets become increasingly
accessible, machine learning models become scalable and
robust. However, machine learning is limited by the lack of
explanations due to the opaque nature of complex machine
learning models. This raises concerns among healthcare
practitioners, particularly anesthesiologists. As a result,
ExplainableArtificial Intelligence (XAI)methodologies have
been introduced to provide insights into the reasoning behind
model predictions and enhance confidence in them.

A. MOTIVATION AND CONTRIBUTION
Existing research shows positive results in DoA assessment,
but the lack of explanations behind complexmachine learning
model outcomes leads to scepticism among anesthesiologists.
The research gaps leading to the motivation of this can be
summarized as below:
• High Cost and Limited Availability: Costly and
proprietary devices like BIS are not accessible in
most medical centres, creating a significant gap in the
availability of effective DoA monitoring tools.

• Intractable Data Analysis: Analyzing a large number
of physiological parameters simultaneously using dif-
ferent monitoring devices can be intractable even for
experienced anesthesiologists.

• Complexity of Algorithms: The complexity of
the underlying algorithms makes it challenging to
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TABLE 1. Literature review for DoA monitoring using physiological parameters as inputs.

understand the decision-making processes of these
models, hindering the trust of the end-users, especially
in critical medical applications like DoA assessment.

• Need for Explainable AI Methods: The need for
explainable AImethods is crucial for gaining acceptance
and trust in clinical settings. Addressing this issue is vital
for integrating machine learning models into medical
practice.

This work aims to fill these gaps by proposing an
Explainable Artificial Intelligence (XAI)-based model
for DoA estimation, with key contributions outlined
below.
• We propose an Explainable Artificial Intelligence
(XAI)-basedmachine learning framework, XAI-VSDoA,
designed for determining the depth of anesthesia
(DoA) using physiological parameters (or vital signs)
like heart rate, arterial pressure wave, respiratory
rate, and inspiratory CO2, and others as listed in
Table 2.

• Utilizing SHAP and LIME techniques, we analyze
our machine learning models to reveal insights into

their decisions and highlight the top 10 physiological
parameters that greatly influence the model’s output.

• We developed an optimized model by employing only
the top-ranked features from SHAP and LIME. This
model with fewer features produces results comparable
to the model that uses the entire dataset.

• We evaluate the performance of the proposed model
using two independent and widely used open datasets.
This dual assessment enhances the reliability of our
findings, as both datasets consistently demonstrated
positive results, affirming the efficacy of the proposed
model.

• We employ statistical analysis to provide evidence
that the model proposed in the framework excels
compared to other models in terms of performance. This
rigorous analysis confirms our findings’ robustness and
underscores the proposed model’s superiority.

We compared our work with other machine learning-based
approaches available in the literature and found that our
framework excels in accuracy and other performance metrics.
By integrating explainable AI methods, we aim to offer
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clinicians transparent and understandable explanations of the
outcomes of ML models. We intend for the proposed scheme
to act as a clinical decision-support system that augments the
decision-making abilities of anesthesiologists.

B. ROAD MAP
This paper is organized as follows: Section II describes the
preliminary concepts. Section III elucidates the description
of the datasets and preprocessing techniques applied to the
dataset and presents the proposed framework. Section IV
discusses the experimental details. Following that, Section V
constitutes the results and comparison with other ML-based
approaches. Based on the findings of this work, section VI
concludes this paper.

II. PRELIMINARIES
This section briefly discusses the techniques employed in
this study, including feed-forward neural networks, ensem-
ble techniques, ResNet, oversampling techniques, and the
eXplainable AI (XAI) methods, namely, LIME and SHAP.

A. FEED-FORWARD NEURAL NETWORK
Feed-forward neural networks are computational models that
comprise interconnected nodes known as neurons arranged
into layers. Every individual neuron receives input signals,
computes, and transmits the outcome to the neurons in the
subsequent layer. Feed-forward neural networks can learn to
recognize complex patterns and relationships in the data due
to the presence of activation functions (like ReLU, sigmoid,
or tanh) to introduce non-linearity, enabling them to solve
various tasks, such as classification, regression, and feature
extraction. The learning in these networks is accomplished by
using the loss function (also known as the cost or objective
function) that evaluates how well the model’s predictions
match the actual target values. Backpropagation is generally
used to minimise the cost function [24], [25].

B. GRADIENT BOOSTED DECISION TREES
Gradient Boosted Decision Trees (GBDT) is an ensemble
learning method that combines decision trees and gradi-
ent boosting to create a robust and powerful predictive
model [26]. The process begins by constructing an initial
decision tree with low predictive power, which serves as the
first model. Subsequently, additional trees are constructed
to rectify the mistakes made by the preceding models.
During each iteration, the algorithm gives more weight to
misclassified data points or residuals and trains the next tree
to reduce the error further. The gradient in GBDT refers
to using the gradient (slope) of the loss function to update
the model’s parameters, minimizing the loss during each
iteration. GBDT continues to add trees until a stopping
criterion is met, such as a specified number of trees or when
the performance improvement becomes negligible.

1) EXTREME GRADIENT BOOSTING
Extreme Gradient Boosting (XGBoost) [27] is an example
of a state-of-the-art GBDT algorithm. XGBoost enhances

traditional gradient boosting by incorporating L1 and L2
regularization techniques. XGBoost enhances the gradient
boosting framework by incorporating several advanced fea-
tures, such as regularization, which helps mitigate overfitting,
and a sparsity-aware algorithm for handling missing data.
It operates by constructing an ensemble of weak learners,
typically decision trees, where each successive tree attempts
to correct the errors of its predecessors. This iterative process
results in a robust model with high predictive accuracy.
XGBoost is distinguished by its efficiency and scalability,
and it can easily handle large datasets and high-dimensional
data. It supports parallel and distributed computing, thereby
reducing training time significantly. Moreover, its ability
to incorporate L1 (Lasso) and L2 (Ridge) regularization
provides additional control over the model complexity.
XGBoost’s flexibility in handling various objective functions
and evaluation metrics makes it a versatile tool in academic
research and industry applications. Its effectiveness has been
demonstrated in numerous data science competitions, making
it a preferred choice for many practitioners aiming to achieve
superior predictive performance.

2) CATEGORICAL BOOSTING CLASSIFIER
Categorical Boosting Classifier (CatBoost) is a robust
gradient-boosting algorithm that stands out for efficiently
handling categorical features [28]. CatBoost eliminates the
need for extensive preprocessing like one-hot encoding,
thus natively supporting categorical features. This capability
significantly reduces preprocessing time and complexity,
enabling more straightforward model development. Addi-
tionally, CatBoost incorporates L2 (ridge) regularization to
prevent overfitting and control model complexity, enhancing
generalization performance. CatBoost optimizes training
efficiency by supporting a wide range of loss functions,
making it versatile for various tasks, including regression,
classification, and ranking. Its a novel approach to handling
categorical features through an ordered boosting process,
which reduces the risk of overfitting and introduces unbi-
ased gradient estimation. Furthermore, CatBoost includes
advanced techniques such as symmetric tree structures and
oblivious trees, which simplify the model and enhance
interpretability without compromising performance. Cat-
Boost’s final prediction is a weighted sum of individual tree
predictions, where each tree is trained to correct the errors
of the preceding ones. This iterative refinement results in a
robust ensemble model capable of achieving high predictive
accuracy.

3) LIGHT GRADIENT BOOSTING MACHINE CLASSIFIER
The Light Gradient Boosting Machine Classifier (Light-
GBM) classifier [29] is a gradient-boosting framework
widely recognized for its speed, efficiency, and predictive
accuracy. It constructs a robust predictive model through
a series of decision trees. It utilizes a histogram-based
technique to categorize data points into histograms, leading
to a substantial decrease in memory consumption and a
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faster training process. Moreover, it employs a leaf-wise tree
growth strategy, where it chooses the leaf that results in
the most significant reduction in the loss function at each
split. This approach leads to trees with less depth and more
rapid convergence. LightGBMcan directly handle categorical
features, reducing the need for preprocessing. Additionally,
it provides L1 (Lasso) and L2 (Ridge) regularization
techniques to address overfitting.

C. RANDOM FOREST CLASSIFIER
The Random Forest classifier is an ensemble machine
learning algorithm. It creates an ensemble of decision trees,
with each tree independently constructed through a process
that includes bootstrapping - randomly selecting subsets
of the training data with replacement, and random feature
selection - using only a subset of features at each node
for making splits [30]. These strategies introduce diversity
among the trees, mitigating overfitting and enhancing the
model’s robustness. The aggregation of predictions from
individual trees is achieved through a voting mechanism for
classification tasks, resulting in a final prediction that benefits
from the collective insights of the ensemble.

D. RESIDUAL NEURAL NETWORK
Residual Neural Network (ResNet), is a deep learning archi-
tecture designed to overcome the challenges associated with
training neural networks with many layers. It accomplishes
this by integrating residual blocks. These blocks help the
network learn residual functions across layers, enhancing its
ability to optimize and acquire complex representations [31].
Residual blocks use skip connections to solve the vanishing
gradient problem. The residual block learns the difference
between the input and the desired output instead of the layer’s
input-outputmapping. The residual is added to the input to get
the block output.

While ResNet’s primary success lies in computer vision
tasks, researchers have explored its potential in other
domains, including tabular data. When adapting ResNet
for tabular data, 1-D convolutional layers (Conv1D) are
often utilized to process the sequential or structured nature
of the data. Conv1D layers enable the model to capture
local patterns and interactions between neighbouring features
within each sample.

E. SMOTE WITH BOOSTING
The Synthetic Minority Over-sampling TEchnique With
Boosting (SMOTEWB) [32] aims to address the limitations
of the SMOTE algorithm by combining a noise detection
method and SMOTE. SMOTE fundamentally generates
synthetic data between extant positive observations by
identifying voids within the feature space [33]. Nonetheless,
this approach faces two principal constraints. Firstly, it may
produce synthetic data within the domain of the majority
class, giving rise to spurious noise patterns absent in the
natural distribution. Secondly, it employs a fixed number of
connections between a sample and its neighbours, neglecting

the qualitative attributes of these neighbours when fabricating
synthetic data. In response, SMOTEWB integrates a noise
detection method to identify noisy observations in the
positive class and adjusts the number of neighbours for
each observation. This ensures synthetic data is created in
areas with non-noisy negative observations. Simultaneously,
the boosting technique adjusts observation weights during
synthetic data generation, addressing class imbalance and
improving classifier performance.

Synthetic samples, denoted as x ′, are created using the
SMOTE algorithm’s formula:

x ′ = x + (B− x)× A (1)

where x is an existing positive observation, B is a randomly
chosen nearest neighbour, and A is a uniformly distributed
random value between 0 and 1.

F. NORMALIZATION AND SCALING FEATURES
Min-Max scaling, also referred to asMin-Max normalization,
is a data preprocessing technique that rescales numeric
features to fit within a predetermined range, typically
ranging from 0 to 1. The objective is to standardize all
the characteristics to avoid the dominance of any particular
feature due to its greater magnitude. The formula for
Min-Max scaling is:

Xscaled =
X − Xmin

Xmax − Xmin

where X is the original value of the feature. Xmin is the
minimum value of the feature in the dataset. Xmax is the
maximum value of the feature in the dataset.

G. EXPLAINABLE ARTIFICIAL INTELLIGENCE
Explainable Artificial Intelligence (XAI) is a crucial concept
that addresses the need for transparency and understanding in
AI systems. XAI aims to shed light on the black-box nature
of many AI algorithms, making it possible to comprehend
how AI arrives at its conclusions and predictions [34].
This transparency is essential in fields like medicine, where
the decisions made by AI systems directly impact patient
diagnosis and treatment. For instance, XAI allows doctors to
understand why an AI predicts a patient’s risk for a medical
condition, improving trust and informed decision-making.
In the literature on anesthesia classification discussed above,
we noted that several ML and deep learning methods had
been proposed for predicting DoA but lacked interpretability
and explainability. To overcome these limitations, we have
integrated XAI with our models.

1) LOCAL INTERPRETABLE MODEL-AGNOSTIC
EXPLANATIONS
LIME is a tool used in the field of XAI to provide
interpretable explanations for machine learning models,
especially in cases where complex models make it difficult to
understand why a particular prediction was made. LIME aims
to approximate the decision boundary of a black-box model
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locally and generate explanations that are understandable to
humans [35].

Initially, LIME perturbs the input data point of interest
x, introducing slight variations to create a dataset of similar
instances. Subsequently, it applies a straightforward and
easily understandable model (typically linear regression or
decision trees) to this perturbed dataset. This simplified
model provides an approximation of the behaviour of
the complex model near the original data point. LIME
assigns weights to the perturbed instances according to
their proximity to the original data point. This ensures that
instances closer to the point of interest carry more weight in
model fitting. The explanations produced by the LIME are
obtained by the following:

ξ (x) = argming∈G L(f , g, πx) + �(g) (2)

where ξ (x) symbolizes the interpretable explanation gener-
ated by LIME for the specific input instance x. L(f , g, πx)
measures the dissimilarity between the predictions of the
complex model f and the interpretable model g for the
perturbed instances πx . Essentially, it quantifies how well g
approximates f in the local context. �(g) is a regularization
term that penalizes the complexity of the interpretable
model g.

2) SHapley ADDITIVE exPLANATIONS
SHapley Additive exPlanations (SHAP) is another frame-
work for explaining the predictions made by machine
learning models. It is based on Shapley values, which come
from cooperative game theory [36]. In the context of model
interpretability, it assigns a Shapley value, denoted as φ,
to each feature (or input) to quantify its contribution to a
model’s prediction. The Shapley value can be calculated
using the following formula:

φi(f ) =
∑

S⊆N\{i}

|S|!(|N | − |S| − 1)!
|N |!

(f (S ∪ {i})− f (S)) (3)

where, φi(f ) represent the Shapley value for feature i, N is
the set of all features, S is a subset of features that does
not include feature i, f (S) is the model’s prediction when
using the feature set S and (f (S ∪ {i})− f (S)) is the model’s
prediction when including feature i in the feature set.
Kernel SHAP is an extension of SHAP that makes the

computation of Shapley values more efficient, especially
for complex models like deep neural networks. Instead of
calculating Shapley values for all possible combinations
of feature values, Kernel SHAP approximates these values
using a weighted average of predictions for a subset
of combinations. It uses a kernel function to weigh the
importance of different combinations, making the calculation
more tractable and computationally feasible, particularly for
high-dimensional datasets.

III. MATERIALS AND METHODS
This section provides the materials and methods employed
in our research. It encompasses a detailed description of the

dataset used, the data preprocessing techniques applied, and
an in-depth presentation of our proposed framework.

A. DATASET DESCRIPTION
This research study employed two datasets: The University
of Queensland Vital Signs Dataset and the VitalDB
Dataset. Employing multiple datasets allows for a more
robust analysis by providing a broader range of data points
and enhancing the generalizability of the findings. The
University of Queensland Vital Signs Dataset [37] contains
records of vital signs, including parameters like heart rate,
pulse rate, blood pressure (systolic, diastolic, and mean), and
blood oxygen saturation. These recordings were collected
from 32 patients who were given anesthesia at the Royal
Adelaide Hospital in Australia. Out of these cases, 25 patients
were given general anesthesia, 3 patients were given spinal
anesthesia, and 4 patients were given sedatives. The duration
of these records varied from 13 minutes to 5 hours, with an
average duration of 105 minutes. This dataset predominantly
includes data from various monitoring devices, such as the
electrocardiograph, pulse oximeter, capnograph, noninvasive
arterial blood pressure monitor, airway flow, and pressure
monitor. In a few instances, additional data from monitoring
devices like the Y-piece spirometer, electroencephalogram
monitor, and arterial blood pressure monitor were also
included. This database includes a total of 65 parameters.

The VitalDB Dataset [38] is an openly available dataset
specifically created to facilitate machine learning research
focused on monitoring the vital signs of patients undergoing
surgery. The data was collected from patients undergoing
non-cardiac surgeries, such as general, thoracic, urologic,
and gynecologic procedures, at Seoul National University
Hospital in Seoul, Republic of Korea. The dataset comprises
comprehensive and detailed information from 6,388 patients,
including high-resolution multi-parameter data. This data
includes waveform and numeric data representing various
intraoperative monitoring parameters, perioperative clinical
factors, and time-series laboratory results. The dataset
comprises 196 parameters for intraoperative monitoring,
73 for perioperative clinical data, and 34 for time-series
laboratory results.

B. DATA PREPROCESSING
The initial phase of this study involves a comprehensive anal-
ysis of the available datasets. Initially, from The University of
Queensland Vital Signs dataset, data about five patients who
had undergone general anesthesia, namely cases 22, 28, 29,
30, and 31, were chosen for investigation as the target BIS
value is only available for these patients. The original dataset
was recorded at a high temporal resolution of 10milliseconds.
However, it has been observed that the numerical values
of vital signs do not change so frequently. So, in order
to reduce computational complexity, we downsampled the
data to a 2-second internal, comprising 16,773 records.
Further, we substituted the dataset’s missing values with the
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corresponding feature’s median value. As numerical values
of the vital signs relate to the physiological parameters that
indicate crucial trends and patterns, we have focused on
the vital signs in this study. Based on our discussion with
the anesthesiologists, we selected 22 parameters for further
investigation. These 22 dataset parameters have been listed
in Table 2 along with their description.

In the VitalDB dataset, the data tracks had varying
sampling frequencies due to the different monitoring devices
used. We utilized data from three distinct monitoring devices
—BIS, Solar8000, and Primus. These devices have sampling
rates of 1 second, 2 seconds, and 7 seconds, respectively.
We opted for a standardized sampling rate of 14 seconds
to ensure uniformity in the dataset. We used data from
200 patients for a total of 67,577 records. Following this,
expert recommendations guided our feature selection pro-
cess, which resulted in 23 features from an initial pool of 158
(excluding time-series data). The details of the parameters
and their description are given in Table 2. Additionally,
missing values were imputed with the median patient value
based on medical insights and recommendations.

Feature normalization was performed on both datasets to
rescale the feature values within a range of 0-1. For this
purpose, a MinMax scaler was utilized to calculate each
feature’s minimum and maximum values and proportionally
scale the feature values to fit within the desired range.
This normalization process ensures that all features are
on a comparable scale, facilitating fair comparisons and
preventing the dominance of certain features solely based on
their numerical magnitude. Min-Max scaling was preferred
over Standard Scaling due to the absence of a normal
distribution in our features, which is assumed by Standard
Scaling. Therefore, Min-Max scaling is more appropriate for
our specific case.

Both datasets exhibit substantial class imbalance. In the
University of Queensland Vital Signs dataset, the instances
denoting ‘OK Anesthesia’, representing appropriate dosages
of anesthesia, and ‘Light Anesthesia’, signifying a mild
dosage of anesthesia, are notably fewer than those indi-
cating ‘Deep Anesthesia’, which signifies higher dosages
of anesthesia. Likewise, in the VitalDB dataset, records
associated with ‘Light Anesthesia’ are significantly less
prevalent than other classes. To rectify this imbalance,
a modified variant of the Synthetic Minority Oversampling
Technique (SMOTE) known as SMOTE with Boosting
(SMOTEWB) has been employed [32]. Unlike traditional
SMOTE, SMOTEWB overcomes limitations by combining
a noise detection method based on boosting. This method
identifies potential noisy instances and determines the right
number of neighbours for each observation, thus reducing the
generation of noisy synthetic data.

C. PROPOSED FRAMEWORK (XAI-VSDoA)
In this paper, we propose XAI-VSDoA framework com-
prising three distinct steps - preprocessing data, training an
XGBoost classifier on the input data, and finally, generating

explanations using LIME and SHAP. The process is described
in Fig. 1. This flowchart illustrates the step-by-step process
for a model designed to categorize the depth of anesthesia
into three levels using datasets from the University of
Queensland Vital Signs dataset and the VitalDB dataset.
The preprocessing phase involves four steps, beginning
with feature selection guided by a senior anesthesiologist,
followed by the removal of rows with null values and signs
with a Signal Quality Index (SQI) below 40 to ensure
data quality. Subsequently, the data is normalized to bring
features to a consistent scale, and the Synthetic Minority
Over-sampling Technique with Boosting (SMOTEWB) is
applied to address the class imbalance.

Moving forward, the classifier training stage involved
rigorous experimentation with a variety of machine learning
classifiers. Through this comprehensive evaluation process,
XGBoost emerged as the most effective model. This con-
clusion was substantiated through cross-validation, which
demonstrated XGBoost’s exceptional performance, achiev-
ing an accuracy of 99.34%. Additionally, we conducted
a thorough analysis of various performance metrics and
performed statistical testing to confirm the reliability of our
findings. Following successful training, explanations for the
model’s predictions are generated using LIME and SHAP.
LIME provides local interpretability by fitting a simplemodel
to individual predictions, while SHAP assigns values to
features to indicate their contributions to predictions. The
final step involves analysis of the generated explanations
to ascertain their coherence and gain insights into the
factors influencing the model’s decision-making process.
As shown in Table 3, the anesthesia level (the target
variable) takes three distinct values corresponding to the
three classes: Deep Anesthesia, characterized by BIS values
less than 40; OK Anesthesia, corresponding to BIS values
ranging from 40 to 60; and Light Anesthesia, denoted by BIS
values exceeding 60. This categorization has been adopted
by [19], [39], and [40] among others in automated DoA
monitoring.

The choice of XGBoost for this framework stems from
comprehensive experimentation with a diverse array of
machine-learning classifiers. This inclusive exploration
involved ensemble models such as XGBoost, CatBoost,
LightGBM, and Random Forest, along with diverse
feed-forward neural networks and a ResNet model utilizing
1D filters. Input features for these models were drawn from
the University of Queensland Vital Signs Dataset and the
VitalDB dataset. The output of the classifiers categorized
anesthesia into light, deep, or OK states.

To evaluate model performance and ascertain generaliz-
ability, 10-fold cross-validation was used. Rigorous testing
using various performance metrics, including accuracy,
precision, recall, AUC, and F1-score, was conducted to
gauge the models’ efficacy. In the domain of anesthesia,
machine learning models’ explainability is crucial for
several reasons. A precise DoA prediction by an ML
model directly influences patient well-being, emphasizing
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TABLE 2. Physiological parameters chosen for this study along with their description.

FIGURE 1. Proposed Framework for assessing the Depth of Anesthesia (DoA). First, the dataset is preprocessed, followed by classifier training. The best
model is used for the generation of explanations using XAI techniques - LIME and SHAP.

the need for transparent reasoning to foster trust among
anesthesiologists.

Algorithm 1 presents the step-by-step procedure used
to train the deep learning model and generate the vital
signs that significantly influence the trained model to
determine the state of depth of anesthesia. It takes as

input a dataset D, where each instance xi includes input
features and corresponding labels yi, representing the depth
of anesthesia categorized as AO (OK Anesthesia), AL (Light
Anesthesia), or AD (Deep Anesthesia). Key parameters
include k for the number of folds in cross-validation,
k_topFeatures indicating the top features to consider, and
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TABLE 3. Categorization of BIS values into anesthesia states.

XMethods, a list of explainable methods. The output includes
the trained model (Model_best) and a set of common
vital sign attributes (vscommon) obtained from various XAI
methods. The algorithm proceeds by preprocessing the
dataset and addressing missing values and outliers. Sub-
sequently, it employs k-fold cross-validation to train a
model (Model_best) on vital sign features. Following model
training, the algorithm iterates through selected explainable
methods, such as LIME and SHAP, to interpret the trained
model and extract vital sign features (vslime, vsshap). It then
computes vscommon by determining the intersection of features
highlighted by LIME and SHAP. Finally, the algorithm
analyzes the performance of Model_best using the common
set of vital sign attributes (vscommon). The overarching
objective is to enhance the interpretability of the model,
facilitating a clearer understanding of the vital sign features
influencing the depth of anesthesia predictions.

IV. EXPERIMENTAL DETAILS
We have evaluated the proposed scheme’s performance on
both the University of Queensland Vital Signs Dataset and
VitalDB datasets. For experimentation, we used Google
Colab Pro with a GPU A100 accelerator comprising 83GB
of system RAM and 40GB of GPU.

A. ARCHITECTURE OF DEEP LEARNING MODELS
In this work, we employed two distinct types of deep learning
models: the feed-forward neural network and the Residual
Network (ResNet). We experimented with various neural
network architectures with 4, 5, 6, and 8 layers, each with
different configurations of neurons in each layer. Fig. 2
illustrates the 6-layered and 8-layered feed-forward neural
networks implemented within the study. These networks
contain a traditional stack of dense layers, as depicted
in the figure. Further, we also trained the ResNet model
from scratch, which consists of multiple residual blocks
and integrates convolutional layers with batch normalization.
This ResNet architecture with 1D convolution layers follows
a structure similar to the standard ResNet but utilizes 1D
convolutions instead of 2D convolutions. The final layer
of the model includes global average pooling to reduce
dimensions and a dense layer for classification. Fig. 3 depicts
the architecture of the ResNet model.

These models employ the categorical cross-entropy loss
function, accommodating three output categories. Each
model underwent 100 training epochs, allowing ample
iterations for learning and optimization. TensorFlow, awidely
utilized deep learning framework, served as the backend

Algorithm 1 XAI-VSDoA Framework for Assessing
the of Depth of Anesthesia

Input: D: Dataset D = {xi, yi}ni=1, where xi ∈ Rd is
the input feature, d is the dimension of feature space,
and

y ∈ {AO,AL,AD} is the target.
k: Number of equal-sized folds or groups the
dataset
D is divided into
k_topFeatures: Top features (Set to 10 in this
work)
XMethods: List of explainable methods

Output: Trained model (Model_best), frequently
occurring vital features
Procedure:

1) Preprocess the dataset D via handling missing
values, removing outliers, attribute selection, and
scaling.
2) Apply k-fold cross validation taking the vital
sign features x as input and the corresponding

class
labels y as the target to get the trained model

Model_best .

Model_best ← modelTraining(D) (4)

3) For all explainable methods
(m) ∈ XMethods do:
a) if m == LIME do:

vslime← LIME(Model_best,D, k_topFeatures)
(5)

b) if m == SHAP do:

vsshap← SHAP(Model_best,D, k_topFeatures)
(6)

c) Compute the common vital sign attributes
obtained using different explainable AI methods
as

vscommon←
⋂ (

vslime, vsshap
)

(7)

end For
4) Analyse the performance ofModel_best using
vscommon as inputs.

for the training process due to its robustness and flexibility
in model implementation. Subsequently, ReLu activation
was applied to the output layers of the models that assign
classification probabilities to the input belonging to one of
three classes, i.e., Deep Anesthesia (Class-2), OK Anesthesia
(Class-1), and Light Anesthesia (Class-0).

B. HYPERPARAMETER TUNING
To determine the optimal hyperparameters for diverse
machine learning models, we utilized the Grid Search
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FIGURE 2. Architecture of different feed-forward neural networks.

FIGURE 3. Architecture of ResNet model (with 1D convolution layers).

Cross Validation (GridSearchCV) technique. This method-
ology systematically examines a grid of hyperparameter
combinations, employing cross-validation to assess the
performance of each combination. For deep learning models,
hyperparameter tuning was performed using the HParams
dashboard accessible through TensorBoard. The results have
been summarised in Table 4.

V. RESULTS AND DISCUSSION
This work aimed to assess the depth of anesthesia based on
vital sign values. As per the commonly observed practice
in the literature, we categorised the depth of anesthesia into
three distinct classes: Light Anesthesia, OK Anesthesia, and
Deep Anesthesia. The results are presented for the ensemble
classifiers and deep learning models to determine the depth
of anesthesia. To evaluate the models, several metrics were
considered, including accuracy, precision, recall, specificity,
and F1 scores. These metrics provide a comprehensive
understanding of the model’s performance in terms of overall
correctness, precision, and recall balance. Furthermore,
confusion matrices were generated for each trained model,
providing visualizations that aid in interpreting the results
and understanding the distribution of predictions across the
different categories.

A. PERFORMANCE EVALUATION
The models were trained and evaluated using two distinct
datasets: the University of Queensland Vital Signs Dataset
and the VitalDB Dataset. Among the ensemble classifiers
utilized, the XGBoost model achieved an accuracy of 99.34%

on the University of Queensland Vital Signs Dataset and
93.07% on the VitalDB Dataset. The CatBoost model closely
followed with accuracies of 99.39% and 92.59% on the
University of Queensland Vital Signs and VitalDB datasets,
respectively. Additionally, the LightGBM and Random
Forest classifiers showed accuracies of 96.66% and 98.18%,
respectively, on the University of Queensland Vital Signs
Dataset. On the VitalDB Dataset, their accuracies were
recorded as 92.34% and 88.20%, respectively. Incorporating
neural networks into the analysis, the implemented 8-layered
neural network achieved accuracies of 98.40% and 93.08%
on the University of Queensland Vital Signs and VitalDB
Datasets, respectively. Furthermore, the 1-D ResNet model
displayed favourable results, attaining an accuracy of 99.20%
on the University of Queensland Vital Signs Dataset and
92.80% on the VitalDB Dataset. In summary, Table 5 and 6
show that the XGBoost Classifier either outperforms or gives
comparable performance to other classifiers.

Further, the confusion matrices were also generated for
all models. These matrices offer a graphical representation
elucidating the counts of True Positives, True Negatives,
False Positives, and False Negatives for each classification
category. Fig. 4 and 5 showcase the confusion matrices of
the XGBoost model, which yielded the most favourable
outcomes. These matrices indicate minimal misclassifica-
tions of Light Anesthesia examples in the other two classes.
This is advantageous, particularly since one of our primary
goals is to avoid recall due to low anesthesia dosage.
The notable misclassification in Fig. 4 and 5 primarily
occurred between the OK Anesthesia and Deep Anesthesia
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TABLE 4. Details of tuned hyperparameters.

TABLE 5. Comparative accuracies of various models implemented on the
University of Queensland Vital Signs dataset.

TABLE 6. Comparative accuracies of various models implemented on the
VitalDB dataset.

classes, with instances of deep anesthesia being erroneously
labelled as OK. This phenomenon can be ascribed to the
human tendency to err on the side of caution, potentially

FIGURE 4. Confusion matrix illustrating the performance of the XGBoost
model on the University of Queensland Vital Signs dataset.

FIGURE 5. Confusion matrix illustrating the performance of the XGBoost
model on the VitalDB dataset.

choosing slightly higher anesthesia dosages to mitigate the
risk of patients waking up during surgery. Consequently, the
anesthesia levels might have fallen within the upper range of
the deep category (0-40).

Additionally, a detailed analysis of performance metrics
was conducted for the XGBoost classifier to gain deeper
insights into its efficacy. These metrics encompass a range of
statistical measures evaluating the classifier’s accuracy, preci-
sion, recall, and F1 score. Table 7 compares the performance
metrics observed in the University of Queensland Vital Signs
andVitalDB datasets, elucidating the classifier’s performance
across different datasets and highlighting its consistency or
variations in predictive capabilities. It may be noted that on
both datasets XGBoost can achieve precision, recall, and F1
score greater than 92%, thus establishing a high performance
by the model in classifying the examples into three classes.

In the context of applications like depth of anesthesia,
we advocate for prioritizing the F1 score as the primary
metric. This choice is grounded in the unique characteristics
of the F1 score, which balances precision and recall.
It proves particularly crucial in scenarios where achieving a
harmonious equilibrium between minimizing false positives
and false negatives is paramount. In the context of depth
of anesthesia, ensuring both the accurate identification
of instances requiring intervention (high recall) and the
avoidance of unnecessary interventions (high precision) is
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TABLE 7. Performance evaluation of XGBoost classifier: comparative analysis between the University of Queensland Vital Signs dataset.

of utmost importance. Nevertheless, we have disclosed all
performance metrics, including accuracy, precision, recall,
and F1-score, to foster transparency and contribute to the
future development of this research.

1) STATISTICAL ANALYSIS
From Table 5 and 6, we may note that on both the
University of Queensland Vital Signs and VitalDB datasets,
the XGBoost classifier performs better than all the other
classifiers under consideration. However, to capture any
stochasticity of the system and statistically evaluate the
significance of the difference between XGBoost and other
classifiers, we repeated our entire experiment 40 times with
random seed values. For all the 40 different iterations,
we performed 10-fold cross-validation on all the classifiers.
We performed a z-test to statistically evaluate the significance
as the number of test samples is more than 30, therefore as per
the central limit theorem, we have considered the samples to
be approximately normally distributed [41]. Further, we have
used the value of the level of significance (α) equal to 0.05.
Let us consider the null hypothesis (H0 : µ1 = µ2),

positing that there exists no significant disparity between
the mean values (µ) of the XGBoost classifier and the
other classifiers being assessed. Conversely, the alternative
hypothesis (H1 : µ1 > µ2) suggests the superiority of
XGBoost over the others. Let z be the test statistics and
zα = 1.645 be the critical value. If the value of z lies in the
critical region (z > zα) or the p-value is less than α, then
we reject the null hypothesis. Otherwise, we conclude that
the performance of XGBoost is superior, and the difference
is big enough to be statistically significant.

For the University of Queensland Vital Signs dataset,
on comparing XGBoost with CatBoost, LGBM, Random
Forest, MLP-6layer, and MLP-8layer, the value of test
statistics z is -5.76, 2.176892, 98.190808, 881.854, 318.316,
and -11.256, respectively. Similarly, on comparing XGBoost
with CatBoost, LGBM, Random Forest, MLP-6layer, and
MLP-8layer, the p-values are 8e−9, 0.0294886, 0, 0, 0, and 0,
respectively. As in all the cases, the value of test statistics z is
not in the 95% region of acceptance [-1.959964: 1.959964],
and the p-value is less than the level of significance α = 0.05.
Therefore, we reject the null hypothesisH0 and conclude that
the performance of XGBoost is superior to other classifiers,
and the difference is big enough to be statistically significant.
We also performed the statistical evaluation on the VitalDB
dataset and found similar results. Therefore, we conclude that

the performance of XGBoost is superior to other classifiers on
both datasets.

B. INTERPRETATION OF THE MODELS
Although XGBoost provides the highest accuracy, being a
black-boxmodel, it does not provide insights into how it came
to a decision. So, we deploy XAI models LIME and SHAP
to understand how they arrive at the outcomes in terms of the
input parameters that serve as the physiological parameters
(vital signs). To instil confidence, it is imperative to scrutinize
the model’s predictive behaviour on a per-instance, per-class
basis. This examination allows us to streamline the feature
set (set of vital signs), thereby expediting model training
and potentially enhancing prediction accuracy by identifying
the pivotal elements influencing prediction outcomes. In the
context of establishing clinical confidence in predicting DoA,
it becomes crucial to elucidate the specific roles played by
each of the features (vital signs) employed. Utilizing XAI
methods aids in investigating the contributions of vital signs
to the predictive process.

Our study utilized LIME and SHAP methodologies in
conjunction with trained models to gain insight into their
performance and the significance of vital signs in assessing
DoA. Our study exclusively presents outcomes derived solely
from our top-performing model, XGBoost, which is applied
across both datasets. Furthermore, we deliberated upon the
feature importance scoring mechanism integrated within
XGBoost, elucidating the importance of various vital signs
that identify the most pivotal features contributing to the
prediction process.

Fig. 6(a) and 6(b) illustrate the feature importance scores
obtained through the XGBoost mechanism for both the
University of Queensland Vital Signs and VitalDB datasets.
The feature importance scores showcased in these figures
illuminate the pivotal role played by individual features in
the predictive capacity of the XGBoost algorithm across these
datasets.

Fig. 7 and 8 show the occurrence of physiological
parameters in the top 10 features list, categorized by class,
across 15 randomly selected examples for the University of
Queensland Vital Signs Dataset and the VitalDB Dataset,
respectively. The x-axis represents different physiological
parameters, while the y-axis indicates the count of occur-
rences for each parameter. Examining the results for the
University of Queensland Vital Signs Dataset, specifically for
class 0 (Light Anesthesia), the LIME explanation highlights
vital signs such as EMG, inO2, and HR as the foremost

VOLUME 12, 2024 119197



N. K. Sharma et al.: XAI-VSDoA: An Explainable AI-Based Scheme Using Vital Signs

TABLE 8. Statistical analysis.

contributors to that particular accurate prediction. Important
features for other classes can be read similarly. In the case of
heart rate (HR), Class 0 exhibits the highest count, followed
by Class 1, and Class 2 has the lowest count. A similar trend
is observed for the ST segment (ST-II) and pulse, where
Class 0 consistently shows higher counts. Oxygen saturation
(SpO2) also follows this pattern, with Class 0 leading in count
compared to the other classes. Parameters such as end-tidal
CO2 (PetCO2) have a noticeable presence in Class 1 and
Class 2, whereas Class 0 has a significantly lower count.
Airway respiratory rate (awRR) is more prevalent in Class 0.
Non-invasive blood pressure (NBP) measurements, including
systolic, diastolic, and mean, show varied distributions; for
instance, NBP (Mean) is more pronounced in Class 1. End-
tidal isoflurane (etISO) counts are higher in Class 1 and
Class 2, reflecting a distinct pattern compared to other
parameters. Minimum alveolar concentration (MAC) is more
prevalent in Classes 1 and 2. Parameters such as etCO2, iNo2,
EMG, tidal volume, minute volume, and respiratory rate (RR)
exhibit varying counts across the three classes. Class 0 tends
to have higher counts in several physiological parameters,
with notable differences in how NBP, etISO, and sSEC are
distributed among the classes.

Fig. 9 and 10 depict the explanation provided by the LIME
explainer when applied to the University of Queensland Vital
Signs and the VitalDB datasets, respectively. These figures
illustrate the accurate predictions made by the XGBoost clas-
sifier for all three classes. Further, the top 10 physiological
parameters significantly contributing to specific predictions
are also represented. The chart in 9 explains the prediction
probabilities and feature contributions for classifying data
into three classes (Class 0, Class 1, and Class 2) for the
University of Queensland Vital Signs dataset. The prediction
probabilities show that this instance is classified with 100%
certainty as Class 0. The chart then details how various
features contribute to this classification. For Class 0, features
like EMG (greater than 0.26), etISO (less than or equal to
0.43), and Minute Volume (greater than 0.60) are significant
contributors. These features increase the likelihood of the
instance being classified as Class 0. Conversely, features
contributing to Class 1 and Class 2, such as MAC and inO2,
are not prominent in this instance. The table at the bottom
lists the actual values of these features, which the model uses

to predict. Understanding these contributions helps interpret
why the model classified this instance as Class 0, providing
insights into the key physiological parameters influencing the
decision. The remaining plots can be read similarly for other
classes.

Notably, the SHAP explainer confirms these findings,
as demonstrated in Fig. 11(a). Fig. 11(a) presents a com-
prehensive overview of the feature importance generated
by the SHAP explainer, showcasing the features and their
corresponding Shapley values in descending order. Simi-
larly, for the VitalDB dataset, Fig. 10 exhibits the LIME
explanation, revealing the key physiological parameters
influencing predictions for the vitalDB Dataset. For instance,
in class 0, the pivotal parameters or features contributing
to the prediction include BIS/EMG, Solar8000/HR, and
Primus/MAC. Notably, the SHAP summary plot in Fig. 11(b)
substantiates these results, illustrating the identical set of
features deemed significant for class 0 predictions.

The examination for the other two classes reveals similar
results. For class 1 (OK anesthesia), MAC, tidal Volume,
etCO2, and Pulse were highlighted by LIME explanations
as the most important for randomly chosen 15 examples
of the University of Queensland Vital Signs Dataset. For
the vitalDB dataset, BIS/EMG, Solar8000/ST_II, Primus/
PAMB_MBAR, and Primus/PEEP_MBAR were considered
important. For class 2 (Deep Anesthesia), LIME highlighted
etISO, inO2, and EMG as the most important for the Univer-
sity of Queensland Vital Signs Dataset. Similarly, BIS/EMG,
Primus/inCO2, and Primus/etCO2 were chosen as the most
important for the VitalDB dataset. Notably, these results
agreed with the explanations supplied by LIME, thereby
enhancing the trust in the predictions of the XGBoost model.

For the University of Queensland Vital Signs Dataset,
the top 10 features as given by LIME are EMG,
inO2, MAC, Tidal Volume, NBP(Pulse), Minute Vol-
ume, NBP(Time Remaining), ST-II, etISO, and etCO2.
SHAP enlists HR, inO2, EMG, MAC, Tidal Volume,
etISO, Pulse, etCO2, NBP(Pulse), and etISO as the
most important top 10 features. It is clear that out
of these top 10 most important features identified by
the explainable techniques, 8 are common. Similarly,
for the VitalDB Dataset, LIME considered Primus/MAC,
Solar8000/HR, BIS/EMG, Primus/MV, Primus/INCO2,
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FIGURE 6. Feature Importance Scores from the XGBoost Model. The plot displays the feature importance scores obtained from the XGBoost machine
learning model. Each bar represents the importance of a specific feature in predicting the target variable. Higher bar heights indicate greater
importance of the corresponding feature in the predictive process.

Primus/EXP_SEVO, Primus/ETCO2, Primus/PEEP_MBAR,
Primus/ST-II, and Solar8000/ART_SBP as the most impor-
tant top 10 features. SHAP gave similar results as it
considered Primus/EXP_SEVO, Primus/PAMB_MBAR,
BIS/EMG, Solar8000/HR, Primus/MAC, Primus/MV,
Primus/COMPLIANCE, Primus/FE02, Solar8000/ART_SBP,
and Primus/ST-II as top 10 features contributingmost towards
the model’s predictions. It can be seen in this case as well that

8 out of the 10 features highlighted as important by LIME and
SHAP are common.

Further, we experimented with these subsets of the
University of Queensland Vital Signs dataset and the VitalDB
dataset, utilizing the 8 crucial features highlighted by
explainable methods. The results have been summarised in
Table 9. While the accuracy is slightly lower due to the
utilization of a subset of features rather than the entire
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FIGURE 7. Presence of physiological parameters in the top 10 features list, categorized by class,
across 15 randomly selected examples for the University of Queensland Vital Signs dataset.

FIGURE 8. Presence of physiological parameters in the top 10 features list, categorized by class,
across 15 randomly selected examples for VitalDB dataset.

University of Queensland Vital Signs dataset or the VitalDB
dataset, it remains comparable.

In conclusion, the LIME and SHAP explainers provide
consistent and interpretable insights into the crucial features
influencing the XGBoost classifier’s accurate predictions
for both the University of Queensland Vital Signs and the
VitalDB dataset. These findings enhance comprehension of
the model’s decision-making process and emphasize the
consistency of feature importance across various datasets.

C. COMPARATIVE STUDY
This section has conducted a comparative analysis between
our proposed framework and relevant prior studies within
the anesthesiology domain. Our comparative assessment
extends to state-of-the-art schemes focusing on accuracy

and AUC scores. For instance, Zhan et al. [12] employed
ECG signals, utilizing the Discrete Wavelet Transform
for analyzing Heart Rate Variability (HRV) power, thus
achieving an accuracy of 90.1%. Dubost et al. [42] employed
a Hidden Markov Model (HMM) using physiological
variables, achieving an accuracy of 52.87% in identifying
consciousness states. Liu et al. [14] proposed the similarity
and distribution index (SDI) based on HRV, showcasing a
favorable assessment of depth of anesthesia compared to
Bispectral Index (BIS), and achieving an AUC score of 0.95.
Moreover, Sadrawi et al. [11] integrated EEG signals with
mean vital signs, employing an Artificial Neural Network,
resulting in an AUC score of 0.96. They further conducted a
sensitivity analysis to evaluate feature importance. Tables 10
and 11 present a concise overview of the methodologies
utilized for comparison. We have compared our model’s
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FIGURE 9. Visualization of the specific impact of vital signs on the categorization of an individual test instance using LIME alongside the
XGBoost classifier, applied to the University of Queensland Vital Signs dataset.
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FIGURE 10. Visualization of the specific impact of vital signs on the classification of an individual test instance using LIME alongside the
XGBoost classifier, applied to the VitalDB dataset.
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TABLE 9. Performance evaluation of XGBoost classifier: using only 8 features highlighted as important by LIME and SHAP.

FIGURE 11. SHAP summary plot illustrating the importance of various physiological markets in the proposed model,
visualizing the impact of each feature (vital sign) on the model’s output predictions.

performance with other works in the literature, utilizing
metrics such as AUC (Area Under the Curve) and accuracy
wherever available to ensure a comprehensive evaluation
of its effectiveness. These tables highlight the remarkable
performance of our proposed method, achieving an accuracy
of 98.02%, which depicts the superior performance achieved
by the proposed scheme in determining the DoA. Notably,
our approach solely relies on numeric vital signs such as
Heart Rate (HR), Non-Invasive Blood Pressure (NBP), pulse,
and other readily available metrics typically found in hospital
settings.

Table 10 compares the proposed scheme’s accuracy with
other state-of-the-art methods. Zhan et al. [12] used heart
rate variability (HRV) and a Deep Neural Network (DNN),
achieving an accuracy of 90.1%. Dubost et al. [42] employed
various vital signs, including heart rate, mean blood pressure,
respiratory rate, and AA inspiratory concentration, with a
Hidden Markov Model, resulting in an accuracy of 52.87%.
In contrast, the proposed scheme, which utilizes vital signs
such as heart rate, blood pressure, and respiratory rate with an
XGBoost Classifier, achieved a significantly higher accuracy
of 99.34%, indicating superior performance in classification
accuracy compared to the other methods.

Table 11 compares the proposed work with state-of-the-art
schemes regarding AUC (Area Under the Curve) scores. The
AUC score is a performance metric for classification models,
representing the area under the ROC (Receiver Operating
Characteristic) curve. It measures the model’s ability to dis-
tinguish between classes, with a higher AUC indicating better
performance. Liu et al. [14] utilized heart rate variability
(HRV) and an Artificial Neural Network (ANN) method,
achieving an AUC score of 0.952. Subramanian et al. [15]
also focused on HRV but employed Logistic Regression,
resulting in an AUC score of 0.825. Sadrawi et al. [11]
used vital signs such as heart rate, pulse, and blood pressure
with ANN, attaining an AUC score of 0.96. Another work
by Subramanian et al. [16] included heart rate variability,
electrodermal activity, and blood pressure with Logistic
Regression, yielding an AUC score of 0.80. In comparison,
the proposed scheme, which uses vital signs including heart
rate, blood pressure, and respiratory rate with an XGBoost
Classifier, achieved a superior AUC score of 0.996, indicating
a higher performance in classification accuracy.

Our methodology is exclusively reliant on easily accessible
vital signs, which significantly enhances cost-efficiency
and accessibility within clinical settings. Furthermore, the

VOLUME 12, 2024 119203



N. K. Sharma et al.: XAI-VSDoA: An Explainable AI-Based Scheme Using Vital Signs

TABLE 10. Comparison of proposed work with state-of-the-art schemes (in terms of accuracy).

TABLE 11. Comparison of proposed work with state-of-the-art schemes (in terms of AUC score).

integration of XAI increases the reliability and trustworthi-
ness of our model. XAI empowers healthcare professionals
by elucidating influential vital signs or physiological param-
eters (vital signs) in decision-making, augmenting clinical
decision-making processes and amplifying the transparency
and accountability of the model’s predictions. We employed
two separate datasets: the University of Queensland Vital
Signs Dataset and the VitalDB Dataset. This approach was
chosen for several important reasons. First, conducting the
experiments on multiple datasets enhances the generalizabil-
ity of the results, as it allows for the validation of findings
across different populations and clinical environments. Sec-
ond, by running the experiments independently on both
datasets, we minimize the risk of dataset-specific biases,
thereby increasing the reliability and validity of the study’s
conclusions.

In the proposed work, we tried our level best to find
as many datasets as possible from different ethnicities.
However, based on their availability, we were able to use
only two datasets. One is the University of Queensland
Vital Signs Dataset based in Australia, and the other is the
VitalDB dataset based in the Republic of Korea. The use of
datasets from two different ethnicities potentially increases
the generalizability of the proposed work across patients from
different populations.

VI. CONCLUSION
Traditional methods for monitoring the Depth of Anesthesia
(DoA) have demonstrated efficacy in clinical settings;
however, these are not standardized as patients’ responses
to anesthestic drugs vary with age, weight, ethnicity, and
other factors. On the other hand, machine learning and deep
learning models have become powerful tools for DoA assess-
ment, offering improved precision and predictive capabilities,
but often suffer from opacity, hindering interpretability and
undermining trust and comprehension.

In this work, we proposed XAI-VSDoA—an Explainable
AI-based scheme using vital signs for the assessment of the
depth of anesthesia. This interpretability boosts confidence
in the model, supporting critical reflection on anesthesia
management. Our findings underscore the potential of
XAI-VSDoA as a valuable tool for clinical use, enhanc-
ing patient safety and decision-making in anesthesia. The
integration of XAI will augment anesthesiologists’ clinical
decision-making and enhance trust in the system. Our
study entailed diverse experiments encompassing machine
learning and deep learning methodologies, yielding note-
worthy results. Leveraging two publicly available datasets,
we achieved favourable outcomes, with the models exhibiting
exceptional performance using numeric vital signs as inputs.
Specifically, the XGBoost classifier achieved the highest
accuracy of 99.34% with the University of Queensland
Vital Signs dataset and 93.07% with the VitalDB dataset.
To address the requirement for interpretability, we utilized
XAI techniques—LIME and SHAP—which facilitated the
identification of the top 10 features significantly influenc-
ing the model’s predictions. These techniques consistently
identified the same set of influential features, bolstering the
reliability of interpretation and providing a robust under-
standing of model predictions. When re-evaluated using the
top-ranked physiological parameters as suggested by these
XAI techniques, the proposed model, XAI-VSDoA, showed
comparable performance, highlighting the importance of the
selected features. This interpretability reinforces confidence
when the model aligns with established norms and encour-
ages critical reflection when presenting alternative features.

A limitation of this study is the limited sample size and
lack of ethnic diversity in the data, potentially decreasing the
generalizability of our proposed technique. While using two
datasets mitigates this issue to some extent, a more compre-
hensive dataset encompassing diverse patient demographics
is necessary. In future, in addition to vital signs, we intend
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to augment the proposed model by integrating other bio-
signals (such as ECG, EEG, and PPG) and additional
clinical information. This augmentation aims to enrich the
dataset, providing a more nuanced understanding of the
factors influencing the DoA. Further, we intend to use more
diverse datasets from other ethnicities also to enhance the
generalizability of the proposed scheme.
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