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ABSTRACT The Remote Sensing (RS) field continuously grapples with the challenge of transforming
satellite data into actionable information. This ongoing issue results in an ever-growing accumulation of
unlabeled data, complicating interpretation efforts. The situation becomes even more challenging when
satellite data must be used immediately to identify the effects of a natural hazard. Self-supervised learning
(SSL) offers a promising approach for learning image representations without labeled data. Once trained,
an SSL model can address various tasks with significantly reduced requirements for labeled data. Despite
advancements in SSL models, particularly those using contrastive learning methods like MoCo, SimCLR,
and SwAV, their potential remains largely unexplored in the context of instance segmentation and semantic
segmentation of satellite imagery. This study integrates SWAV within an auto-encoder framework to detect
landslides using deca-metric resolution multi-spectral images from the globally-distributed large-scale
landslide4sense (LL.4S) 2022 benchmark dataset, employing only 1% and 10% of the labeled data. Our
proposed SSL auto-encoder model features two modules: SwAV, which assigns features to prototype vectors
to generate encoder codes, and ResNets, serving as the decoder for the downstream task. With just 1% of
labeled data, our SSL model performs comparably to ten state-of-the-art deep learning segmentation models
that utilize 100% of the labeled data in a fully supervised manner. With 10% of labeled data, our SSL model
outperforms all ten fully supervised counterparts trained with 100% of the labeled data.

INDEX TERMS Deep learning, landslide detection, multispectral imagery, natural hazard, remote sensing.

I. INTRODUCTION

Landslides, severe geohazards in mountainous regions,
cause significant life loss and property damage [1].
From 2004 to 2016, landslides resulted in over 55,000
fatalities and yearly economic losses of USD 20 billion
globally. These disasters pose immediate threats to humans
and infrastructure, potentially causing floods, tsunamis,
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and deteriorated water quality by disrupting river sediment
transport [2].

Landslide inventories are created from historical data or
new data using various methods [3]. Field investigations,
though reliable, are limited by safety and cost. Remote
sensing (RS) allows for identifying landslides in inaccessible
areas but isn’t efficient for large areas with many land-
slides [4]. Nonetheless, it cannot be considered an efficient
procedure in cases with numerous landslides of very different
sizes distributed over large areas. Recent decades have seen
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the development of automated and semi-automated RS image
classifications, employing machine learning to quickly detect
landslides over extensive areas [5].

Traditional machine learning had challenges in land-
slide detection from RS images, including intricate spatial
relationships and high-dimensional feature handling [6].
Deep learning, especially Convolutional Neural Networks
(CNNs), outperforms these methods by learning complex
representations and handling large datasets efficiently [4].
The initial use of CNNs for RS image-based landslide
detection [4] pioneered the development of automatic tech-
niques, sustained by many subsequent studies [7], [8], [9],
[10], [11]. Since 2019, various advanced CNN algorithms
with enhanced feature extraction have been developed for
detecting landslides in deca-metric to decimetric RS data.
Therefore, the challenges of landslide detection can be

summarized as follows:
1) Difficulty of capturing the varied and complex nature

of landslide patterns: Traditional machine learning
methods struggle to effectively capture the complex
and varied patterns of landslides, which can differ
significantly across different regions and conditions.

2) Limited availability of labeled training data: There is
often a scarcity of labeled training data for landslide
detection, which hampers the effectiveness of traditional
machine learning models.

3) High variability of landslide characteristics across
different regions: The characteristics of landslides can
vary greatly from one geographic region to another,
making it difficult for traditional models to generalize
and perform well universally.

Bi-temporal VHR images acquired from QuickBird satel-
lite and a plane equipped with an aerial camera with
0.62 m and 0.5 m resolution, have been used for landslide
detection in Lantau Island in Hong Kong, China by [12].
Ju et al. [8] applied YOLO v3, RetinaNet, and Mask
R-CNN to automatically detect landslides from Google
Earth mosaics images of different satellite images with 1 m
resolution. Images with 0.25 m resolution captured by SF-300
Unmanned Air Vehicle (UAV) using a Canon EOS 5D Mark II
camera have been used by [7] for training Mask R-CNN
with different backbone networks, such as Swin Transformer
and ResNet-50, for detecting landslides in Sichuan Province,
China.

The landslide4sense (L4S) 2022 competition has provided
the first globally distributed landslide benchmark data
set, generating the attention of both the computer vision
and RS communities for the application of deca-metric
resolution multi-spectral images for landslide detection.
In [13] the L4S 2022 landslide benchmark data set was intro-
duced and evaluated using 11 state-of-the-art deep learning
(DL) segmentation algorithms: DeepLab-v2, DeepLab-v34-,
FRRN-A, FRRN-B, PSPNet, U-Net, ResU-Net, FCN-8s,
LinkNet, SQNet, and ContextNet. A landslide detection task
based on this benchmark data set has been implemented by
Zhao et al. [14] using EfficientNetV2, Swin Transformer,
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and SegFormer. A U-Net-like skip connection structure was
demonstrated using L4S 2022 benchmark data set by [15]
using Swin Transformer [16] as the encoder part. As a
result, they conducted spectral selection analyses on the
benchmark data set to establish the best spectral selections
for the self-attention mechanism that would allow the Swin
Transformer to properly detect landslides. Bai et al. [10] have
stated that the application of Deeplabv3, Deeplabv3+, and
U-Net for the L4S 2022 benchmark data set led to results with
limited accuracy. To segment landslides using deep learning,
they proposed a multi-spectral U-Net consisting of two input
streams for inputs of different resolutions.

This summary demonstrates that DL algorithms, trained
on the L4S 2022 landslide benchmark dataset and similar
supervised datasets like iSAID [17] require substantial
annotated data [18]. These algorithms, common in RS and
computer vision, often use transfer learning or fine-tuning to
adapt to specific image types. However, extensive labeling,
prone to ambiguity, is crucial, particularly in specialized
areas like landslide detection where domain expertise is
essential [13]. Furthermore, most big labeled data sets
are generated by RGB images, whereas RS data sets
generally provide useful information beyond the visible
spectrum.

Self-supervised learning (SSL), gaining prominence since
2020, learns data representation without manual labels,
rivaling supervised methods in image classifications [19],
[20]. SSL models, particularly contrastive learning types
like knowledge distillation (e.g., iBOT [21]), negative
sampling (e.g., SIimCLR [22] MoCo [23]), dual-branch
training (e.g., SCL-GCN [24]) and Clustering [25], have
gained much attention due to their strong learning ability
to mine intrinsic characteristics of data without labels.
Recent contrastive learning-based clustering advancements
have narrowed the unsupervised-supervised learning gap
in visual representation. These models generate cluster
assignments, or image codes, to group similar features,
yet were historically slow and computationally intensive.
Innovations in models like SimCLR and MoCo overcome
these limits using efficient data augmentation [25], achieving
top performance by comparing features across augmented
images [26]. Caron et al. [27] introduced SwAV, which
utilizes online code computing [28] for consistent image
coding across views. Our study adopts SWAV integrated with
ResNet-18 for landslide detection instance segmentation,
utilizing the L4S 2022 dataset. Additionally, we provide a
comprehensive comparison of the accuracy obtained from
SSL and supervised models by building different scenarios.
Specifically, we are pursuing the following goals in our
research:

1) to extend SSL models to landslide detection and use the
publicly available L4S data set to create baseline results
for future improvements

2) to adopt the SwAV model for pixel-wise landslide
detection tasks by integrating it with an auto-encoder.
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Therefore, this study introduces a novel approach by
integrating SWAV within an auto-encoder framework for
landslide detection, demonstrating how self-supervised learn-
ing can significantly reduce the reliance on labeled data.
Our contributions extend beyond traditional methods by
showcasing the effectiveness of SSL models in practical
scenarios with minimal labeled data, thus paving the way for
more scalable and efficient remote sensing applications.

il. METHOD
This study focuses on using multi-spectral Sentinel-2
images with different spectral bands for landslide detection.
Adopting the framework by Caron et al. [27] it advances
landslide detection. The SWAV model’s core is training a
neural network to distinguish between different views of
an image’s augmented versions, aiding in learning useful,
discriminative features [29]. The ResNet-18 architecture is
the encoder in this model. The network processes images
through convolutional layers to extract hierarchical features,
with the output from the final layer representing these
features for SWAV’s self-supervised objective (see Fig.1).
Following the training of the feature extractor on unlabeled
image patches, the study moves to landslide detection.
A U-Net network, based on ResNet-18, is developed for
this purpose. The pre-trained ResNet-18 model acts as the
encoder, with its weights frozen to preserve learned features.
This encoder extracts high-level features from image patches.
Next, we train the decoder part of the U-Net model using
labeled image patches representing 1% of the data. The
feature fusion of the decoder with labeled data allows our
model to produce precise landslide segmentation maps [30],
[31]. This method benefits from the pre-trained ResNet-
18’s capacity to identify key landslide characteristics from
unlabeled images. Fine-tuning the decoder with labeled
data tailors these features to the specific task, enhancing
performance and detection accuracy. This strategy merges
knowledge from SwAV with limited labeled data, thus
improving our model’s landslide detection efficiency. More-
over, for comparison, we trained the U-Net network’s encoder
and decoder as a supervised model using the entire training
dataset (100%), and again with just the 1% used in the
SwAV-based SSL model.

A. BRIEF REVIEW OF SWAV

SwAV (Swapping Assignments between multiple Views)
by Caron et al. [27] introduces an online method using
contrastive learning without needing paired image com-
parisons. Typically, contrastive loss involves comparing
representations from different images or views, essential for
integrating diverse transformation-derived representations.
These comparisons facilitate discriminative feature extrac-
tion, improving various computer vision tasks. Traditional
methods, however, face challenges in comparing images
pairwise across entire datasets for training. Many estimate
loss from a limited image sample [22], unlike SWAV’s focus
on unsupervised learning. SWAV uses multiple views of the
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same image, ensuring consistency among codes, representing
a swapping form Fig.2.

In SwaV, the loss function is computed using augmented
versions of a single image. Given two different views of
an image, represented by features z; and z,, their associated
codes g; and g5 are calculated by assigning z; and z; to a set
of K prototypes {c1,c2,..., ck }. Therefore, the loss function
for the swapped problem compares the features using the
intermediate codes, as shown in Eq. 1:

L(zs, z5) = €z, q5) + €(zs, q1), e

where ¢ is the loss function that compares the feature z with
a code g. This approach bears resemblance to contrastive
instance learning [32] but focuses on enforcing consistency
within different views of an image, rather than solely target-
ing the codes. The approach involves a swapping paradigm,
where the loss function is computed based on augmented
versions of the image. By comparing features using interme-
diate codes, SwaV aims to ensure consistency within different
views of an image. The “swapped” prediction problem is
established based on this loss function, where the code g acts
as the corresponding label (ground truth) for a given image
feature z. The softmax operation is then performed by taking
the dot product between z and the predicted output, which in
this case corresponds to prototype C. The approach involves
a swapping paradigm, where the loss function is computed
based on augmented versions of the image. By comparing
features using intermediate codes, SwaV aims to ensure
consistency within different views of an image.

1) ONLINE CLUSTERING

Furthermore, SwaV incorporates an online clustering method
to solve the cluster assignment problem. The method
treats cluster assignment as an effective transport problem
and utilizes the Sinkhorn Knopp algorithm [33]. Unlike
standard cluster assignment methods, SwaV performs cluster
assignments on a batch-by-batch basis. To allocate N given
image features (Z) into K clusters, a matrix Q of codes is
created. The mapping of image features to prototype vectors
involves passing the features through a linear layer with the
same number of neurons as the prototypes {c1,c2,..., cx }.
This ensures similarity between Z and C while avoiding
mapping different image features to the same prototype. The
prototype vectors are optimized using the Sinkhorn Knopp
algorithm.

2) DATA AUGMENTATION FOR CONTRASTIVE LEARNING

In SSL, it is imperative to design appropriate data augmenta-
tion procedures in order to acquire effective representations.
Augmenting data by random crops is one of the most helpful
procedures in contrastive learning. The augmentations pro-
vide information regarding the relations between parts of a
targeted object or geographical features, like landslides in
our case, within the image patch. In contrast, multiplying
crops or “‘views” requires considerably more memory and
processing power. However, Caron et al. [27] employ a simple
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FIGURE 1. The overview of an integrated framework that combines SWAV with a customized U-Net network, built upon the ResNet-18 architecture. This
framework is designed for the specific task of landslide detection. Where Xg and X; refer to global and small views, respectively.

yet intelligent procedure of multi-crop data augmentation that
uses two crops with the resolution of the original image and
includes additional low-resolution crops covering a smaller
part of the image patch. Taking low-resolution crops into
account does not significantly increase computation costs.
The loss of Eq. 2 is generalized.

V42

LGz, 2n) = D, D hail@, q). ()

xel,2 v=1

where V is the number of added low-resolution crops.
We refer the reader to Caron et al. [27] for results of
some SSL models over ImageNet by applying the multi-crop
augmentation procedure.

B. DOWNSTREAM TASK
One objective of using a pre-trained self-supervised model
such as SwAV is to perform downstream tasks [34]. Deep
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convolutional networks, specifically ResNets [35], are key
for decoding images and feature extraction. We utilize these
extracted features for our custom U-Net network, which
employs a ResNet-based encoder and symmetrical decoder
blocks with skip connections. This consistency in design
enhances the SLL model’s feature extraction capabilities,
crucial for tasks like landslide detection, leveraging convolu-
tions, batch normalizations, activations, and downsampling.
In this case, we use the original ResNet-18 architecture [36]
as our feature extractor for SWAV. In the supervised scenarios,
our custom-designed network is treated as a normal U-shaped
network like U-Net. In the SSL model, however, we have
removed the average pooling (Avg pool) and fully connected
(FC) layers. Moreover, the weights of encoder features are
frozen, while the weights of decoder features can be trained.
It also reduces considerably the number of parameters to be
estimated. This is done with only 1% of the training data
set for the SSL model. On the last layer of the decoder, the
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FIGURE 2. Creating randomly multi-crop views of the same landslide
image patch in order to set up the swapped prediction problem, where z;
and zs are image features of the corresponding views, and g; and gs are
their respective codes.

sigmoid function is applied in order to create a probability
map between zero and one for landslides. Unlabelled
data for the unsupervised network was transformed and
normalized in the same way as labeled data for the supervised
network. The visualization of cluster prototypes in the
SwAV model for landslide detection task is represented in
Fig.3.

Ill. EXPERIMENTS

Experiments are carried out on the L4S benchmark data
set to evaluate our SSL model for landslide detection.
We first used the whole training data set, which comprised
3799 image patches for training the SwWAV without labels.
The generalization of ResNet-18 features trained by SwAV on
the training set of the L4S made it possible to detect landslides
on the test set of L4S using only 40 image patches from the
training set (without augmentation).

In order to conduct a comparison, we trained both the
encoder and decoder parts of the same U-Net network as
supervised model ones using the whole training data set
(100%) and one more time using only the same 1% that was
used for the proposed SwAV based SSL model.

A. DATASET DESCRIPTION

Landslide4Sense (L4S) developed a medium-resolution,
multi-spectral, multi-source landslide benchmark dataset for
machine learning algorithms, with high-accuracy landslide
image requirements. It includes 14 data layers: Sentinel-2
multi-spectral layers (bands 1-12), digital elevation model
(DEM), and slope layer from ALOS PALSAR. L4S features
pixel-wise landslide and non-landslide class labels, with
training, validation, and testing sets collected at various
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times and locations. These sets have diverse characteristics
like vegetation and topography, influenced by triggers like
rainfalls and earthquakes. The dataset has image patches of
128 x 128 pixels, with 3799 training, 254 validation, and
800 test patches. The geographic location and details on the
case study areas are disclosed in Fig.4 and for more details
on the training section we refer to [13].

B. DATA SELECTION SCENARIOS

In a multi-spectral image, the sensitivity of different bands to
the landslide features is variable, and some bands represent
minimal responses to landslides [14]. A comprehensive
evaluation of the role that topographic factors of DEM and
slope play in landslide detection by [38] also emphasizes that
the role of these data is different. Although we do not intend
to assess the impact of data on landslide detection in this
study, we define some scenarios that are based on different
data selections for evaluating our SSL and supervised
algorithms. Specifically, seven scenarios are defined: RGB
alone; RGBNIR alone; RGB and DEM; RGBNIR and slope;
RGB DEM and slope; RGBNIR DEM and slope; and
finally all 14 bands provided by the L4S benchmark data
set.

C. IMPLEMENTATION DETAILS

This study implements supervised and unsupervised pro-
cesses using Python and PyTorch on an Ubuntu server
with 4 NVIDIA Tesla T4 GPUs. The SwWAV model utilizes
global and small views sized (2, 128) and (2, 96) respectively,
with a consistent batch size and epoch number of 128 and
2000. For the downstream task, limited to 40 samples (1% of
training data for SWAYV, are represented in Fig, 5), we adjust
to a batch size of 16 and 1000 epochs. To effectively select
labeled data and exclude non-landslide patches, a function
was created to choose patches with at least 50 landslide
pixels. The learning rate starts at 0.001, reducing by 0.95 each
epoch. Adam optimizer and Binary Cross Entropy loss are
used in the optimization process.

D. ACCURACY ASSESSMENT

To evaluate the performance of the models across different
scenarios, predictions were generated using the test dataset
consisting of 800 image patches from L4S. The accuracy
assessment employed widely recognized metrics such as
Precision, Recall, and F1 score. These metrics offer detailed
insights into the model’s ability to accurately classify
landslides and non-landslide areas, ensuring a comprehensive
evaluation of its performance.

E. RESULTS AND DISCUSSION

The SSL model’s performance on the L4S benchmark data
set involves seven scenarios, shown in Fig. 6 with various
landslides from the test set. It compares three models’
predictions, highlighting true positives in red, false negatives
in green, and false positives in blue.
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FIGURE 3. Visualization of cluster prototypes in the SWAV Model: This diagram showcases the clustering of image features into distinct groups based on
their similarity. Each cluster, represented by a dashed circle, contains multiple image patches that share similar visual characteristics. The colored dots
within each cluster indicate the cluster prototypes, serving as reference points for the assignment of image features during the learning process. The
different colors of the cluster prototypes highlight the diversity of the clusters formed in the feature space.

Our landslide detection accuracy assessment results are
presented in Tables 1- 7. As can be seen, the fully supervised
U-Net network (trained with 100% of the labeled data)
accomplishes higher performances compared to the SSL
model (trained with 1% of the labeled data) in any data
selection scenarios. However, in some cases, such as using
RGB + Slope and RGB + Slope&DEM bands, the resulting
F1 of the SSL model is only 2 percentage points lower than
that of the supervised model (see Tables 2 and 3 and Fig. 7).
For the same cases, however, the SSL model achieves 22 and
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37 higher F) percentage points than the supervised model
trained with the same number of labeled data as our SSL
model. In general, the average of the resulting F of the fully
supervised model based on all applied scenarios is more than
5 percentage points higher than that of the SSL model. The
difference, however, is significantly higher in the opposite
direction when using 1% of the labeled training data. As a
result of using 40 labeled image patches from the training data
set, the average F; of the SSL model is substantially greater
than that of the supervised model.
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FIGURE 4. The locations of the training, validation, and test sites of landslide4sense (L4S) 2022 competition on a global landslide potential map
generated by [37] and the visualization of every image layer in the 128 x 128 window size patches of the landslide dataset. Bands 1-12 represent the
multi-spectral Sentinel-2 data, bands 13-14 represent the slope and DEM data, and the final column corresponds to the mask of annotated landslides.

Moreover, the best performance is for the fully supervised
U-Net network trained by 5 bands of RGB&NIR + Slope
with an F; value of more than 74%. Comparing this value
with the lowest F; of 60% based on the same model trained
by 3 bands of RGB illustrates the high sensitivity of our fully
supervised U-Net network to the band selection scenarios.
Similarly, the SSL model also gets the lowest F; value using
only RGB bands. The supervised U-Net network trained
by the limited number of labeled data also represents a
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very low F7p value in this data selection scenario, but its
lowest value is for using RGB + Slope&DEM bands with
an F| of 24% for the landslide detection task. Therefore,
regarding the data selection scenarios, RGB shows the lowest
accuracy for almost all models, while RGB&NIR + Slope
and RGB&NIR + Slope&DEM could considerably help
models to represent their highest performance. In addition,
the resulting F; values using all 14 bands provided by the
L4S benchmark data set are the closest to the average F of
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FIGURE 5. The applied 1% of training data, including 40 samples for the SSL model. They are selected randomly from the landslide4sense with the
condition of having more than 50 landslide pixels in each patch. Representation is based on the RGB Sentinel-2 image patches and the corresponding

pixel-wise labels of landslide and non-landslide.

all data selection scenarios. For the accuracy assessment
metric of precision, the supervised U-Net network trained by
1% labeled data illustrates exceptional performance with a
precision of 86%, using RGB + Slope&DEM, followed by
the model trained with the whole training data set and all
14 bands by an 80% precision value. However, the recall
for the former model is only 14%, while, that of the later
model is 56%, which leads to very different F; values.
The precision in all applied models is noticeably higher
than recall, except in the scenario using RGB&NIR +
Slope for the fully supervised U-Net network. There is
the greatest difference between these two metrics within
the accuracy assessment results of the supervised model
with 1% labeled data. The comparatively higher precision
compared to recall in the supervised U-Net network trained

118460

by 1% labeled data indicates that while the pixels detected
as landslides are reliable enough and there are very fewer
pixels that were incorrectly detected as landslides, many other
landslides could not be identified by this model. It can be
observed in Fig. 8 that the scenario RGB + Slope&DEM
for the supervised network with 1% labeled data shows the
most pronounced imbalances between precision and recall.
In this figure, precision and recall are compared, using
dashed yellow triangles to represent each model’s accuracy
assessment metrics.

F. COMPARISON WITH RELATED WORK

In this subsection, we further compare the proposed method
with the state-of-the-art semantic segmentation models that
are trained with a fully supervised learning manner using

VOLUME 12, 2024



. Ghorbanzadeh et al.: Contrastive SSL for Globally Distributed Landslide Detection

IEEE Access

RGB
Slope&DEM

o
[9)]
@™

Supervised
with 100%
labeled data

Supervised
with 1%
labeled data

Self-supervised
with 1%
labeled data

Supervised
with 100%
labeled data

Supervised
with 1%
labeled data

Self-supervised
with 1%
labeled data

Supervised
with 100%
labeled data

Supervised
with 1%
labeled data

Self-supervised
with 1%
labeled data

- True Positive

Legend for the confusion matrix maps:

RGB&NIR
Slope&DEM

RGB&NIR RGB&NIR

Slope

14 bands

- False Positive

False Negative

FIGURE 6. The landslide detection maps obtained by the applied supervised model with 1% and 100% of the labeled training data set and the SSL

model with that of 1%.

100% of the labeled training data set and all 14 bands
of the L4S benchmark data set. The selected models
are FCN-8s [39], DeepLab-v2 [40], DeepLab-v3+ [41],
ContextNet [42], SQNet [43], PSPNet [44], U-Net [45],
ResU-Net [46], LinkNet [47], and FRRN-B [48]. It can be

VOLUME 12, 2024

observed in Table 8 that due to the class imbalance between
the landslide and non-landslide regions in the training set,
most of the advanced segmentation networks adopted in the
experiment can yield an F; score of around 60% or even
less.
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TABLE 1. Quantitative results of using RGB bands (%).

TABLE 3. Quantitative results of using RGB + Slope&DEM bands (%).

Precision Recall Fq Precision Recall Fq

Supervised with 100% labeled data 73 51 60 Supervised with 100% labeled data 68 58 63

Supervised with 1% labeled data 76 16 27 Supervised with 1% labeled data 86 14 24

Self-supervised with 1% labeled data 71 37 49 Self-supervised with 1% labeled data 75 51 61
TABLE 2. Quantitative results of using RGB + slope bands (%). TABLE 4. Quantitative results of using RGB&NIR bands (%).

Precision Recall Fj Precision Recall Fj

Supervised with 100% labeled data 71 64 67 Supervised with 100% labeled data 69 57 63

Supervised with 1% labeled data 75 31 43 Supervised with 1% labeled data 76 30 43

Self-supervised with 1% labeled data 73 59 65 Self-supervised with 1% labeled data 67 53 59

By contrast, the proposed architecture can achieve an if the number of training samples drops to 1% of the

F1 score of around 66% in the fully supervised scenario, entire training set, the performance of the proposed network
which outperforms the second-place model (i.e., FRRN-B) will also drop significantly with an F; score of only
by 4 percentage points, (as shown in Table 8). However, 46%. An inspiring phenomenon is that this result can be
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TABLE 5. Quantitative results of using RGB&NIR + slope bands (%).

Precision Recall F;

Supervised with 100% labeled data 69 79 74
Supervised with 1% labeled data 76 34 47
Self-supervised with 1% labeled data 67 58 62

TABLE 6. Quantitative results of using RGB&NIR + Slope&DEM bands (%).

Precision Recall F;

Supervised with 100% labeled data 76 62 68
Supervised with 1% labeled data 74 36 49
Self-supervised with 1% labeled data 76 57 65

TABLE 7. Quantitative results of using all 14 bands (%).

Precision Recall F;

Supervised with 100% labeled data 80 56 66
Supervised with 1% labeled data 59 38 46
Self-supervised with 1% labeled data 67 56 61

dramatically improved to around 61% with the proposed
SSL strategy, which is even competitive with state-of-the-art
DL semantic segmentation models like FRRN-B in the fully
supervised learning scenario. Therefore, our proposed SSL
model could outperform 7 state-of-the-art DL segmentation
models from 10 applied fully supervised models using only
1% of the labeled image patches from the training data set.
The resulting F| score from this model is only 1% less than
the other remaining 3 fully supervised models. Moreover,
for a better comparison, and to provide benchmarking results
based on our introduced contrastive self-supervised method
of SWAV, we also applied 10% as the input feeding our
auto-encoder for the downstream task. Using 10% of the
labeled image patches from the training data set, the SSL
model gets the highest F'| score of more than 63%.

It should be noted that up to now, no other study has used
SwAV or any other contrastive self-supervised methods for
landslide detection. However, self-learning is applied based
on the unlabeled image patches of the validation data set
of the L4S by some studies to enhance the generalization
of a model that is already trained using 100% of the
labeled training data set [9], [14], [15], while in this study
the SSL model was trained without using labels of the
training data set (only 1% labeled patches were used).
Therefore, since we did not use 99% of labels, our results
are not directly comparable. Nevertheless, in the case of
a fully supervised U-Net network trained by 5 bands of
RGB&NIR + Slope, our resulting F; is very close to the
best landslide detection result based on the L4S reported
by Ghorbanzadeh et al. [38]. The main objective of this
study is to demonstrate the applicability of SSL models,
and contrastive learning in particular, for landslide detection,
with results that are in some cases similar to those of fully
supervised models trained with a large number of labeled
images. Therefore, we compare our proposed framework with
similar approaches used in RS. It should be noted that the
number of these works is also very limited at the moment.
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TABLE 8. Quantitative results of the state-of-the-art semantic
segmentation models using all 14 bands (%).

Model Precision Recall F;

FCN-8s [39] 44 74 55

DeepLab-v2 [40] 54 65 59

DeepLab-v3+ [41] 49 77 60

ContextNet [42] 40 70 51

SQNet [43] 61 63 62

100% labeled data PSPNet [4/] 74 37 50
U-Net [45] 61 63 62

ResU-Net [46] 51 64 57

LinkNet [47] 59 64 61

FRRN-B [48] 53 74 62

1% labeled data SSL (ours) 67 56 61
10% labeled data SSL (ours) 72 55 63

In a very current work, Wang et al. [25] evaluated four
prominent contrastive self-supervised procedures of Barlow
Twins [49], SWAV, MoCo-v2 [50], and SimSiam [51], which
are well-known for their capabilities in redundancy reduction,
clustering, negative sampling, and knowledge distillation,
respectively. The experiments were based on only Sentinel-2
images of three RS image patch data sets, SEN12MS [52],
BigEarthNet [53], and So2Satl.CZ42 [54], related to land
cover, scene, and local climate zone classification. Similar
to our study, they use ResNet-18 as encoder backbones and
128 x 128 image patches, applying frozen features from
pre-trained contrastive self-supervised methods. Their results
align with ours, showing slightly higher accuracy in fully
supervised networks compared to SSL methods across all
three RS image patch datasets.

IV. LIMITATIONS AND FUTURE WORK DIRECTIONS
Although the contrastive self-supervised method of SWAV
shows very promising results on the downstream task of
landslide detection, the performance of this method is not
compared to others such as MoCo. Moreover, the applied
encoder backbones are usually based on ResNet-50 in such
applications, but here the ResNet-18 is used for the sake
of simplicity. Regarding the applied benchmark data set,
this study did not use the available unlabeled validation
data set of L4S and only the training set is used without
labels. The images in our dataset are limited to a size of
128 x 128 pixels, which may restrict the demonstration of
our method’s potential for large-scale scene applications.
In addition, there are several well-developed architectures,
such as UANet [55], G2LDIE [56], and multi-scale con-
trast enhancement model [57] designed for specific tasks.
These architectures can be adapted and evaluated for their
applicability to our future work, particularly for landslide
segmentation using PlanetScope imagery. Consequently,
the limitations mentioned above will be taken into con-
sideration when determining the direction of our future
research.

V. CONCLUSION
In the domain of RS image classification and segmentation
tasks, the scarcity of labeled data has led to a rise in
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unsupervised and SSL models. This study explores SSL
applications for natural hazard analysis, particularly in
landslide detection. We introduce an approach employing
the contrastive SwAV procedure for effective landslide
detection without human annotations. Our framework yields
results on par with fully supervised models. To evaluate
SSL models’ efficiency in landslide detection from RS
images, we compared the performance of the same network
under fully supervised conditions and when supervised using
limited labeled images, as in SSL. Our proposed SSL model
achieves the highest accuracy of an F; value of 65% in
two different data selection scenarios. More intriguingly, the
proposed SSL model trained with only 1% of the labeled
data can achieve similar or even better performance than
ten state-of-the-art DL segmentation models that are trained
with 100% of the labeled data. Moreover, the SSL model can
easily obtain a higher F score than fully supervised models
using 10% of the labeled data. The effectiveness of our SSL
method in landslide detection with limited labeled data is
highlighted. We focused on the SSL model’s performance
using the public L4S benchmark dataset, which provides
diverse data selection scenarios, facilitating comparisons with
future advanced SSL algorithms. Additionally, our findings
underscore the importance of appropriate data selection in
both supervised and SSL approaches, although the impact on
method performance varies. This research opens to feasible
adaptations of contrastive self-supervised methodologies in
the context of landslide detection, paving the way for
future comparative analyses on the benefits of different
self-supervised strategies in landslide-related applications.
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