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ABSTRACT Rough set theory provides valuable tools for handling and analyzing ciphertext, making it a
prominent asset in cryptographic applications. Its ability to manage uncertainty and reduce complexity can
enhance various aspects of ciphertext management, from pattern recognition, classification to cryptanalysis
and security checks. By imposing the principles of rough sets, cryptographic systems can become more
robust, efficient, and secure. The fundamental nature of the symmetric group within the context of rough
topological groups makes it a powerful tool in both theoretical and applied mathematics. Some cryptographic
protocols and coding theories depend on the properties of topological rough symmetric groups for security
and error detection or correction. This paper aims to generalize topological rough group structures and
investigate their properties. Additionally, an algorithm is established to classify the symmetric group Sn, and
experimental result is provided to explore the effectiveness of the algorithm. It provides practical tools for
analyzing imprecise or incomplete data, benefiting fields such as medical diagnostics, economic forecasting,
and geographical information systems.

INDEX TERMS Rough set thoery, symmetric group, topological group, topological rough group.

I. INTRODUCTION
Topological rough groups generalize classical group theory,
rough set theory, and topology. They incorporate group
theory’s algebraic operations and rough set theory’s lower and
upper approximations to handle uncertainty and imprecision
in group elements. The topological aspect introduces conti-
nuity extending rough groups to topological spaces where
the multiplication map and inverse map are continuous.
Additionally, mathematical logic and set theory provide the
foundational principles, such as equivalence relations and
partitions, necessary for rigorously defining these structures.
This integration creates a new structure for analyzing systems
with inherent uncertainty, enhancing theoretical and practical
applications.

The associate editor coordinating the review of this manuscript and

approving it for publication was Yiming Tang .

Rough set theory relies on equivalence relations to partition
the universe of discourse into sets of objects that are
indistinguishable with respect to certain attributes. Rough
set theory analyses the uncertainty and vagueness through
approximations on sets. The approximations are classified
as upper and lower approximations where lower deals with
certain objects and upper deals with both certain and uncer-
tain objects [20]. By deriving decision rules, rough set theory
captures attribute relationships and object classification.
Consequently, it stands as an alternative approach to fuzzy set
theory, finding utility across domains like machine learning,
data mining, pattern recognition, and expert systems.

Rough topological groups blend topological group theory
with rough set theory analysing group structures among
incomplete or ambiguous data [2]. This structure introduces
rough identity elements, a non-existence from the precise
identities found in traditional topological groups. Unlike their
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standard counterparts, rough topological groups allow for
elements that approximate identity with varying degrees of
certainty. This novel feature yields unique insights into the
group’s structure, as elements may only be approximately
neutral with respect to group operations [15]. Consequently,
the presence of rough identity elements generates fresh
outcomes and perspectives, enriching the study of rough
topological groups beyond what is observed in conventional
topological group theory.

In the study of a non-empty set, often conceptualized
as a class of objects, various characteristics or attributes
can be defined for these objects. The correlation between
these characteristics, based on their belongingness within
the set, can be examined. This exploration naturally leads
to the definition of a correlation coefficient, quantifying the
degree of association between different characteristics [8].
Motivated by this exploration, we aim to extend this concept
to define a measure between the class of open sets on a
symmetric group. This measure would allow us to analyze the
relationships and interactions among open sets of symmetric
group. A new type of topological structure on graphs is
introduced and analyzed, as described in [19]. The concept
of complementary soft neighborhoods is introduced, which is
employed to create a model for covering soft rough sets [1].
The proposed structure advances the study of topological

rough groups by integrating rough set approximations with
classical group and topological group theories. The primary
goal of this paper is to generalize the topological rough group
structure by incorporating the influence of semi-continuity.
Various theoretical results for these generalized topological
rough group structures are investigated and illustrated.
Additionally, an algorithm for the classification of Sn based
on S-topological rough group structure is established, along
with a practical application. This enhancement offers a
deeper theoretical understanding of uncertain systems and
practical applications in fields like medical diagnostics and
economic forecasting. For instance, the algorithm aids in
identifying hidden patterns in economic data and managing
uncertainty in geographical information systems, leading to
more accurate predictions and improved urban planning and
environmental monitoring.

Federated learning is symmetric and is utilized for skin
cancer detection and classification using privacy-aware algo-
rithms [27]. In the realm of Internet traffic classification, the
FLIC framework dynamically categorizes packets into appli-
cations, achieving 88% accuracy in traffic distribution and
scaling to 92% accuracy with increasing client numbers [18].
In healthcare, federated learning enables the effective use of
distributed medical data for detecting gastric cancer, ensuring
privacy and security [11]. Similarly, in IoT environments,
federated learning integrates decentralized data processing,
privacy preservation, and scalability, enhancing the intelli-
gence and security of IoT applications [14], [23]. In network
systems, federated learning adopts a decentralized approach
to optimize operational efficiency while safeguarding data

TABLE 1. List of acronyms and symbols used in the paper.

privacy, advancing the development of smarter and more
secure network infrastructures [24].

II. RELATED WORKS
Polish mathematician Pawlak [20] introduced rough sets in
1982, which are the mathematical theory for representing
incomplete and inadequate data. The motive of rough set
theory is to use the known imprecise data to approximately
deal with the entire problem. Significant advancements and
diversification in rough set theory have emerged. Similar to
how rough sets have become increasingly important in recent
years, they are now integrated with mathematical theories
like algebra and topology and are used in diverse domains
such as pattern recognition, decision-making, data mining,
etc. The algebraic structures of rough sets are investigated
by Iwinski [12], Biswas and Nanda [3], Bonikowski [5],
and Pomykala et al. [21]. The idea of rough groups and
rough subgroups are developed by Biswas and Nanda [3],
which merely depend on upper approximation. Miao et. al.,
[17] introduced and analysed the structure normal subgroups
in the context of rough set theory. Few flaws remain in
the preliminary rough group definition, which Wu and
Huang [25] modified in 2011. Numerous authors have
updated the concepts of rough groups, rough subgroups
and explored their features. The idea of topological rough
group, is an extension of the concept of topological group by
adopting Biswas’s rough group structure, is presented by N.
Bağırmaz et al [2].
Moreover, they investigated the characteristics of topolog-

ical rough groups with examples. Based on Wu and Huang’s
updated definition of rough groups, Lin et al. [15] examined
the idea of topological rough groups and described some of
its topological features and morphisms.

Levine [13] popularized the idea of semi-open sets
in 1963 by using closure and interior. The characteris-
tics of semi-topological spaces were researched by Gene
Crossley [9]. Maheswari [16], who later coined semi-
compactness, examined the characteristics of separation
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axioms. In 1965, Bohn [4] introduced the semi-topological
group. It was later implemented as a s-topological group.
Similarly, Bosan et al. [6] introduced the S-topological
group in 2014. In his PhD dissertation, Bosan [7] and
examined the characteristics of the S-topological group
and the s-topological group with essential examples and
counterexamples.

The correlation coefficient for fuzzy sets was derived
by D. Dumitrescu [8], which influenced us to develop a
measure for the subsets of the symmetric group Sn. The
correlation coefficient for Atanassov’s intuitionistic fuzzy
sets was extended by T. Gerstenkorn [10]. Xu et al. [26], who
proposed a clustering algorithm for Atanassov’s intuitionistic
fuzzy sets, P. Singh, who extended the clustering algorithm
for picture fuzzy sets, are the sources of inspiration for the
idea of defining the clustering algorithm for the set of all
permutations of Sn.

III. PROPOSED WORK: GENERALIZATION OF
TOPOLOGICAL ROUGH GROUPS
The generalization of topological rough groups using
semi-continuity results in the (S,s)-topological rough group
structure, whose properties are analyzed with illustrations.

A. (S,s)-TOPOLOGICAL ROUGH GROUPS AND
SUBGROUPS
Let (H, ✼) be a rough group, T be a topology on H and
TH be a topology on H induced by T . Then H is said to
be a S-topological rough group (S-TRG) if the product map
m : H× H→ H such that m(h1, h2) = h1h2 and the inverse
map i : H → H such that i(h1) = h−11 are semi continuous.
Similarily (H, ✼) be a rough group, T be a topology on H
and TH be a topology on H induced by T . Then H is said to
be s-topological rough group (s-TRG) if ∀ h1, h2 ∈ H and
∀ D3 ∈ T containing h1h

−1
2 , there exist D1, D2 ∈ SO(H)

containing h1 and h2 respectively ∋ D1 ✼ D−12 ⊆ D3.

Throughout the paper D1 ✼ D−12 = D1D−12
From above concept its clear that every topological rough

group is both s-TRG and S-TRG, as it is evident from
the definition. Every s-TRG will be a S-TRG, whereas the
illustrations 1(1) and 1(2) demonstrates that the converse
is false. From Illustration 1(1) and 1(2) its clear that the
belongingness of the identity element of the approximation
space in S-TRG does not influence the statement that every
S-TRG need not be a s-TRG.

Let H be a S-TRG and K1 be a rough subgroup of H. Then,
K1 is called a S-topological rough subgroup of H if K1 is a
rough subgroup and the maps mK1 (h1, h2) = h1h2, iK1 (h1) =
h−11 are semi-continuous. SimilarlyH be a s-TRG andK1 be a
rough subgroup ofH. Then,K1 is called a s-topological rough
subgroup of H (K1 ⩽ H) if for each h1, h2 ∈ K1 and for each
neighborhood D3 ∈ T containing h1h

−1
2 , ∃D1, D2 ∈ SO(K1)

containing h1 and h2 such that D1D−12 ⊆ D3.

Let H be a s-TRG and N ⩽ H. Then N is called a s-
topological rough normal subgroup of H (N ⊴ H) if ∀h1 ∈
H, h1N = Nh1.

Let H be a rough group then H is said to be a quasi
s-topological rough group if for each h1, h2 ∈ H, the map
Lh1 : H → H defined by Lh1 (h2) = h1h2, the map
Rh1 : H → H defined by Rh1 (h2) = h2h1 and the inverse
map i are semi continuous.
Illustration 1:
1) LetU = {0̃, 1̃, 2̃, 3̃, 4̃, 5̃, 6̃, 7̃} be the set of congruence

classes obtained by integers mod 8 and ✼ be the
addition mod 8. A classification of U is U /R =

{F1,F2}, where F1 = {0̃, 1̃, 2̃, 3̃}, F2 = {4̃, 5̃, 6̃, 7̃}.
Let H = {0̃, 1̃, 2̃, 4̃, 6̃, 7̃}, then H = U . Let T =
{∅, H, {0̃}} be a topology on H, then TH = {∅, H, {0̃}}.
(H, TH) is a S-TRG but not a S-topological group, since
H is not a group. Not a topological rough group, since
m−1({0̃}) is not open inH×H. Not a s-TRG, since 1̃, 7̃ ∈
H and {0̃} ∈ T containing 0̃ but ∄ D1, D2 ∈ SO(H)
containing 1̃ and 7̃ such that D1D2 ⊂ {0̃}.

2) LetU = {0̃, 1̃, 2̃, 3̃, 4̃, 5̃, 6̃, 7̃} be the set of congruence
classes obtained by integers mod 8 and ✼ be the
addition mod 8. A classification of U is U /R =

{F1,F2}, where F1 = {0̃, 1̃, 2̃, 3̃}, F2 = {4̃, 5̃, 6̃, 7̃}.
Let H = {1̃, 2̃, 4̃, 6̃, 7̃}, then H = U . Let T = {∅,
H, {0̃}, {2̃}, {4̃}, {6̃}, {0̃, 2̃}, {0̃, 4̃}, {0̃, 6̃}, {2̃, 4̃},
{2̃, 6̃}, {4̃, 6̃}, {0̃, 2̃, 4̃}, {0̃, 2̃, 6̃}, {0̃, 4̃, 6̃}, {2̃, 4̃, 6̃},
{0̃, 2̃, 4̃, 6̃}}, then TH = {∅, H, {2̃}, {4̃}, {6̃}, {2̃, 4̃},
{2̃, 6̃}, {4̃, 6̃}, {2̃, 4̃, 6̃}} be a relative topology on H.

(H, TH) is a S-TRG but not a S-topological group,
since H is not a group. Not a topological rough group,
sincem−1({0̃}) is not open inH×H.Not a s-TRG, since
1̃, 7̃ ∈ H and {0̃} ∈ T containing 0̃ but ∄ D1, D2 ∈

SO(H) containing 1̃ and 7̃ such that D1D2 ⊂ {0}.
3) LetU = {0̃, 1̃, 2̃, 3̃, 4̃, 5̃, 6̃, 7̃} be the set of congruence

classes obtained by integers mod 8 and ✼ be the addi-
tion mod 8. A classification ofU isU /R = {F1,F2},
where F1 = {0̃, 1̃, 2̃, 3̃}, F2 = {4̃, 5̃, 6̃, 7̃}. Let H =
{1̃, 3̃, 5̃, 7̃}, then H = U . Let T = {∅, H, {3̃}, {5̃},
{3̃, 5̃}, {0̃, 4̃, 6̃}, {0̃, 3̃, 4̃, 6̃}, {0̃, 4̃, 5̃, 6̃}, {0̃, 3̃, 4̃, 5̃, 6̃} }
be a topology on H, then TH = {∅, H, {3̃}, {5̃}, {3̃, 5̃}}.
(H, TH) is a quasi s-topological rough group but not
a s-TRG, since m−1({0̃, 4̃, 6̃}) = {(1̃, 3̃), (3̃, 1̃), (5̃, 7̃),
(7̃, 5̃), (1̃, 7̃), (7̃, 1̃), (3̃, 5̃), (5̃, 3̃), (1̃, 5̃), (5̃, 1̃), (3̃, 3̃),
(7̃, 7̃)} which cannot be written as the union of product
of semi open subsets of H.

B. PROPERTIES OF PROPOSED STRUCTURES
Result 1: Let H be a S-TRG and D1 ⊆ H. Then D1 ∈

SO(H) if and only if D−11 ∈ SO(H) and H = H−1

Proof: Since D1 ∈ SO(H) ∃ D2 ∈ TH ∋ D2 ⊂

D1 ⊂ Cl(D2). The conclusion follows since D−12 ⊂ D−11 ⊂

(Cl(D2))−1 = Cl((D2)−1) and H = H−1 follows directly
from the definition of S-TRG. □
Let H be a s-TRG and ∀D1 ∈ SO(H), D2 ⊂ H, D1D2 need

not be in SO(H). In general D1D2 need not be a subset of H.

Illustration 2: Let U = {0̃, 1̃, 2̃, 3̃, 4̃, 5̃, 6̃, 7̃} be the
set of congruence classes obtained by integers mod 8 and
✼ be the addition mod 8. A classification of U is
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U /R = {F1,F2}, where F1 = {0̃, 1̃, 2̃, 3̃}, F2 =
{4̃, 5̃, 6̃, 7̃}. Let H = {0̃, 1̃, 2̃, 6̃, 7̃}, then H = U .

Let T = {∅, H, {4̃}, {2̃, 4̃}, {4̃, 6̃}, {2̃, 4̃, 6̃}}, then TH =

{∅, H, {2̃}, {6̃}, {2̃, 6̃}}. (H, TH) is a s-TRG and D1 = {6̃} ∈
SO(H), D2 = {7̃} ⊂ H but D1D2 = {5̃} ̸⊂ H and there is
no semi open neighborhood of identity which is symmetric.
Hence H be a s-TRG with e and D3 ⊆ H be a neighborhood
with e ∈ D3. Then there need not exist S ∈ SO(H), which is
symmetric containing e such that SS ⊆ D3.

Result 2: Let H be an extremally disconnected s-TRG
containing e and e ∈ D3 ⊆ H be a neighborhood of e. Then
there exist e ∈ S ∈ SO(H) such that S = S−1 and SS ⊆ D3.

Proof: Since m : H × H → H is semi continuous,
m−1(D3) ∈ SO(H × H) and ee = e ∈ D3 ∈ T . Hence,
there exist semi open sets D1, D2 ∈ TH containing e such that
D1D2 ⊆ D3. By the Result 1, D−11 , D−12 ∈ SO(H), hence,
S = (D1 ∩D2 ∩D−11 ∩D−12 ) ∈ SO(H), e ∈ S, S = S−1 and
SS ⊆ D1D2 ⊆ D3. □
Illustration 3: U = {0̃, 1̃, 2̃, 3̃, 4̃, 5̃, 6̃, 7̃} be the set of

congruence classes obtained by integers mod 8 and ✼ be the
addition mod 8. A classification of U is U /R = {F1,F2},
where F1 = {0̃, 1̃, 2̃, 3̃}, F2 = {4̃, 5̃, 6̃, 7̃}. Let H =

{0̃, 1̃, 2̃, 6̃, 7̃}, then H = U . Let T = {∅, H, {0̃, 2̃}} be a
topology on H, then TH = {∅, H, {0̃, 2̃}}. (H, TH) is a S-TRG,
its clear that if H is a S-TRG then Result 2 need not be true.
Result 3: Let H be a s-TRG then
1) The map Lh1 : H → H ∋ Lh1 (h2) = h1h2 is semi

continuous and one-to-one, ∀ h2 ∈ H.

2) The map Rh1 : H → H ∋ Rh1 (h2) = h2h1 is semi
continuous and one-to-one, ∀ h2 ∈ H.

3) The map i : H → H ∋ i(h2) = h−12 is a semi-
homeomorphism, ∀h2 ∈ H.

Proof:
1) For every h1, h2 ∈ H, if Lh1 (h2) = Lh1 (h3) then

h2 = h3. Since h1 ∈ H, h−11 ∈ H ⊆ H. Thus
h−11 (h1h2) = h−11 (h1h3) H⇒ h2 = h3. Hence Lh1
is one-to-one. For every h2 ∈ H, Lh1 (h2) = h1h2.
Let h1h2 ∈ D3 ∈ T . Then, from the definition of
s-topological rough group, there exist D1, D2 ∈ SO(H)
containing h1 and h2 such that D1D2 ⊆ D3. Since,
h1D2 ⊆ D1D2 ⊆ D3, Lh1 (D2) = h1D2 ⊆ D3.

Therefore Lh1 is semi-continuous on H.

2) Injectiveness and semi-continuity of Rh1 is similar to
the proof of Lh1 .

3) FromResult 1 the map i is irresolute. Pre semi open and
bijectiveness of i follows from the existence of inverse
of rough group.

□ From Illustration 2, its clear that L1̃ is neither
onto nor semi open. Since L1̃({0̃, 1̃, 2̃, 6̃, 7̃}) = {0̃, 1̃, 2̃, 3̃, 7̃}
is not onto and L1̃({2̃}) = {3̃} /∈ SO(H).

From Illustration 1(1), its clear that the Result 3 is not true
for S-TRG. Since {0̃} is open in H but L−1

1̃
({0̃}) = {7̃} which

is not semi open in H. Thus L1̃ is not semi-continuous.
Result 4: LetH be a S-TRG andH, {e} ∈ T . If e ∈ H, then
{e} ∈ TH.

Proof: Since e ∈ H and {e} ∈ T , By the definition of
TH, {e} ∈ TH. □
Result 5: Let H be a S-TRG(s-TRG). If H = H, then H is

a S-topological group(s-topological group).
Proof: Proof is trivial from the definition of topological

rough group, S-topological rough group and s-topological
rough group. □
Result 6: Let (H, T ′) be a S-topological group and (H, T )

be a topological space. Then H is a S-TRG if and only if the
topology T1 and the topology TH onH induced by T are same
topologies.

Proof: Proof follows from the definition S-topological
rough group and S-topological group. □
Result 7: If H is a s-TRG with H being T0, then H is

semi-T1.
Proof: It is enough to show that ∀h1 ∈ H, {h1} ∈

SC(H). Suppose ∃ h1 ∈ G ∋ {h1} /∈ SC(H), then
∃ h2 ∈ G\{h1} ∋ h2 ∈ {h1}c. D3 ∈ SO(H) containing h2,
h1 ∈ D3, since the inverse map i is a semi-homeomorphism,
h−11 ∈ D−13 ∈ SO(H) containing h−12 . Clearly, h−12 h1 ̸= e
and for each D1 ∈ SO(H × H) containing (h−12 , h1) must
contain (h−11 , h1). Since m : H× H→ H is semi-continuous
at (h−12 , h1), for each D2 ∈ T containing h−12 h1 contains
e, hence, h−12 h1 ∈ {e}cT . In addition m : H × H → H is
semi-continuous at (h−11 , h1), for each D2 ∈ T containing e
contains h−12 h1, thus, e ∈ {h

−1
2 h1}cT . Hence, h−12 h1 ∈ {e}cT

and e ∈ {h−12 h1}cT . □
Illustration 4:

1) Let U = {0̃, 1̃, 2̃, 3̃, 4̃, 5̃} be the set of congruence
classes obtained by integers mod 6 and ✼ be the
addition mod 6. A classification of U is U /R =

{F1,F2}, where F1 = {0̃, 1̃, 2̃}, F2 = {3̃, 4̃, 5̃}.
Let H = {2̃, 3̃, 4̃}, then H = U . Let T =

{∅, H, {2̃, 4̃}, {2̃, 3̃, 4̃}} be a topology on H, then TH =

{∅, H, {2̃, 4̃}} which is not semi-T0.
2) From Illustration 1(1) its clear that there exist a semi-

T0 S-TRG (H, TH) containing e but TH is not semi-T1.
3) Let U = {0̃, 1̃, 2̃, 3̃, 4̃, 5̃} be the set of congruence

classes obtained by integers mod 6 and ✼ be the
addition mod 6. A classification of U is U /R =

{F1,F2}, where F1 = {0̃, 1̃, 2̃}, F2 = {3̃, 4̃, 5̃}.
Let H = {2̃, 3̃, 4̃}, then H = U . Let T =

{∅, H, {2̃}, {4̃}, {2̃, 4̃}, {2̃, 3̃, 4̃}} be a topology on H,

then TH = {∅,G, {2̃}, {4̃}, {2̃, 4̃}} forms a s-TRG which
is both semi-T1 and semi-T2 but neither T1 nor T2.

Result 8: Let H be a semi-T0 s-TRG. If e ∈ H then {e} ∈
SC(H).

Proof: Suppose {e} /∈ SC(H), then ∃ h1 ∈ H\{e} ∋
h1 ∈ {e}c. Since i is a semi-homeomorphism, then h−11 ∈

{e}c. Thus, e ∈ D1 and e ∈ D2 ∀ D1, D2 ∈ SO(H)
containing h1 and h

−1
1 , respectively. Since m : H×H→ H is

semi-continuous at (h1, h
−1
1 ), {h1, h

−1
1 } ⊂ D3 for any D3 ∈

SO(H) containing e. Thus, {h1, h
−1
1 } ⊂ {e}

c, ∃ D1 ∈ SO(H)
containing e ∋ D1 ∩ {h1, h

−1
1 } ̸= ∅. □
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Result 9: Let H be a semi-T0 s-TRG, e ∈ H. Then e /∈

{h1}c, ∀ h1 ∈ H\{e}.
Proof: Suppose ∃ h1 ∈ H\{e} ∋ e ∈ {h1}c, then each

D1 ∈ SO(H) containing e contains h1 and h−11 . Since m :

H× H→ H is semi-continuous at (e, h1), each D2 ∈ SO(H)
must contain e.Hence, h1 ∈ {e}c, the set {e} is not semi closed
in H. □
Result 10: Let H be a semi-T0 s-TRG. If H containing e is

finite then {e} ∈ SO(H) and {e} ∈ SC(H).
Proof: From Results 8 and 9, if H is a finite s-TRG, then

the set {e} is both semi open and semi closed in H. □
Result 11: A s-topological rough group H is semi-T2

whenever {e} is semi closed in H.

Proof: Suppose H is not semi-T2, then ∃ h1 ̸= h2 ∈ H
such that h1 and h2 cannot be separated by D1, D2 ∈ SO(H).
Clearly, h1h

−1
2 ∈ H. Consider D3 ∈ T containing h1h

−1
2 .

Sincem : H×H→ H is semi-continuous (h1, h
−1
2 ), D1, D2 ∈

SO(H) containing h1 and h−12 respectively, ∋ D1D2 ⊂ D3.

Since i is a semi-homeomorphism, D−12 ∈ SO(H) containing
h2. Since intersection of D1 and D−12 is non empty, ∃ h3 ∈
D1 ∩ D−12 , then, (h3, h

−1
3 ) ∈ D1 × D2, thus, e ∈ D3. Hence,

h1h
−1
2 ∈ {e}

c
T . □

Result 12: If H is a s-TRG with upper approximation of H
being T1, then H is semi-T2.

Proof: Since every singleton set is closed in T1 space.
Thus from the Result 11, H is semi-T2. □
Result 13: Let H be a semi-T1 extremally disconnected

s-TRG. If e ∈ G, then ∀h1 ∈ H\{e} ∃ D1, D2 ∈ SO(H)
containing e and h1 respectively, such that intersection of D1
and D2 is empty.

Proof: Assume that ∃ h1 ∈ H\{e} ∋ D1 ∩ D2 is non
empty ∀ D1, D2 ∈ SO(H) containing e and h1 respectively,
D1 is symmetric. Then, B ∩ C ̸= ∅ ∀ D1, D2 ∈ SO(H × H)
containing (e, h1) with the set {(h2, h

−1
2 ) : h2 ∈ H}. Since the

map m : H × H → H is semi continuous at (e, h1), ∀ D3 ∈

SO(H) containing h1, e ∈ D3, h1 ∈ {e}c. Thus, {e} is not
closed in H, which is a contradiction to the assumption that
H is T1. □
Result 14: Let H be a s-TRG, the base at e of H beBe and

e ∈ H. Then,
1) ∀ D1 ∈ Be, ∃ D2 ∈ SO(H) containing e ∋ D−12 ⊂ D1
2) ∀D1 ∈ Be, ∃D2 ∈ SO(H) containing e ∋ D2h1 ⊂ D1,

and h1D2 ⊂ D1, for each h1 ∈ H
3) ∀ D1 ∈ Be, ∃ D2 ∈ SO(H, e) ∋ h1D2h

−1
1 ⊂ D1

4) ∀ D1, D2 ∈ Be, ∃ D3 ∈ SO(H, e) ∋ D3 ⊂ D1 ∩ D2
Proof:

1) Let D1 ∈ Be, H is a s-TRG, then D2 ∈ SO(H)
containing e ∋ i(D2) = D−12 ⊂ D1 since i is semi
continuous.

2) Proof directly follows from the semi-continuity of Rh1 .
3) Proof is similar to statement (2).
4) It is trivial from the definition of base and

s-TRG.
□

Result 15: Let H be a s-TRG. Then H is a discrete space if
{e} ∈ T .

Proof: It is enough to show that {h2} is open in H for any
h2 ∈ H. Consider h2 ∈ H. Since m : H × H → H is semi-
continuous at (h2, h

−1
2 ), ∃ h2 ∈ D2 ∈ SO(H) ∋ D2D−12 ⊂

{e}, then D2D−12 = {e}, since intersection of D1 and D−12 is
non empty. Since the rough inverse of elements ofH is unique,
D2 = {h1} ∈ SO(G). Since any singleton semi open set is
open, H is discrete. □

For any S-TRG, Result 15 need not be true, shown in
illustration 1(1).
Result 16: Let H be a s-TRG. If every rough subgroup K1

and its approximation space K1 are open then K1 ⩽ H.

Proof: Since K1 is open in H, D3 is an open subset
of H. Since H is a s-topological group there are semi open
neighbourhoods B of h1 and C of h2 such that BC−1 ⊂ D3.

Since K1 is open, the sets D1 = B∩K1 and D2 = C∩K1 are
semi open subsets of K1. Also, D1D−12 ⊂ BC−1 ⊂ D3, K1 is
a s-TRG. □
In general every s-topological rough subgroup need not be

open. In Illustration 2 consider K1 = {1̃}, K1 = {0̃, 1̃, 2̃, 3̃},
K1 ⩽ H but K1 and K1 is not open in H and H respectively.
If the approximation space H is trivial, then any rough
subgroup K2 of H, K2 ⩽ H.

U = {0̃, 1̃, 2̃, 3̃, 4̃, 5̃, 6̃, 7̃, 8̃} be the set of congruence
classes obtained by integers mod 9 and ✼ be the addition mod
9.Aclassification ofU isU /R = {F1,F2,F3},whereF1 =
{0̃, 1̃, 2̃}, F2 = {3̃, 4̃, 5̃} F3 = {6̃, 7̃, 8̃}. K1 = {0̃, 2̃, 5̃, 4̃, 7̃},
K2 = {2̃, 3̃, 6̃, 7̃}, then K1, K2 are rough groups but K1 ∩ K2
is not a rough group since K1 ∩ K2 ̸= K1 ∩ K .

Result 17: Let H be a s-TRG and K1, K2 ⩽ H. Then K1 ∩

K2 is a s-topological rough subgroup if K1 ∩ K2 = K1 ∩ K2
and K1 ∩ K2 is open in H, K1 ∩ K2 is open in H.

Proof: SupposeK1, K2 ⩽ H. It is obvious thatK1∩K2 ⊂

H. Consider h1, h2 ∈ K1 ∩ K2. Since K1 and K2 are rough
subgroups, h1h2 ∈ K1, h1h2 ∈ K2, and h

−1
1 ∈ K1, h

−1
1 ∈

K2, i.e. h1h2 ∈ K1 ∩ K2 and h
−1
1 ∈ K1 ∩ K2. By hypothesis

h1h2 ∈ K1 ∩ K2 and h−11 ∈ K1 ∩ K2. Hence by Result 16,
K1 ∩ K2 ⩽ H. □
Result 18: Let H be a s-TRG and K2 ⩽ H, K1 ⊂ H, K1 ̸=

∅. If K1 ⩽ K2 and K1 is open in H, then K1 ⩽ H.

Proof: By the Definition of rough subgroup and Result
16, K1 ⩽ H follows. □
Illustration 5: Let n = {1, 2, 3, 4}, U be the set of all

bijective function on n and ✼ be the composition of elements
of U . A classification of U is U /R = {F1,F2,F3,F4},
where F1 =

{
(1), (12), (13), (14), (23), (24), (34)

}
, F2 ={

(123), (132), (124), (142), (134), (143), (234), (243)
}
,

F3 =
{
(1234), (1243), (1324), (1342), (1423), (1432)

}
,

F4 =
{
(12)(34), (13)(24), (14)(23)

}
. Let K1 =

{
(12)

}
,

K2 =
{
(13)

}
then K1, K2 are rough groups but K1K2 is not

a rough group since K1K2 ̸= K1 K2 and K1K2 ̸= K2K1.

Similarly, LetK1 =
{
(12), (123), (132)

}
, K2 =

{
(34), (1234),

(1432)
}
, then K1, K2 are rough groups and K1K2 = K1 K2

but K1K2 is not a rough group since K1K2 ̸= K2K1.

Result 19: Let H be a s-TRG and K1, K2 ⩽ H such that
the product K1K2, K1K2 are open and K1 K2 = K1K2. Then
K1K2 ⩽ H if and only if K1K2 = K2K1.
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Proof: The proof of the result follows directly from the
definition of topological rough groups and Result 16. □
In Result 19 if H is abelian then product of s-topological

rough subgroups K1 and K2 are s-topological rough subgroup
for K1K2, K1K2 open and K1 K2 = K1K2.

Result 20: Let H be a s-TRG, K1, K2 ⊴ H and K1 K2 =

K1K2, K1K2 is open. Then K1K2 ⊴ H.

Proof: From Result 19, K1K2 is a s-topological rough
subgroup of H. Its enough to show that K1K2 is normal. Let
h1 be any elements of H. Since h1(K1K2) = (h1K1)K2 =

(K1h1)K2 = K1(h1K2) = K1(K2h1) = (K1K2)h1, then from
the definition of s-topological rough normal subgroup, K1K2
is a s-topological rough normal subgroup of H. □
Result 21: The following results are true
1) For any quasi s-topological rough group H. If B ∈ TH,

then B−1 ∈ SO(H).
2) Every s-TRG is a quasi s-topological rough group.
3) Let H be a quasi s-topological rough group, B ⊂ H.

Then (sCl(B))−1 ⊆ Cl(B−1)
4) Let H be a s-TRG, B, C ⊂ H. Then sCl(B) sCl(C) ⊆

Cl(BC) and (sCl(B))−1 ⊂ Cl(B−1).
5) Let H be a s-TRG, K1 ̸= ∅, K1 ⩽ H is semi open if and

only if semi interior of K1 is non-empty.

6) LetH be a S-TRG andD1 ∈ SO(H). Then L =
∞⋃
n=1

Dn
1 ∈

SO(H) if Dn
1 ∈ SO(H) ∀n ∈ N.

7) Let C be any subset of a S-TRG H. Then (sInt(C))−1 =
sInt(C−1).

8) Let H be a s-TRG, D1, D2 ∈ SO(H) containing e such
that D4

2 ⊂ D1 and D−12 = D2. If a subset B of H is D1-
semi disjoint, then Cs = {aD2 : a ∈ B},Cs ⊂ SO(H) is
semi discrete in H.

Result 22: Let e be a neutral element in H, H be a s-TRG
and Be be a base of (H, T ) at e,

1) If e ∈ D1 ∈ SO(H), then D1 ⊂ sCl(D1) ⊂ D2
1 need not

be true.
2) For eachC ⊂ H andD1 ∈ T of e, sCl(C) ⊆ CD1 need

not be true.
3) For each C ⊂ H, sCl(C) = ∩{CD1 : D1 ∈ Be} need

not be true.
whereas all these statements are true if H is a s-topological
group.
Illustration 6:
1) In Illustration 1(3), consider B = {1̃, 5̃} then

(sCl(B))−1 = {3̃, 7̃} and Cl(B−1) = {1̃, 3̃, 7̃} thus
(sCl(B))−1 ⊂ Cl(B−1).

2) Let U = {0̃, 1̃, 2̃, 3̃, 4̃, 5̃} be the set of congruence
classes obtained by integers mod 8 and ✼ be the
addition mod 8. A classification of U is U /R =

{F1,F2}, where F1 = {0̃, 1̃, 2̃}, F2 = {3̃, 4̃, 5̃}. Let
H = {0̃, 1̃, 5̃}, then H = U . Let T = {∅, H, {3̃},
{1̃, 2̃, 3̃}, {3̃, 4̃, 5̃}, {1̃, 2̃, 3̃, 4̃, 5̃}} be a topology on H,

then TH = {∅, H, {1̃}, {5̃}, {1̃, 5̃}}. (H, TH) forms a s-
TRG. Let B = {0̃, 1̃}, C = {1̃, 5̃}, Result 21(4) is true.

3) If H is a S-TRG then the Result 21(4) is not true.
In Illustration 1(1), consider B = {0̃, 2̃}, C = {1̃, 5̃},
then sCl(B) sCl(C) ⊈ Cl(BC).

4) LetU = {0̃, 1̃, 2̃, 3̃, 4̃, 5̃, 6̃, 7̃} be the set of congruence
classes obtained by integers mod 8 and ✼ be the
addition mod 8. A classification of U is U /R =

{F1,F2}, where F1 = {0̃, 1̃, 2̃, 3̃}, F2 = {4̃, 5̃, 6̃, 7̃}.
LetH = {0̃, 1̃, 2̃, 4̃, 6̃, 7̃}, thenH = U . Let T = {∅, H,

{0̃}, {0̃, 2̃}, {0̃, 4̃}, {0̃, 5̃, 6̃, 7̃}, {0̃, 2̃, 4̃}, {0̃, 2̃, 5̃, 6̃, 7̃},
{0̃, 4̃, 5̃, 6̃, 7̃}, {0̃, 2̃, 4̃, 5̃, 6̃, 7̃}} be a topology on H,

then TH = {∅, H, {0̃}, {0̃, 2̃}, {0̃, 4̃}, {0̃, 2̃, 4̃}, {0̃, 6̃, 7̃},
{0̃, 2̃, 6̃, 7̃}, {0̃, 4̃, 6̃, 7̃}, {0̃, 2̃, 4̃, 6̃, 7̃}}. (H, TH) is a
s-TRG but the statements are not true. Since D1 =

{0̃, 2̃} be a semi open neighborhood but D1 ⊆

sCl(D1) ⊈ D2
1. Let C = {0̃, 2̃}, D1 = {0̃} then

sCl(C) ⊈ CD1.

5) From Illustration 2, Result 21(5) is clear, since ∀D1 ∈

SO(H), sInt(D1) ̸= ∅.
6) Let U = {0̃, 1̃, 2̃, 3̃} be the set of congruence classes

obtained by integers mod 4 and ✼ be the addition mod
4. A classification of U is U /R = {F1,F2}, where
F1 = {0̃, 1̃}, F2 = {2̃, 3̃}. Let H = {0̃, 1̃, 3̃}, then
H = U . Let T = {∅, H, {2̃}, {2̃, 3̃}, {1̃, 2̃}, {1̃, 2̃, 3̃}} be
a topology on H, then TH = {∅, H, {1̃}, {3̃}, {1̃, 3̃}} is a
relative topology on H forms a s-TRG. Let D1 = {1},

D2
1 ̸⊂ H. Thus

∞

∪
n=1

Dn
1 /∈ SO(H).

7) In Illustration 1(2), arbitrary union of semi open
subsets of H is again a semi open subset of H.

8) In Illustration 6(6), consider C = {0̃, 3̃}, then
(sInt(C))−1 = {0̃, 5̃} = sInt(C−1).

9) In Illustration 1(2), consider C = {1̃, 4̃, 6̃}, then
(sInt(C))−1 = {2̃, 4̃, 7̃} = sInt((C)−1).

10) From Illustration 6(4), its clear that the closure of any
symmetric subset of s-TRG H, need not be symmetric.
Consider a subset D1 = {4̃}, Cl(D1) = {1̃, 4̃} is not
symmetric but D1 is symmetric whereas this statement
is true for S-topological group.

11) In Illustration 6(4) let D1 = {0̃, 2̃, 4̃}, D2 =

{0̃, 4̃}, B = {4̃, 7̃}. Then Cs = {{2̃, 6̃}, {3, 7̃}} is semi
discrete.

IV. ALGORITHM FOR CLASSIFICATION OF SN ON
S-TOPOLOGICAL ROUGH GROUP STRUCTURE
A measure on the subsets of symmetric group have been
defined by using the characteristics of the subset based on
belongingness within the alternating group and an algorithm
is proposed for categorizing the similarity of open subsets of
S-TRG on Sn. In addition the implementation of the proposed
algorithm is provided at the end of the section.

A. MEASURE ON SYMMETRIC GROUP
Measure Q(D1,D2) have been defined for subsets of
symmetric group Sn in this subsection through correlation.
Let Sn be a symmetric group of n elements and An be a

alternating group and a, b ∈ Sn, a ◦ b = ab = c ∈ Sn

P(ab) = P(c) =

{
0, if c ∈ An
1, otherwise

(1)
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D1 = {a1, a2, · · · ap},D2 = {b1, b2, · · · , bq}, ai, bj ∈ Sn, i ∈
1, 2, · · · , p, j ∈ 1, 2, · · · , q.

Q(D1,D2) =



q∑
j=1

p∑
i=1

(P(aibj))

pq
, if D1,D2 ̸= ∅

p∑
i=1

(P(ai))

p
, if D1 ̸= ∅,D2 = ∅

q∑
j=1

(P(bj))

q
, if D1 = ∅,D2 ̸= ∅

0, otherwise

(2)

Let Dj(j = 1, 2, · · · , q) be m open subsets of S-TRG, and
C = (Qij)p×p be a correlation matrix, where Qij = Q(Di,Dj)
denotes the measure of two open sets Di and Dj and satisfies:
1) 0 ≤ Qij ≤ 1;
2) Qij = Qji.

B. ALGORITHM
The following algorithm helps to categorize the similarity
of open subsets of S-TRG on Sn based on their degree of
belongingness. For this, we follow the following steps, see
the below diagram given in Figure 1.
Step 1 (Compute Equivalence Classes and Construct

Topology): Input the finite universe U = Sn. Compute
the equivalence classes of U , U /R = {F1,F2,F3, F4}.
Consider the rough group H ⊂ U such that H = U .

Construct the topology T of H such H forms a S-TRG.
For each element in the universe U (with n elements), the

equivalence relationR is computed once, resulting in a linear
time complexity of O(n). Computing the equivalence classes
therefore requires O(n) time. Constructing the topology
involves iterating through all equivalence classes to check for
non-empty intersections with H. In the worst-case scenario,
this requires examining all equivalence classes and their
intersections, which can be quadratic in terms of the number
of elements if there are numerous equivalence classes.
Therefore, the time complexity of Algorithm 1 and 2 isO(n2).
Step 2 (Calculate Measure and Construct Correlation

Matrix): Let {D1,D2, · · · ,Dq} be a open subsets of S-TRG
in Using Equation (1) and Equation (2), calculate the measure
of subsets of S-TRG, and then construct a correlation matrix
C = (Qij)q×q, where Qij = Q(Di,Dj) by using the definition
of measure.
The measure function is assumed to be a constant time
operation O(1) for simplicity. However, if the measure
calculation is complex, its time complexity should be
considered. Constructing the correlation matrix involves
iterating over all pairs of open sets Di and Dj, where q is the
number of open sets. For each pair, a measure is calculated,
which leads to a quadratic time complexity with respect to
the number of open sets. Therefore, the time complexity of
Algorithm 3 and 4 is O(q2).

Algorithm 1 Compute Equivalence Classes Based on Trans-
positions
1: Functiontransposition_class(perm, n)
2: Input: A permutation perm of length n
3: Output: The equivalence class based on transpositions
4:

5: perm← list(perm)
6: count← 0
7: for i← 0 to len(perm) - 1 do
8: for j← i+ 1 to len(perm) do
9: if perm[i] > perm[j] then

10: count← count+ 1
11: end if
12: end for
13: end for
14: if count = 0 or count = n - 1 then
15: return ’Class 0/(n-1)’
16: else
17: return ’Class ’ + count
18: end if
19:

20: Function compute_equivalence_classes(U, R)
21: Input: A list U and a relation R
22: Output: List of equivalence classes
23:

24: equivalence_classes← empty dictionary
25: for each element in U do
26: class_repr← R(element)
27: if class_repr not in equivalence_classes then
28: equivalence_classes[class_repr]← empty list
29: end if
30: equivalence_classes[class_repr].append(element)
31: end for
32: return list(equivalence_classes.values())
33:

34: Main Procedure
35: n← 5
36: elements← list(permutations(range(1, n + 1)))
37: relation← lambda perm: transposition_class(perm, n)
38: equivalence_classes ← com-

pute_equivalence_classes(elements, relation)
39: print(‘‘Equivalence Classes:’’, equivalence_classes)

Step 3 (Check Transitive Closure): Check whetherM2
C =

MC , where M2
C = MC ◦ MC = (Qij)m×m =

maxn
{
min{Qin,Qnj}

}
= Qij where i, j = 1, 2, · · · ,m.

Construct the equivalent correlationmatrix if it is false.M2k
C :

MC →M2
C →M4

C → · · · →M2k
C → · · · , untilM2k

C =

M2k+1
C . The transitive closure algorithm involves iterating

over all pairs of matrix elements and updating them based
on the maximum of minimum values. This operation is
performed in a nested loop structure over the matrix, resulting
in O(q3) time complexity where q is the size of the matrix
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Algorithm 2 Check If a Collection of Subsets Forms a
Topology
1: Input: Set U (universe), List of sets S (subsets)
2: Output: True if S forms a topology on U , False

otherwise
3: Check for Empty Set and Universal Set:
4: if {} /∈ SorU /∈ S then
5: Return False
6: end if
7: Check for Closure Under Arbitrary Unions:
8: for each set A in S do
9: for each set B in S do

10: if A ∪ B /∈ S then
11: Return False
12: end if
13: end for
14: end for
15: Check for Closure Under Finite Intersections:
16: for each set A in S do
17: for each set B in S do
18: if A ∩ B /∈ S then
19: Return False
20: end if
21: end for
22: end for
23: Return True

Algorithm 3 Calculate Measure
1: Input: Open sets D1, D2
2: Output:Measure between D1 and D2
3: Implement measure calculation using given equations

Algorithm 4 Construct Correlation Matrix
1: Input: Set of open subsets Dset
2: Output: Correlation matrix C
3: q← length(Dset )
4: C ← [[0] ∗ q for in range(q)]
5: for i in range(q) do
6: for j in range(q) do
7: C[i][j]← calculate_measure(Dset [i],Dset [j])
8: end for
9: end for

10: return C

(number of open sets). Therefore, the time complexity of
Algorithm 5 is O(q3).
Step 4 (Construct α-Cutting Matrix and Categorize Open

Sets): In order to categorize the open setsDj(j = 1, 2, · · · , q)
construct a α - cutting matrix MCα = (αQij)m×m by the
defintion of α-cutting matrix for confidence level α, the open
sets Di and Dj are of the same type if all entries of the ith
column inMCα are identical to the corresponding entries of
the jth column.

Algorithm 5 Transitive Closure
1: Input: Correlation matrix C
2: Output: Transitive closure matrix Cclosure
3: transitive← False
4: while not transitive do
5: transitive← True
6: new_C← [[0] ∗ q for in range(q)]
7: for i in range(q) do
8: for j in range(q) do
9: max_min← max(min(C[i][n],C[n][j]) for n in range(q))
10: if new_C[i][j] not equal max_min then
11: transitive← False
12: new_C[i][j]← max_min
13: end if
14: end for
15: end for
16: C ← new_C
17: end while
18: return C

Algorithm 6 Alpha-Cutting Matrix
1: Input: Correlation matrix C , confidence level α
2: Output: Alpha-cutting matrixMCα

3: q← length(C)
4: MCα ← [[0] ∗ q for in range(q)]
5: for i in range(q) do
6: for j in range(q) do
7: MCα [i][j]← 1 if C[i][j] ≥ α else 0
8: end for
9: end for
10: return MCα

Algorithm 7 Categorize Open Sets
1: Input: Alpha-cutting matrixMCα

2: Output: Categories of open sets
3: categories← {}
4: q← length(MCα )
5: for i in range(q) do
6: for j in range(i+1, q) do
7: ifMCα [i] == MCα [j] then
8: if i in categories then
9: categories[i].append(j)

10: else
11: categories[i]← [j]
12: end if
13: end if
14: end for
15: end for
16: return categories

Creating the α-cuttingmatrix involves checking each element
of the correlation matrix C and comparing it to α, which
is a quadratic operation in terms of the number of open
sets. Similarly, categorizing involves comparing each pair of
rows in the α-cutting matrix to check if they are identical.
This operation is quadratic with respect to the number of
open sets. Hence, the time complexity of Algorithm 6 and 7
is O(q2).
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Algorithm 8Main Function
1: Input: Universe U , rough group H , equivalence relation
R, confidence level α

2: Output: Results of all steps
3: T ← construct_topology(U ,H ,R)
4: Print ‘‘Topology T:’’, T
5: Dset ← list(T )
6: C ← construct_correlation_matrix(Dset )
7: Print ‘‘Correlation Matrix C:’’, C
8: Cclosure← transitive_closure(C)
9: Print ‘‘Transitive Closure Matrix Cclosure:’’, Cclosure
10: MCα ← alpha_cutting_matrix(Cclosure, α)
11: Print ‘‘Alpha-Cutting MatrixMCα :’’, MCα

12: categories← categorize_open_sets(MCα )
13: Print ‘‘Categories of Open Sets:’’, categories

Step 5 (Final Computation):
The main function integrates all the steps of the algorithm.

Its overall time complexity is determined by the most
computationally expensive steps involved:

• Computing equivalence classes and constructing the
topology: O(n2)

• Constructing the correlation matrix: O(q2)
• Computing the transitive closure: O(q3)
• Creating the α-cutting matrix and categorizing open
sets: O(q2)

Since the transitive closure step has the highest time
complexity, the overall time complexity of the main function
is O(q3), where q is the number of open sets.

The following experimental result provides the application
of the proposed algorithm.

C. EXPERIMENTAL RESULT OF PROPOSED ALGORITHM
ON SN
For a practical illustration, consider a cipher text in which
the encrypted text is obtained by transforming the vowels
by some other vowels in plain text. Any form of cipher
text with above features is equivalent to the subset of the
set of permutations of S5. Therefore the above mentioned
algorithm can be applied to the S-TRG on the permutations
S5 under the composition operation. Let n = {1, 2, 3, 4, 5},
U be the set of all bijective function on n and ✼ be the
composition of elements of U . The classification of U is
U /R = {F1,F2,F3,F4},F1 is the set of permutations
with either number of transposition 4 or 0, F2 is the set of
permutations with either number of transposition 3, F3 is the
set of permutations with either number of transposition 2,
F4 = set of permutations with either number of trans-
position 1, H =

{
(145)(23), (154)(23), (123), (132), (24),

(12345), (15432)
}
, G = U and T =

{
∅, H,{

(24)
}
,
{
(24), (145)(23)

}
,
{
(123), (15432), (132), (12345)

}
,{

(24), (123), (15432), (132), (12345)
}
,

{
(24), (145)(23),

(123), (15432), (132), (12345)
}}

and let TH =
{
∅,{

(24)
}
,

{
(24), (145)(23)

}
,

{
(123), (15432), (132),

(12345)
}
,

{
(24), (123), (15432), (132), (12345)

}
,

{
(24),

(145)(23), (123), (15432), (132), (12345)
}
, H

}
. For simple

notation, the elements of TH are denoted as follows D1 = ∅,

D2 =
{
(24)

}
, D3 = {(24), (145)(23)}, D4 =

{
(123),

(15432), (132), (12345)
}
, D5 =

{
(24), (123), (15432),

(132), (12345)
}
, D6 =

{
(24), (145)(23), (123), (15432),

(132), (12345)
}
, D7 = H.

Procedure for Classification of Open Subsets:
Step 1: The measure of open subsets of S-TRG Dj(j = 1,

2, 3, 4, 5, 6, 7) can be computed by using Equation 1 and 2
and the correlation matrixMC is constructed:

MC =



0 1 1 0 0.25 0.40 0.50
1 0 0 1 0.75 0.60 0.50
1 0 0 1 0.75 0.60 0.67
0 1 1 0 0.33 0.40 0.50

0.25 0.75 0.75 0.33 0.38 0.45 0.50
0.40 0.60 0.60 0.40 0.45 0.48 0.50
0.50 0.50 0.67 0.50 0.50 0.50 0.50


Step 2: Construct equivalent correlation matrix:

M2
C =



1 0.50 0.50 1 0.75 0.60 0.67
0.50 1 1 0.50 0.50 0.50 0.50
0.50 1 1 0.50 0.50 0.50 0.50
1 0.50 0.50 1 0.75 0.60 0.67

0.75 0.50 0.50 0.75 0.75 0.60 0.67
0.60 0.50 0.50 0.60 0.60 0.60 0.60
0.67 0.50 0.50 0.67 0.67 0.60 0.67



M4
C =



1 0.50 0.50 1 0.75 0.60 0.67
0.50 1 1 0.50 0.50 0.50 0.50
0.50 1 1 0.50 0.50 0.50 0.50
1 0.50 0.50 1 0.75 0.60 0.67

0.75 0.50 0.50 0.75 0.75 0.60 0.67
0.60 0.50 0.50 0.60 0.60 0.60 0.60
0.67 0.50 0.50 0.67 0.67 0.60 0.67


Therefore M4

C = M2
C . Hence M2

C is an equivalent
matrix. Thus the implementation of algorithm leads to the
classification of cipher text based on their transposition
similarity and the classification is provided in Table 2.

TABLE 2. Classification of Cipher text using cluster algorithm.

D. RESULTS AND DISCUSSIONS OF THE EXPERIMENTAL
RESULT
The classification of cipher text is obtained by the algorithm
at the second stage of the iteration. The S-topological rough
structure minimizes the number of iterations in classifying
the cipher text based on their similarity. Federated learning
emphasizes collaborative model training while safeguarding
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FIGURE 1. Flow chart of proposed algorithm.

data privacy, whereas rough sets excel in extracting crucial
features for precise gastric cancer detection. Integrating
these methodologies can yield robust, privacy-preserving
diagnostic tools that effectively harness distributed healthcare
data. The GBP-CS algorithm introduces a constrained
gradient-based optimizer designed to select subsets of devices
within factories to form homogeneous federated learning
super nodes. GBP-CS demonstrates efficient selection strate-
gies within a short timeframe, applicable beyond healthcare,
such as in ciphertext classification within symmetric groups.
In the context of ciphertext classification, the GBP-CS
federated algorithm facilitates the selection of subsets within
the S-TRG, showcasing its versatility in various practical
scenarios.

V. ADVANTAGES AND LIMITATION OF THE PROPOSED
STRUCTURE
Topological rough groups offer powerful tools for analyzing
the properties and behaviours of group elements under condi-
tions of uncertainty. This integration of rough set theory and
topology can lead to new insights and a deeper understanding
of underlying structures. It is particularly valuable in fields
where data may be imprecise or incomplete, such as medical
diagnostics or economic forecasting. By combining rough
sets and topological properties, the algebraic structure is
enriched, enabling the exploration of new mathematical
properties and relationships.

The use of lower and upper approximations within the pro-
posed structure is especially useful when exact computation
is infeasible or unnecessary. The structure can accommodate
various sizes of input sets and can be adapted to different

equivalence relations, allowing it to scale with the data and
be extended to more complex operations or additional steps
if needed. This structure provides a comprehensive approach
for analyzing the rough group structure and its associated
topological properties.

However, the effectiveness of topological rough groups can
be highly dependent on the chosen topology and equivalence
relation. Selecting the appropriate structures may require
domain-specific knowledge and can be a challenging task.
Additionally, the categorization of open sets could result in
redundant categories if not handled carefully, especially if the
open sets are not sufficiently distinct. Furthermore, the lack
of standardized tools, algorithms, or software for working
with topological rough groups may hinder practical imple-
mentation and experimentation. The continued development
of methods and tools in this area is essential to enhance their
applicability and utility across various domains.

VI. CONCLUSION
In this paper, (S, s)-topological rough groups are defined and
their properties are studied with illustrations. S-topological
rough groups have the fundamental benefit of allowing one
to analyse the entire structure using any suitable subset
that satisfies both algebraic and topological characteristics.
Additionally, its upper approximation equals the entire space
through an equivalence relation. To investigate the algebraic
and topological characteristics of the whole space, such
appropriate subsets are enough. Rough set theory therefore
aids in our analysis of the entire space through subspace.
This study examines the different characteristics of the
S-topological rough group, influenced by rough set theory.
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By applying rough set theory to the analysis of ciphertexts
transmitted over a network, it is possible to detect unusual
patterns that might indicate a security breach. For instance,
if an attacker attempts to inject malicious data into the
communication stream, rough set-based models can help in
identifying such anomalies. The algorithm for classifying
Sn based on S-topological rough groups is discussed, along
with a practical application. MAPLE and PYTHON are
used to compute the correlation matrix and to generate
pseudo code for the proposed algorithm. Experimental results
demonstrate that the process of classifying ciphertexts based
on their transposition similarity is streamlined by using the
S-topological rough group structure.

The structure contributes for the advancement of topolog-
ical rough groups by extending classical group and topo-
logical group theories with rough set approximations. This
integration enhances theoretical understanding of uncertain
systems and provides practical tools for data analysis and
decision-making. It proves particularly valuable in domains
where data is imprecise or incomplete, such as in medical
diagnostics and economic forecasting. For economic data,
such as market indicators and consumer behavior, the
algorithm helps identify patterns and relationships that are
not immediately apparent with precise data, leading to more
robust predictions. Similarly, in geographical information
systems, the framework effectively manages uncertainty
in spatial data, improving the analysis of geographic pat-
terns and relationships, which supports urban planning and
environmental monitoring.

Moreover, the algorithm for S-topological rough groups
demonstrate its applicability in text classification tasks.
For instance, consider the text ‘‘Sun rises in the east’’
By applying permutations from S5, where 5 represents the
cardinality of vowels in the text, the algorithm can classify
permutations of the vowels. The algorithm helps in the
classification of encrypted text by grouping permutations
based on their transposition properties. For any S-topological
rough group structure, where the upper approximation is the
universe and the group operation generates this universe, the
algorithm efficiently classifies the encrypted text by identi-
fying the minimal structure that can generate the universal
structure.
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