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ABSTRACT The electric network frequency (ENF) criterion has gained significant attention over the
past two decades as a promising tool in digital media forensics. ENF is the frequency of the alternating
current (AC) signal in a mains electricity network, exhibiting continual fluctuations within certain limits
around a nominal frequency, contingent upon supplied and demanded power disparities. A sequence of
ENF alterations is called an ENF signal, which is inherently embedded in audio and video recordings under
certain circumstances. Several efforts have been made to accurately estimate the ENF signal from media.
However, no matter how accurately estimated, a media ENF signal may not be reliably used in forensic
applications unless sufficiently distinctive. To clarify, ENFmay show similar fluctuation patterns at different
time intervals. These patterns become more distinct over longer periods of time. Accordingly, working
with as large an ENF signal as possible is critical for reliability. To achieve an extended and, thus, more
distinctive ENF signal, this study proposes a smart segmentation scheme for Short-Time Fourier Transform
(STFT)-based ENF estimation, which derives more data segments from a given media than the conventional
STFT technique, leading to increased ENF estimates for any specified STFT parameter setting. The proposed
approach can be combined with any ENF accuracy enhancement strategy to obtain relatively more reliable
signals. Large-scale tests conducted with different STFT parameters and audio clip lengths showed that the
proposed scheme can efficiently improve the performance when used alone or in conjunction with other ENF
enhancement strategies.

INDEX TERMS ENF, electric network frequency, media forensics, short-time Fourier transform, STFT
segmentation, time-of-recording, timestamp.

I. INTRODUCTION
The electric network frequency (ENF) criterion [1], [2],
[3], [4] has proven to be an effective tool in digital
media forensics for the last two decades. The ENF is the
frequency of AC electricity in a mains power grid. It varies
constantly within certain bounds around a nominal frequency
(50 or 60Hz) depending on the supply and demand imbalance
in power [5]. In most parts of the world, the nominal value of
the ENF is 50 Hz; however, in some regions of North America
and Asia, it is 60 Hz. In an interconnected network, the ENF
exhibits consistent fluctuations throughout the network [5].
Consequently, the ground truth ENF variations, for any
period, can be acquired from any power outlet across the grid.

The associate editor coordinating the review of this manuscript and
approving it for publication was Jiafeng Xie.

A sequence of successive ENF variations over time is referred
to as an ENF signal.

The ENF signal has been revealed to intrinsically
integrate into audio recordings captured in environments
with mains-sourced electromagnetic fields by a dynamic
microphone [1], [2], [3], [4], [6], [7]. Further research has
shown that the ENF is also incorporated into audio recorded
in settings with acoustic mains hum through an electret
microphone [8], [9], [10], [11]. Later research has discovered
that the ENF is also inherently embedded in video recordings
in settings with illumination from a mains-powered light
source [12], [13], [14], [15], [16], [17], [18], [19], [20], [21],
[22], [23]. Indeed, it has been revealed that the ENF trace can
be identified even from a single image [24], [25].
Various time and frequency-domain approaches have been

adopted in the literature to estimate the ENF from media,
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including Zero-Crossing (ZC) [2], Short-Time Fourier
Transform (STFT) [6], Multiple Signal Classification
(MUSIC) [26], and Estimation of Parameters using Rota-
tional Invariant Techniques (ESPIRIT) [26]. The estimated
ENF signal can be employed for various media forensic
applications for different scenarios or case studies. The time-
of-recording detection or verification [7], [13], [27], [28],
which typically requires a similarity comparison between the
media ENF signal and the ground truth ENF signal, is among
the most widely studied. It can potentially be used in legal
proceedings, i.e., in court, to support or refute claims. For
example, an alleged criminal can be acquitted of a crime if
there is a video of them taken somewhere other than the crime
scene during the crime and if it can be verified using the ENF
criterion that the video recording and the crime coincide [29].
The use of the ENF signal in digital media for forensic
purposes is not limited to the time-of-recording detection
or verification. By serving as a power signature, it also
enables other practical applications, including geo-location
estimation [24], [30], [31] (e.g., to identify the country of
origin of a recording), multimedia synchronization [32], [33]
(e.g., to temporally align videos taken by two cameras to
merge their views into a single panoramic view), media
authentication [34], [35], [36] (e.g., to determine if a video
is original or tampered with), and camera characteriza-
tion [37], [38] (e.g., to attribute the source camcorder of
a video).

Numerous factors affect the reliability of ENF-basedmedia
forensic applications, including the length of the query
media, length of the ground truth, and signal-to-noise ratio
(SNR) [18], [39], [40]. Several studies have been conducted
to obtain accurate ENF estimates under low SNR conditions.
Maximum-likelihood estimation (MLE) with spectrum com-
bining [41], [42], a robust filtering algorithm (RFA) for single
harmonics [43], adaptive multi-trace carving (AMTC) for
robust frequency tracking [44], a multi-tone harmonic robust
filtering algorithm (HRFA) for harmonic enhancement [45],
a graph-based harmonic selection algorithm (GHSA) [45],
and a least absolute deviation (LAD)-based framework [46]
are some of the effective strategies introduced to enhance
ENF estimation accuracy.

A critical challenge for all ENF enhancement strate-
gies is non-unique ENF patterns, particularly in short
recordings. To put it more clearly, ENF tends to show
similar patterns, that is, similar fluctuations, over short
time intervals because of the comparable discrepancies in
the supply and demand of power from time to time. The
ENF patterns over longer periods are more distinct owing
to the unlikeliness of occurrence and continuation of such
discrepancies over a long span. Consequently, the ENF
signal estimated from media of longer duration is expected
to be more distinctive and, thus, is more reliable than
a smaller one because it is less likely to produce false
positives in any ENF-related media forensic applications.
However, query media may not always be sufficiently
long for such reliability. In this circumstance, acquiring

as large an ENF signal as possible from any given media
is critical.

This work proposes an ingenious segmentation scheme for
Short-Time Fourier Transform (STFT)-based ENF estima-
tion, which constitutes additional data segments to achieve
increased ENF estimates from a given media compared to the
conventional STFT technique. This leads to the acquisition
of an extended and, thus, more distinctive ENF signal for
any specified STFT parameter setting by enabling additional
ENF sample computations from both the beginning and end
of the media, which are not considered by the traditional
method. To the best of our knowledge, no previous work
has attempted an enhancement strategy in the segmentation
stage of the STFT to obtain a more effective and reliable
ENF signal for ENF-based forensic applications. Because
the existing ENF signal enhancement strategies focus on
the other stages of the STFT, aiming to improve the
estimation accuracy, the proposed scheme is suitable for use
in combination with these techniques. To be more specific,
the proposed strategy can be integrated into any STFT-based
ENF signal enhancement technique. Experimental results
reveal that the proposed scheme is considerably effective
in improving performance when applied to the conventional
STFT technique or used in conjunction with other ENF
enhancement strategies.

The rest of this paper is organized as follows. Section II
highlights some background information for the traditional
STFT-based ENF signal estimation procedure, forming the
basis of this work. Section III introduces the proposed STFT
segmentation scheme to achieve longer and more distinctive
ENF signals. Section IV evaluates the performance of the
proposed scheme through large-scale tests on the ENF-WHU
dataset [45], [47]. Section V extends the applicability of the
proposed technique and explores how it can further increase
the effectiveness of existing ENF enhancement strategies
when used in conjunction with. Finally, Section VI concludes
the paper and provides a summary of the main research
findings.

II. CONVENTIONAL STFT-BASED ENF SIGNAL
ESTIMATION: HIGHLIGHTS
The Short-Time Fourier Transform (STFT), which is a
powerful tool for computing time-dependent changes in
the frequency and phase components of a signal, is one
of the most widely used methods in ENF-based media
forensics to capture ENF alterations in the mains electricity
as well as extract these fluctuations from audio or video.
The STFT-based ENF estimation technique comprises of two
consecutive stages. In the first stage, the given signal (audio or
luminance signal (for video)) is divided into partially overlap-
ping segments of equal length [6], as shown in Fig. 1 (Before
the segmentation operation, the given signal is expected
first to be decimated and bandpass-filtered around the ENF
frequency of interest.). Each of the resulting segments is
exploited to obtain one ENF estimate in the second stage by
detecting the frequency of the highest magnitude around the
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FIGURE 1. Conventional STFT segmentation scheme, in which a fixed segment size is used [6].

FIGURE 2. ENF signal estimation using the segmented data portions [6].

ENF frequency of interest, as illustrated in Fig. 2 (for details
on the intermediate steps, refer to [6]).

The time corresponding to the midway point of an STFT
segment defines the time instant of the ENF sample to
be computed from this segment. The choice of the STFT
segment size is a trade-off between noise and distinction.
Although a larger segment size reduces the potential for noisy
ENF estimates, it may hinder some ENF fluctuations. The
hop size (hS), which is fixed for each consecutive segment,
determines the ENF resolution (in samples/second), and
picking a large one may also obstruct some ENF alterations
to catch.

The number of ENF samples that can be estimated from
a given media depends on the hop size and segment size
selected. A larger segment size results in fewer segments to
construct along the signal for a particular hop size, leading
to fewer ENF estimations. Consequently, more ENF samples
that could potentially be estimated from the media are lost.
These losses are the ENF time series before the first segment
and after the last segment. More specifically, they are the
ENF variations during the periods before and after the
midpoints of the first and last segments (Recall that an STFT
segment’s halfway point designates the time instant of the
ENF sample to be estimated from it.). To remedy these losses,
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FIGURE 3. An illustration of how the proposed STFT segmentation scheme derives from the traditional technique: (a) traditional
technique with non-existing data segments before ti and after ti+N . (b) proposed approach with additional anterior and posterior
data segments (before ti and after ti+N ).

Section III presents a technique that enables ENF estimations
for these periods via an adaptive segmentation scheme.

III. PROPOSED TECHNIQUE
This section proposes a smart segmentation scheme for
STFT-based ENF signal estimation to obtain a larger, hence
more distinct ENF signal from a given media in comparison
with the conventional technique. Fig. 3 (b) shows a block
diagram of the proposed method, which is sketched under the
block diagram of the conventional scheme (Fig. 3 (a)) to elu-
cidate how the proposed technique develops and differs from
the traditional one. As is evident from the figure, the proposed
method does not modify or remove any segment obtained
by the traditional scheme (i.e., it preserves and uses all
segments obtained by the traditional strategy) but constructs
additional segments at the beginning and end. Therefore, the
proposed approach can be considered complementary to the
conventional scheme. Considering that the time instant of
the first ENF sample (ti in Fig. 1 (a)) corresponds to the
midpoint of the first segment (refer to Section II), there is
no way to estimate any sample associated with the previous

time points using the conventional scheme unless the media
record starts earlier. The same goes for estimating the ENF
samples for the next time points unless the media record
ends later. The proposed technique introduces an adaptive
segmentation scheme for these periods to remedy this issue
and acquire the ENF samples that were missed before and
after the first and last segments of the standard technique.
More specifically, to acquire the posterior ENF samples,
that is, missing samples at the end, it suggests shrinking the
segment size for each subsequent sample one after the other
by 2 × hS, starting from the left end of the last segment,
yet leaving the right end as is (i.e., spanning through the
end of the record), as shown in Fig. 3 (b). Consequently,
each subsequent segment becomes smaller than the previous
segment by 2 × hS. A similar procedure is used to compute
the anterior missing ENF samples. However, this time, the
reduction starts from the right end of the first segment and
moves leftward, leading to each prior segment becoming
smaller than the next by 2 × hS, and each segment spans
through the beginning of the record. At first glance, one
may consider that the proposed technique leads to a different
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Algorithm 1 A Redesigned STFT-Based ENF Signal Esti-
mation Procedure for Query Media Using the Proposed
Segmentation Scheme

1: D← given media
2: C← query clip of D
3: sM ← initial moment of C (in sec)
4: cL ← length of C (in sec)
5: wS ← length of fixed-size segments (in sec)
6: sDw← smallest size of adaptive segments (in sec)
7: eDw← largest size of adaptive segments (in sec)
8: hS ← hop size (in sec)
9: fs← sampling frequency

10: C← D
[
sM × fs : (sM + cL)× fs− 1

]
11: eDw← wS − 2× hS
12: n← 0
13: for k ← sDw : 2× hS : eDw do
14: w← C[0 : (k × fs)− 1]
15: E[n]← ENFestimation(w)
16: n← n+ 1
17: end for
18: for k ← 0 : hS × fs : (cL − wS)× fs do
19: w← C[k : k + (wS × fs)− 1]
20: E[n]← ENFestimation(w)
21: n← n+ 1
22: end for
23: for k ← eDw : −2× hS : sDw do
24: w← C[end − (k × fs) : end]
25: E[n]← ENFestimation(w)
26: n← n+ 1
27: end for

ENF resolution along the interval with the new segments
compared to the phase of fixed-size segments. However,
a shrink in a segment by 2×hS from one end and maintaining
the other end moves the midpoint by as much as one hS.
Therefore, the ENF resolution is sustained throughout the
media. The new segments can be considered a shrunken form
of the non-existing segments of the standard STFT from
both ends, imagining that the recording started earlier and
finished later, as shown by the dotted thin line in Fig. 1 (a).
As is evident from Fig. 1 (a) and (b), the midpoint of the
non-existing segments of the standard scheme matches those
of the proposed segments.

To obtain the ENF estimate from each new segment, the
proposed method uses the second stage of the conventional
STFT-based ENF estimation approach (Fig. 2) in the same
way as the standard technique. The proposed method pri-
marily involves enhancing the first stage of the conventional
STFT-based ENF estimation approach. Therefore, it should
be emphasized that the objective of the proposed method is
not to improve the ENF signal quality to be estimated from
the media but to enlarge and make the estimated signal more
distinct and unique by computing additional ENF samples
that are not considered by the traditional method. It may

FIGURE 4. A comparison of the estimated ENF signals using the proposed
approach and the conventional scheme for a 5-minute audio clip. A hop
size (hS) of 1 second, a fixed segment size of 64 seconds, and a minimum
adaptive segment size of 16 seconds were used. ti is 32, and ti+N is 268,
which are, respectively, the midpoints of the first and last segments
obtained by the conventional method.

be particularly significant for short-duration recordings for
distinctiveness.

A pseudocode demonstrating how to estimate the ENF
signal from a query clip of a given signal (audio or luminance
signal (for video)) using the proposed segmentation method
is provided in Algorithm 1. It is particularly important to
understand the adaptation of the proposed scheme to the
reference signal (to be discussed next in Algorithm 2).
Algorithm 1 comprises three consecutive loops for the three
phases of the proposed method (Fig. 3 (b)): anterior adaptive
segmentation, standard segmentation, and posterior adaptive
segmentation. In the first loop, the ENF is estimated for
each of the suggested anterior segments of varying lengths
(Fig. 3 (b)), where each successive segment is larger than
the previous segment by 2 × hS, and each starts from the
beginning of the query signal. Here, the smallest segment
size (sDw) is preset based on user preference, considering
that it should be less than the length of the fixed-size
segments (wS) by a multiple of 2 × hS. Accordingly, this
phase’s largest segment size (eDw) is 2× hS smaller than the
length of the fixed-size segments (wS). In the second loop, the
ENF is estimated for each fixed-size segment acquired using
the standard STFT segmentation scheme (Fig. 1), where the
hop size is one hS. In the final loop, the ENF is estimated
for each of the suggested posterior segments, where each
successive segment is smaller than the previous segment
by 2 × hS, and each spans through the end of the query
signal. Here, the smallest and largest segment sizes are set
to be the same as those in the first loop. Algorithm 1 follows
the same ENF estimation procedure as the standard technique
(Fig. 2) for every segment in each loop. Regarding the time
complexity, the proposed technique increases the operational
time by approximately the number of new segments × a
segment’s processing time.
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Algorithm 2 A Redesigned STFT-Based Ground Truth ENF
Signal Estimation Procedure for Reference Data (mains
signal) Using the Proposed Segmentation Scheme
1: R← reference data
2: cL ← length of query clip of given media (in sec)
3: r← a clip of R in the length of cL
4: wS ← length of fixed-size segments (in sec)
5: sDw← smallest size of adaptive segments (in sec)
6: eDw← largest size of adaptive segments (in sec)
7: hS ← hop size (in sec)
8: fs← sampling frequency
9: eDw← wS − 2× hS
10: for i← 0 : hS × fs : Length(R)− (cL × fs) do
11: n← 0
12: r← R[i : i+ (cL × fs)− 1]
13: if i == 0 then
14: for j← sDw : 2× hS : eDw do
15: w← r(0 : (j× fs)− 1)
16: G[i, n]← ENFestimation(w)
17: n← n+ 1
18: end for
19: for j← 0 : hS × fs : (cL − wS)× fs do
20: w← r[j : j+ (wS × fs)− 1]
21: G[i, n]← ENFestimation(w)
22: n← n+ 1
23: end for
24: for j← eDw : −2× hS : sDw do
25: w← r[end − (j× fs) : end]
26: G[i, n]← ENFestimation(w)
27: n← n+ 1
28: end for
29: else
30: for j← sDw : 2× hS : eDw do
31: w← r(0 : (j× fs)− 1)
32: G[i, n]← ENFestimation(w)
33: n← n+ 1
34: end for
35: l ← (cL − wS)÷ hS + 1 ▷ length of ENF

estimates to be copied to the next ENF clip.
36: G[i, n : n+ l − 1]← G[i− 1, n+ 1 : n+ l]
37: n← n+ l
38: for j← wS : −2× hS : sDw do
39: w← r[end − (j× fs) : end]
40: G[i, n]← ENFestimation(w)
41: n← n+ 1
42: end for
43: end if
44: end for

Fig. 4 shows the estimated ENF signals using the
conventional STFT and the proposed method for a 5-minute
audio clip, and they are compared with the ground truth ENF
acquired by the standard technique. Here, the hop size (hS)
was set as 1 second. A fixed segment size of 64 was used
for both the conventional technique and the second phase

of the proposed method; hence, the largest size of adaptive
segments was specified as 62 seconds. The smallest adaptive
segment size was set to 16 seconds. As is evident in the
figure, the proposed strategy effectively extended the ENF
signal of the traditional approach by extracting additional
ENF samples from the beginning and end, which the standard
STFT method does not consider. Specifically, the proposed
technique acquired 24 extra ENF samples for the specified
parameters at both ends.

Algorithm 2 presents a pseudocode for estimating the
ground truth ENF signal from a reference signal (reduced
mains voltage data) using the proposed STFT segmentation
scheme. In this algorithm, the reference signal is first divided
into partially overlapping clips (similar to the technique
shown in Fig. 1) in the length of the query signal, with a
hop size of hS. Then, the proposed segmentation process
in Fig. 3 (b) is applied to each reference clip with the
same parameter settings as the query signal, followed by
ENF estimation from each STFT segment of each clip using
the same procedure as in Fig. 2. Consequently, consecutive
ground truth ENF signal portions, each in the same form as
the query ENF signal, are obtained with a time difference
of hS. Each succeeding row of this algorithm’s output
variable G represents successively the ground truth ENF
portion obtained from each reference clip. It should be
highlighted in Algorithm 2 that almost all fixed-size (wS)
segments acquired for any clip, namely, the second to last
fixed-size segments, are common to those for the subsequent
clip. Accordingly, to avoid redundant ENF estimations and
reduce the computational cost, the ENF samples obtained
from these segments for any clip are copied to the ENF
index values corresponding to those from the first to
the penultimate fixed-size segments of the following clip
(lines 35-36 in Algorithm 2). For the first clip, though, the
ENF sample for every segment is computed independently
of the others through the same process as in Algorithm 1.

The reason for suggesting Algorithm 2 is to acquire
a ground truth signal most appropriate with the media
ENF signal, estimated through the proposed scheme
(i.e., Algorithm 1), in terms of estimation settings. This
is significant for performing a reliable similarity test
for applications, including time-of-recording verification.
To achieve this, the media ENF signal goes through Pearson’s
correlation test with each ground truth ENF signal portion
(i.e., each row of G) rather than using the normalized cross-
correlation. This is discussed in more detail in Section IV.

It may be questioned why not only fixed segment sizes are
used across the reference signal instead of employing some
smaller segment sizes required by the proposed technique
because sufficiently large data are already available, andmore
data often leads to more accurate results. However, obtaining
the ground truth ENF signal portions estimated in the same
manner as the query signal may be more advantageous,
considering that any ENF estimate is a product of the entire
data in a segment. Section IV provides comparative results
for the media time-stamping task when the ground truth ENF
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signal is obtained using the standard technique and when it is
acquired through the proposed framework.

IV. EXPERIMENTS AND RESULTS
This section evaluates the proposed method for different
audio lengths and STFT segment sizes in the time-of-
recording verification task by conducting experiments on the
ENF-WHU dataset [43], [45], created in China, where the
nominal ENF is 50 Hz. The ENF-WHU dataset consists of
130 audio files of various lengths between 4.5 and 16minutes,
each containing the ENF. A 24-hour reference data, that is,
a reduced mains-power voltage signal, for each audio is also
supplied with this dataset to acquire the ground truth ENF
signal in the desired STFT parameter settings for the day each
audio was recorded.

The highest ENF component in the audio recordings
arises at the second ENF harmonic, that is, 100 Hz,
based on the restricted frequency response range of their
recorders [18], [19]. Therefore, the 100 Hz frequency band
was used for the ENF signal extraction from each audio.
To obtain the ground truth ENF signals from the reference
signals, the 50 Hz frequency band was utilized, as it is the
strongest ENF component for these signals.

The experiments were performed separately for the first
2-minute clips of all 130 recordings, the first 6-minute clips
of 127 recordings (those longer than 6 minutes), and the
first 10-minute clips of 82 recordings (those longer than
10 minutes). To estimate the ENF signal from each audio
using the conventional STFT technique, fixed segment sizes
of 16, 24, 32, 40, 48, 56, and 64 seconds were used separately.
A one-second hop size (hS) was set for each set of segments.
Therefore, a 1-sample/second ENF resolution was employed
for each ENF signal. The same fixed-size segments, except
for the 16 seconds, were also used for the second phase
of the proposed adaptive segmentation scheme, with the
same hop size. The proposed scheme was not considered for
the fixed-size segment of 16 seconds because the smaller
segment sizes (14 seconds and less) required in the second
and third phases of the proposed technique may not be
sufficiently appropriate to suppress the effect of noise on
the ENF. For any specified fixed segment size (for the second
phase), a range of sizes was set and tested individually for the
minimum segment (for the first and third phases), depending
on the desired amount of extension in the ENF signal. For
instance, for a fixed segment size of 32 seconds, the smallest
size was set to 30 seconds for an extension of one sample (by
using a new segment of 30 seconds) at both ends, whereas
it was set to 26 seconds for an extension of four samples
(by using the additional segments of sizes 30, 28, 26, and
24 seconds at both ends. It should be recalled that there is
a 2× hS difference between successive segments in the first
and third phases of the proposed approach.

To acquire the ground truth signals for the audio-ENF
signals that were extracted using the conventional segmen-
tation scheme, each reference signal, as a whole, was applied
the same segmentation and ENF estimation procedure as

the audio, with identical STFT parameter settings. To obtain
the ground truth signals for those estimated through the
proposed scheme, each reference signal was first segmented
into overlapping data portions of the same size as the audio
clips, with a hop size of hS. Then, each data portion was
individually put into the proposed segmentation scheme, the
same as the audio (Fig. 3 (b)), followed by ENF estimation
from each.

To test the similarity between each audio-ENF sig-
nal and the corresponding ground truth signal obtained
through the traditional STFT technique, normalized cross-
correlation (NCC) was used. Eq. 1 provides the expression
for computing the kth NCC coefficient (r(k)) as follows:

r(k) =

∑
n
[
F(n)− µk

F

][
E(n− k)− µE

]√∑
n
[
F(n)− µk

F

]2∑
n
[
E(n− k)− µE

]2 (1)

where E(n− k) denotes the audio ENF signal with k sample
delays; µE is the mean value of E ; F(n) is the ground truth
ENF signal (i.e., obtained by the standard STFT scheme);
and µk

F represents the mean value of a clip of F , which starts
from the kth sample and which is in the length of the test
audio.

For the similarity analysis of the ENF signals that were
estimated using the proposed technique, each audio-ENF
was put into the Pearson correlation coefficient (PCC) test
with each of their associated ground truth ENF portions one
by one. Eq. 2 demonstrates the expression for calculating
the ith PCC coefficient (ρ(i)) as follows:

ρ(i) =

∑
n
[
Gi(n)− µi

G

][
E(n)− µE

]√∑
n
[
Gi(n)− µi

G

]2∑
n
[
E(n)− µE

]2 (2)

whereGi(n) denotes the ith ground truth ENF portion (i.e., the
ith row ofG in Algorithm 2), and µi

G is the mean ofGi. Here,
no delay is applied to the E(n), unlike that in Eq. 1, because
both E(n) and Gi(n) are of the same length.

For each test with either similarity metric, the lag
point (time index) of the maximum correlation coefficient
was checked to determine whether it corresponded to the
recording time of the query audio, and if it did, it was
considered a correct match. More specifically, if the sum
of the lag point and the initial time of the reference signal
matched the initial time of the audio (within a tolerance of
15 seconds, in accordance with [17], [45], and [48]), it was
concluded that the recording time was verified.

The rates of correct matches for the 2-minute audio-ENF
signals that were extracted using the conventional STFT
segmentation scheme ([6]) for fixed-segment sizes ranging
from 16 to 64 seconds are given in line 0 in Table 1.
Lines 1 to 24 in Table 1 show the outcomes for the ENF
signals estimated using the proposed technique for ENF
extensions of 1 to 24 samples from both ends, respectively.
The minimum size of the new segments was set to 16 sec-
onds in connection with the previously highlighted point
regarding the inappropriateness of the smaller segment sizes.
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TABLE 1. An evaluation of the proposed technique’s effectiveness in time-stamping 130 2-minute audio clips when it is used both for query and
reference signals for different STFT segment sizes.

Therefore, not all the extensions in the table are suitable.
As shown in Table 1, the proposed technique increases the
rate of correct matches for almost every fixed-segment size
compared to the traditional scheme. The best match rates
for 2-minute clips were obtained as 57.69% and 61.54% for
the fixed-segment sizes of 24 and 32 seconds, respectively,
using the classical method and the proposed technique
with seven samples of ENF extension from both ends.
It should be recalled that a fixed-size segment represents
every segment for the standard segmentation, although it
refers to those in the second phase of the proposed scheme.
Similar experiments were repeated for the 6-minute and
10-minute audio clips. As shown in Table 2 and Table 3,
both the conventional and proposed techniques achieved
their best results using a fixed-segment size of 64 seconds
for each set of clip lengths. While the proposed method
succeeded in a true match rate of 87.40% and 93.90%,
respectively, for 6-minute and 10-minute clips in a variety
of ENF extensions, the standard method achieved 85.04%
and 91.46% performance for these clips, respectively.

However, segmenting a reference signal into overlapping
data portions of the same size as the audio and applying
an ENF estimation process for every single portion using
the introduced segmentation scheme (recall Algorithm 2)
is computationally inefficient. Moreover, it may not always
be possible or available to work with a reduced mains
voltage signal to obtain a ground truth ENF through the
proposed technique; that is, an existing ground truth ENF
signal, already estimated using the conventional technique,

may have to be used. Accordingly, the proposed scheme
should be applied only to query media. Table 4, Table 5, and
Table 6 present the outcomes in such a scenario for the same
2-minute, 6-minute, and 10-minute audio clips, respectively.
As can be seen from Table 5, and Table 6, the results for
the 6-minute and 10-minute clips are comparable to those in
Tables 2 and 3. However, the acquired results for the 2-minute
clips, shown in Table 4, are not as good as those in Table 1;
that is, worse than what was achieved when the ground truth
was computed through the adaptive segmentation scheme.
However, even in this case, the outcomes of the adopted
technique (lines 1 to 24 in Table 4) are still superior to
those obtained when the audio-ENF and ground truth ENF
were both acquired using the conventional approach (line 0
in Table 4). The proposed technique obtained the best results
as 59.23%, 87.40%, and 91.46% true match rates, respec-
tively, for 2-minute clips with 32-second segments, 6-minute
clips with 64-second segments, and 10-minute clips with
64-second segments. For the top results settings, the proposed
scheme increased the operational time by approximately
0.02 seconds, 0.03 seconds, 0.06 seconds, and 0.9 seconds,
respectively, for the 2-minute clips, 6-minute clips, and
10-minute clips, compared to the standard segmentation.

The above experiments show that while the proposed
method can work effectively in media of various lengths,
it is most efficient in short media. This outcome is
actually what was expected, given that the proposed strategy
mitigates the adverse effects of ENF pattern similari-
ties that are more pronounced in shorter ENF signals.
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TABLE 2. An evaluation of the proposed technique’s effectiveness in time-stamping 127 6-minute audio clips when it is used both for query and
reference signals for different STFT segment sizes.

TABLE 3. An evaluation of the proposed technique’s effectiveness in time-stamping 82 10-minute audio clips when it is used both for query and
reference signals for different STFT segment sizes.

However, the performance may decrease slightly for some
ENF sample extensions because of the uncertainties asso-
ciated with the noise effect arising from the additional

data segments of smaller sizes. Determining the optimal
ENF extension for a specified fixed-segment size may be
challenging because it may differ for different query clips
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TABLE 4. An evaluation of the proposed technique’s effectiveness in time-stamping 130 2-minute audio clips when it is used only for the query signals,
i.e., not for the reference signals, for different STFT segment sizes.

TABLE 5. An evaluation of the proposed technique’s effectiveness in time-stamping 127 6-minute audio clips when it is used only for the query signals,
i.e., not for the reference signals, for different STFT segment sizes.

of different media depending on the recording conditions.
Nevertheless, preferring the largest ENF extension possible
may be a wise choice because a longer ENF signal becomes

more distinct and more useful in most cases. The selection
of an ideal fixed segment size may also be challenging.
However, based on the experimental results, smaller segment
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TABLE 6. An evaluation of the proposed technique’s effectiveness in time-stamping 82 10-minute audio clips when it is used only for the query signals,
i.e., not for the reference signals, for different STFT segment sizes.

TABLE 7. An assessment of the proposed approach when used in conjunction with current ENF enhancement strategies.

sizes for shorter media and larger segment sizes for longer
media are expected typically to perform better.

V. DISCUSSIONS AND EXTENSIONS
As previously stated, the objective of the proposed STFT
segmentation scheme in Section III is not to improve the
quality (i.e., accuracy) of the ENF signal to be estimated
from media but rather to increase its distinctiveness by
expanding it through the extraction of extra ENF samples
from additional data segments that are not considered by
the conventional strategy. Because the main procedure is
in the data segmentation stage of the STFT, the suggested
technique can be used in conjunction with any pre-process,
intermediate process (during ENF estimation from any
segment), or post-process ENF enhancement techniques
proposed in the literature. In other words, it can be integrated
into any STFT-based ENF signal refinement strategy to
further improve the performance of ENF-based forensic
applications.

Table 7 provides an evaluation of the proposed technique,
using the ENF-WHU dataset, when combined with the robust

filtering algorithm (RFA) [43] and enhanced maximum like-
lihood estimator (E-MLE) [45] that were proposed recently.
The 10-minute and 6-minute clips were tested for a fixed
segment size of 64 seconds because both the conventional
and proposed techniques achieved their best performance for
this setting in the experiments in Section IV. The 2-minute
clips were experimented with for both 32 and 24 seconds
of fixed segment sizes because the best performances
for this set of clips were obtained in different segment
sizes for the proposed and traditional schemes, that is,
32 seconds for the proposed technique and 24 seconds
for the classical method. Each method used the same
ground truth ENF signals obtained using the standard STFT
technique. As evident from the table (i.e., Table 7), when
integrated with the RFA [43], the proposed segmentation
scheme considerably raised the true match rate for 2-minute
clips, from 55.38% to 63.08% for 24-second segments and
from 60.00% to 63.85% for 32-second segments, compared
to the RFA alone. For the 6-minute and 10-minute clips,
the performance did not change. When combined with the
E-MLE [45], the proposed technique increased the true
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match rate against the single E-MLE for any settings:
from 70.77% to 74.62% for 2-minute clips with 24-second
segments, from 74.62% to 77.69% for 2-minute clips with
32-second segments, from 91.34% to 93.70% for 6-minute
clips with 64-second segments and from 97.56% to 98.78%
for 10-minute clips with 64-second segments. Consequently,
the proposed segmentation scheme is noticeably effective
in further improving the performance of existing ENF
enhancement strategies.

Regarding the computational cost, the operational time for
the 2-minute clips with 24-second segments, 2-minute clips
with 32-second segments, 6-minute clips with 64-second
segments, and 10-minute clips with 64-second segments
was increased by approximately 0.86, 1.00, 5.16, and
9.78 seconds, respectively, when the proposed segmentation
scheme was combined with the RFA [43], compared to that
when the RFA was used with the standard segmentation.
When the proposed technique was integrated with the
E-MLE [45], the operational time rose by approximately
0.47, 0.88, 2.82, and 3.43 seconds for 2-minute clips
with 24-second segments, 2-minute clips with 32-second
segments, 6-minute clips with 64-second segments, and
10-minute clips with 64-second segments, respectively,
in comparison with that when the E-MLE was used with
the standard scheme. All the computations were performed
through a 10th-generation Intel i5 processor.

It should be noted that the proposed technique exploited,
for the above experiments, the largest ENF extension possible
for each adopted segment size using a minimum segment size
of 16 seconds, as discussed and recommended in Section IV.

VI. CONCLUSION
This work proposed an enhanced STFT segmentation scheme
to estimate the ENF signal effectively for use in media
forensics. Compared to the conventional STFT, the presented
method ingeniously constitutes additional data segments at
the beginning and end of the media to achieve extra ENF
estimates for any selected STFT parameters, resulting in an
expanded and, thus, more distinct ENF signal. To build a
ground truth ENF signal with settings equivalent to the audio
ENF signal, an adaptation of the proposed technique to a
reference signal was also introduced. Large-scale time-stamp
verification tests were conducted to evaluate the proposed
method, using the ENF-WHU audio dataset for various
clip lengths and STFT segment sizes. Experimental results
demonstrate that the proposed approach outperforms the
traditional STFT scheme. The experiments also showed that
when integrated with any existing STFT-based ENF-accuracy
enhancement strategy, the proposed method is considerably
effective in further boosting the performance.

While the proposed technique leads to more effective ENF
signal estimations, it has some disadvantages or challenges.
First, it increases the time complexity owing to additional
computations for the new segments. In particular, it is compu-
tationally inefficient when applied to a large reference signal
to obtain a ground truth ENF signal with settings identical

to the media ENF for the similarity tests. Fortunately,
using a ground truth ENF signal obtained through the
standard segmentation (i.e., exploiting the proposed scheme
for media only) was an excellent trade-off to avoid the
high computational cost burden with a slight performance
drop. Second, although the proposed work was introduced
for STFT segment sizes longer than 16 seconds because
the shorter segment sizes were assumed to be unreliable
for accurate ENF estimations, there may be cases where a
shorter segment size is more practical, specifically for short
media. In such circumstances, the proposed method may be
ineffective. Lastly, determining the most appropriate size for
the ENF extension is a challenge for the proposed method.
It varies mainly depending on the media itself (i.e., how noisy
it is), the length of the media, and the selected segment size.
A potential area of future research may be investigating the
ideal ENF extension depending on the clip length and selected
STFT parameters.
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