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ABSTRACT The task of image deblurring is a complex and ill-posed inverse problem, which endeavors to
restore a high-fidelity image from its degraded and blurred counterpart. Traditional deblurringmethodologies
are often confronted with the challenge of maintaining the integrity of image details and edges throughout
the restoration procedure. This paper delves into an innovative approach that synergistically harnesses the
power of non-local statistical properties andwavelet tight frame based ℓ0 regularization. The presentedmodel
integrates non-local statistical priors pertaining to the image in question into its regularization framework.
Meanwhile, it leverages the robustness of wavelet tight frames to counteract the inherent ill-posedness
of image deblurring scenarios. This dual strategy results in a more effective preservation of fine details
and edges during the deblurring process. Empirical numerical simulations corroborate the efficacy of the
presented algorithm. It demonstrates a marked superiority over existing deblurring techniques in terms
of quantitative metrics such as Peak Signal-to-Noise Ratio (PSNR), Root Mean Square Error (RMSE),
Structural Similarity Index (SSIM), and Universal Image Quality Index (UQI). Consequently, the presented
algorithm yields images of enhanced deblurring quality, substantiating its potential in image restoration.

INDEX TERMS Image deblurring, wavelet tight frame, non-local statistical information, ℓ0 regularization.

I. INTRODUCTION
Image deblurring is a quintessential challenge within the
domain of image processing, dedicated to the enhancement
of image clarity by mitigating the effects of blur. This
task is frequently conceptualized as an ill-posed inverse
problem, which underscores the complexity and the need
for sophisticated methodologies to address it. It stands
as a paradigmatic issue in the realm of image restora-
tion, garnering extensive scholarly attention and research
endeavors over the past several decades, as evidenced by
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a plethora of academic contributions [1], [2], [3], [4], [5].
The endeavor of image deblurring is characterized by its
status as an ill-conditioned linear inverse problem [6].
It entails the reconstruction of the original image x from its
degraded, blurred manifestation y. The degradation process is
encapsulated within a mathematical model that delineates the
relationship between the original and the degraded images,
typically expressed in the following form:

y = Ax + n. (1)

where x is the image to be restored, y is the degraded
image, A is an irreversible linear degradation matrix, and
n is usually an additive Gaussian white noise. Image
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restoration encompasses a spectrum of techniques, including
but not limited to image deblurring, image inpainting, image
denoising, super-resolution enhancement, and compressive
sensing. Thesemethodologies are designed to address various
forms of image degradation, which can be modeled by
distinct linear degradationmatrices such as those representing
blurring, downsampling, and noise. The selection of an
appropriate degradation matrix is contingent upon the
specific application and the nature of the image degradation
in question. In the context of image deblurring, where the
degradation operator A is a blurring kernel, the restoration
task involves the reconstruction of the original, unblurred
image x from the observed, blurred image y [1], [2], [3], [4],
[5], [7]. Specifically, when the degradation operator A is an
identity matrix, the problem simplifies to image denoising,
where the goal is to remove noise from the image [8], [9].
In the case of image inpainting, the degradation matrix A
is often a diagonal mask with binary elements, selectively
preserving or nullifying pixel values at specific locations,
thereby enabling the reconstruction of missing or damaged
parts of the image [10], [11]. Compressive sensing, on the
other hand, involves a random projection matrix A that
facilitates the reconstruction of sparse signals from a limited
number of measurements [12], [13]. Furthermore, when
the degradation process is a combination of blurring and
downsampling, the image restoration challenge is known
as super-resolution, where the objective is to enhance the
resolution of the image beyond the capabilities of the original
acquisition system [14], [15]. This paper primarily focuses
on the problem of image deblurring, exploring advanced
methodologies to effectively reverse the blurring effect and
recover high-quality images.

To tackle the image deblurring degradation model denoted
by equation (1), it is imperative to incorporate image-specific
prior knowledge into the framework as a regularization
component. This integration effectively reformulates the
image deblurring challenge into the ensuing optimization
problem:

argmin
x

{
1
2
∥Ax − y∥22 + λ8(x)}. (2)

where 1
2∥Ax − y∥22 is a fidelity term, which can ensure that

the deblurred results comply with the image blurred process
and ensure the similarity between the deblurred image and
the observed image. 8(x) is a regularization term for the
prior information of the image to be deblurred. Given that
the image restoration endeavor is frequently characterized
as an ill-posed inverse problem, the incorporation of a
regularization term serves to mitigate the inherent ill-
posedness, thereby facilitating the attainment of a more
robust solution. The regularization parameter λ plays a
pivotal role in this context, as it modulates the equilibrium
between the constituent elements of the model, ensuring a
balanced approach to the restoration process.

The efficacy of image deblurring is fundamentally con-
tingent upon the judicious introduction of prior information

pertaining to the image in question. As such, this prior
information occupies a pivotal role within the architecture of
image deblurring models and algorithms. The integration of
such prior information is achieved through the medium
of regularization terms. Hence, the crux of the matter lies
in the adept design of efficacious regularization terms.
Optimization models predicated on regularization are a
prevalent approach in image deblurring, with a focus on
the formulation of these terms. In the extant literature,
several established optimization models have been identified,
including total variation models [16], [17], [18], semi-
orthogonal formulations [19], and MS models [20]. While
these regularization models exhibit a degree of efficacy in
preserving image edges and restoring the smooth regions
of an image, they are not without their shortcomings,
particularly in the realm of detail and texture preservation.
Furthermore, deblurring algorithms underpinned by deep
learning represent another mainstream methodology. Deep
learning based deblurring algorithms have demonstrated
commendable restoration capabilities [21], [22]. The com-
bination of wavelet transforms with deep learning has been
instrumental in addressing practical challenges, such as facial
recognition [23], as well as the privacy and security concerns
of individual internet users [24].
To enhance the preservation of details and textures in

the restored image, several researchers have refined the
total variation model, resulting in the emergence of various
weighted total variation models [25] and non-local total
variation models [26]. These models are adept at maintaining
the integrity of image detail and edges. Xiong et al. [27]
introduced a Joint Statistical Model (JSM) in the spatial
transformation domain, which leverages both local and
non-local characteristics of the image to be restored, thereby
effectively mitigating the occurrence of circular artifacts. The
JSM has demonstrated superior image restoration quality
compared to models that solely rely on either local or
non-local image features. Jung et al. [28] further enhanced
the MS model, devising a non-local MS model that has been
successfully applied to color image restoration tasks such as
deblurring, super-resolution, and mosaic removal. Inspired
by the principles of JSM and regularization techniques, this
paper aims to amalgamate the strengths of both approaches
to develop an optimization model for image deblurring that
is grounded in a joint non-local statistical and regularization
framework.

The existing regularization based optimization models
are pivotal in the domain of image deblurring, where the
objective and its assessment are paramount. Several studies
have harnessed the power of sparse transformations within
the framework of optimization models to address the image
deblurring challenge [29], [30], [31], [32]. These models
capitalize on the inherent sparsity or prior information of
the images, assuming that they exhibit certain universal
characteristics under specific sparse transformations. In the
majority of these studies, the ℓ1 regularization is employed to
further mitigate noise and ameliorate the ill-posed nature of
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image deblurring, offering a sparser solution than the ℓ2 reg-
ularization. However, the ℓ0 regularization, despite being
non-convex and non-smooth with solutions that are often
confined to local optima, is recognized for its superior edge
preservation capabilities during the deblurring process [33],
[34]. In an effort to leverage the image’s prior information,
various sparse transformations have been integrated into
the regularization terms, encompassing gradient transfor-
mations [35], wavelet transformations [36], Fourier-curvelet
transformations [37], and others. Recently, the wavelet tight
frame transform has emerged as a promising approach
for restoring blurred images [18], [38], [39]. Inspired by
these advancements, this paper introduces a novel image
deblurring model that integrates joint non-local statistical
information with wavelet tight frame-based ℓ0 regularization,
which is denoted as JSWD. The contributions of this
work are manifold and can be distilled into three principal
aspects. Firstly, the presented model incorporates joint
non-local statistical information into the regularization term,
effectively amalgamating local smoothness with non-local
self-similarity to ensure amore reliable and robust estimation.
Secondly, the tight frame transform, being an extension of
both low and high-order gradient transformations, possesses
an exemplary property; the multiplication of its transposed
form with itself results in an identity matrix [40]. Thirdly,
the model employs both the ℓ1 norm and the ℓ0 quasi-
norm [41] to enforce sparsity. Subsequently, the Splitting
Bregman Technique (SBT) is adeptly utilized to effectively
decouple the components of the presented model without
compromising its convergence and stability [42], [43], [44].
This approach not only streamlines the optimization process
but also enhances the overall performance of the deblurring
algorithm.

The structure of this paper is delineated as follows.
The initial section serves as an exposition of the research
background and the significance of the problem addressed
within this study. The subsequent section offers an in-depth
elucidation of the relationship between the wavelet tight
frame transformation and the ℓ0 quasi-norm regularization
term, alongside the image deblurring model and its attendant
algorithm. The penultimate section delineates an array
of numerical experiments, comparing the state-of-the-art
algorithms with the model introduced in this paper for the
purpose of image deblurring. To culminate, the paper presents
the conclusions drawn and prospective outlooks for future
research.

II. MODEL AND ALGORITHM
To address the challenge of image deblurring, this manuscript
introduces a novel model that integrates joint non-local
statistical and wavelet tight frame information, as delineated
below:

argmin
x

{
1
2
∥Ax − y∥22 + λR1(x) + βR2(x)}. (3)

where A is a matrix representing a linear degradation operator
which is usually non-invertible; x indicates the image to

be deblurred; y is the obtained degraded image; R1 and R2
represent the operators of the regularization terms; λ and
β are positive regularization parameters balancing fidelity
term and regularization terms. It is discernible that the model
presented in equation (3) encompasses a multitude of terms,
which may pose a formidable challenge when approached
directly without the aid of sophisticated methodologies.

To surmount the challenges inherent in the model (3),
auxiliary variables are strategically introduced to disentangle
the model using SBT [44]. Extant literature suggests that
SBT is characterized by rapid convergence and a modest
memory footprint, making it an efficacious tool for resolving
a spectrum of ℓ1 regularization-based problems. Furthermore,
SBT demonstrates an aptitude for managing optimization
problems predicated on regularization. The SBT is frequently
employed to address the following generic unconstrained
optimization problem:

argmin
x∈RN

{f (x) + g(Hx)}. (4)

where H ∈ RM×N , f : RN −→ R, g : RM −→ R.
γ is a regularization parameter. According to the augmented
Lagrangian method, the model (4) can be separated into three
sub-problems shown in Table 1.

TABLE 1. Splitting bregman technique (SBT).

According to the frame of SBT, the presented model (3)
can be defined as:

f (x) =
1
2
∥Ax − y∥22. (5)

g(z) = g(Hx) = λR1(x) + βR2(x). (6)

where z =

[
u
v

]
= Hx, u, v ∈ RN and H =

[
W
I

]
∈ R2N×N ,

wavelet tight frame transform has been introduced in the
model, denoted as W , and I is identity matrix. Then the
presented model (3) can be transformed into the following:

argmin
x,z

{f (x) + g(z)}, s.t.Hx = z. (7)

Similarly, the model (7) is converted into three sub-problems
by the augmented Lagrangian method. Then the
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(n+1)th solution of x can be shown as follows:

x(n+1)
∈ argmin

x
{
1
2
∥Ax − y∥22

+
γ

2
∥

[
W
I

]
x −

[
u(n)

v(n)

]
−

[
w(n)
1

w(n)
2

]
∥
2
2}. (8)

where w(n)
=

[
w(n)
1

w(n)
2

]
∈ R2N , w(n)

1 ,w(n)
2 ∈ RN . By splitting

ℓ2 norm of the model (8), it obtains that

x(n+1)
∈ argmin

x
{
1
2
∥Ax − y∥22 +

γ

2
∥Wx − u(n) − w(n)

1 ∥
2
2

+
γ

2
∥x − v(n) − w(n)

2 ∥
2
2}. (9)

According to SBT [44], u and v can be addressed by the
following:[
u(n+1)

v(n+1)

]
∈ argmin

u,v
{λR1(u) + βR2(v)

+
γ

2
∥Wx(n+1)

− u− w(n)
1 ∥

2
2 +

γ

2
∥x(n+1)

− v− w(n)
2 ∥

2
2}.

(10)

It is clear that problem (10) with respect to u and v can
be decoupled, and the problem (10) is solved separately as
follows:

u(n+1)
∈ argmin

u
{λR1(u) +

γ

2
∥Wx(n+1)

− u− w(n)
1 ∥

2
2}.

(11)

v(n+1)
∈ argmin

v
{βR2(v) +

γ

2
∥x(n+1)

− v− w(n)
2 ∥

2
2}. (12)

The Lagrangian multipliers w1 and w2 can be updated by

w(n+1)
=

[
w(n+1)
1

w(n+1)
2

]

=

[
w(n)
1

w(n)
2

]
− (

[
W
I

]
x(n+1)

−

[
u(n+1)

v(n+1)

]
).

Which can be simplified as follows:

w(n+1)
1 = w(n)

1 − (Wx(n+1)
− u(n+1)). (13)

w(n+1)
2 = w(n)

2 − (x(n+1)
− v(n+1)). (14)

In conclusion, the presented model is evolved to solve
the three sub-problems about variables x, z, w by SBT,
respectively. In order to address the problems (11) and (12),
the proximal map proxα(g)(x) [4] is utilized which can be
defined as follows:

proxα(g)(x) ∈ argmin
y

{
1
2
∥y− x∥22 + αg(y)}.

Subsequently, the comprehensive algorithmic flowchart is
delineated within Table 2.

To clarify the observed image, the original problem (3) is
approached using SBT, which is methodically divided into
three distinct sub-problems. The subsequent exposition will
elucidate the intricate processes involved in these three sub-
problems.

TABLE 2. A complete solution flowchart of the presented deblurring
model.

A. X SUB-PROBLEM
The sub-problem (9) includes three terms. 1

2∥Ax − y∥22 is
the fidelity term, and its two latter terms include different
information about x, the regularization parameter γ may be
different which is more reasonable. Therefore, γ1 and γ2 are
introduced. Then the problem (9) can be rewritten as follows:

x(n+1)
∈ argmin

x
{
1
2
∥Ax − y∥22 +

γ1

2
∥Wx − u(n) − w(n)

1 ∥
2
2

+
γ2

2
∥x − v(n) − w(n)

2 ∥
2
2}. (15)

Through the analysis of the objective function in (15), it can
obtain that the function about x is a strictly convex quadratic
function, and it can get a closed form solution, which is
represented as:

x(n+1)
= [ATA+ (γ1 + γ2)I ]−1[AT y+ γ1W T (u(n) + w(n)

1 )

+ γ2(v(n) + w(n)
2 )]. (16)

For image inpainting or image deblurring problem, the
equation (16) can be computed efficiently and directly.

In this paper, image deblurring is considered, and A repre-
sents a circular convolution matrix which can be factorized as
follows:

A = F−1DF . (17)

where F is the matrix which denotes 2D discrete Fourier
transform, F−1 is its inverse and D is a diagonal matrix
which is related to the Fourier transform coefficients of the
convolution operator A. Thus, [ATA + (γ1 + γ2)I ]−1 can be
expressed as

[ATA+ (γ1 + γ2)I ]−1
= [F−1D∗DF + (γ1 + γ2)F−1F]−1

= F−1[D∗D+ (γ1 + γ2)I ]−1F .

(18)

where ∗ denotes complex conjugate. Since D∗D+ (γ1 + γ2)I
is diagonal, the cost of its inversion is O(N). Similarly, the
product of F−1 and F can be implemented with O(NlogN)
by using fast Fourier transform algorithm.
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B. U SUB-PROBLEM
In the aforementioned sub-problem, the proximal mapping
corresponding to R1(·) [4] leverages a wavelet tight frame,
which is expanded through total variation, and employs the
ℓ0 quasi-norm to more effectively mitigate the ill-posed
nature of the problem, denoted as ∥Wx∥0. Despite the
ℓ0 regularization problem being classified as NP-hard, the
hard thresholding algorithm [42] provides a viable solution
to surmount this challenge. Consequently, the sub-problem
for u can be articulated as follows:

u(n+1)
= proxλ/γ1 (R1)(Wx

(n+1)
− w(n)

1 )

= argmin
u

{
1
2
∥u− (Wx(n+1)

− w(n)
1 )∥22 +

λ

γ1
R1(u)}

= argmin
u

{
2λ
γ1

∥u∥0 + ∥u− (Wx(n+1)
− w(n)

1 )∥22}.

(19)

Utilizing the hard threshold algorithm to resolve equa-
tion (19), the algorithm yields the (n+1)th iteration’s solution
pertaining to the variable u.

u(n+1)

=



{0}, Wx(n+1)
− w(n)

1 <

√
2λ
γ1

;

{Wx(n+1)
− w(n)

1 }, Wx(n+1)
− w(n)

1 >

√
2λ
γ1

;

{Wx(n+1)
− w(n)

1 , 0}, Wx(n+1)
− w(n)

1 =

√
2λ
γ1

.

(20)

C. V SUB-PROBLEM
Upon the computation of x(n+1) and u(n+1), attention is then
directed towards the sub-problem concerning v. In light of the
resolution of the aforementioned sub-problems for x(n+1) and
u(n+1), the formulation of the v sub-problem is as follows:

v(n+1)
= proxβ/γ2 (R2)(x

(n+1)
− w(n)

2 )

= argmin
v

{
1
2
∥v− (x(n+1)

− w(n)
2 )∥22 +

β

γ2
R2(v)}

= argmin
v

{
1
2
∥v− (x(n+1)

− w(n)
2 )∥22 +

β

γ2
∥8v∥1}.

(21)

where 8v symbolizes the transformational operator applied
to a module that encapsulates non-local means of the image
slated for deblurring. An exhaustive elucidation of 8v is
available within the context of the three-dimensional spatial
transformation domain’s self-similarity non-local statistical
model, as referenced in [27].

Assumingβ/γ2 = η, x(n+1)
−w(n)

2 = p(n), the equation (21)
can be rewritten as:

v(n+1)
∈ argmin

v
{
1
2
∥v(n) − p(n))∥22 + η∥8v∥1}. (22)

Assuming N is the dimension of v and p, and K is the
dimension of 8v and 8p, ρ = Kη/N , j = 1, ..,K , the
following equation holds:

1
N

∥v(n) − p(n))∥22 =
1
K

∥8(n)
v − 8(n)

p ∥
2
2. (23)

By combining equations (22) and (23), it becomes straightfor-
ward to infer that equation (21) is reformulated as follows:

v(n+1)
∈ argmin

v
{
1
2
∥8(n)

v − 8(n)
p ∥

2
2 + ρ∥8v∥1}. (24)

By using the soft threshold algorithm to solve (24), we can
obtain 8

(n)
v :

8(n)
v = sgn(8(n)

p (j))max{∥8(n)
p (j)∥ −

√
2ρ, 0}

=


8(n)
p (j) −

√
2ρ, 8(n)

p (j) ∈ (
√
2ρ, +∞);

0, 8(n)
p (j) ∈ (−

√
2ρ,

√
2ρ);

8(n)
p (j) +

√
2ρ, 8(n)

p (j) ∈ (−∞, −
√
2ρ).

(25)

Then v(n+1) is equal to

v(n+1)
= R2(8(n)

v )

= R2(soft(8(n)
p ,

√
2ρ))

= R2(soft(8(x(n+1)
− w(n)

2 ),
√
2ρ)). (26)

where soft represents the soft threshold algorithm. A more
detailed derivation process for solving the v sub-problem can
be found in reference [27].

D. SUMMARY
As the presented model is not amenable to direct resolution,
auxiliary variables u, v, w1 and w2 are introduced to facilitate
its decoupling. A comprehensive flowchart delineating the
algorithm is encapsulated in Table 3.

TABLE 3. A detailed flowchart description of the presented algorithm.

III. NUMERICAL EXPERIMENTS
The numerical experiment environment of this paper was
conducted on an HP laptop Intel (R) Core (TM) i5-7200U
CPU @ 2.50GHz 2.71 GHz, with a RAM4.00G, 64 bit
operating system, and MATLAB 2021a installed on an x64
processor.
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FIGURE 1. It represents the reference images including grayscale
‘Barbara’, grayscale ‘Pills’, grayscale ‘House’ and color ‘House’.

A. SOURCE OF EXPERIMENTAL IMAGES
The experimental dataset comprises four images, depicted in
Figure 1, which include the grayscale renditions of ‘Barbara’,
‘Pills’, and ‘House’, as well as a color version of ‘House’.
These images are sourced from the publication ‘Digital Image
Processing Using MATLAB, 2nd edition’ [45]. To facilitate
a comparative analysis of the efficacy of various deblurring
algorithms, two distinct regions from each image have been
selected and are indicated by the two red rectangular frames.

B. PARAMETER SETTING
The presented model in this paper necessitates the deter-
mination of five parameters: λ, β, γ1, γ2 and the number
of iterations Nmax . For the experimental parameter tuning,
the initial values are set as follows: λ = 3, β = 20,
γ1 = 7 × 10−7, and γ2 = 2 × 10−3. A series of experiments
concerning the parameter configuration for image deblurring
are conducted. The grayscale ‘House’ image, characterized
by a mean blur and noise level of 25/255, is utilized for
the parameter setting experiment. The iteration limit Nmax is
established at 30, and the Peak Signal-to-Noise Ratio (PSNR)
is recorded. The variations in the regularization parameters
and the corresponding PSNR values are presented in Table 4,
revealing amaximumPSNRof 40.4309 dB and aminimumof
37.6569 dB. The experimental adjustments to the parameters
have led to a notable enhancement in PSNR, amounting to an
approximate improvement of 2.7740 dB.

According to the above numerical experiments, the
selected parameters of the presented model are as follows:
λ = 2, β = 1.5, γ1 = 7×10−9, and γ2 = 1.5×10−3 by trial
and error. The number of iterations Nmax is set to 100. The
presented model can obtain high-quality deblurred images.

TABLE 4. Parameter Setting for the presented model.

C. EXPERIMENTAL RESULTS
The acquisition of a blurred image entails the original, high-
resolution image undergoing convolution with a blurring
kernel, succeeded by the superimposition of Gaussian noise
characterized by a standard deviation σ . The experimental
protocol incorporated three distinct blurring methodologies:
mean blur, Gaussian blur, and motion blur. For the mean
blur, the process commenced with the computation of the
arithmetic mean across each 9 × 9 pixel block of the
original image, followed by the incorporation of zero-mean
additive Gaussian white noise with a standard deviation
of 25/255. In the case of Gaussian blur, the original image
was subjected to the addition of Gaussian noise with a
mean of 25 and a standard deviation of 1.6, prior to the
introduction of zero-mean additive Gaussian white noise with
a standard deviation of 25/255. The motion blur was achieved
by applying a 45-degree counterclockwise rotation and
a 20-pixel translation to the photographic subject, culminat-
ing in the addition of zero-mean additive Gaussian white
noise with a standard deviation of 25/255.

Within the scope of numerical experimentation, a com-
parative analysis of image deblurring was conducted using
the algorithms referenced in [5], [7], [22], [27], and [36],
which are denoted as BM3D, CBM3D, IRCNN, JSM and
EDDT, respectively. The algorithm introduced in this paper
is designated as JSWD.

There are four quantitative assessments to be utilized to
assess the deblurring algorithms, namely Peak Signal-to-
Noise Ratio (PSNR) [46], Root Mean Square Error (RMSE)
[47], Structural Similarity Index (SSIM) [48], and Universal
Image Quality Index (UQI) [49]. PSNR can be expressed as

PSNR = 10log10(
max2

MSE
). (27)

where the unit of PSNR is decibels (dB), max is the
highest scale value of the 8-bits gray scale. MSE is the root
mean square error of the clear image x and the deblurred
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TABLE 5. Quantitative assessments including PSNR, RMSE, SSIM and UQI
are utilized for different gray image deblurring algorithms.

image x(n+1), which can be expressed as

MSE =

H∑
i=1

W∑
j=1

D∑
k=1

(x(i, j, k) − x(n+1)(i, j, k))2

H ×W × D
.

where H , W , and D represents the height, width, and
dimension of the image x, respectively. x(i,j,k) represents the
pixel value in the i-th row, j-th column, and k-th dimension
of the image x, i, j, k is the subscript index. PSNR is based on
pixel value calculation, which is simple and fast, but it does
not conform to the human visual system. PSNR is related to
MSE, and another quantitative assessment is also related to
MSE, which is RMSE, which means taking the arithmetic
square root of MSE. The mathematical language of RMSE
is

RMSE =

√√√√√√√
H∑
i=1

W∑
j=1

D∑
k=1

(x(i, j, k) − x(n+1)(i, j, k))2

H ×W × D
. (28)

A lower RMSE indicates superior algorithmic performance.
SSIM is predicated on three pivotal factors: luminance,
contrast, and structural information, thereby addressing the
inherent limitations of PSNR. SSIM quantifies the degree of
similarity between the original clear image x and its deblurred
counterpart x(n+1), with a scale that ranges from 0 to 1, where
1 denotes perfect similarity. SSIM is defined as

SSIM =
(2µ1µ2 + c1)(σ12 + c2)

(µ2
1 + µ2

2 + c1)(σ 2
1 + σ 2

2 + c2)
. (29)

UQI is ametric renowned for its computational simplicity and
broad applicability across diverse image processing domains

TABLE 6. Quantitative assessments including PSNR, RMSE, SSIM and UQI
are utilized for different color image deblurring algorithms.

for the assessment of image fidelity [49]. It is formulated as
follows:

UQI =
4µ1µ2σ12

(µ2
1 + µ2

2)(σ
2
1 + σ 2

2 )
. (30)

where µ1 is the mean of the deblurred image x(n+1), and µ2
is the mean of the clear image x, σ1 is the variance of the
deblurred image x(n+1), and σ2 is the variance of the clear
image x, σ12 is the covariance between the deblurred image
x(n+1) and the clear image x, c1 and c2 are constants. It is rea-
sonable and feasible to comprehensively evaluate the quality
of images using PSNR, RMSE, SSIM, and UQI in this paper.

At a noise standard deviation of σ = 25/255, to streamline
the compilation of a comparative table for the numerical
outcomes of quantitative metrics, the values have been taken
to two decimal places. The quantitative assessments are
detailed in the respective columns of Tables 5 and 6.

Table 5 encompasses quantitative assessments, including
PSNR, RMSE, SSIM, and UQI, which are utilized to
evaluate various grayscale image deblurring algorithms. It is
observable from Table 5 that the PSNR values yielded by
JSWD surpass those of the comparative algorithms. The most
pronounced difference in PSNR is observed in the BM3D
algorithm when deblurring the motion blur of the ‘House’
image, amounting to approximately 19.33 dB. Conversely,
the minimal difference in PSNR is recorded in the JSM
algorithm when deblurring the Gaussian blur of the ‘Pills’
image, which is approximately 1.24 dB. The PSNR achieved
by JSWD for the deblurred ‘Barbara’ image under Gaussian
blur conditions is 27.33 dB, which still exceeds the PSNR
of the comparative algorithms. In terms of RMSE, it is
evident that, for a given blur type, the RMSE of JSWD
is more diminutive compared to the other comparative
algorithms, with a range from 2.08 to 10.95. The SSIM
of JSWD hovers around the interval of 0.92 to 0.99, and
the UQI value consistently approaches 0.99. A quantitative
assessment analysis indicates that JSWD demonstrates the
most efficacious restoration for motion blur, with mean blur
following suit. The most exemplary quantitative assessments
for the deblurred ‘Pills’ image by JSWD under motion blur
conditions are as follows: PSNR, RMSE, SSIM, and UQI are
41.72 dB, 2.08, 0.99, and 0.99, respectively.
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Table 6 delineates a comprehensive set of quantitative
assessments, encompassing PSNR, RMSE, SSIM and UQI,
employed for the evaluation of various color image deblurring
techniques. In the context of color image deblurring, the pri-
mary focus is on the ‘House’ image subjected to three distinct
types of blur. The JSWD algorithm exhibits commendable
quantitative assessment values, particularly in the restoration
of motion and mean blurred images, with corresponding
metrics of 39.66 dB, 1.52, 0.99, and 1 for motion blur, and
38.87 dB, 1.66, 0.99, and 1 for mean blur, respectively.
When it comes to Gaussian blur, the quantitative assessments
rendered by JSWD are marginally lower than those of the
JSM algorithm but surpass those of both the CBM3D and
IRCNN algorithms. This slight discrepancy in quantitative
assessments between JSWD and JSM is attributed to the
inferior performance of JSWD’s second channel relative to
JSM when independently deblurring each of the three color
channels in the images.

The subsequent content provides a visual comparison
of the deblurring outcomes of the comparative algorithms,
with a focus on two locally magnified images along the
principal diagonal direction. The sequence of images in each
column represents the deblurred result and the two localized
enlargements. Owing to spatial constraints within this
document, a selection of three exemplary experimental results
in grayscale image deblurring has been made, encompassing
‘Barbara’ under mean blur, ‘Pills’ under Gaussian blur, and
‘House’ under motion blur. Similarly, three representative
experimental results in color image deblurring have been
chosen, predicated on the three types of blurred color images
of ‘House’.

Figures 2 to 4 display the visual effects of the deblurring
algorithms on ‘Barbara’, ‘Pills’, and ‘House’, along with
their respective locally magnified images. The deblurred
images by BM3D exhibit a significant presence of artifacts,
with edge information failing to be adequately restored. The
texture information of the headscarf in images deblurred
by JSM is more pronounced than in those deblurred by
EDDT. In comparison with the deblurred image by JSM,
the image deblurred by JSWD presents enhanced detail
and more distinct edges. The oblique corner of the book
and tablecloth in the partial enlargement can be discerned
in Figure 2. From Figures 3 to 4, it is evident that the
deblurred images by JSWD exhibit clear texture structures
and image edges for the ‘Pills’ and ‘House’ experimental
images, whereas other comparative algorithms typically
exhibit some degree of artifacts. BM3D’s image restoration
is predicated on the similarity of image blocks, which, due
to weak similarity in blurred image blocks, may lead to
the selection of dissimilar blocks, resulting in suboptimal
restoration outcomes. EDDT relies on the regularization of
varying intensities in smooth regions and edges of the image,
yet struggles to differentiate between regions and edges in
blurred images, potentially misidentifying noise points and
edge artifacts as edges, thus leading to diminished image
quality post-deblurring. JSM, which incorporates both total

FIGURE 2. The sequence from left to right illustrates the original,
unadulterated image, followed by the image compromised by noise and
subjected to mean blurring. Subsequently, the outcomes of various
deblurring algorithms, namely BM3D, JSM, EDDT, and JSWD, are
presented on the test image ‘Barbara’. The subsequent pair of miniature
images offers a localized perspective for closer examination.

variation and non-local similarity in its regularization term,
yields superior restoration results compared to BM3D and
EDDT. The restoration efficacy of JSWD surpasses that
of JSM due to the more efficacious utilization of wavelet
tight frame information in image deblurring. Specifically,
the wavelet tight frame information initially decomposes the
blurred image across four layers, extracts the image features
of each layer, and subsequently employs these features to
reconstruct the image, thereby achieving the goal of restoring
image edges and detailed texture information.
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FIGURE 3. The sequence from left to right delineates the original,
unaltered image, succeeded by the image that has been corrupted by
noise and afflicted with Gaussian blurring. Subsequently, the deblurring
outcomes of the algorithms BM3D, JSM, EDDT, and JSWD are exhibited on
the test image ‘Pills’. The subsequent duo of miniature images provides a
localized view for a more detailed scrutiny.

Figures 5 to 7 display the visual outcomes of deblur-
ring algorithms on three types of blurred and deblurred
color images of ‘House’. Consistent with the gray image

FIGURE 4. The sequence from left to right delineates the original,
unaltered image, succeeded by the image that has been corrupted by
noise and motion blur. Subsequently, the deblurring outcomes of the
algorithms BM3D, JSM, EDDT, and JSWD are exhibited on the ‘House’
image. The subsequent duo of diminutive images provides a detailed,
localized view for meticulous scrutiny.

experiment, the original, unadulterated image and its blurred
counterpart are juxtaposed with the deblurred results yielded
by various color image deblurring algorithms to facilitate an
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FIGURE 5. The sequence from left to right displays the original, unaltered
image, succeeded by the image that has been corrupted by noise and
subjected to mean blurring. Subsequently, the deblurring results of the
algorithms CBM3D, JSM, IRCNN, and JSWD are exhibited on the test
image ‘House’. The subsequent pair of diminutive images provide a
detailed, localized view for an in-depth analysis.

assessment of their comparative efficacy. The color image
deblurring experiment employing JSWD algorithm involves
the separate deblurring of the three color channels of the

FIGURE 6. The sequence from left to right displays the original, unaltered
image, succeeded by a version marred by noise and Gaussian blurring.
Subsequently, the deblurring outcomes of the CBM3D, JSM, IRCNN, and
JSWD algorithms are delineated on the exemplar image ‘House’. The
subsequent pair of diminutive images provides a localized view for
detailed scrutiny.

image. In Figure 5, the sequence from left to right represents
the original clear image, the noisy and blurred image,
and the deblurring outcomes of CBM3D, JSM, IRCNN,
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FIGURE 7. The sequence from left to right displays the original,
undistorted image, followed by the version that has been corrupted by
noise and subjected to motion blurring. Subsequently, the restoration
outcomes achieved through various deblurring techniques –namely,
CBM3D, JSM, IRCNN and JSWD –are presented on the ‘House’ test color
image. The subsequent pair of miniature images provides a localized
perspective for detailed scrutiny.

and JSWD algorithms on the ‘House’ image, with the
subsequent two smaller images depicting localized regions.

FIGURE 8. The graph illustrates the variation in PSNR as a function of the
iteration count under the influence of three distinct types of image blur.

FIGURE 9. The graphical representation of RMSE as a function of iteration
count is depicted for three distinct types of image blur.

Figures 5, 6, and 7 correspond to mean blur, Gaussian blur,
and motion blur, respectively. The ‘House’ image restored by
CBM3D retains a significant number of artifacts, with a slight
reduction observed in Figure 6. The edge information in the
images restored by IRCNN is effectively preserved, while the
fine textures of the house bricks and windows are somewhat
smoothed over. The image quality restored by JSM surpasses
that of CBM3D and IRCNN, as evidenced by the preservation
of edges in the deblurred images by JSM. The JSWD
algorithm, despite a slightly lower quantitative assessment
under Gaussian blur compared to JSM, delivers clearer
corners in the deblurred images, particularly noticeable in the
localized images.

The superior restoration outcomes achieved by the JSWD
algorithm can be attributed to its sophisticated approach,
which incorporates the wavelet tight frame transform along-
side non-local statistical measures within the regularization
term. This method adeptly harnesses both inter-group and
intra-group sparsity through the concurrent application of the
ℓ0 quasi-norm and the ℓ1 norm for regularization modeling.
The synergy of these techniques endows JSWD with an
enhanced capability to reconstruct images with greater
fidelity, particularly in preserving edges and intricate textures
that are often challenging to restore in the deblurring process.
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FIGURE 10. The graph of SSIM changes with the number of iterations
under three kinds of blur. The graphical representation of SSIM is
depicted as it fluctuates in response to varying iteration counts within the
context of three distinct blurring conditions.

This multifaceted strategy not only optimizes the restoration
quality but also underscores the algorithm’s robustness across
various types of image blurs.

D. CONVERGENCE ANALYSIS
Utilizing the grayscale image of ‘House’ as a benchmark,
Figures 8 to 10 illustrate the fluctuation in quantitative
assessments relative to the number of iterations. Initially,
from 0 to 30 iterations, there is a marked variation in
quantitative assessments, indicated by a steep curve. As the
iterations progress from 70 to 100, the range of variation
in quantitative assessments diminishes, eventually plateau-
ing, thereby corroborating the convergence of the JSWD
algorithm.

IV. CONCLUSION
In this paper, joint non-local statistical and wavelet tight
frame information based ℓ0 regularization model for image
deblurring (JSWD) is presented, which integrates a dual
regularization framework employing both ℓ0 quasi-norm and
ℓ1 norm. This methodology harnesses prior knowledge of
the image structure from multiple dimensions, enhancing the
deblurring process. Empirical evaluations confirm that JSWD
surpasses current algorithms in terms of performance and
demonstrates robust convergence characteristics.

Images are ubiquitous inmodern society, with high-fidelity
imagery significantly enhancing visual experiences and aug-
menting productivity in various domains. For instance, in the
medical field, crisp image edges and fine details are pivotal
for clinicians to derive accurate diagnostic insights. Similarly,
in vehicular applications, the clarity of images retrieved by
license plate recognition systems, despite being subject to
noise, is fundamental for precise plate identification.

Despite the efficacy of the JSWD model in refining image
edges and details, it is acknowledged that the computational
demands are substantial, necessitating advanced computa-
tional resources due to the combined regularization terms and
the extensive iteration process. There remains ample scope
for further inquiry. Key areas for future research include:

Mitigating computational complexity to expedite processing
speeds presents a formidable challenge; Reducing the number
of iterations while ensuring the convergence of the JSWD
algorithm is a compelling avenue for exploration; Consider-
ing the application of the algorithm on natural images with
smooth gradients; Integrating optimization models with deep
learning techniques to augment the deblurring capabilities for
both grayscale and color images represents the cutting-edge
trend in the field.
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