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ABSTRACT Recently, deep learning-based demosaicing methods have shown promising results. However,
there has been little research on designing CFAs that are well-suited for specific deep learning-based
demosaicing methods. This is because it is challenging to establish a relationship between deep
learning-based demosaicing methods and the CFAs they employ. This contrasts with traditional CFA design
methods, which targeted fixed, non-deep learning demosaicing methods that did not depend on data learning,
making signal processing theory applicable to the design. In this paper, we propose an optimized color filter
array(CFA) tailored for the Denoising Diffusion Null-space Model (DDNM) based demosaicing. We begin
by demonstrating the application of the DDNM to the demosaicing problem and establish the conditions
under which the DDNM can accurately recover the true colors from CFA images containing colored pixels.
Based on this analysis, we propose a CFA pattern that significantly improves the likelihood of accurate
color reconstruction using the DDNM-based demosaicing method. Then, we outline the training process
for obtaining the optimal filter coefficient values for the proposed CFA pattern. Experimental findings
demonstrate that the proposed CFA yields favorable results when paired with the DDNM-based demosaicing
technique which surpass those achieved by other CFA patterns.

INDEX TERMS Image demosaicing, deep learning, denoising diffusion model, color filter array, range-null
space decomposition.

I. INTRODUCTION
Due to limited computing resources and design constraints
in digital cameras, especially in smartphones, a single-
channel sensor is typically used with a color filter array(CFA)
to capture a scene. Demosaicing refers to the process of
reconstructing a full color image from the single-channel
sensor data, also known as the CFA image, captured by the
digital camera. The aim of demosaicing is to reconstruct a
high-quality color image that closely resemble the original
scene. This aim can be achieved through the design of an
appropriate CFA pattern and the application of sophisticated
demosaicing algorithms tailored to that pattern. By optimiz-
ing both the CFA design and the corresponding demosaicing
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process, the accuracy and quality of the reconstructed color
images can be significantly improved.

With traditional, non-deep learning demosaicing methods,
the CFA design was based on analysis rooted in signal
processing theory. For example, the authors of [2] pose
the problem of color filter array design formally as one of
simultaneously maximizing the spectral radii of luminance
and chrominance channels subject to perfect reconstruction.
Hao, et al. further extend the method in [2] to formulate
an optimization problem for selecting an optimal tri-color
CFA [3]. In [4], an analysis on the modulation transfer
function of arbitrary pixel shapes is performed and utilized
for the pixel design of the CFA.

Meanwhile, advancements in deep learning-based image
demosaicing techniques have demonstrated promising results
when applied to Bayer CFA (color filter array) images [5],
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[6] [7], [8]. However, demosaicing for non-Bayer patterned
CFAs remains still challenging, especially when the CFA
includes colored pixels. This challenge stems from the
requirement to solve a linear system rather than simply
interpolating data. Nonetheless, CFAs incorporating colored
pixels are desired due to their potential to enhance image
quality by improving the SNR (signal-to-noise) ratio. This
enhancement is achievable as colored pixels allow more light
to reach the sensor, thereby increasing the signal energy.
Furthermore, a colored filter array can enable improved
spectral sensitivity, which can be useful for specialized or
scientific applications. Therefore, in this paper, we aim
to design a CFA pattern that includes colored pixels and
determine the CFA coefficient values so that the CFA works
effectively with a deep learning-based generative model,
i.e., the denoising diffusion null-space model (DDNM) for
demosaicing.

The challenge with CFA design for deep learning-based
demosaicing is that the design of an appropriate CFA
must be considered in conjunction with a learning-based
model. Since the demosaicing method relies on a learned
model derived from training data, establishing a rigor-
ous relationship between the CFA and the demosaicing
method becomes difficult. This difficulty has resulted in a
lack of research on CFA design for deep learning-based
demosaicing methods. With deep learning-based demo-
saicing methods, the main issue in determining the CFA
pattern and the CFA coefficient values is ensuring that
the CFA can guide the demosaicing network to find the
optimal solution.

Meanwhile, with the advancement of diffusion-based
generative models [11], [12], [15], image restoration methods
have begun to incorporate pre-trained diffusion models
[9], [10], [13], [14]. Among the methods, the authors
of [14] introduce a highly efficient zero-shot framework
known as the denoising diffusion null-space Model(DDNM),
which can be applied to various linear image restoration
problems.

In this paper, we first demonstrate how the DDNM model
can be applied to the demosaicing problem by constructing
the appropriate degradation matrix. However, the DDNM
model cannot successfully demosaic every CFA image. For
instance, when using an All-White CFA image, experimental
results reveal the reconstruction of false colors. Additionally,
the performance of the DDNM model fluctuates across dif-
ferent CFA images. Therefore, we provide a brief analysis of
the conditions under which a CFA image with colored pixels
can yield a unique solution, i.e., a uniquely reconstructed
color image using the DDNM model. Leveraging the result
of this analysis, we propose a colored CFA pattern that offers
a high likelihood of accurately restoring the original color
components. Furthermore, we propose a training method that
can find the optimal filter coefficients that yields high-quality
demosaicing outcomes when employing the DDNM as the
demosaicing technique.

The main contributions of this work can be summarized as
follows:
• We conduct an analysis to determine the conditions
under which the DDNM can generate a unique solution.

• Based on the analysis, we propose a CFA pattern that
offers a high level of assurance in recovering the true
colors from the CFA image.

• We present a method for training the CFA filter coef-
ficients to achieve optimal demosaicing results when
employing the DDNM as the demosaicing method.

II. PRELIMINARIES
In this section, we outline the preliminaries required to
understand the proposed method.

A. THE DEMOSAICKING PROBLEM
Contemporary digital imaging systems frequently comprise
monochrome image sensors overlaid with color filter arrays
(CFAs) to capture color information. The Bayer CFA, which
is the most prevailing choice among all CFAs, is composed
of Red, Green, and Blue color filters. This arrangement
allows for the acquisition of only one color component
at each pixel, as illustrated in Fig. 1. Consider � as the
two-dimensional spatial domain of the image. Let Iorig[k] =
[Rorig[k],Gorig[k],Borig[k]]T represent the true color image
at k, while Ck = [cR[k], cG[k], cB[k]] is a 1× 3 matrix that
signifies the effect of the CFA. Subsequently, the intensity
value Is[k] of the Red (or Green/Blue) component detected at
position k ∈ � within the Bayer CFA can be mathematically
represented as the inner product between Ck and Iorig[k]:

Is[k] = CkIorig[k]. (1)

For the Bayer CFA, the components of Ck are defined as

cR[k] = 1, cG[k] = 0, cB[k] = 0 if k ∈ SR
cR[k] = 0, cG[k] = 1, cB[k] = 0 if k ∈ SG
cR[k] = 0, cG[k] = 0, cB[k] = 1 if k ∈ SB. (2)

Here, SR, SG, and SB correspond to the sets of pixels
containing only the Red, Green, and Blue components,
respectively. The aim of demosaicing is to reconstruct Iorig
from Is. This is an underdetermined inverse problem since a
three-channel image Iorig has to be reconstructed using the
sensed image Is which has only one channel. Consequently,
solving the demosaicking problem requires the imposition
of supplementary constraints. One common approach is to
introduce the assumption that neighboring pixels exhibit
comparable colors. In conventional demosaicing techniques,
this assumption is employed to interpolate the absent two
color components based on the spatially neighboring CFA
data.

Meanwhile, due to their potential to enhance image quality
by reducing noise, many colored CFAs, including RGBW
CFAs, have been proposed. This is because colored pixels,
including white pixels, allow more light to reach the sensor.
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FIGURE 1. Partial cut of a Bayer color filter array.

For colored pixels, the CFA coefficient values are normally
non-zeros for all color components:

cR[k] = αR, cG[k] = αG, cB[k] = αB, (3)

where αR ̸= 0, αG ̸= 0, and αB ̸= 0. For example, for a
white pixel as used in [26], αR, αG, and αB becomes αR =

0.2936, αG = 0.4905, and αB = 0.2159. The demosaicing
of colored pixels is more complex than the demosaicing of R,
G, and B pixels, because it involves solving a linear system
of equations rather than simply performing interpolation.

B. DENOISING DIFFUSION NULL-SPACE MODEL
The Denoising Diffusion Null-Space Model (DDNM)
method [14] tries to solve the noise-free image restoration
problem

y = Ax, (4)

where x ∈ RD×1, A ∈ Rd×D, y ∈ Rd×1, denote the solution
image, the linear degradation operator, and the degraded
image, respectively. Here, D and d denote the lengths of x
and y, respectively. The DDNM is based on the Denoising
Diffusion Implicit Model(DDIM) which starts from a noise
image xt=T , where T is the total number of time steps in
the forward diffusion, and converges to a clean generated
image x0 as it gots denoised by the following reverse diffusion
equation,

xt−1 =
1
√

αt

(
xt − ϵθ (xt , t)

1− αt
√
1− ᾱt

)
, (5)

where ϵθ (xt , t) denotes a neural network trained to estimate
the noise in xt at t , αt is a predefined scale factor at time t , and
ᾱt =

∏t
i=0 αi. If we recursively apply (5), we can establish a

direct relationship between xt and x0 as follows:

x0 =
1
√

ᾱt

(
xt − ϵθ (xt , t)

√
1− ᾱt

)
. (6)

Here, x0 should be denoted as x0|t because it is not the ideal
clean image, but rather an estimate of the clean image x0 at
time t , so (6) becomes:

x0|t =
1
√

ᾱt

(
xt − ϵθ (xt , t)

√
1− ᾱt

)
. (7)

As t → T , x0|t approaches the desired clean image. However,
x0|t is not the restored version of y, as x0|t includes no

information of y. Therefore, to obtain a restored version of y,
the DDNMmethod decomposes x0|t into its range-space part
and null-space part as x0|t = A

†
Ax0|t + (I − A

†
A)x0|t and

then replaces the range-space part A
†
Ax0|t by A

†
y at every

time step t to obtain a rectified version of x0|t :

x̂0|t = A
†
y+ (I− A

†
A)x0|t . (8)

Now, as t → 0, x̂0|t converges to the restored version of y
as x̂0|t obeys the constraint Ax̂0|t = y. This is due to the fact
that the range-space part when multiplied by A becomes y,
i.e., AA

†
y = y, while the null-space part when multiplied

by A becomes 0, i.e., A(I − A
†
A)x0|t = 0. The role of the

null-space part is that it adds realness to x̂0|t .

III. PROPOSED METHOD
In this section, we first demonstrate how to apply the DDNM
to the demosaicing problem. Then, we provide a brief analysis
of the conditions under which the DDNM can recover the
original colors, and based on this analysis, we propose a
CFA pattern. Lastly, we outline the method for obtaining the
optimal filter coefficients for the proposed CFA pattern.

A. APPLYING THE DDNM TO THE DEMOSAICING
PROBLEM
The DDNM can be used to solve the demosaicking problem
by letting the linear degradation matrix A to be a pixel-wise
operator that converts the RGB channel pixels into CFA
image pixels. That is, for every pixel k, we can define the
pixel-wise operator Ak to be the action of the CFA, i.e.,
Ak = [cR[k], cG[k], cB[k]] where cR[k], cG[k], and cB[k]
are as defined in (5). For example, for the Red pixel we have
Ak =

[
1 0 0

]
. For a colored pixel we have Ak =[

cR[k] cG[k] cB[k]
]
=

[
αR[k] αG[k] αB[k]

]
,

according to (3).
The problem of demosaicing for a colored pixel is to

recover the original color from the given sensed (mosaiced)
intensity Is[k] = αR[k]Rorig[k] + αG[k]Gorig[k] +
αB[k]Borig[k] for every pixel k in �. To apply (8) to the
demosaicking problem, y becomes Is[k] which is now a
single value. Then, the demosaiced image can be point-wisely
reconstructed by using the following equation instead of (8)
in the DDNM process:

x̂k0|t = A
†
kIs[k]+ (I− A

†
kAk)xk0|t . (9)

As t → 0, the image containing all the pixel values x̂k0|t
converges to the demosaiced image.

B. PROPOSED CFA PATTERN GUARANTEEING UNIQUE
SOLUTION
In this section, a CFA pattern that incorporates colored pixels
is introduced, resulting in favorable demosaicing outcomes
when the DDNM method is employed. For clarity, Is[k] is
denoted as Is, αR[k], αG[k], and αB[k] are denoted as αR, αG,
and αB, respectively, and Rorig[k], Gorig[k], and Borig[k] are
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denoted as R, G, and B. The term ‘‘colored pixels’’ refers to
pixels with non-zero filter coefficients for all color channels,
i.e., αR ̸= 0, αG ̸= 0, and αB ̸= 0, implying that even a white
pixel can be considered a colored pixel. It should be noted
that, unlike other restoration applications, the degradation
operator A is a pixel-wise operator, which varies depending
on the colored pixel in the CFA. The conditions under which
the DDNM can accurately reconstruct the original colors in
the CFA are first identified. Using the simplified notation, (9)
is rewritten as:

x̂0|t = A
†
Is + (I− A

†
A)x0|t , (10)

where A =
[
αR αG αB

]
, and A

†
, the pseudo-inverse of

A, becomes:

A
†
=

1

α2
R + α2

G + α2
B

αR
αG
αB

 . (11)

It should be noted that x̂0|t represents now a pixel-wise
solution, i.e., the color vector of a single pixel, rather than
the entire solution image. At convergence, x0|t converges to
x̂0|t , and therefore, (10) becomes

A
†
Is − A

†
Ax0|t = 0. (12)

Simplifying x0|t as x, and letting κ = α2
R + α2

G + α2
B and

Is = αRR+ αGG+ αBB, we get

A
†
Is − A

†
Ax

=
1
κ

 α2
R αRαG αRαB

αGαR α2
G αGαB

αBαR αBαG α2
B

 R− x1G− x2
B− x3


= Bn = 0, (13)

where we let

B =
1
κ

 α2
R αRαG αRαB

αGαR α2
G αGαB

αBαR αBαG α2
B

 , n =

R− x1G− x2
B− x3

 .

(14)

If the null space solution n is the zero vector, this implies that
x1 = R, x2 = G, and x3 = B, indicating that the solution
identifies the original color components. However, achieving
this relies on the invertibility of B, which is not the case, as B
has a rank of 1, since each row is a multiple of the others.

To derive a condition for x to ensure that the solution
represents the original color components, we introduce an
additional assumption, i.e., the assumption that neighboring
pixels have same color components. Based on the assump-
tion, we aim to obtain an identical solution x for neighboring
pixels. Furthermore, we assume that the filter coefficients
of the CFA exhibit a cyclic property, meaning that three
neighboring pixels in the CFA have filter coefficients of αa =
[α1, α2, α3], αb = [α3, α1, α2], and αc = [α2, α3, α1]. The
Bayer CFA is a special case exhibiting this cyclic property,
wherein the R, G, and B pixels have filter coefficients of

[α1, α2, α3], [α3, α1, α2], and [α2, α3, α1], with α1 = 1,
α2 = 0, and α3 = 0. The sensed values for three different
neighboring pixels, i.e., Ias , I

b
s , and I

c
s will become:

Ias = α1R+ α2G+ α3B
Ibs = α3R+ α1G+ α2B
I cs = α2R+ α3G+ α1 B.

(15)

The problem (12) becomes identical to the following
problem, under the condition that αR, αG, and αB are all non-
zero:

Is − Ax = 0. (16)

FIGURE 2. Proposed CFA pattern composed of colored pixels αa, αb, and
αc exhibiting cyclic properties, along with R, G, and B pixels.

Applying (16) to our three neighboring pixels, and
replacing αR, αG, and αB by α1, α2, and α3, and define
Aa =

[
α1 α2 α3

]
, Ab =

[
α3 α1 α2

]
, and Ac =[

α2 α3 α1
]
, respectively, we get

Ias − Aax = 0
Ibs − Abx = 0
I cs − Acx = 0.

(17)

This can be re-written in matrix form asα1 α2 α3
α3 α1 α2
α2 α3 α1

 R− x1G− x2
B− x3

 = 0. (18)

The condition for the solution x to become the sought-after
solution x =

[
R G B

]T , i.e., the original color
components, is outlined in the following proposition:

Proposition 1: If α1 ̸= 0, α2 ̸= 0, α3 ̸= 0, and if
α3
1 + α3

2 + α3
3 ̸= 3α1α2α3, the solution of (18) becomes

x =
[
R G B

]T .
Proposition 1 can be easily proved by establishing the

condition that (12) and (16) become identical problems and
the condition that the determinant of the matrix in (18)
is non-zero. Based on the analysis, we propose the CFA
pattern shown in Fig. 2 to be used together with the DDNM
as the demosaicing method. The filter coefficients exhibit
a cyclic property for three neighboring pixels. Since the
DDNM prefers natural images, an inherent constraint arises,
i.e., the condition that neighboring pixels should have similar
or identical colors. This constraint satisfies the condition for
Proposition 1 to hold and contributes to the restoration of the
original colors.
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FIGURE 3. The overall training workflow for optimizing the color filter coefficients.

In addition to the colored pixels, we allocate 25% of
the pixels as R, G, and B pixels. The R (or G, B) pixels
serve as anchor points that retain the true R (or G, B)
color components of the sensed image, thereby aiding in the
discrimination of the true color components.

C. OPTIMIZING THE CFA COEFFICIENTS
In this section, we demonstrate the process of obtaining
the optimal filter coefficient values for the CFA pattern
proposed in the previous section. We optimize the filter
coefficient values α1, α2, and α3 with a gradient descent
based optimization technique, the ADAM optimizer. The
coefficient values are all initiated with a value of 0.333, and
then updated by taking a gradient step on the mean squared
error (MSE) loss between the original image Iiorig and the
demosaicked image x̂0|t=0 in each iteration i of the outer loop
in Algorithm 1. That is, for every iteration i, we minimize the
following loss function with respect to the coefficient values:

L = ||Iiorig − x̂0|t=0||22, i = 1, 2, . . . ,N . (19)

Additionally, the softmax function is applied to α1, α2,
and α3 to constrain them within a range of 0 to 1.
Figure 3 provides an overview of the training workflow, while
Algorithm 1 presents the detailed pseudocode.
It should be noted that the parameters of the pretrained

network ϵθ (·) are not updated during the optimization
process. Instead, the gradient values of ϵθ (·) are detached
during the backpropagation as shown in Fig. 4. That is,
we are not fine-tuning ϵθ (·). This approach reduces memory
consumption and simplifies the training process, especially
considering the large number of parameters in ϵθ (·).

By detaching the pre-trained network during the training
process, the denoising process is excluded from the backprop-
agation. This approach is taken because we are not interested

in identifying the noise from which the generated image
originates. Our primary focus is on determining the CFA
coefficients that can produce an optimal null space and range
space, which ensures the high quality of the reconstructed
image. Even though the pre-trained network is detached
during training, the gradient can still flow through the null
space and range space images. Since both the null space and
range space images are functions of A, the gradient flow can
update A, thereby updating the coefficients in the CFA.
Since we are not tracking the denoising process during

backpropagation, it is unnecessary to monitor the gradients
at all the time steps in the reverse diffusion. This is because
the gradient with respect to x̂0|t=0 remains unchanged during
backpropagation. However, we still need the denoised reverse
diffusion result during the forward propagation. Therefore,
instead of running the full T time steps originally required by
the pre-trained diffusion model, we run only one-hundredth
of the time steps during training, i.e., run for t = T ,T −
100,T − 200, . . . , 0, where T = 1000. This greatly reduces
the training time. During testing, we run one-tenth of the
whole time steps, i.e., run for t = T ,T − 10,T − 20, . . . , 0.
Following the optimization process, the filter coefficients

typically converge to α1 = 0.20504, α2 = 0.05198, and
α3 = 0.74298. Occasionally, the values may rotate, for
example, resulting in α2 = 0.20504, α3 = 0.05198, and α1 =

0.74298. However, the relative ratios between the coefficients
remain the same, ensuring consistent performance. This
rotation does not affect the overall effectiveness of the filter,
as the proportional relationship between the coefficients is
maintained, which is the key factor in achieving optimal
results.

The optimized values result from a struggle to strike a
balance between robustness and accurate color reproduction.
A well-conditioned matrix in (18) enhances the likelihood

VOLUME 12, 2024 117339



I. Imanuel et al.: Optimized CFA for DDNM-Based Demosaicing

Algorithm 1 Training Workflow for α1, α2, α3

1: Initialize: α1, α2, α3← 0.333, 0.333, 0.333, e← 10−8,
2: N ← 1000, T ← 1000, β1, β2← 0.9, 0.999,
3: γ ← 0.001, λ ← 0.001, m1,m2,m3 ← 0, 0, 0 (first

moment), v1, v2, v3,← 0, 0, 0 (second moment)
4:

5: for i = 1, 2,. . . ,N do
6: New input image: Iiorig
7: (α1, α2, α3)← Softmax(α1, α2, α3)
8: A← CreateCFA(α1, α2, α3) ▷Mosaicing
9: Compute Is = AIiorig, A

†Is, A†A
10: ϵθ (xt , t)← Pre-trained noise predicting UNet
11:

12: DDNM based Demosaicing
13: xT ∼ N (0, I )
14: for t = T ,T − 100,T − 200, . . . , 0 do
15: ϵt ← ϵθ (xt , t) ▷ No gradient calculated here
16: x0|t ← 1

√
ā
(xt − ϵt

√
1− āt ) ▷ ϵt is detached

17: x̂0|t ← A†Is + (I− A†A)x0|t

18: xt−100 =
√

ᾱt−1βt
1−ᾱt

x̂0|t +
√

αt(1−ᾱt−1)
1−ᾱt

xt + σtϵ

19: end for
20: Intermediate Output: x̂0|t=0
21:

22: Update α1, α2, α3 with Adam Optimizer
23: gk ← λ ∂

∂αk
||Iiorig − x̂0|t=0||22, k=1,2,3

24: mk ← β1mk + (1− β1)gk , m̂k ←
mk

1−β1
, k=1,2,3

25: vk ← β2vk + (1− β2)g2k , v̂k ←
vk

1−β2
, k=1,2,3

26: αk ← αk − γ m̂k√
v̂k+e

, k=1,2,3

27: end for
28: Final Output: Optimized α1, α2, α3

of achieving a robust numerical solution for the null-space.
Such a matrix is obtained when the matrix in (18) deviates
from uniformity, since this deviation increases the condition
number. Meanwhile, having all non-zero values in the filter
coefficient ensures the consideration of each color channel’s
contribution and provides more color information per pixel.
This results in cleaner and more accurate color reproduction.
This roughly explains why the resulting filter coefficients
exhibit non-uniformity, while still preserving information
about all color components.

IV. EXPERIMENTAL RESULTS
We used the CelebA-HQ dataset [24] for our training and
testing experiments. This dataset comprises 30,000 face
images, each of size 256 × 256. The dataset is divided into
a training set and a testing set with a ratio of 9:1. During
training, we employed a batch size of 8, while for testing,
we used a batch size of 16. The training process exclusively
focuses on determining the optimal filter coefficients, while
the parameters for the neural network remain fixed and are
not updated during training. Each batch was trained for only

FIGURE 4. Detaching of the pre-trained network during the optimization
process.

FIGURE 5. Different kinds of CFA: (a) Bayer [16] (b) Kodak [17] (c) Sony
[18] (d) Yamagami [19] (e) Kaizu [20] (f) Hamilton [21] (g) Honda [22] (h)
Random [23].

1 epoch. We utilized the Adam optimizer with a learning
rate(λ) of 0.001, and set the hyper-parameters (β1, β2, etc.)
as shown in Algorithm 1.

We conducted qualitative and quantitative evaluations to
compare the demosaicing results with other CFAs, using the
DDNM as the demosaicing method for all CFAs. The CFAs
we used for comparison are depicted in Fig. 5, showing
various patterns with different combinations of white pixels
and R, G, and B pixels. For the white pixels, we employed
the coefficient values of αR = 0.2936, αG = 0.4905, αB =
0.2159 as used in VEML6040 sensors from Vishay company
[25], [26].

TABLE 1. Average PSNR & SSIM values of the demosaiced images using
DDNM-based demosaicing with different CFA patterns.

The CFA coefficient values have an influence on both the
range space and the null space. The null space is formed by
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FIGURE 6. Displaying the range space, the null space, and the demosaiced
image obtained from various CFAs using the DDNM for demosaicing. The
range space remains constant for each CFA, while the null space evolves
over time. We show the null spaces for t = 750 and t = 0, and the
corresponding reconstructed images. It should be noted that x̂0|t=0
actually corresponds to only a single pixel value within the reconstructed
image, but here we use it to represent all the pixels in the image.

the multiplication of I − A
†
A and x0|t . As x0|t is generated

by the reverse diffusion, which favors natural images, it is

FIGURE 7. Comparison of demosaiced results on the CelebA-HQ dataset
with different CFAs. The All-white CFA produces false colors, while the
Honda CFA occasionally generates accurate colors with fewer color
artifacts compared to Bayer CFA, but results in noisier and rougher
textures. Additionally, the Honda CFA fails to produce accurate colors
when tested on the ImageNet dataset, as shown in Fig. 8. The Bayer CFA
overly smooths the image and introduces false color artifacts. The
proposed CFA offers a balanced result with smooth textures as with the
Bayer CFA and fewer false color artifacts as with the Honda CFA. This
results in better image quality and the highest PSNR/SSIM values.

easier for the DDNM to generate a null space solution that
closely resembles a natural image rather than an unnatural
one. However, the null space is also restricted by the range
space. If the range space limits the null space from producing
a natural image, the resulting combination of null space and
range space may not yield a high-quality image. Therefore,
it is important for the CFA to produce a range space that
allows the null space to closely resemble a natural image.

Figure 6(a) and Fig. 6(b) reveal that the null space associ-
ated with CFA patterns containing non-varying colored pixels
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FIGURE 8. Showing the demosaicing results with the proposed CFA
trained on the CelebA-HQ dataset and tested on the ImageNet dataset. All
CFAs use the DDNM as the demosaicing method. (a) Original (b) Results
of the All-white CFA: fails to reconstruct the true colors of the original
image (c) Results of the Honda CFA: reconstructs the colors, but does not
accurately reflect the true colors. (d) Results of the Bayer CFA: mostly
reconstructs colors similar to the original image, but also produces false
color artifacts (zoom in to see better, or refer to Fig. 9). (e) Results of the
Proposed CFA: successfully reconstructs the original image’s colors
without false color artifacts, achieving the highest PSNR and SSIM values.

FIGURE 9. Close-up view of the demosaiced results of the images from
the ImageNet and CelebA-HQ datasets. The results with the Bayer CFA
exhibit some false color artifacts not present in the original image. With
the proposed CFA, the details in the original images are recovered.

(white pixels) tends to exhibit non-natural characteristics,
attributing to the unnatural appearance of the range space.
In contrast, as can be observed in Fig. 6(c) and Fig. 6(d), the
null space corresponding to the Bayer CFA and the proposed
optimized CFA resembles a more natural image. This is due
to the fact that the cyclic pattern of the filter coefficients
can better discriminate colors, resulting in a range space
that already exhibits diverse colors. Consequently, the null
space also showcases diverse colors, contributing to a more
natural appearance. Compared with the Bayer CFA, the
proposed optimized CFA contains more information of the
color components, resulting in a more natural appearance
of the range space. After 25 iterations (t = 750), the
reconstructed image already appears quite natural with the
proposed CFA, and the final reconstructed image is superior
to the one reconstructed from the Bayer CFA.

Table 1 presents the quantitative results, comparing the
demosaicing performance of the proposed CFA with other
CFAs using the DDNM method as the demosaicing method.
We utilized the PSNR (Peak Signal-to-Noise Ratio) and the
SSIM (Structural Similarity Index Measure) metrics for the
evaluation. It can be seen in Table 1 that the proposed CFA
shows the best PSNR and SSIM values.

Figure 7 compares the demosaiced results on the
CelebA-HQ dataset using different CFAs. The All-white
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CFA produces false colors. The Honda CFA generates more
accurate colors with fewer color artifacts than the Bayer CFA,
but results in noisier and rougher textures. Furthermore, the
Honda CFA fails to produce accurate colors when tested on
the ImageNet dataset, as shown in Fig. 8. The Bayer CFA
overly smooths the image and introduces false color artifacts.
In comparison, the proposed CFA offers a balanced result,
combining the smooth textures of the results using the Bayer
CFA and reduced false color artifacts of the results using
the Honda CFA. This results in better image quality and the
highest PSNR/SSIM values.

To validate that the CFA coefficients optimized for
a certain dataset also perform well with other datasets,
we conducted additional experiments. We used the same
CFA pattern and coefficient values, which were trained on
the CelebA-HQ dataset, to test the demosaicing results on
the ImageNet dataset. Figure 8 displays the demosaicing
results on images from the ImageNet dataset along with the
PSNR/SSIM values. The PSNR and SSIM values are slightly
lower when tested on the ImageNet dataset compared to the
CelebA-HQ dataset because the CFA coefficients were not
specifically trained on ImageNet. If the CFA coefficients
were trained on the ImageNet dataset, the PSNR/SSIM values
would be higher. Nonetheless, as shown in Fig. 8, the CFA
coefficients trained on one dataset still produce good results
when applied to another dataset. Figure 8(b) shows the results
with the All-white CFA which fails to reconstruct the true
colors of the original image. The Honda CFA manages to
reconstruct the colors, but they appear muted and do not
accurately reflect the true colors as can be observed in
Fig. 8(c). The Bayer CFA reconstruct colors similar to the
original image but also produce false color artifacts as can be
seen in Fig. 8(d) and in Fig. 9. In comparison, the proposed
successfully reconstructs the original image’s colors without
false color artifacts, achieving the highest PSNR and SSIM
values.

Figure 9 presents further zoomed-in images to better
observe the artifacts produced by the Bayer CFA. It can be
seen that the Bayer CFA sometimes introduces false colors
or removes small structures, whereas the proposed CFA
reproduces even the small details in the original image.

V. CONCLUSION
In this paper, we first demonstrated how the Denoising
Diffusion Null-space Method (DDNM) can be applied to the
demosaicing problem.We then analyzed the conditions under
which DDNM-based demosaicing can recover the original
color components. Based on this analysis, we proposed a
CFA pattern tailored for DDNM-based demosaicing and
outlined how to determine the optimal coefficient values for
that pattern. Experimental results showed that the proposed
CFA achieves superior demosaicing results with DDNM
compared to other CFAs. Typically, deep learning-based
demosaicingmethods focus on optimizing the neural network
parameters for a fixed CFA. However, we contend that the
CFA itself should also be subject to adaptation in conjunction

with the development of new demosaicing methodologies.
This work represents the first attempt at designing CFAs
for deep learning-based demosaicing methods, particularly
those utilizing generative deep learning, and can serve as a
reference for future research in this area. Future work for
this research could explore how the proposed CFA pattern
performs with other generative deep learning models beyond
DDNM. Another potential direction is to develop the CFA
as an output of a neural network, enabling it to adapt
dynamically to changes in scene content or specific image
characteristics.

REFERENCES
[1] R. Lukac and K. N. Plataniotis, ‘‘Color filter arrays: Design and

performance analysis,’’ IEEE Trans. Consum. Electron., vol. 51, no. 4,
pp. 1260–1267, Nov. 2005.

[2] K. Hirakawa and P. J. Wolfe, ‘‘Spatio-spectral color filter array design for
optimal image recovery,’’ IEEE Trans. Image Process., vol. 17, no. 10,
pp. 1876–1890, Oct. 2008.

[3] P. Hao, Y. Li, Z. Lin, and E. Dubois, ‘‘A geometric method for optimal
design of color filter arrays,’’ IEEE Trans. Image Process., vol. 20, no. 3,
pp. 709–722, Mar. 2011.

[4] O. Yadid-Pecht, ‘‘Geometrical modulation transfer function for dierent
pixel active area shapes,’’ Opt. Eng., vol. 39, pp. 859–865, 2000.

[5] D. Wu, Z. Xin, and C. Zhang, ‘‘A joint multi-gradient algorithm for
demosaicing Bayer images,’’ in Proc. 8th Int. Conf. Commun., Image
Signal Process. (CCISP), Chengdu, China, Nov. 2023, pp. 340–346.

[6] L. Liu, X. Jia, J. Liu, and Q. Tian, ‘‘Joint demosaicing and denoising with
self guidance,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2020, pp. 2237–2246.

[7] T. Li, A. Lahiri, Y. Dai, and O. Mayer, ‘‘Joint demosaicing and denoising
with double deep image priors,’’ in Proc. IEEE Int. Conf. Acoust., Speech
Signal Process. (ICASSP), Seoul, South Korea, Apr. 2024, pp. 4005–4009.

[8] Y. Becker, R. Z. Nossek, and T. Peleg, ‘‘SDAT: Sub-dataset alternation
training for improved image demosaicing,’’ IEEE Open J. Signal Process.,
vol. 5, pp. 611–620, 2024.

[9] B. Fei, Z. Lyu, L. Pan, J. Zhang, W. Yang, T. Luo, B. Zhang, and
B. Dai, ‘‘Generative diffusion prior for unified image restoration and
enhancement,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Los Alamitos, CA, USA, Jun. 2023, pp. 9935–9946.

[10] H. Tang, T. Xie, A. Feng, H. Wang, C. Zhang, and Y. Bai, ‘‘Solving noisy
inverse problems via posterior sampling: A policy gradient view-point,’’
presented at the Symbiosis Deep Learn. Differ. Equ., New Orleans, LA,
USA, Dec. 2023.

[11] J. Ho, A. Jain, and P. Abbeel, ‘‘Denoising diffusion probabilistic models,’’
in Proc. NIPS, 2020, pp. 6840–6851.

[12] J. Song, C. Meng, and S. Ermon, ‘‘Denoising diffusion implicit models,’’
in Proc. 9th Int. Conf. Learn. Represent., 2021, pp. 6840–6851.

[13] J. Song, C. Meng, and S. Ermon, ‘‘Progressive deblurring of diffusion
models for coarse-to-fine image synthesis,’’ presented at the Workshop
Score-Based Methods (NeurIPS Workshop), New Orleans, LA, USA,
Nov. 2021.

[14] Y.Wang, J. Yu, and J. Zhang, ‘‘Zero-shot image restoration using denoising
diffusion null-space model,’’ in Proc. 11th Int. Conf. Learn. Represent.
(ICLR), Kigali, Rwanda, 2023, pp. 1–33.

[15] J. Choi, S. Kim, Y. Jeong, Y. Gwon, and S. Yoon, ‘‘ILVR: Conditioning
method for denoising diffusion probabilistic models,’’ in Proc. IEEE/CVF
Int. Conf. Comput. Vis. (ICCV), Oct. 2021, pp. 14347–14356.

[16] B. E. Bayer, ‘‘Color imaging array,’’ U.S. Patent 3 971 065, Jul. 20, 1976.
[17] J. T. Compton and J. F. Hamilton, ‘‘Image sensor with improved light

sensitivity,’’ U.S. Patent 8 139 130, Mar. 20, 2012.
[18] M. Tachi, ‘‘Image processing device, image processing method, and

program pertaining to image correction,’’ U.S. Patent 8 314 863,
Nov. 20, 2012.

[19] T. Yamagami, T. Sasaki, and A. Suga, ‘‘Image signal processing
apparatus having a color filter with offset luminance filter elements,’’
U.S. Patent 5 323 233, Jun. 21, 1994.

VOLUME 12, 2024 117343



I. Imanuel et al.: Optimized CFA for DDNM-Based Demosaicing

[20] S. Kaizu, ‘‘Image processing apparatus, imaging device, image processing
method, and program for reducing noise or false colors in an image,’’
U.S. Patent 9 699 429, Jul. 4, 2017.

[21] J. T. Compton and J. F. Hamilton, ‘‘Processing color and panchromatic
pixels,’’ U.S. Patent 8 274 715, Sep. 25, 2012.

[22] H. Honda, Y. Iida, Y. Egawa, and H. Seki, ‘‘A color CMOS imager with 4
× 4 white-RGB color filter array for increased low-illumination signal-to-
noise ratio,’’ IEEE Trans. Electron Devices, vol. 56, no. 11, pp. 2398–2402,
Nov. 2009.

[23] P. Oh, S. Lee, and M. Kang, ‘‘Colorization-based RGB-white color
interpolation using color filter array with randomly sampled pattern,’’
Sensors, vol. 17, no. 7, p. 1523, Jun. 2017.

[24] T. Karras, T. Aila, S. Laine, and J. Lehtinen, ‘‘Progressive growing of
GANs for improved quality, stability, and variation,’’ in Proc. Int. Conf.
Learn. Represent., Vancouver, BC, Canada, 2018, pp. 1–26.

[25] G. O. Young, ‘‘Demosaicking algorithms for RGBW color filter arrays,’’
in Proc. IS&T Int. Symp. Electron. Imag., San Francisco, CA, USA,
Feb. 2016, pp. 1–6.

[26] VEML6040 RGBW Color Sensor With I2C Interface, Vishay Intertechnol-
ogy, Inc., Malvern, PA, USA, 2016.

INDRA IMANUEL was born in Surabaya,
Indonesia. He received the B.Comp. degree in
computer engineering from the University of
Surabaya, Surabaya, in 2019, and the M.S.
degree in computer engineering from Dongseo
University, Busan, South Korea, in 2021, where he
is currently pursuing the Ph.D. degree in computer
engineering. His research interests include deep
learning, computer vision, generative model, and
image processing. He was a recipient of the

Excellent Research Award from Dongseo University, in 2022.

HYOSEON YANG received the B.S., M.S., and
Ph.D. degrees in mathematics from EwhaWomans
University, Seoul, South Korea, in 2011, 2013,
and 2017, respectively. She was a Postdoctoral
Research Associate at the Department of Com-
putational Mathematics, Science and Engineering,
Michigan State University, East Lansing, MI,
USA, from 2018 to 2021. She is currently working
as an Assistant Professor with the Department of
Mathematics, Kyung Hee University, Seoul. Her

research interests include approximation theory, image processing, scientific
computation, and numerical PDEs. She was a recipient of the Excellence
Award in the field of mathematics at the 7th S-Oil Outstanding Thesis
Awards, in 2018.

SUK-HO LEE received the B.S., M.S., and Ph.D.
degrees in electronics engineering from Yonsei
University, Seoul, South Korea, in 1993, 1998,
and 2003, respectively. He was a Researcher
at the Impedance Imaging Research Center,
from 2003 to 2006, and an Assistant Professor at
Yonsei University, from 2006 to 2008. He has been
with the Department of Computer Engineering,
Dongseo University, Busan, South Korea, since
2008, where he is currently working as a Professor.

He has undertaken more than ten government projects related to artificial
intelligence (deep learning) over the past five years. His current research
interests include deep learning, image processing, image and video filtering
based on PDEs, and computer vision. He was awarded the Minister of
Education Award in the field of academic promotion, in 2016.

117344 VOLUME 12, 2024


