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ABSTRACT Partial discharge (PD) faults often occur as a result of breakdowns in the insulation layer of
insulated overhead conductors. PD faults can cause serious problems such as power outages or electrical fire
accidents. In this paper, a new PD detection system based on spectral analysis, spectrogram analysis, deep
learning algorithms, minimum redundancy—maximum relevance (mMRMR) and ensemble machine learning
(EML) is presented. In the process of extracting distinctive features in the frequency dimension, 1D spectral
data and 2D spectrum data based on frequency-time are obtained from a raw PD signal. Fourier transform-
based three-power spectral density analyzes and one spectrogram analysis are performed. Deep features are
obtained by using pre-trained 1D convolutional neural network models for 1D spectral data and the pre-
trained ResNet-50 model for 2D spectrogram data. The most effective features are determined by applying
mRMR feature selection analysis to the obtained deep features. In the last stage, PD detection is performed
by applying the selected deep features to the EML classifier. The performance of the proposed PD detection
system are evaluated with the VSB common data set. According to the experimental results, the proposed
deep feature approach based PD detection system has very high performance.

INDEX TERMS Convolutional neural network, ensemble machine learning, minimum redundancy—

maximum relevance, partial discharge, spectral analysis, spectrogram analysis.

I. INTRODUCTION

In recent years, because power line faults in electrical power
systems cause serious problems to the power system and end-
of-line users, tremendous research has been seen on power
line fault detection and solutions have been developed in
the industry based on this research. Partial discharge (PD)
which is a result of partial dielectric breakdown of an insu-
lator is a common type of fault in transmission lines. PDs
are also very challenging to detect because they typically
appear as pulses of much shorter duration than 1 microsec-
ond [1], [2]. In electrical power systems, covered conductors
are widely used due to their higher operational reliability in
forested or dissected terrain areas [3], [4]. However, when
tree branches come into contact with covered conductors,
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PD can occur with a localized electrical discharge that only
partially bridges the insulation [5]. In this case, the insulation
material may damage and cause a short circuit. As a result
of PD, high-frequency transient pulses occur in the voltage
signal. This may damage devices and equipment, and the
entire power system becomes less reliable and maintenance
costs increase [6]. Therefore, reliable and fast PD detection
in power systems is very important both to prevent equipment
damage and service interruptions and to increase the perfor-
mance, stability and reliability of the power system.

A. RELATED WORKS

Based on various theoretical studies, faulty signals in power
systems are only 5% of normal signals [7]. One of the most
effective approaches to detecting faulty signals is to compare
the normal signal with the faulty signal. It is very common
to use artificial intelligence (AI) approaches in this field.
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TABLE 1. Features, challenges and future works of conventional studies on PD detection.

Study Methodology Features

Challenges (Ch)
Future works (Fw)

- Using three deep learning methods

Ch:
- The calculations of method are numerous and complex.
- The resources used and time spent in the method are quite high.

[6] E:zfnr?rtl)le Deep Analyzing the method used with different  Fw:
g scenarios. - Parallel computing methods can be developed to reduce computational
complexity.
- Fault localization can be detected .
. Ch: Optimal number of chunks.
(7] PCA, SVM - Chunk based feature extraction. Fw: DI::ep learning based classifier algorithm.
- High accuracy. Ch: . .
[9] CNN-LSTM - The algorithm used is complex.

- Training and testing time is short.

- Resource usage is high.

Random forest

(1]

- Improved noise removal method

Ch:

- The data obtained has a low sampling rate

- SOMA optimization may cause overfitting problems.
Fw: The overfitting problem can be eliminated.

- Time decomposition techniques are used to

Ch: Low accuracy.

[14] LST™M remove the noise portion from the raw Fw: The accuracy rate can be increased with different algorithms and
signals. techniques.
- High accuracy.
[15] LSTM - Low computational complexity. Ch: High resource usage
- Noise filtering.
- High generalization ability.
- Multiple noise levels are used.
[17] CNN - More than one training rate is used. Ch: There is transaction complexity.
- A hybrid optimization approach is used.
- Noise reduced. Fw:
[18] CNN-LSTM - LSTM network combined with attention - The issue of imbalance between different data set types.

mechanism is used.
- Convergence speed is high

- The detection method of multiple algorithm combinations.

In AI techniques, detection processes are carried out using
the binary classifier structure, including normal signal and
faulty signal. Although faulty signal detection using Al has
been widely researched in recent years, it has also been
reported that there is a research gap regarding validation
and automation of the proposed system [6], [8]. In order to
eliminate this gap, it has been seen that there have been many
effective studies on Al-based detection of PD faults. Some
challenges are encountered in the detection of PDs using Al,
such as the dataset imbalance, the presence of background
noise, and the large data size [9]. Al-based methods for PD
detection are mainly divided into shallow machine learning
methods and deep learning methods. When detecting PDs
with either of these two methods, a preprocessing stage is
generally needed before the classifier. In the preprocess-
ing stages, analyzes such as noise filtering, peak extraction,
feature extraction and data size reduction are generally per-
formed to increase the performance of the classifier. Some
shallow machine learning models such as support vector
machine (SVM) [7], ensemble machine learning (EML) [10],
random forest [11], artificial neural network (ANN) [12]
have been used in PD detection. Because shallow learn-
ing methods cannot capture high-dimensional nonlinearity in
classification approaches, deep learning approaches, which
have features such as multiple non-linear layers, capturing
high-dimensional non-linearity and complex correlation, are
used more effectively [13]. It has been seen that deep learn-
ing approaches such as recurrent neural network (RNN) [1],
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long short-term memory network (LSTM) [14], [15], con-
volutional neural network (CNN) [16], [17], [18] have been
widely used in PD detection recently. In general, the Tech-
nical University of Ostrava (VSB) dataset [19] consisting of
real data is used to evaluate the performance of these modern
and innovative PD detection systems.

In [1], a series of preprocessing steps are introduced to
PD signals, including phase alignment, signal smoothing,
and noise estimation. Then, the obtained global-scale and
local-scale features are applied to the RNN classifier and
the detection process is carried out. In [5], a CNN-based
PD detection system that uses data obtained by filtering low
frequencies and extracting pulses is presented. In [6], opti-
mal features and hyperparameters are selected by using the
double particle swarm optimization in the pre-training stage.
In the classification process, a bagging ensemble system
is deployed on three different deep learning architectures:
deep neural networks, LSTM-RNN and deep belief networks.
In [10], a PD detection approach based on wavelet packet
transform, ReliefF feature selection approach and EML clas-
sifier is proposed. In [14], after applying a time series
decomposition technique to each signal, PD detection is per-
formed via an LSTM classifier. In [15], first, discrete wavelet
transform is applied to signals for noise filtering. Then, sta-
tistical and entropy feature vectors of each signal are created.
In the final stage, an LSTM network is proposed for PD
detection. In [17], principal component analysis (PCA)-based
dimensionality reduction and four technical indicators-based
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feature extraction are performed. Then, all features are pro-
vided as input to an optimized CNN. In [18], using the 1D
CNN structure, multidimensional features that reflect the
complex dynamic changes of PD signals are extracted. Then,
the obtained features are used as the input of the LSTM net-
work. In [20], an approach combining autoencoder with data
corrections using a specially designed loss function is applied
to PD data. Table 1 shows the advantages and disadvantages
of different above studies focusing on PD detection strategy.

B. CONTRIBUTIONS

In the literature section discussed in subsection I-A,
it is clearly seen that the proposed algorithms in deep
learning-based PD detection still have some shortcomings
in terms of performance, validation, reliability and automa-
tion. There is a serious need to develop more effective deep
learning-based PD detection systems due to the efficient,
reliable and high-performance features of the deep learning
algorithm. Therefore, this paper focuses on developing an
innovative algorithm based on deep features for PD detection.
For this purpose, four frequency-time data are obtained from
a raw PD signal, since the most important information that
distinguishes the PD signal is frequency information. In these
processes, three separate 1D data are obtained for a PD data
by Fourier transform-based power spectral density (PSD)
analyzes that Welch, periodogram and multitaper. In addi-
tion, 2D time-frequency (TF) spectrum data is obtained with
Fourier-based spectrogram analysis for the same PD data.
Deep features are obtained by applying the spectral data to
three pre-trained 1D CNN models, and the spectrogram data
to a pre-trained ResNet-50 model. The most effective features
among these deep features are determined as a result of the
mRMR feature selection analysis. Thus, in the last stage,
PD detection is performed by applying the selected deep
features EML-based ensemble subspace k-nearest neighbor
(kNN), SVM and decision tree (DT) algorithms. The aim
of this paper is to develop an effective PD detection system
based on deep feature. The developed deep feature-based
system includes both 1-D and 2-D deep learning algorithms.
According to the results obtained, it is clearly seen that the
proposed PD detection system has a high-performance, fast
and reliable structure that does not require noise filtering. The
main contributions of this paper are summarized as follows.

o A deep learning-based system with fast, high accuracy
and effective performance is proposed for the detec-
tion of PD signals. This method consists of combining
Fourier-based transforms, CNN architectures, mRMR
feature selection and shallow machine learning models.

o Deep feature technology is proposed to precisely reveal
PD features from high frequency components. This tech-
nology can increase model performance in classifying
signals containing high frequency components with arti-
ficial intelligence methods.

o PSD and spectrogram analyzes are used to solve the
problem of high noise and high data size and to obtain
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effective features. Using these analyzes together will be
an ideal approach to solve classification and detection
problems.

« mRMR feature selection approach is proposed to both
increase classification performance and obtain lower
data size.

C. PAPER ORGANIZATION

The remainder of the paper is organized as follows. Section II
describes the VSB dataset used to test the performance of
the proposed detection system in this paper. Section III
presents all the concepts and methods required in the design
of the proposed detection system. The details of the proposed
deep feature-based PD detection system are described in
Section IV. Section V presents the experiments, results and
discussion. Section VI concludes the paper. Table 2 presents
nomenclature.

TABLE 2. Nomenclature.

ACC  Accuracy SEN  Sensitivity

Al Artificial intelligence SPE  Specificity

ANN  Artificial neural network SVM  Support vector machine
CNN  Convolutional neural network TF Time-frequency

DT Decision tree TN True negative

EML  Ensemble machine learning TP
Energy and Environmental

True positive
Technical university of

ENET Technology VSB Ostrava

FN False negative A Average of v

FP False Positive 1 Mutual information

kNN k-nearest neighbor K Number of filters

LSTM long short-term memory M Number of  signal
network samples

Mcc  Matthews correlation P Periodogram PSD
coefficient

mRMR Minimum redundancy- Pwelch Welch PSD

maximum relevance

PCA  Principal component analysis S Number of segments

PD Partial discharge Sf Subset of features
PRE  Precision v Data-window
PSD  Power spectral density Frequency of PSD
RNN  Recurrent neural network y Spectrum of signal

Il. VSB DATASET

Validation of proposed detection systems in machine learning
applications is a cornerstone for evaluating system perfor-
mance. Evaluation of proposed PD detection systems using
simulated data is ineffective and inadequate. Thus, there is
a need to use real-time data [7]. To overcome this draw-
back, VSB published a dataset of PD data obtained from
medium voltage overhead power lines on Kaggle, the world’s
largest data science collaboration platform, in 2018 [19].
In the Energy and Environmental Technology (ENET) center
at VSB, the PD detection system was designed with a new
measuring device developed on three-phase 50 Hz overhead
power lines. By installing this meter device on different power
lines located in forested areas, a PD dataset called the VSB
dataset or ENET dataset was created [21].
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FIGURE 1. Sample signals from VSB dataset.

Each data in the VSB dataset has a sampling frequency
of 40 MHz, with 800000 sample points. The total number
of samples with normal (0) and faulty (1) class labels in
the VSB data set is 8712. In the VSB dataset consisting of
real data, there are 8712 labeled voltage signals, of which
8187 are labelled as Non-PD and 525 are labelled as PD.
In the measuring device designed to obtain PD data, a single-
layer inductor is used as a voltage sensor. This inductor is
mounted on the surface of separately covered conductor for
each phase. Also the inductors are connected to a capacitance
divider. There is a data acquisition card at the capacitance
divider output. A detailed description of this measurement
system is given in [22]. Table 3 shows the label information
of the data in the VSB dataset. In this table, signal_id rep-
resents the number of each voltage signal. measurement_id
represents the number of a group of three-phase signals.
Phase indicates which phase the signal belongs to (0-A,
1-B, 2-C). Target is label of the signal. Fault type depicts
whether the three-phase signal is normal or which phases
are PD. For example, all three-phase voltage signals in the
measurement_id O are normal (non-PD), while all three-phase
voltage signals in the measurement_id 1 contain PD. Figure 1
presents five randomly selected three-phase signals with PD
and non-PD from the VSB dataset. As can be seen in Figure 1,
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VSB dataset signals have high noise values. Besides, it is very
difficult to distinguish PD signals visually.

IIl. MATERIAL AND METHODS

This section introduces all materials and methods involved in
the proposed PD detection system before proceeding on the
design of the proposed system in section IV. These materials
and methods are: spectral analysis, spectrogram analysis,
CNN, mRMR feature selection and shallow machine learning
methods.

A. SPECTRAL ANALYSIS

Spectral analysis is a method that displays the frequency dis-
tributions of a random and finite-length signal and reveals the
repetitive and hidden behavior of the signal [23], [24]. PSD is
defined as the energy change in a signal distributed over the
measured frequencies [25]. In this paper, periodogram, Welch
and multitaper spectral analyzes are used to extract the PSD
of raw VSB signals.

1) PERIODOGRAM METHOD

The periodogram method used to find periodicities in a sig-
nal is proportional to the square magnitude of the Fourier
transform of the product of a windowed time series [26].

117029



IEEE Access

B. Eristi: New Approach Based on Deep Features of CNNs for PD Detection in Power Systems

TABLE 3. VSB dataset labels.

signal_id measurement_id Phase Target LETL
type
0 0 0 0
no fault
! 0 1®) 0 (normal)
2 0 2(C) 0
3 1 0(A) 1
4 1 1 (B) 1 ABC
5 1 2(0) 1
6 2 0A) 0
no fault
7 2 1B) 0 (normal)
8 2 2(C) o0
201 66 0(A) 1
202 66 1(B) 1 AB
203 66 2(C) o0
8709 2903 0(A)
no fault
8710 2903 1 (B) (normal)
8711 2903 2(0)

The equation of periodogram, the first spectrum analysis
technique based on Fourier analysis, is as follows,

M 2

1
Pon =37 )]

y () e
1

n=

where P is the periodogram PSD, w denotes the frequency
of PSD, M refers to the number of signal samples and y is
spectrum of signal [24].

2) WELCH METHOD

The Welch method, a modified version of the periodogram,
calculates PSD by averaging small windows of the peri-
odogram at each frequency of the signal [27]. Thus, the
noise effect is reduced. The welch’s PSD equation is given
as follows,

1 N
Piwerch (W) = < ;1% W) 2
and
11 |& G
Piw) = oo [ D vy () e 3)
n=1

where P, 1s the Welch PSD, P; is the periodogram PSD
of ith segment, S refers the number of segments, v(n) denotes
the data-window and A is average of v(n).

3) MULTITAPER METHOD

The multitaper method is a weighted periodogram average
by a collection approach of mutually orthogonal windows.
The variance and deviation of PSD in the multitaper method
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are less compared with other spectral methods [28]. The
multitaper PSD is shown as follow,

2

K
B w) = | D" gy () e " )

n=1

where K is the number of filters and 2K-n is the filter impulse.

B. SPECTROGRAM ANALYSIS

A spectrogram is a 2D visual representation of a signal
that shows frequency spectrum changes over time [29].
In spectrogram analysis, the signal is first divided into equal
overlapping sections of length n. Secondly, windowing is
performed for each equal segment. Then, sequential Fast
Fourier transform analysis is performed for each segment.
Finally, the power of each spectrum is displayed as a segment-
by-segment image [30]. In this paper, 2D TF spectrum data
is obtained by performing spectrogram analysis for each
VSB data. Thus, frequency distribution information in each
image provides important distinctive information for the PD
detection algorithm.

C. CONVOLUTIONAL NEURAL NETWORK

The CNN is a deep learning architecture that has been used
in recent years for classification, segmentation, object detec-
tion and localization of image or signal types [31]. Besides,
CNN architectures are commonly used as feature extractor
to obtain distinctive features of these types. The basic layers
in a CNN architecture are the convolution layer, pooling
layer and fully connected layer. The convolution layer cal-
culates the receptive field of the image/feature map in the
last layer by doing the dot product of the kernels called
filters for feature extraction. In the pooling layer, a pooling
windowing process is applied to the receptive regions of the
feature maps and the mean/maximum values are extracted to
reduce the parameters. The fully connected layer is used to
connect neurons in one layer to neurons in the next layer.
There are different CNN architectures with more layers in
the literature. The proposed CNN architectures are designed
to meet expectations such as input data type, working struc-
ture, results, runtime and performance. This work attempts
to extract deep PD features using 1D CNN architecture and
ResNet-50 model.

1) CONVOLUTIONAL NEURAL NETWORK-1D

Spectral data obtained from VSB dataset is one-dimensional.
In this work, a nine-layer 1D deep CNN architecture created
according to the experimental situation is used to obtain deep
features of the spectral data. A graphical description of the
1D deep CNN architecture is shown in Figure 2. The input
layer of the 1D CNN architecture is a vector of size 16385.
The hidden layer consists of 2 convolutional blocks, 1 pooling
block, 2 normalization blocks, 2 ReLU blocks and 1 fully
connected block. The last output layer is a softmax block for
a 2-class output vector.
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FIGURE 2. 1D deep CNN architecture for spectral data.

2) ResNet-50 MODEL

Although deep learning networks have been an effective intel-
ligent learning algorithm in recent years, they contain some
fundamental problems such as complexity in training, signifi-
cant training fault and vanishing gradients. Residual networks
are a type of deep learning algorithm with a network-in-
network architecture structure that overcomes the problem of
vanishing gradients [32]. In this work, ResNet-50 architec-
ture, a type of residual network, is used to obtain deep features
from spectrogram image data. ResNet-50 is a 50-layer CNN
algorithm consisting of 48 convolution blocks, a MaxPool
block and an average pool block. The general structure of
ResNet-50 model is shown in Figure 3.

D. MINIMUM REDUNDANCY - MAXIMUM RELEVANCE

In classification problems, input data set features may
have quite large data sizes. These high-dimensional features
increase the computational costs of the classifier and may
also reduce classification accuracy [33]. The mRMR feature
selection approach, which aims to reduce the correlation
between each feature, is an effective approach that mini-
mizes the computational cost in classification problems while
also increasing accuracy [34]. In the mRMR method, while
searching the features that have the most correlation with the
final output target variable within the feature set, it is also
aimed to find the feature set that has the least correlation with
each other. Max-Relevance is expressed as,

1
max D (Sf,c),D = —

G Dy (0O O
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where ST is the subset of features x; and I(xi,c) is the mutual
information between features and class. Min-Redundancy is
defined as,

) 1
minR (Sf), R = |Sf_|2 Zm,xjesf I (xi, x)) (6)

where I(x;, x;) is the mutual information between features and
features. The mRMR score information can be defined as,

max® (D,R), =D —R (7)

where @(D,R) is an operator that combines D and R by
optimizing them simultaneously [33].

E. MACHINE LEARNING METHODS

In this work, the classification process is carried out using
EML based subspace kNN. Besides, detection results are
obtained using SVM and DT classifiers for comparison and
evaluation. In this subsection, brief explanations and defini-
tions of these classifiers are given.

Ensemble learning is a popular machine learning tech-
nique that improves prediction performance by combining
multiple models [35]. The various EML classifiers include
bagged trees, ensemble bagged trees, ensemble boosted trees,
ensemble subspace kNN, ensemble subspace discriminant,
and ensemble RUSBoosted trees. Among these models in this
paper, the EML classifier based on the ensemble subspace
kNN algorithm is used, which achieved successful results.
Ensemble subspace kNN algorithm is an EML model that fits
different feature subsets of the same dataset. The final step of
the ensemble subspace kNN is the mode for classification and
mean for regression of the class labels predicted by the model
applied to different subsets of data features [36].

SVM is a popular learning algorithm proposed by Cortes
and Vapnik that separates multidimensional data classes
using a hyperplane [37]. In SVM, the extreme cases of each
data class, called support vectors, determine the hyperplane.
SVM also finds the hyperplane that maximizes the distance
between support vectors of two different classes. Kernel func-
tions are needed for nonlinear applications in SVM. Thus,
the data in the nonlinear input space is linearized in the
high-dimensional feature space via the kernel function [38].
Although SVM has a binary classification structure, it is
successfully used in multi-class problems by adopting a series
of binary SVMs. Methods such as one-to-one, one-to-one and
directed acyclic graph SVM are the most commonly used
methods in multi-class SVM [39].

DT can be defined as a tree-shaped modeling of a series
of hierarchical decisions with a simple structure in solving
classification and prediction problems. In DT, trees have their
root nodes at the top where they are divided into branches
according to each specified condition. Each branch may also
have sub-branches depending on more specific sub-feature
conditions. The splitting of branches is terminated when the
final classification decision is reached, and this final stage is
defined as the leaf node [40].
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IV. THE PROPOSED DEEP FEATURE-BASED PD
DETECTION SYSTEM

The main task of the proposed deep feature-based detection
system in this paper is to identify the PDs occurring in high
voltage power cables. PD signals containing high frequency
components naturally have a very high raw voltage data.
Additionally, PD signals contain different levels of noise
components. Thus, the proposed deep feature-based detection
system has an effective algorithm that can overcome these
difficulties. Two key aspects of the proposed detection system
make it significantly superior to similar state-of-the-art works
showing an outstanding detection performance. The first key
step is to obtain distinctive features by applying deep learning
approaches to the time-frequency changes of the raw PD
signal. The other step is to find the effective features among
the obtained deep features. Initially, the input signal data
collected by ENET center from the power cable is applied
the proposed algorithm. Deep features are extracted based
on time-frequency information about the waveforms of PD
pulses by using a series of deep learning algorithms. Thus,
the data size is significantly reduced and distinctive features
are obtained. mRMR feature selection approach is applied to
all features and very effective features are obtained for the
final step that classifier step. As a result of mRMR feature
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selection process, the feature data size is further reduced and a
feature set having high classification performance is created.
The final step of the proposed system is binary-based classifi-
cation processes using the features obtained for the data input
signals. Figure 4 shows the steps of the working-flow of the
proposed deep feature-based detection system. The proposed
detection system in this paper consists of four consecutive
stages: signal and image extraction, feature extraction, feature
selection and classification.

A. SIGNAL AND IMAGE EXTRACTION

In the machine learning-based algorithms, the dataset pre-
sented to the machine learning method should be ready for
use without the need for further work [7]. When the VSB
dataset is directly applied to the machine learning method,
some challenges may be encountered. These challenges are
generally that the dataset consists of raw data, signals con-
tain noise, data size in each signal is very high, and PD
features are present in high frequency components. The first
three stages of the proposed detection system are designed to
overcome these challenges. In the signal and image extrac-
tion stage, each VSB data consisting of time-amplitude
information is converted into four different new data contain-
ing time-frequency information obtained by Fourier-based
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FIGURE 5. Graphics of a non-PD and a PD signal: a) raw data; b) PSD graph with Welch method, c) PSD graph
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analyzes. As a result of these analyzes, each VSB signal
with high data size and unclear underlying characteristics is
converted into more distinctive frequency-based image and
signals with reduced data size and more distinct PD features.
Thus, in the next deep feature-based feature extraction stage,
it is possible to quickly extract effective features from each
image and signal data representing the PD signal.

In the signal extraction process, Welch-, periodogram- and
multitaper-based PSD analyzes are performed for the raw all
data, respectively. Each VSB data is converted into a new
data containing 1-D PSD information. Hamming window
is used in periodogram and Welch PSD analyses. For the
multitaper, windowing is not required. Taper type in the
multitaper analysis is specified as ‘sine’. In all PSD analyses,
DFT points is selected as 2'> (32768). There are 213/2+1
(16385) points in the each PSD estimation. Thus, the VSB
dataset data of 1 x 800000 size is reduced to 1 x 16385 data
size, which is more suitable for 1-D CNN input. The z-score
based normalization approach is implemented to the each
PSD estimation. Figure 5 shows the PSD changes obtained
for a non-PD and a PD signal.

In the image extraction process, all VSB signals are con-
verted into image-based TF spectrums that represent the
power distribution between frequencies as a result of spec-
trogram analysis processes. Thus, in the obtained spectrum
image data, the x-axis represents time and the y-axis repre-
sents frequency. The color or intensity of the image pixels in
the graph represents the intensity of frequency changes in the
signal. In other words, a TF spectrum is a visual represen-
tation of how the frequency content of a signal changes with
time. Figure 6 shows the TF spectrums of the PD and non-PD
signals in the 0-20 MHz range (20 MHz is Nyquist frequency
of a VSB signal) given in Figure 5.a. As can be seen from
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Figure 6, PDs in TF spectrums cannot be distinguished by
the human eye due to noise and are not suitable for expert PD
identification. However, deep learning algorithms are capable
of learning with such fine details.

In this paper, in order to increase the learning ability of
the ResNet-50 architecture, we focused on frequencies above
100 kHz, where the PD frequency features of each signal
are more intense. As a result of some detection analyses,
the best detection performance is obtained for TF spectrums
obtained in the 500 kHz-20 MHz range. Thus, each VSB
signal is converted into TF spectrums in the range of 500 kHz-
20 MHz. Figure 7 shows the TF spectrums in the range of
500 kHz-20 MHz for the same signals given in Figure 6.
As seen in Figure 7, PDs cannot be distinguished visually,
but high frequency changes in TF spectrums can be seen
in more detail. As mentioned in the previous sections, the
difficulties encountered in detecting PDs in the VSB dataset
continue to exist in the TF spectrum graphs. It is not possible
to identify a trace representing PD in Figure 6 (b) and Figure 7
(b). The proposed PD detection system has a structure that
can overcome this challenge. Each TF spectrum image has
provisions of 1361 x 1075 pixels, resolution of 300 dpi, 24-bit
depth and RGB.

B. FEATURE EXTRACTION

In the feature extraction stage, distinctive deep learning
features are obtained from spectral and spectrogram data.
Frequency-amplitude based image and signals obtained from
the previous stage are applied to deep learning algorithms.
Thus, this stage overcomes the feature extraction limitations
encountered in traditional machine learning-based classi-
fication workflows, thanks to deep learning-based feature
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extractor models that can extract a comprehensive feature
set for any PD data. In this paper, ID CNN architecture
for Welch-, periodogram- and multitaper-based TF signals
is built with nine layers. ResNet-50 architecture is used to
obtain features from 2D spectrogram images. Three pre-
trained 1D CNN models are created as a result of training
three 1D CNN models using Welch-, periodogram- and
multitaper-based PSD data, respectively. After the ResNet-50
model is trained using spectrogram image data, a pre-trained
ResNet-50 model is created. Pre-trained models are created
using 70% of the data for training and 30% for testing. In all
pre-trained models, the learning rate is determined by chang-
ing it to 0.001, 0.0001 and 0.00001 during the training phase.
The solvent is determined by comparing the results obtained
with SGDM or ADAM optimization methods. SGDM opti-
mization method is chosen for ResNet-50 and ADAM
optimization method is chosen for all 1D CNN models. Mini-
batch size for ID CNN models and ResNet-50 model is set
as 16 and 64, respectively. While the pre-trained ResNet-50
model is trained with 20 epochs and a total of 1900 iterations,
the 1D CNN pre-trained models are trained with 15 epochs
and a total of 11430 iterations. In the pre-trained 1D CNN,
deep features of PD and non PD signals are obtained from
the activation data in the output of the pooling layer at level-7.
Features of the pre-trained ResNet-50 algorithm are obtained
from the activation data in the output of the 2D global average
pooling layer at level-173. As a result of this stage, a total of
3 x 20 and 1 x 2048 features are obtained from 1D CNN and
ResNet-50 architectures, respectively.

C. FEATURE SELECTION
The size of the data obtained after the feature extraction
stage is 1 x 2108. These features may increase computational
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costs and consequently reduce PD detection accuracy. In the
feature selection stage, features with high classification per-
formance are determined and the data size is reduced. Thus,
the classification stage exhibits very high performance in
terms of speed and efficiency. In the feature selection stage,
mRMR is used to remove features that did not increase PD
detection performance. After calculating the relevance and
redundancy scores for all features, the corresponding mRMR
scores are determined. The 1 x 1 data created with the feature
with the best mRMR score is applied to the input of the
classification stage. In the classification stage, PD detection
performance is determined as a result of training and testing
for this 1 x 1 data. Then, a 1 x 2 feature dataset is created
by adding the feature with the second best mRMR score
and the same processes are repeated to obtain PD detection
results. These processes are repeated for the last ranked fea-
tures according to the mRMR score, respectively, and PD
detection results are obtained. Finally, the features in the
feature set with the highest Matthews correlation coefficient
(MCC) coefficient among the detection results are used in the
classifier input of the proposed PD detection system. Figure 8
shows the mRMR score values obtained for all features.

0.2 T T T T T T T T T T

0.1 1

mRMR score

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Features

FIGURE 8. mRMR scores of all features.

D. CLASSIFICATION

The final stage of the proposed PD detection system is classi-
fication. The output of the classification stage is the decision
stage of the proposed PD detection system. The effective-
ness of the classification stage can be evaluated with two
main situations: the performance of the data in the classifier
input and performance of the classifier. As mentioned in the
previous stages, features with high classifier performance
are obtained. At this stage, classification performances are
evaluated using three different classifiers. Thus, as a result
of the classification stage, effective PD detection with high
performance can be achieved. At this stage, PD detection pro-
cesses are carried out with the binary classification approach
using the ensemble subspace kNN classification method with
5-fold cross-validation. Additionally, PD detection results are
obtained using SVM and DT algorithms to make comparisons
and evaluations. In the classification stage of the proposed
system, classification results are obtained with the ensemble
subspace kNN, SVM and DT by using the features selected
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FIGURE 9. Confusion matrices for proposed deep feature-based detection system.

with the mRMR method. MATLAB Classification Learner
Toolbox is preferred in all three classification processes.

E. EVALUATION METRICS

In general, the evaluation metric is a measurement tool
that measures the performance of classification-based sys-
tems [41]. MCC metric is ideal metrics for evaluating
proposed algorithms for prediction problems. All values
found in the complexity matrix are used in the calculation to
evaluate the model performance with the MCC metric [41].
Besides, detection models in the Kaggle competition on the
VSB dataset were evaluated according to the MCC metric
value, and the MCC metric value of the winning model was
70.6% [1]. Some evaluation metrics, as well as MCC metric,
are used to evaluate the performance of the PD detection
approach proposed in this paper. Accuracy metric, which is
the ratio of total correct examples to total examples, is used
to measure the performance of the model. Precision metric,
defined as the ratio of true positive predictions to the total
number of positive predictions made by the model, is used.
Recall metric is used, which is the ratio of the number of true
positive samples to the sum of true positive and false negative
samples. Specificity metric, also known as true negative rate,
is also used to evaluate the proposed PD detection system.

V. EXPERIMENTAL RESULTS AND DISCUSSION

A series of experiments are carried out to evaluate the per-
formance of the proposed deep feature-based PD detection
system. All analyzes in this paper are carried out in the
Matlab(R) 2021 software environment and on a computer
with Intel(R) Core(TM) i7-3770, 3.90 GHz, 32.0 GB RAM,
and GeForce GTX 2060 GPU. Since the proposed system is
defined as a PD detection system, the results are in the form of
binary classification. In classification process, ‘0’ is labeled
asnon-PD signal and ‘1’ as PD signal. The training data of the
VSB dataset, consisting of 8712 data, are used in the training
and testing processes of the proposed detection system. In all
experiments, randomly selected 70% of the total 8712 data
are used for the training of the proposed detection system.
The remaining 30% are used in testing process. In the training
dataset, 5731 data of the total 6099 data are non-PD data
and the remaining 368 data are PD data. In the test dataset,
2456 of the total 2613 data are non-PD data and the remaining
157 data are PD data.
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A. DETECTION PERFORMANCE OF THE PROPOSED
SYSTEM

First, the performance of the proposed deep feature-based
detection system in predicting PDs is investigated. The VSB
dataset is an unbalanced dataset due to the small number of
PD data. Since MCC is an effective approach in evaluating
unbalanced data, MCC performance measurement provides
important information when evaluating the prediction per-
formance of the proposed system. In addition to the MCC
measurement, other metrics given in section IV-E are also
included in the performance evaluation of the proposed sys-
tem. Detection results of proposed system are obtained for the
EML algorithm used in the classification stage. Additionally,
the results of SVM and DT algorithms are also included as
a comparison. The performance measurements of proposed
system are shown in Table 4. The accuracy of all machine
learning algorithms of proposed system is illustrated by con-
fusion matrices shown in Figure 9. According to the obtained
results, the proposed system detects approximately 99% of
non-PD data. The proposed system with EML algorithm for
PD data shows a high detection performance of 83.4%. MCC
metrics are 0.8538, 0.8430 and 0.7447 for EML, SVM and
DT, respectively. It is seen that the proposed system with
EML algorithm has a higher detection performance than the
system with the other two algorithms, SVM and DT. While
the system with the SVM algorithm exhibits a performance
close to the system with EML, the system with the DT
algorithm has a lower performance. Thus, it can be seen
that classifier selection is very important in the classification
stage, which is the final stage of the PD detection system.

B. RESULTS OF FEATURE EXTRACTION ANALYSIS

The most important main contribution of the proposed PD
detection system is the feature extraction structure. In this
analysis process, performance results of four different feature
sets obtained based on signal and image data are obtained.
Thus, the results of these analysis processes provide infor-
mation about the details of the feature extraction structure.
EML, SVM and DT based PD detection results are obtained
using spectral and spectrogram feature sets. The detection
performance of the total feature set obtained from these four
feature vectors is also achieved.
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TABLE 4. Results of proposed deep feature-based detection system.

Machine learning algorithms

Evaluation metrics EML SVM DT

MCC 0.8602 0.8430 0.7447
Accuracy 0.9847 0.9828 0.9698
Precision 0.9034 0.8836 0.7267
Recall 0.8344 0.8217 0.7962
Specificity 0.9943 0.9931 0.9809

Feature extraction analyzes are performed without apply-
ing the feature selection process. MCC and accuracy metric
results are included in this analysis. The results obtained for
all feature sets are given in Table 5. The bold results that are
not underlined are the highest performance results obtained
for the four feature sets. According to these results, it can be
said that feature sets based on 1D CNN have good detection
performance, especially non-PD data. Thus, the total feature
vector has a very high detection performance, as can be seen
from the underlined bold results in Table 4.

TABLE 5. Results of feature extraction analyses.

Feature extraction

method Feature size Classifier MCC Accuracy
EML  0.7336  0.9709
F1=Welch+1D CNN 1x20 SVM 0.7151 0.9694
DT 0.6887  0.9659
. EML  0.7130  0.9686
(Fzﬁ)emdogmmm 1x20 SVM 07136  0.9694
DT 0.6983  0.9663
. EML 0.7611 0.9747
Eﬁ,\d ulitapert1D 1x20 SVM  0.7408  0.9721
DT 0.7581  0.9740
EML  0.7352  0.9663
'*F"f‘;sNet-SgpeCtrogram 1x2048 SVM 07405 09701
DT 0.6899  0.9613
EML  0.8461  0.9832
&:l— 2:;3_::;4 1x2108 SVM  0.8384  0.9824
DT 0.7405 0.9701

C. RESULTS OF FEATURE SELECTION

In feature selection stage, mRMR feature selection process
is applied to the feature set with 1 x 2108 data size obtained
during the feature extraction stage. Performance results of the
features sorted through the mRMR process are determined.
Thus, as a result of this analysis, the feature set for the clas-
sifier input of the proposed detection system is determined.
In this analysis process, firstly, only the first ranked feature
is applied to the EML classifier input and the classification
performance is obtained. Then, the classification result is
obtained for the feature set created using the first ranked fea-
ture and the second ranked feature. Then, the second ranked
feature is added to this feature and the classification result
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based on MCC is obtained. Thus, features are added sequen-
tially until the last feature and the detection performance of
each feature set is determined.

Figure 10 shows the changes in MCC values obtained
from sequential detection processes for the VSB dataset.
In the proposed detection system, the highest MCC coeffi-
cient is obtained with only 246 features selected from the all
dataset consisting of four feature sets. Among the 246 highest
mRMR-ranked features, the number of Welch, periodogram,
multitaper and spectrogram features are 11, 16, 13 and 206,
respectively. As seen in Figure 10, the MCC value obtained
for feature set of 20 highest mRMR-ranked features is signif-
icantly higher than the MCC value obtained separately for
the four feature sets given in Table 4. Thus, by means of
the feature selection stage, the detection system has a high
detection performance and the data size in the classifier input
is reduced by about 1/8.5.

In Table 6, the mRMR score of 60 highest ranked fea-
tures obtained from mRMR feature selection process and
the dataset information to which the feature belongs are
given. The first highest ranked feature is Welch feature-5 with
0.1960 mRMR score. The second highest ranked feature is
multitaper feature-48 with 0.1584 mRMR score. Among the
60 highest mRMR-ranked features, the number of Welch,
periodogram, multitaper and spectrogram features are 6, 5,
6 and 43, respectively. Thus, it can be seen that each feature
extraction approach contributes significantly to the high per-
formance of the proposed detection system.

Data size: 246
MCC value: 0.8602

MCC value

Data size: 2108
MCC value: 0.8461

| Data size: 20
0.76) ‘ MCC value: 0.8306 ‘

07 I I I I I I I I I I
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Data size of selected feature set
FIGURE 10. MCC values obtained using EML for sequential features
sorted through mRMR feature selection.

D. TIME CONSUMPTION OF PROPOSED SYSTEM

This section shows the time complexity of the proposed PD
detection system, and Table 7 shows the time consumption
results. In this table, the average time values obtained for the
processes performed at each stage are given. It can be said that
the time consumption value of feature selection and training
processes is higher than other processes. The detection time
for a VSB data is approximately 4 seconds. This detection
time value is a very excellent result for a VSB data with
800000 samples. This value will be even lower on computers
with high GPU and processor. As a result, it can be said
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TABLE 6. Ranking of best 60 features.

Feature =~ Feature = mRMR Feature =~ Feature = mRMR Feature =~ Feature = mRMR

order number score Dataset order number score Dataset order number score Dataset
1 5 0.1960 Welch 21 305 0.0701 Spectrogram 41 817 0.0600 Spectrogram
2 48 0.1584 Multitaper 22 16 0.0693 Welch 42 578 0.0598 Spectrogram

3 37 0.1292  Periodogram 23 1670 0.0676 Spectrogram 43 17 0.0598 Welch
4 1359 0.1281 Spectrogram 24 54 0.0675 Multitaper 44 286 0.0598 Spectrogram
5 185 0.1214 Spectrogram 25 1536 0.0662 Spectrogram 45 694 0.0597 Spectrogram
6 1908 0.1172 Spectrogram 26 1504 0.0657 Spectrogram 46 959 0.0594 Spectrogram
7 980 0.1029 Spectrogram 27 361 0.0654 Spectrogram 47 2030 0.0587 Spectrogram
8 1525 0.1019 Spectrogram 28 1692 0.0651 Spectrogram 48 1002 0.0587 Spectrogram
9 58 0.1004 Multitaper 29 1132 0.0643 Spectrogram 49 21 0.0584 Periodogram
10 2100 0.0903 Spectrogram 30 1933 0.0637 Spectrogram 50 1038 0.0582 Spectrogram

11 1487 0.0882 Spectrogram 31 763 0.0634 Spectrogram 51 20 0.0573 Welch
12 3 0.0870 Welch 32 55 0.0633 Multitaper 52 934 0.0571 Spectrogram
13 49 0.0846 Multitaper 33 1108 0.0631 Spectrogram 53 950 0.0565 Spectrogram
14 1295 0.0800 Spectrogram 34 822 0.0625 Spectrogram 54 169 0.0564 Spectrogram
15 1730 0.0769 Spectrogram 35 749 0.0623 Spectrogram 55 1917 0.0557 Spectrogram
16 84 0.0763 Spectrogram 36 24 0.0622 Periodogram 56 607 0.0549 Spectrogram
17 730 0.0761 Spectrogram 37 1743 0.0606 Spectrogram 57 2080 0.0549 Spectrogram
18 59 0.0760 Multitaper 38 1119 0.0603 Spectrogram 58 1706 0.0546 Spectrogram
19 40 0.0727  Periodogram 39 1663 0.0602 Spectrogram 59 27 0.0544 Periodogram
20 2054 0.0704 Spectrogram 40 4 0.0602 Welch 60 615 0.0534 Spectrogram

that the proposed PD detection system is quite fast and its
processing complexity is low.

E. COMPARISON WITH RELATED WORKS
As explained in section I, previous studies have presented
significant work on PD detection using artificial intelligence
method-based approaches. The PD detection algorithms pre-
sented in some of these studies are evaluated by using the
VSB dataset. Our proposed PD detection system has been
compared with eight studies [1], [5], [7], [15], [16], [17], [21],
[43] using the same real-time VSB dataset. Thus, readers can
easily compare the resulting metric values. Table 8 shows
the comparison results based on accuracy, MCC and recall
metric values. As can be seen from the results, the proposed
work has a very high performance compared to comparison
studies. It can be said that the reason why the proposed system
has a high performance compared to recent papers is due to
two main contributions. The first is the spectral and spectro-
gram analyzes performed for PD signals. The second is that
the presented algorithm includes two different deep feature
extraction approaches. It also shows that the proposed feature
selection approach significantly increases the performance of
the model. It can be seen that only [7] has a higher MCC and
recall metrics. However, the accuracy value is lower than the
accuracy value of the proposed algorithm. The high MCC and
recall values is due to the fact that all PD data is used only in
the test dataset.

Computational time analysis is performed in only two
studies [17], [42] for the detection systems proposed in these
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comparison papers. In [17], computation time values between
381.09 s and 630.38 s are obtained for test processes. In [42],
speed values between 197.7 s and 314.9 s are obtained for
test processes. In both papers, detection time values for only
one PD data are not encountered. In [27], the detection time
of a PD data is given by four different GPU devices. These
detection times are between 0.426 s and 1.494 s. In our paper,
according to the time consumption results given in Table 5,
the fastest detection system is the Periodogram-based detec-
tion system (Periodogram + 1D CNN 4 SVM). This system
has a detection time of approximately 0.120 s and the MCC
value of this system is 0.7136. This computational time is
quite short compared to other paper times. The detection time
of our proposed system, which has an MCC value of 0.8461,
is approximately 3.4 s, and it can be said that it is a good
detection time compared to other studies. In this detection
period, especially the spectrogram analysis time is approx-
imately 2 s. Therefore, it can be said that extra computational
time may be needed to achieve high detection performance.
In future works, detection systems with a detection time of
less than 1 s and at least the MCC value obtained in this paper
can be developed.

F. CHALLENGES AND LIMITATIONS OF PROPOSED
SYSTEM

In the previous subsections, the results obtained about the
performance of the proposed PD detection system and its
advantages compared to related works are included. In this
subsection, the limitations of the proposed system and the
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TABLE 7. Time consumption results of the proposed system.

Stage Process Average time (s)
Welch 0.041
SIgIEgL:ZZS;UOH Periodogram 0.035
Multitaper 0.761
Imaéeefzt;f:)tlon Spectrogram 1.946
1D CNN 1.252
(Pre-training) (s/per iteration)
1D CNN
(Feature extraction from 0.088
Feature extraction activation data)
ResNet-50 3.644
(Pre-training) (s/per iteration)
ResNet-50
(Feature extraction from 0.092
activation data)
Feature selection mRMR 195.220
EML (Training) 0.763
EML (Test) 0.438
Classification SVM (Training) 0.066
SVM (Test) 0.002
DT (Training) 0.086
DT (Test) 0.008

TABLE 8. Comparison with similar study.

Training/Tes
t samples

[1] RNN 6972/1740  0.7300 0.8820 0.7900
[5] Extract pulsestCNN  6972/1740 0.8170 0.9670 -

Study Technique MCC  Accuracy Recall

[7] SVM+PCA 6140/2572  0.9143 0.9687 0.9130
Wavelet Transform
[15] TLSTM 6972/1740  0.7400 0.9700 0.7570
Resnet18 +
[16] VgeNetl 1 6972/1740  0.7570 0.9730 -
[17] CNN 2323/581 0.9667 -
Wavelet Transform
[21] LSTM - 0.8500  0.8600 0.810
[43] LSTM 6972/1740 0.8140 0.9785 0.7700
The proposed (4997613 0.8602 09847  0.8344
system

challenges encountered during the experiments are discussed.
The main challenge in experimental analysis lies in the struc-
ture of the PD signals. Visual detection and interpretation
of PD data is a challenging task for the responsible expert
and underlying characteristics of PD data might be highly
uncertain. Additionally, real-world PD signals may contain
a significant amount of background noise and they have
high data size. Due to these problems of PD signals, the
proposed detection system encountered two different chal-
lenges. The first is to perform challenging analyzes for signals
with very high data size in the signal and image extraction
stages. Among the PD data with 800000 samples, only a
few data contain the underlying characteristics of the PD.
The remaining data represents the normal signal with noise.
The second is to achieve high PD detection performance in
these challenging data. However, regardless of the complexity
challenges of PD data, the proposed system proved its
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robustness, stability, consistency and efficiency. A possi-
ble limitation of this paper is that, as mentioned above, all
signal samples are analyzed. Detection performance can be
improved by focusing only on patches containing possible
PD ranges. Another limitation is that no noise filtering is
performed on the signals. Filtered PD signals may be used
instead of raw PD signals at the input of the proposed PD
detection system. Thus, even though the filtering process
creates a computational burden, it has the potential to increase
detection performance.

Vi. CONCLUSION
In this paper, a novel PD detection system based on the deep
features of CNN algorithms is proposed. In the proposed
detection system, frequency-based features are obtained as a
result of applying spectral analysis and spectrogram analy-
sis to PD data. These frequency features are applied to 1D
CNN models and ResNet-50 models to obtain deep features.
Among these deep features, the most effective features are
obtained with the mRMR feature selection approach. Thus,
before the final classification stage, a PD dataset is con-
verted into a frequency feature set, the frequency feature set
is converted into a deep feature set, and the deep feature
set is reduced to the selected deep feature set. In the last
stage of proposed PD detection system, the PD detection
process is carried out by applying the final deep feature set
to EML, SVM and DT classifiers. Some experimental results
are obtained by applying the ENET dataset to the proposed
PD detection system. According to the obtained results, the
proposed deep feature-based PD detection system has high
detection accuracy and the detection speed is quite high.
It also offers higher performance than similar PD detection
algorithms in the literature. Moreover, the proposed detection
system overcomes the limitations of traditional approaches
and has a significant improvement in PD detection perfor-
mance (MCC: 86.02%) compared to the winning models in
the Kaggle competition (MCC: 70.6%) over the VSB dataset.
Experimental results show that the deep feature-based sys-
tem proposed in this paper can accurately detect PD signals
in real-world environments with high performance. Spectral
and spectrogram analyzes for PD signals and the use of
two different deep feature extraction approaches play a key
role in this performance. In addition, the feature selection
approach is also very effective for the detection performance
of the system. In future works, faster and higher-performance
algorithms based on spectral and spectrogram analyzes can
be developed at the signal and image extraction stage of the
proposed detection system. Additionally, an effective noise
filtering process can be integrated into the system.
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