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ABSTRACT Early identification of patients’ clinical status plays a critical role in intensive care unit (ICU)
care. The increased adoption of electronic health records (EHRs) in the ICU creates prospects for deep
learning (DL) application systems in this discipline. However, monitoring and prediction systems in the ICU
encounter problems with security, alarm errors, and interpretation. This research presents deep contrastive
federated learning (Deep-CFL), an approach that leverages explainable AI (XAI), CFL, and imbalanced
supervised learning techniques to address these problems. CFL introduces an innovative approach to
minimize the difference in local and global model prediction ability while increasing the gap in prediction
performance of the current local model and its previous model in a communication round. When paired with
imbalanced learning, this strategy substantially mitigates error alarm problems while ensuring data security.
The XAI technique, specifically integrated gradient, is employed to refine the DL-based model architecture
to enhance system interpretability. Extensive experiments and in-depth analyses across three significant
clinical datasets highlight the superior performance of Deep-CFL over local and centralized learning-based
approaches. The results involving 25, 329 patients admitted to ChonnamNational University Hospital reveal
that Deep-CFL, with an area under the receiver operating characteristics curve of 0.879, an area under the
precision-recall curve of 0.886, and an average precision of 0.884, surpasses systems based on centralized
learning while reducing the late alarm rate by up to 10.3%.

INDEX TERMS Deep learning, federated learning, explainable artificial intelligence, intensive care unit,
electronic health record.

I. INTRODUCTION
Despite the enhancements in treatment experience and
support equipment, mortality rates in the intensive care unit
(ICU ) have increased over the past 35 years [1]. As the
number of ICU admissions has significantly surged, this rate
has escalated due to the strain caused by medical excess.
In the era of the coronavirus disease 2019 (COVID-19),
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29% of ICU mortality patients did not receive mechanical
ventilation. Up to 53.2% of individuals requiring ICU care
were unable to obtain it due to resource constraints [2]. After
examining mortality rates upon ICU admission, studies [3],
[4] have concluded that poor outcomes in ICU care are related
to resource allocation in overloaded ICUs. These studies
have highlighted the importance of advanced algorithmic
applications for ICU decision support systems.

Two typical factors that improve ICU care are the moni-
toring system and the detection system. For the monitoring
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system, the integration of electronic health records (EHRs)
[5] in the ICU [6] has created favorable conditions for
developing algorithms to detect patients’ conditions. For
the detection procedure, the rapid application of early
detection methods for ICU clinical status, including scoring
techniques [7] or the application of artificial intelligence
(AI), provides effective support for nurses during the decision
process [8]. However, each technique corresponding to the
two systems mentioned above is facing its own limitations.

FIGURE 1. Current issues with the application systems in ICU care. While
the monitoring system encounters security and data quality problems, the
prediction system faces alarming error performance, and lack of
interpretability. It is worth noting that data imbalance - a factor in data
quality problems - is the direct cause of the alarm error problem.

A. MONITORING SYSTEM’S PROBLEM
Monitoring systems in the ICU are limited by two main
issues: security and data quality. Despite the benefits to
physicians and healthcare services, EHR adoption is limited
by privacy and security regulations [9]. Research [10]
has found threats due to violating privacy and security
regulations provided by the Health Insurance Portability and
Accountability Act in the United States during EHR use. The
study [10] highlighted security threats and their influence
on the day-to-day operations in a healthcare environment
in a closed private network. The economic consequences of
security threats are severe, with losses exceeding $7 million
for businesses and $13,500 for individuals. These financial
repercussions highlight the severe consequences of security
breaches. The consequences of security breaches go beyond
the people and medical institutions whose information is
compromised. Medical care operations are also vulnerable to
disruption from numerous risks, including insider threats and
phishing attempts.

Data quality plays a significant role in contributing to
the security problems surrounding EHR data [11], [12].
Besides the ‘‘trade-off’’ relationship with data security [13],
data quality has direct effects on the ability to predict and
diagnose in the ICU [14], [15], [16]. Data imbalance is
considered a typical problem of data quality. This problem
stems from errors in data collection or uneven distribution
among patient groups who are admitted to the ICU. Data
imbalance occurs when outcomes or classes are overrepre-
sented in a dataset, leading to biased analytical models and
decisions.

B. PREDICTION SYSTEM’S PROBLEM
Data imbalance negatively affects the ability of physicians
and prediction systems to predict disease conditions in the
ICU [17], [18], [19], [20]. Besides, the other problem with
prediction systems is interpretability. When delving into the
field of AI, especially prediction models applying machine
learning (ML) and DL, the above problems are the main
factors affecting prediction performance and accuracy [21],
[22], [23].

Data imbalance might cause models to acquire biases
toward more common outcomes or attributes [24]. This
challenge skews the system’s predictions, making them
less reliable for less common conditions. The inevitable
consequence of this process is a late alarm situation
leading to untimely intervention in RRT. For interpretability,
doctors often view AI models used in healthcare as ‘‘black
boxes’’ [25], [26]. This lack of interpretability can limit the
confidence and acceptance of AI systems in critical care
because physicians must comprehend the reasoning behind
AI suggestions to make informed judgments.

C. MOTIVATION AND CONTRIBUTION
From the descriptions in the previous section, this study
synthesizes three main problems of effective integrated
systems in the ICU: Security, alarm errors for clinical
deterioration of patients, and poor interpretability of AI
application systems. As mentioned, interpretability problems
may limit the confidence and acceptance of AI systems in
critical care. The necessity to secure the EHR’s security,
combined with the challenge of data quality and prediction
contexts, impacts the prediction system’s performance,
resulting in alarm error problems. This study proposes the
deep emergency contrastive federated learning (CFL) system
(Deep-CFL), an intelligent prediction system that applies
explainable AI (XAI) techniques integrated with federated
averaging (FedAvg) [27] and contrastive learning [28] to
predict patient’s clinical status in the ICU.

First, to solve the security problem, the proposed approach
is built on the federated learning (FL) framework, which
includes multiple healthcare data centers and a central server
tasked with aggregating local models into a comprehensive
server model for cross-data-center predictions. This structure
avoids the requirement of direct data sharing across centers,
favoring the interchange of local model weights.

For the alarm error problem, the concept of integrating
contrastive learning with FedAvg arose from the continuous
findings in FL studies that global models outperform their
local equivalents. Therefore, in the process of updating a
local model (denoted asM t at round t), we apply contrastive
loss to minimize the performance disparity between it and
the global model (denoted as Mg), simultaneously maximize
the distinction between M t and the local model from the
previous iteration (denoted asM t−1). This approach attempts
to capitalize on the global model’s strengths to improve the
local model’s ability throughout each update cycle. Besides,

VOLUME 12, 2024 117177



T.-N. Nguyen et al.: Explainable Deep-CFL System for Early Prediction of Clinical Status in ICU

imbalance learning is also applied in the system to optimize
the model’s ability to predict the minority class.

We addressed the interpretability problem by proposing an
XAI method called integrated gradient (IG) for determining
the structure of the prediction DL model. This approach
is a mainstream XAI technique that leverages the concept
of axiomatic attribution [29]. The main idea behind IG
is to quantify the contribution of individual features to
model prediction by systematically integrating gradients in
the input space, which provides useful insight into feature
importance while also assisting with model interpretability
and optimization.

The key contributions of this investigation are:
• Security through Federated Learning: We provide
federated learning (FL) infrastructure that includes
numerous healthcare data centers and a central server.
This topology protects data privacy by avoiding direct
data sharing between centers and instead relying on the
exchange of local model weights.

• Alarm Error Reduction: By leveraging contrastive
learning and FedAvg, our strategy reduces the per-
formance gap between local and global models while
increasing the differentiation between subsequent local
model updates. This method uses the global model’s
capabilities to improve local model performance while
effectively reducing false and late alerts. Additionally,
imbalanced learning techniques are used to improve the
prediction of minority classes.

• Improved Interpretability with Explainable AI: We
suggest using IG to determine the structure of a deep
learning prediction model. IG measures the contribution
of individual features to model predictions, revealing
feature importance and aiding in model interpretation
and optimization.

To our knowledge, this is the first study to simultaneously
address the problems of security, alarm errors, and XAI
in emergency medicine. The remainder of this study is
organized as follows: Section II introduces related research.
Section III describes the proposed framework in detail.
Section IV describes the datasets, experimental settings,
and experimental results. Section V provides discussion,
benefits of the application, and limitations. Finally, sectionVI
provides conclusions and future works for the proposed
method.

II. RELATED WORKS
This section introduces and describes related methods
involved in predicting early clinical deterioration or ICU
clinical status. According to the development trend of
prediction systems in the ICU, related methods are divided
into three categories: traditional clinical status prediction,
DL application, and FL application systems.

A. IN-HOSPITAL CLINICAL PREDICTION ALGORITHM
Numerous decision support systems for clinical care have
emerged, resulting in substantial advances in emergency

TABLE 1. Evaluate MEWS score based on vital sign indicators.

medical treatment [30], [31], [32], [33]. The rapid response
system (RRS) [34] is a pioneering and representative example
in this field. The operating premise of RRS is to monitor,
detect, and respond to any indicators of clinical deterioration
of the patient to provide timely intervention and avoid
cardiac arrest or mortality in the hospital. Much related
research has focused on the detection process, involving
the introduction and application of numerous algorithms.
Traditional approaches include scoring methodologies [35]
in which the system frequently depends on basic vital
signs to assess the patient’s condition using a single ‘‘risk
score’’ scale. The Acute Physiology and Chronic Health
Evaluation (APACHE) II [36] and III [37] are introduced
as scoring systems that assess the severity of disease in
critically ill patients. Olsson et al. [38] introduced the Rapid
EmergencyMedicine Score (REMS) to improve the accuracy
of the scoring system in nonsurgical patients regarding
in-hospital mortality and length of stay (LOS). REMS is
superior to the Rapid Acute Physiology Score (RAPS) [39] in
predicting in-hospital mortality in both critically ill patients
transferred to the ICU and in the overall sample (AUC
0.910 ± 0.015 for REMS compared to 0.872 ± 0.022 for
RAPS). The MEWS is a well-known approach to detecting
clinical deterioration and the possible need for higher levels
of care [40]. Despite various institutions adopting diverse
strategies to evaluate vital signs, MEWS evaluates patients’
clinical outcomes using five fundamental vital signs: blood
pressure, temperature, respiratory rate, heart rate, and the
alert, voice, pain, and unresponsive (AVPU) score, as listed
in Table 1. The effectiveness of MEWS was corroborated in
a study by Gardner-Thorpe et al. [41] on 334 consecutively

117178 VOLUME 12, 2024



T.-N. Nguyen et al.: Explainable Deep-CFL System for Early Prediction of Clinical Status in ICU

treated patients. In this study, a MEWS score of 4 or above
was found to have 75% sensitivity and 83% specificity for
the requirement of intensive care. MEWS scores of 5 or
higher were less sensitive (38%), but more specific (89%).
NEWS [42] has been adopted for ICU prediction with a
broader set of variables than the MEWS. The investigations
on 440 patients revealed that NEWS reached 0.920 (95%
confidence interval [0.890, 0.940] ) of the area under the
receiver operating characteristics curve (AUROC), with a
sensitivity of 93.6% and a specificity of 82.2% to detect
early clinical deterioration. Traditional prediction techniques
display positive contributions to ICU assessment. However,
their inherent predictability is limited by the emphasis on the
patient’s current survival status, and few studies have focused
on the context of future prediction. With the development
of AI technology in healthcare, several investigations have
concentrated on applying machine learning and DL to predict
clinical deterioration, aiming to overcome the limitations of
traditional methods in addressing the temporal prediction
context.

B. DEEP LEARNING
The deep early warning score (DEWS) was first mentioned
in a study by Kwon et al. [43]. Aiming to address problems
of low sensitivity and elevated false alarm rates, the authors
in this study introduced a DL approach that estimates the
probability of events for individual patients, moving beyond
conventional risk-scoring techniques. The DEWS uses an
RNN structure with a long short-term memory (LSTM)
unit to manage the time-series data input. Experiments on
52, 131 patients revealed that the DEWS (AUROC: 0.850 and
area under the precision-recall curve (AUPRC): 0.044)
outperformed the MEWS (AUROC: 0.603 and AUPRC:
0.003), reducing the number of alarms by 82.2% at the
same sensitivity. In the study [44], a more complicated
DL structure was applied to the DEWS, with a temporal
convolutional network (TCN) used to predict clinical events
over the next 1 to 6 h. Experiments studying 4, 713 ICU
admission patients from 2014 to 2018 indicate that this
method achieves superior results in terms of sensitivity
compared to the LSTM and feed-forward network structures.
With the emergence of the attention mechanism [45],
the DEWS began applying this structure to improve the
performance and interpretability of DL-based healthcare
systems. Shamout et al. [46] developed an innovative, deep,
interpretable end-to-end system that estimates patient event
probability using time-series data and Gaussian process
regression [47]. Their model architecture incorporated a
bidirectional-LSTMencoder and an attentionmechanism that
generated context vectors from the mean and variance of
the input vital signs, resulting in outstanding performance
(AUROC: 0.880). This approach outperformed the precision
of the previous NEWS (AUROC: 0.866), as indicated by the
comparison to the DEWS. The study [48] combined graph
neural networks with an attention mechanism to learn the
complicated dependencies between multivariate time series,

achieving higher performance than DL-based approaches on
two large medical datasets. Despite the notable achievements
due to the variety of DL structures in the DEWS, these
studies were localized to individual healthcare centers, each
with unique qualities and characteristics. Thus, a DEWS
that exhibits robust performance in one healthcare center
might fail in another. This phenomenon is attributed to the
generalization problem arising from data heterogeneity in
local learning (LL). Addressing this challenge requires col-
laborative learning between the healthcare centers, allowing
for collaborative data optimization across centers to create
a global model with consistently high performance across
multiple hospitals.

C. FEDERATED LEARNING
In contrast to DL, the application of collaborative learning,
specifically FL, is a novel concept in ICU care. The
investigation [49] introduces a novel exploration into hospital
mortality prediction employing FL. The results demonstrate
that FL can match the effectiveness of centralized learning
(CL) without necessitating data sharing between hospitals.
Furthermore, the investigation provides an empirical compar-
ison of two widely employed model aggregation techniques
in the ICU context, FedAvg [27] and FedProx [50], assessing
their performance in enhancing prediction accuracy. Person-
alized one-time local adaptation [51] is proposed to address
the problem with the task of predicting hospital mortality
in a realistic multicenter ICU EHR database to preserve
the original unbalanced and non-IID data distribution. The
experimental results demonstrate that personalized, one-
time local adaptation effectively improves the prediction
performance of FL and significantly reduces the commu-
nication rounds, compared with FedAvg and personalized
FL with Moreau envelopes [52]. Researchers [53] have
examined the performance of various FL algorithms for
mortality prediction in a realistic FL environment with FL
clients with ‘extreme’ data distributions, employing real-
world data from an integrated research dataset. Overall,
FL models outperform the local models of participating
hospitals and marginally underperform the ‘ideal’ CL model.
As a prominent FL approach that integrates into ICU care,
FL for ICU mortality prediction [54], is proposed as an
alternative to CL and LL and is evaluated by introducing FL
to the binary classification task of predicting ICU mortality.
This study examined multivariate time-series data from
the MIMIC III database, with an emphasis on laboratory
values and vital signs. This study also examined multivariate
time-series data from the MIMIC III database, with an
emphasis on laboratory values and vital signs. They compared
the performance of four deep sequential models (the fully
connected RNN, LSTM, gated recurrent unit (GRU), and
one-dimensional convolutional neural network) over varying
patient history windows (8, 16, 24, and 48 h) and FL client
counts (two, four, and eight). The results reveal that CL
and FL produce comparable AUPRC and F1-score measures,
demonstrating their efficacy in predicting clinical outcomes.
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Most research listed above indicates the capacity of FL to
solve data security. Because of the trade-off between security
and data quality, FL in related algorithms achieves equivalent
but not superior results to CL, which benefits from sharing
training data across data centers. This situation motivates
this investigation to propose a comprehensive FL application
method that ensures confidentiality while providing optimal
performance in clinical status prediction tasks.

III. PROPOSED METHODS
This section provides the problem definition and proposed
framework for Deep-CFL for predicting ICU clinical status.
The main purpose of this study is to develop a DL risk
score to be implemented in the ICU. When this score reaches
a specific threshold value, it triggers an alarm that alerts
the doctors. When the alarm is triggered, doctors access
the medical records or go directly to the patient to assess
their condition and take the necessary actions. Through
this process, the emergency team primarily aims to prevent
patients from needing cardiopulmonary resuscitation (CPR)
or intubation. They strive to use their skilled techniques to
prevent patient mortality if such measures are unavoidable.

FIGURE 2. Problem definition. This research strategy indeed sets a
suitable context for developing a federated learning (FL) system, which is
designed to leverage decentralized datasets for model training while
preserving data privacy.

A. PROBLEM DEFINITION
This study initially establishes an optimal context for
developing a prediction system in a federated environment.
Figure 2 illustrates the designed context to develop Deep-
CFL. The FL environment comprises N local healthcare
centers with their corresponding local datasetsD and a central
server responsible for aggregating local models (Mi) and
updating the global model (Mg). The primary goal is to
engineer a learning algorithm that harnesses data from these
local data centers and the server to improve the performance
of Mg while preserving data privacy. The objective is to solve
the following:

argmin
Mg

(
1
N

N∑
i=1

Li
(
Mg,Di

))
(1)

where Li
(
Mg,Di

)
is the empirical loss of Di.

Algorithm 1 Deep Contrastive Federated Learning (Deep-
CFL) for In-ICU Clinical Status Prediction
1: Input: N local datasets, initial local model Mi. Number

of communication rounds T , temperature τ , weighting
coefficient µ, learning rate η.

2: Output: Updated global modelMg.
3: Global Initialization: Server initializes the global model
Mg.

4: Begin FL Process
5: for t = 0 to T − 1 do
6: Step 1: Distribute Global Model:
7: Server sends M t

g to all participating local healthcare
centers.

8: Step 2: Local Model Updates:
9: for i = 1 to N do

10: Update local modelM t
i with local data Di.

11: For each input data point x(i) ∈ Di:
12: zg← Mg(x)
13: zt ← M t

i (x)
14: zt−1← M t−1

i (x)
15: Contrastive loss:

16:
Lc←

− log exp(sim(zt ,zg)/τ)
exp(sim(zt ,zg)/τ)+exp(sim(zt ,zt−1)/τ)

17: Focal loss:

18:
Lf (pi)←
−yi (1− pi)γ log (pi)− (1− yi) p

γ
i log (1− pi)

19: Imbalance loss:
20: Li← 1− 2×

∑n
i=1 wi×yi×pi+ϵ∑n

i=1 wi×yi+
∑n

i=1 wi×pi+ϵ
21: Classification loss:
22: Lsup = Lf (pi, yi)+ Li (pi, yi)
23: The total local loss:

24:
L = Lsup

(
M t
i ; (x

(i), yi)
)
+

µ · Lc
(
M t
i ;M

t−1
i ;Mg; x(i)

)
25: end for
26: Step 3: Collect Local Models:
27: Local centers send updated models M t

i back to the
server.

28: Step 4: Update Global Model using Weighted Aver-
aging:

29: M t+1
g ←

∑N
i=1

|Di|∑N
j=1 |Dj|

M t
i

30: end for
31: End FL Process

B. AN OVERVIEW OF PROPOSED METHOD
We proposed Deep-CFL based on the FedAvg algorithm.
Figure 3 presents the overview pipeline of Deep-CFL.
First, we defined the general structure of the prediction
model (M ) on both local healthcare centers and the server.
Figure 3A illustrates the architect of the based model. The
proposed network has three components: A base encoder (E),
a projection head (J ), and a classification head (C). For each
input xi of local data i, E extracts the representation zi from
xi. Refer from [55], projector J is added to map zi into a space
of fixed dimension. The overall function of this step could be
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FIGURE 3. Overview of the Deep Contrastive Federated Learning (Deep-CFL) framework. Panel A presents the architecture of the foundational
prediction model used within both the local healthcare centers and the central server, including three components: a base encoder for initial data
processing, a projection head for dimensionality reduction, and a classification head for outcome prediction. Panel B depicts the four-step FL process:
(1) Distribution of the global model from the server to local healthcare centers; (2) Local model updates at each center, incorporating contrastive
learning for feature representation optimization and classification losses for accuracy enhancement; (3) Collection of locally updated models by the
server; and (4) Global model updating through the averaging of local model weights.

represented as:

zi = J (E (xi)) (2)

As regularly supervised learning algorithms, the classifica-
tion head C uses extracted feature zi to produce the predicted
values for clinical outcomes (yi).

Algorithm 1 describes the FL workflow as part of the
Deep-CFL ICU clinical status prediction. This FL cycle,
also illustrated in Figure 3B, unfolds across four steps:
In step (1), the server distributes the global model Mg
to all participating local healthcare facilities, ensuring that
each center uses the most recent version of the model for
local training. Step (2), is considered the most important
stage, involves the model refining in each local dataset Di.
This refinement entails using contrastive learning on each
input data point x(i) to optimize the feature representation
z = J (E(x(i))), followed by applying classification loss
to improve the prediction accuracy of y = C(z). Step (3)
involves aggregating the locally updated models back at
the server, demonstrating the collaborative component of
the Deep-CFL system. In Step (4), the server averages the
weights of the obtained local models to update the global
modelMg. UpdatedMg is then used as the foundation for the
next round of FL, gradually improving the model’s accuracy
and generalizability with each iteration.

More detailed descriptions of the proposed framework
components are introduced in the following sections.

C. DEEP LEARNING MODEL ARCHITECTURE
In our exploration of the Deep-CFL framework, we focus
on two key case studies that highlight the flexibility and
resilience of our approach: (1) determining present clinical
status and (2) predicting future clinical status. The structure

of the base prediction model M is configured differently
depending on the specific needs of each prediction scenario.
Figure 5 describes the specific structure of M for each case
study.

We configure the structure and parameters of the base
models based on two criteria: Highly interpretable and
suitable for the prediction context.

FIGURE 4. Visualization of integrated gradients (IG) for high and low
impact features. The left panel shows the gradient magnitude for z1,
which shows significant volatility and a strong influence on the model’s
output. The usage of a sine wave adjusted by the interpolation factor (α)
to decrease towards the end illustrates a genuine scenario where the
feature’s impact may peak at specific times and subsequently fade,
demonstrating its vital role in deciding model predictions. The right panel
shows z2 with low gradient magnitude alterations, indicating a negligible
effect on the model’s predictions. The soft cosine wave, slightly offset to
ensure it remains positive, shows instances in which a characteristic has
a consistent but minor influence over its range, emphasizing its relevance
in determining the outcome.

1) EXPLAINABLE ARTIFICIAL INTELLIGENCE WITH THE
INTEGRATED GRADIENT METHOD
Algorithm 2 describes the base model optimization method
using IG. From the initial structure of E , we evaluated
the IG value calculated from the extracted representation z
to quantify the contributions toward the model predictions.
Based on the value of IG, we restructured E to increase the
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Algorithm 2 Optimizing Model Components Using Inte-
grated Gradients (IG) for Enhanced Interpretability and
Performance
1: Input: x, x̄,E, J ,C
2: Output: Optimized E, J ,C
3: Initialization: Initialize E, J ,C
4: Step 1: Feature Extraction and IG Computation
5: for xi in input do
6: zi = J (E(xi))
7: for zij in zi do
8: Define baseline z̄ij
9: IGij = (zij − z̄ij)×

∫ 1
α=0

∂F(z′(α))
∂zij

dα
10: with z′(α) = z̄ij + α(zij − z̄ij)
11: end for
12: end for
13: Step 2: IG Analysis
14: for zij in zi do

15: Influence(zij) =

{
positive, if IGij > 0

negative, if IGij < 0
16: Note: |IGij| indicates influence magnitude
17: end for
18: Step 3: Model Optimization
19: Optimize E, J for interpretability, focus on zi with high
|IGij|

20: Optimize C for performance, prioritize zi with signifi-
cant IGij

21: Step 4: Model Refinement and Evaluation
22: Refine E, J ,C integrating IG insights, evaluate on

validation/test data
23: Return: Optimized E, J ,C

interpretability and performance of z for classification tasks.
The primary purpose of this process is to solve the black-box
problem of DL in medicine through a simple XAI technique.
Specifically, the steps in IG value analysis are performed as
follows:
• The algorithm begins by defining the initial structures
and parameters for the model components E , J , and
C , which lay the framework for a thorough feature
extraction and evaluation process.

• The model extracts features zi from input data xi using
the encoder E and projection head J . The IG values
for these representations are then computed against a
predetermined baseline (z̄i) as a reference point. The
IG value of jth representation of ith data point (zij) is
calculated as:

IGij =
(
zij − z̄ij

)
×

∫ 1

α=0

∂F
(
z′(α)

)
∂zij

dα (3)

where z̄ij is the baseline value - a reference or starting
point for the IG calculation and is often chosen to
represent the feature’s ‘absence’ or ‘neutral’ condition
within the context of the model’s task. The interpo-
lated feature vector between z̄ij and zij, denoted as

z′(α) = z̄ij + α ×
(
zij − z̄ij

)
. z′(α) enables the approach

to consider how the model’s prediction changes as the
feature value shifts from the baseline to its actual value.
The variable α, which ranges from 0 to 1, is used
to interpolate between the baseline and actual feature
values. As α increases from 0 to 1, z′(α) transitions
from z̄ij to zij, tracing a path along which the gradient
of the model’s output about the feature zij is integrated.
∂F(z′(α))
∂zij

is the partial derivative of the model’s output
F for the feature zij, evaluated at the interpolated
point z′(α). This gradient measures how changes in the
feature value impact the model’s prediction along the
interpolation path. To represent this process visually,
we illustrate and explain the gradient magnitude of
2 extracted representations z1 and z2, which are extracted
from 2 different encoder structures, in Figure 4.

• We assess the generated IGij values to discover features
with positive contributions (showing an increase in the
model’s output) and negative contributions (indicating
a decrease). In particular, higher IGij values indicate
a better influence of a specific feature on the model’s
predictions.

• Finally, the structures and parameters ofM that have the
highest IG value are selected and updated to the initial
parameters.

Regarding the encoder-to-decoder structure, IG contributes a
large portion of the system interpretability by quantifying the
contribution of each extracted representation. This method
assists physicians in understanding the reasons for using
network structures in DL models. Besides IG, the process
of shaping the structure of the base model depends on
the clinical prediction context, which is described in the
following two sections.

FIGURE 5. Base model architecture for both case studies within the
Deep-CFL framework. Panel A depicts the architecture designed for
predicting the current clinical status employing a Multilayer Perceptron
(MLP) structure for the prediction. Panel B shows the model configured
for prediction of clinical status at a future time point, incorporating a
Recurrent Neural Network (RNN) as the core structure for handling
sequential data, aiming to capture the temporal dynamics of the clinical
data for prediction.

2) PRESENT-TIME PREDICTION
By including IG in the decision process for selecting a
multilayer perceptron (MLP) as the principal architecture
for the present-time prediction problem, we dramatically
improved the interpretability and practical applicability of
the proposed model. As illustrated in 5A, the present-time
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prediction model, denoted as Ms uses an encoder-to-decoder
structure using the MLP design for both E and C . Numerous
studies [56], [57], [58], [59], [60], [61], [62], [63] have
demonstrated the popularity and effectiveness of MLP in
the medical field, including critical applications in ICU and
mortality prediction tasks. The projection head J , for all
prediction contexts, uses the dense layer with the rectified
linear unit (ReLU) activation function to refine and enhance
feature representations extracted by E , introducing non-
linearity to enable the learning of more complex patterns.
This additional processing step aims to improve the quality
and interpretability of the features before they are utilized
for further tasks or predictions, effectively bridging the gap
between raw data and actionable insights.

3) FUTURE-TIME PREDICTION
Within the scope of this predictive task, to simulate the
complexities associated with time-series classification prop-
erly, the input data must be transformed into a sequential
format. In particular, the proposed approach entails using
previous data to estimate outcomes at future time intervals.
From a healthcare perspective, this approach is similar to
how a physician examines a patient’s medical history to
assess and estimate health outcomes [43], such as survival
prediction [64].

For medical time-series classification, the RNN archi-
tecture is widely recognized as a potent and frequently
employed technique [65], [66], [67]. The LSTM network
displays improvements over traditional RNNs by solving
vanishing gradient problems [68]. This method exhibits high
compatibility and interpretation for ICU systems [69], [70],
[71] and EHR data [72], [73], [74]. Incorporating insights
from IG, we have selected an RNN structure with LSTMunits
(as depicted in Figure 5B) to serve both E and C within the
context of Future-Time Prediction model (denoted as Md ),
while J still retains the Dense layer structure with ReLU
activation.

The detailed parameters of the base models are described
in Section IV-C3.

D. LOCAL OBJECTIVE
As presented in Figure 6, the local loss of Deep-CFL contains
two parts. The initial element is the contrastive loss, denoted
by Lc. The following components include losses associated
with supervised learning, notably the focal loss (expressed by
Lf ) and imbalance loss (denoted by Li). These losses were all
designed to address significant problems encountered in the
ICU prediction framework.

1) CONTRASTIVE FEDERATED LEARNING (CFL)
If local data Di are employed in local training. For every
input data point x, we extract representation z of x from
global model Mg (i.e., zg = Mg(x)), representation of x from
local model of last round M t−1

i (x) (i.e., zt−1 = M t−1
i (x)),

and the representation of x from local model being updated

FIGURE 6. The local loss in Deep-CFL.

(i.e., z = M t
i (x)). Since the Mg should be able to extract

better representations, our purpose is to reduce the distance
between zi and zg while increasing the distance between zt
and zt−1. The model-contrastive loss is defined based on NT-
Xent loss [75]:

Lc = − log
exp

(
sim

(
zt , zg

)
/τ
)

exp
(
sim

(
zt , zg

)
/τ
)
+ exp (sim (zt , zt−1) /τ)

(4)

where exp
(
sim

(
zt , zg

)
/τ
)
calculates the exponential of the

similarity between the current local model representation zt
and the global model representation zg, scaled by a tempera-
ture parameter τ . The denominator sums the exponentiated
similarities of zt to both zg and zt−1, hence leveling the
similarity measure. By including zt−1, the model not only
aligns zt with zg but also distinguishes zt from the prior local
model’s representation, promoting representation variety and
adaptability. The contrastive loss mechanism underpins the
approach of Deep-CFL to fine-tune feature representations
in FL settings, ensuring that each iteration brings the local
models closer to extracting clinically relevant, predictive
features from EHR data, improving the overall prediction
accuracy.

2) SUPERVISED LEARNING
To improve the predicted accuracy of the classification head
in the presence of imbalanced data, we applied the focal
loss (Lf ) alongside the imbalance loss (Li). Focal loss is an
alternative form of cross-entropy loss specifically designed to
address problems associated with imbalanced datasets [76],
[77]. The effectiveness of Lf has also been proven in the FL
frameworks [78]. The function of Lf is expressed as:

Lf (pi) = −yi(1− pi)γ log(pi)− (1− yi)p
γ
i log(1− pi) (5)

where yi indicates the ground truth for data point ith. yi =
1 represents an ‘‘event’’ occurring in ICU and vice versa.
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pi is the predicted probability for the ith data point being
an ‘‘event’’. The focusing parameter γ influences the degree
of focus. A smaller γ emphasizes cases that are difficult to
classify. Lf prioritizes misclassified situations, particularly
complex ones. The goal is to minimize the weight of simple
cases while raising the weight of more challenging ones,
which are frequently underrepresented in the dataset. This
method allows the model to focus on tough examples,
resulting in superior representations.

To complement the ability of the model to manage
imbalance classification, in addition to Lf , we used imbalance
loss Li, which is conceptually derived from the Dice
coefficient loss [79]. The Dice coefficient (denoted as Sdice),
which is commonly used in segmentation tasks, evaluates the
overlap between two samples. Its efficacy in segmentation has
led to its application as the Dice loss for dealing with class
imbalance in classification problems. The formula of Sdice is:

Sdice =
2× |X ∩ Y |
|X | + |Y |

(6)

where X and Y represent the predicted and actual values,
respectively. For clinical prediction context, this translates
to evaluating the overlap between the predicted positive
class (predicted as ‘‘event’’) and the actual positive class
(actually ‘‘event’’), normalized by the size of each class. Li
(or Dice loss) is implemented as 1 − Sdice. It concentrates
on correctly identifying positive (often minority) instances
and penalizes the model more strongly for misclassifications
in this class. This is especially essential in datasets when
positive examples are uncommon but of high interest. Li is
defined mathematically as follows:

Li = 1−
2×

∑n
i=1 yi × pi + ϵ∑n

i=1 yi +
∑n

i=1 pi + ϵ
(7)

where yi is the ground truth for sample i; pi is the projected
probability of sample i; and ϵ is a smoothing factor to
avoid division by zero. To further mitigate the imbalance
challenge, we adjust this function by incorporating class
weights inversely proportional to their frequencies within the
dataset:

Li = 1−
2×

∑n
i=1 wi × yi × pi + ϵ∑n

i=1 wi × yi +
∑n

i=1 wi × pi + ϵ
(8)

where wi signifies the weight attributed to the ith sample,
dependent on its class label. The weight for samples in the
‘‘event’’ class is determined as nneg

npos
, where nneg and npos are

the counts of negative and positive cases, respectively. For
‘‘non-event’’ samples, wi is set to 1. This weighting method
increases the importance of the minority class - often the
crucial ‘‘event’’ cases in clinical settings - encouraging the
model to pay attention to these underrepresented but critical
occurrences.

For t th local modelM t
i , the classification loss of supervised

learning progress Lsup
(
M t
i ; (x, y)

)
for an input (x, y) is:

Lsup
(
M t
i ; (x, y)

)
= Lf (pi, yi)+ Li (pi, yi) (9)

where pi is the probability of the positive class predicted by
M t
i for x.

3) FINAL LOCAL TRAINING LOSS
The final local loss of an input (x, y) is calculated as the
amalgamation of supervised and contrastive losses:

L = Lsup
(
M t
i ; (x, y)

)
+ µ · Lc

(
M t
i ;M

t−1
i ;M

t
g; x

)
(10)

The weighting coefficient µ balances the contrastive loss in
the total loss equation, allowing for variable modifications
to prioritize the accuracy of the supervised learning and
the quality of the representation learning based on unique
training demands or objectives. The local objective of Deep-
CFL is to minimize the following:

min
M t
i

E(x,y)∼Di
[
Lsup

(
M t
i ; (x, y)

)
+µLc

(
M t
i ;M

t−1
i ;M

t
g; x

)]
(11)

E. UPDATING THE GLOBAL MODEL THROUGH WEIGHTED
AVERAGING
In the next stage, the local centers send the revised modelM t

i
back to the central server. This step emphasizes the essence
of the FL framework, in which localized insights are gathered
independently across various healthcare environments and
then combined into a single, global perspective. After
collecting local models, the server combines them to create
the global model, M t+1

g , for the following iteration. This
synthesis uses a weighted average method [80], as follows:

M t+1
g ←

N∑
i=1

|Di|∑N
j=1

∣∣Dj∣∣M t
i (12)

The contribution of each local model to the updated global
model is correspondingly weighted by the size of the relevant
dataset Di. Weighted FedAvg guarantees that insights from
larger datasets do not eclipse those from smaller ones,
preserving a fair balance of learning across the network.
By weighting the contributions depending on the size of
Di, Mg better matches the real-world distribution of data
across local centers. Finally, this technique improves the
resilience and generalizability of Mg by including a wide
range of localized insights, allowing the model to navigate
the intricacies of many patient populations and diseases.

IV. EXPERIMENTAL RESULTS
This section provides information on the experimental
data, preprocessing steps, experimental settings, results, and
interpretation.

A. DATA COLLECTION
The Chonnam National University Hospital Independent
Institutional Review Board approved the study protocol.
To simulate the prediction process in the ICU realistically,
all data in this study are clinical EHR data. To assess the
efficacy of Deep-CFL, we employed three datasets consisting
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TABLE 2. Description of three experimental datasets in this work. RRT stands for ‘Rapid response team’ database, MIMIC III stands for ‘Medical
information mart for intensive Care III’ database, and eICU stands for ‘eICU collaborative research’ database.

of one private and two public datasets. For the in-house data,
we presented the Chonnam Hospital Rapid Response Team
(RRT) dataset. The public datasets used in the experiment
areMedical InformationMart for Intensive Care (MIMIC III)
[81], and the eICU Collaborative Research Database (eICU)
[82]. The description of three experimental datasets is shown
in Table 2.

1) CHONNAM HOSPITAL RAPID RESPONSE TEAM DATASETS
The RRT dataset is a database that includes over 39 kinds of
clinical information from 25, 329 patients admitted to Hak-
dong Chonnam National University Hospital in South Korea
between February 1, 2021, and November 30, 2021. Regard-
ing data types, the input variables from the RRT dataset
are divided into two main types: categorical and numerical.
Categorical groups include patient demographic data (e.g.,
age, gender, and hospitalization) and have constant values
over time. Numerical data are patient clinical characteristics
measured hourly (e.g., vital signs, such as heart rate and blood
pressure, or laboratory tests, such as pCO2 and albumin). The
RRT dataset used 39 variables (including seven demographic
data, five vital signs, and 27 laboratory tests) as the input
features for the system. The target variable is binary, with
1 denoting an event and 0 representing a non-event. An event
is defined as a situation in which medical professionals
detect clinical deterioration in ICU patients, necessitating
interventions, such as cardiopulmonary resuscitation [83] or
tracheal intubation [84].
The class distribution of the RRT dataset displays a signif-

icant imbalance between these two classes. With 162 event
samples compared to 25, 167 non-event samples (a 0.64%
imbalance rate), this dataset represents a significant challenge
for the imbalance classification task. The experimental
process maintains this imbalance rate without using any class
balancing method in the preprocessing step to highlight the
classification ability of Deep-CFL for challenging datasets.

2) MEDICAL INFORMATION MART FOR INTENSIVE CARE III
DATASET
The large, single-center MIMIC III dataset contains infor-
mation on 38, 597 patients admitted to critical care units
at a large tertiary care facility. We followed the tutorial in
[85] to streamline data gathering and eliminate unnecessary
data groups due to the enormous size of this dataset, which
exceeded the research resource capabilities. We concentrated
solely on the subset of patients admitted to ICUs who had
the complete baseline data necessary for predicting clinical
events, such as vital signs and laboratory tests. Consequently,
this approach resulted in selecting 18, 281 samples for
inclusion in this study from the raw dataset. The input
variables from MIMIC III include 24 features (three cate-
gorical and 21 numerical features). Regarding the medical
context, input features also include demographics, vital
signs, and laboratory test data but are different in quantity
compared to those in the RRT dataset. The output variable
for MIMIC III is also binary, with 0 for alive and 1 for
ICU mortality cases. Similar to RRT, MIMIC III exhibits
a class imbalance with a 4.6% imbalance rate. Specifically,
the minority group (ICU mortality) comprises 804 samples
compared to 17, 477 survival samples.

3) EICU COLLABORATIVE RESEARCH DATABASE
The multicenter eICU database contains high-granularity
data on over 200, 000 ICU admissions monitored by eICU
programs in the United States. With the same processing
method as in MIMIC III, following the tutorials [86],
we collected data on 27, 865 patients admitted to the ICU
from the raw data. This dataset has 14 input features,
comprising four categorical and ten numerical features.
Similar to MIMIC III, the binary outcome of eICU includes
1 for ICU mortality and 0 for alive.

Among the three experimental datasets, the eICU dataset
exhibits the least severe class imbalance, with the minority
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class constituting 12.97% (3, 523 mortality cases compared
to 27, 160 survival cases). This study purposefully selects
three datasets—RRT, MIMIC III, and eICU—each sharing
class imbalance challenges but differing in the variation
of their imbalance ratios, arranged in descending order of
imbalance. This strategic selection enables us to evaluate
the performance of the proposed model thoroughly under
various scenarios of class imbalance.We aim to determine the
stability and broad applicability of the model by evaluating its
performance on datasets with varying imbalance rates. This
technique reduces the possibility of biased evaluations, which
could occur if models were only evaluated on datasets with a
minimal imbalance, where improved performance could be
attributed to a thorough representation of the minority class.
Conversely, the underperformance of the model on datasets
with a severe imbalance may limit its utility in broader
contexts. Thus, this methodology ensures a fair and complete
analysis of the capabilities of themodel, highlighting the need
for adaptability in varying class distributions.

B. DATA PROCESSING
The previous section discussed the cohort and variable
selection steps along with the experimental datasets. This
section outlines the variable processing, data transformation
into suitable input for DL models specific to each case study,
and client data splitting within the FL environment.

FIGURE 7. Prediction context. Panel A: Example of the present-time
prediction context, determining the clinical status of a patient at the
current time point. Panel B: Example of the future-time prediction context,
predicting the clinical outcome of a patient in the future time point.

1) VARIABLES PROCESSING
As mentioned in the section I, we assessed Deep-CFL in
two case studies: determining the clinical status at present
and predicting the clinical status at a future time. Figure 7
6 presents an example and explanation of the two prediction
cases.

In the present-time prediction case, we focus on the
capacity of the system for instant activation, simulating a
rapid response process in the RRS for each piece of clinical
information at a given time. Specifically, for the collected
clinical data (Xt ) at a time point t , the system aims to predict
the immediate clinical status (Yt ) at t . The formula for this
problem is expressed as follows:

Yt = Ms (Xt) (13)

where Ms represents the optimal static prediction model for
this case study. The input data of experimental datasets has

two main types: categorical (denoted as xcat ) and numerical
(denoted as xnum). For xnum, we apply standard scaler to scale
the numerical data to have zero mean and unit variance. The
mathematical function for this step is:

ψ
(
xnumi

)
=
xnumi − µi

σi
(14)

where ψ
(
xnumi

)
, µi, and σi are the standardized value,

mean, and standard deviation of the i − th numerical feature
across all observations in the dataset, respectively. For xcat ,
we apply one-hot encoding to transform categorical variables
into a binary matrix, ensuring compatibility with ML models
without imposing ordinality. The function of this step could
be expressed as:

φ (xcat)j = δck ,cj =

{
1 if ck = cj
0 if ck ̸= cj

(15)

where φ (xcat)j is j−th element of the one-hot encoded vector
xcat . δck ,cj is the Kronecker delta function [87], comparing
the actual category ck of xcat to each possible category cj in
the dataset. These processing methods are implemented using
the sci-kit learn library [88].

FIGURE 8. Example of a window interval sliding (WIS) mechanism, where
d denotes the window size, and k denotes the window sliding size. The
input in this example is the clinical information from 1:00 to 8:00, the
prediction target is the clinical outcome at 15:00. Setting d = 8, k = 7, the
first window (query for prediction window) w1 = {(1 − 1) ∗ 7 + 1, . . . ,

(1 − 1) ∗ 7 + 8} = {1, . . . , 8}. The 2nd window w2 = {(2 − 1) ∗ 7 + 1, . . . ,

(2 − 1) ∗ 7 + 8} = {8, . . . , 15} contain the target time (15:00) is the
prediction window. In this example, the WIS must perform one sliding
step, with a window size of d = 8 and a sliding step size of k = 7,
to facilitate the prediction at the desired future time point. For extended
prediction periods or time points, the system might execute additional
sliding steps, the quantity of which is dictated by the values of d and k .

The future-time prediction context focuses on predicting
the clinical outcomes at a future point t + 1t based on
historical and current clinical data observed from t −1t ′

to t , where 1t ′ and 1t represent the lengths of the
observation window and the prediction interval, respectively.
The function of the dynamic predictive modelMd of this case
study is expressed as follows:

Yt+1t = Md
(
Xt−1t ′:t

)
(16)
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In this case study, both standard scaling and one-hot encoding
were used to preprocess the data. Additionally, the input
data were transformed into sequences that correspond to
the temporal nature of the model structure to meet the
requirements of the future-time prediction context [89].
To represent the time-series input in the temporal dimension,
we transformed the scaled data into a set of window samples
W = {w1, . . . ,wT }, applying the Window Interval Sliding
(WIS) mechanism [90], a technique widely employed in
medical time-series analysis. Each t th window is denoted as
wt = {x(t−1)∗k+1, . . . , x(t−1)∗k+d }, where t ∈ {1, ..,T }; T
is the number of sliding steps that WIS needs to perform
for a specific prediction case. wt comprises d consecutive
time steps and a sliding size of k , as shown and explained
in Figure 8.

FIGURE 9. Client data splitting strategy for FL environment.

2) DATA SPLITTING
For client data splitting, we applied a strategy based on strat-
ified k-fold cross-validation (CV), as depicted in Figure 9.
This method is particularly effective in scenarios where data
are inherently decentralized, such as in FL environments.
Initially, the experimental dataset is partitioned into N distinct
subsets to represent the distribution of data across N clients
in an FL setup. Each subset is designed to imitate the client’s
local dataset, ensuring that each component of the data is
indicative of the entire distribution. This technique iteratively
uses one subset as independent local data for testing and
the remaining N – 1 subsets for training/performing the
FL process. This method is performed N times, with each
of the N subsets serving as the testing set just once. This
arrangement resembles k-fold CV, adapted for the FL context,
where N represents the number of folds.

In each iteration of the FL context, a unique subset
is designated as the independent local dataset for testing,
whereas the remaining N – 1 subsets are used collectively for
FL. This collaborative method promotes the construction of
an optimal global model, which is applied to the independent
local dataset designated for validation. This iterative process
ensures that each subset serves as an independent testing set
at least once during the validation cycle while contributing
to the training of the global model in subsequent iterations.
During the training phase, insights from N – 1 subsets
are aggregated to develop the global model, allowing the

distributed data to be used without direct sharing. Evaluating
the optimized global model on untouched local data assesses
its efficacy on previously unseen information, offering insight
into the ability of the model to generalize across varied
data landscapes and adapt to unique data distributions
encountered in the FL framework. This cyclic validation
approach highlights the broad application of the model and
underlines the fundamental privacy and security principles of
the FL paradigm.

C. EXPERIMENTAL SETTING
The proposed method and all experiments were implemented
using Python and TensorFlow (v. 2.11.0) on an Nvidia
GeForce RTX 3090 graphics processing unit (driver v.
530.30.02) and CUDA (v. 12.1) with 64 GB memory.

FIGURE 10. Overall validation strategy.

1) VALIDATION STRATEGY
Figure 10 presents the overall validation strategy. This inves-
tigation divides the experiment into two parts corresponding
to each prediction context.

For the present-time prediction context, we experimented
with the comparison methods with variations in the number
of clients. Then, we extracted sample results from this
main experiment to perform two additional experiments that
included experimental results over a certain number of com-
munication rounds and an error analysis. The experimental
results over a certain number of communication rounds
evaluate the stability of FL-based methods. With the ablation
experiment setting for comparison methods, this strategy
aims to evaluate the contribution of CFL and imbalance
learning in the system. Through the error pattern analysis,
this study provides an intuitive view of the comparison results
and evaluates the effects of imbalance learning on the balance
between sensitivity and specificity.

For the future-time prediction context, we experimented
with the comparisonmethods by varying the future prediction
interval while maintaining a certain number of clients. This
analysis explores the predicted accuracy and reliability of
each method across long time horizons, which are critical
for successful ICU decision-making in dynamic contexts.
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By comparing the experimental methods and representing
the probabilistic result patterns for event time prediction,
we verified the contribution of CFL and imbalance learning.
An extensive experiment was also performed in this case.
Specifically, to evaluate the effectiveness of IG, we conducted
Deep-CFL experiments with various base model structures.

TABLE 3. Repetition of Deep-CFL components in comparison methods for
ablation study.

2) COMPARISON METHODS
Based on related studies described in Section II, we used
four comparison methods corresponding to the three main
learning algorithms in FL studies, including LL-, CL-, and
FL-based methods. For LL-based approaches, where each
local healthcare center trains a model independently using its
dataset, the objective function is defined as minimizing the
empirical loss L(M ,D) for each local dataset D individually:

argmin
Mi

Li (Mi,Di) (17)

Two comparable methods in this type of learning are Deep-
LL and MEWS. With Deep-LL, we designed a DL-based
model structure using IG with each prediction context similar
to the proposed method and then trained them independently
on each local data point. The MEWS is a special method
because it directly evaluates outcomes through basic vital
signs on the testing sample. This traditional method also
operates independently in each healthcare center; thus,
we classified it as LL. When evaluating the MEWS,
to balance the sensitivity and specificity based on [41], all
samples with MEWS ≥ 5 are considered as events.
For CL-based approaches, where all data from the local

healthcare centers are aggregated and used to train a
centralized model (Mc), the objective function aims to
minimize the empirical loss L (Mc,Di) across the entire
aggregated dataset. This loss is represented as follows:

argmin
Mc

(
N∑
i=1

L (Mc,Di)

)
(18)

The experimental method corresponding to this principle is
Deep Centralized Learning (Deep-CL). We design a DL-
based model structure using IG with each prediction context
and then train them on the aggregation data.

The experimental method corresponding to this principle
is Deep-CL. We designed a DL-based model structure using
IG with each prediction context and then trained them on
the aggregation data. The objection function for FL was
described in 1. To evaluate the effectiveness of CFL, we used
Deep-FedAvg, a method that uses the same FL processes as

Deep-CFL but removes the contrastive learning part as an FL-
based method for comparison.

During the training procedure, we set up the structure
and loss function for the ablation study comparison method-
ologies. Specifically, except for the MEWS, which is a
method that directly evaluates the testing sample, other
comparison methods all repeat the components or loss
functions in the proposed method. As listed in Table 5,
Deep-LL, Deep-CL, and Deep-FedAvg all use the same base
model structure as Deep-CFL, which was configured using
IG. However, we only used Li during Deep-CL and Deep-
LL training, whereas Lf was applied for all three methods.
Contrastive learning is a special structure that represents the
proposed method; thus, CFL is not repeated on any of the
mentioned comparison methods. The training and validation
processes discussed in Section IV-B2 apply the stratified
k-fold CV strategy. The training and validation process has
been mentioned in Section IV-B2 - applying the Stratified
K-Fold CV strategy.

TABLE 4. Parameter space settings for the base models.

3) PARAMETERS SETTINGS
We set the parameters for the base model corresponding to
each prediction context. Table 4 displays the search space
for each parameter corresponding to each model structure.
Rather than conducting expensive training and evaluations for
each parameter in the search space, calculating the IG values
allows efficiently selecting the most effective parameter.
This method saves substantial resources and time while
streamlining the hyperparameter tuning procedure.

Based on this optimization process, we applied the MLP
encoder-to-decoder architecture as the main structure for the
present-time prediction model Ms, which has three hidden
layers with 64, 128, and 256 units each, with dropout rates
of 0.2, 0.3, and 0.2 for each layer in the sequence. The
ReLU activation function was used across all layers, with a
learning rate of 0.001, L2 regularization, and a weight decay
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of 1.0e-3. A dense layer with two units and sigmoid activation
was included at the end of the decoder to obtain the final
prediction output.

For the future-time prediction model Md , we employed
the LSTM encoder-to-decoder framework as the foundational
architecture. This model was built with three LSTM layers,
with 16, 32, and 64 units each, and dropout rates of 0.2, 0.2,
and 0.1 to improve generalization. The activation function for
all layers was ReLU, with a learning rate of 0.0001 to prevent
overfitting. Next, Md includes a dense layer with two units
and a sigmoid activation function at the end of the decoder to
facilitate the final predictive output, allowing for exact future-
time prediction results.

The global model Mg was set up using the server to start
FL training. Training consists of N local datasets identified
via k-fold CV. For the experiment varying the number of
clients, we conducted five-, seven-, and nine-fold CV. Each
local healthcare center receives M t

g and updates the local
model M t

i over 50 communication rounds. We set learning
rate η = 0.01, temperature τ = 0.07 (only for Deep-CFL),
and weighting factor µ = 1.0. The local models are trained
for 100 epochs on their respective dataset Di. The updated
local models M t

i were aggregated via weighted averaging to
form the updated global model M t+1

g . For the CL- and LL-
based methods, the same settings regarding the base model
structures, data division, number of epochs, and learning
rate compared to FL-based methods were performed. The
distinction is that these methods do not undergo evaluation
across multiple communication rounds or incorporate τ and
µ as FL-based methods.

4) EVALUATION METRICS
The main evaluation metrics in this study were calculated
in all included prediction cases: the AUROC, AUPRC, and
the average precision (AP). The three metrics are used in
the context of imbalance classification [91]. The AUROC
metric assesses the capacity of the model to discriminate
across classes, emphasizing the binary classification of event
and nonevent cases in the ICU. For the unequal distribution
of the experimental datasets, where event cases are much
less prevalent than non-vent cases, AUPRC is an important
metric. It assesses the model precision-recall balance, which
is especially relevant in cases where the positive class is
scarce, and the cost of false negatives (FNs) is substantial.
A higher AUPRC score indicates a better balance of precision
and recall, indicating that the model is good at recognizing
the true positive (TP) cases without excessive false positives
(FPs). The AP computes the average value of precision across
multiple recall levels. Similar to AUPRC, AP is beneficial
for dealing with imbalanced datasets because it provides
information on model performance throughout the range of
classification criteria. A higher AP value indicates that the
model can maintain high precision at increased levels of
recall. For all metrics, we reported a 95% confidence interval
over k-fold CV.

Extended experiments include additional comparison cri-
teria based on confusion matrices, providing a complete
perspective of TPs, true negatives (TNs), FPs, and FNs. This
approach enables a detailed study of Type I and II errors
and evaluates the ability of comparative models to solve the
error alarm problem. Type I errors (FP rate) arise when the
model predicts an event that did not occur. Minimizing Type I
errors in clinical settings is critical for avoiding unnecessary
interventions. Type II errors (FN rate) refer to the failure to
predict an occurrence when it occurs. Reducing Type II errors
is critical to provide timely medical treatment for patients.

Furthermore, we present some individual probability
testing samples in terms of the future-time prediction case to
comprehend the model decision-making process, improving
the interpretability in the practical clinical setting. Through
these varied evaluation measures and analyses, we aim to
provide a comprehensive perspective of the performance of
the proposed method and its implications in clinical settings.

D. PRESENT-TIME PREDICTION RESULTS
1) EXPERIMENT RESULTS BY NUMBER OF CLIENTS
Tables 5, 6, and 7 list the present-time prediction performance
of the comparison methods with a variation of the number
of clients on the RRT, MIMIC III, and eICU datasets,
respectively. In the RRT dataset, with five clients, Deep-CFL
achieves a 0.906 AUROC and 0.879 for both AUPRC and
AP, outperforming all comparison methods on three metrics.
As the number of clients increases to seven, fragmenting the
training data into smaller segments, performance declines
across all comparison approaches. For instance, Deep-LL
reduces AUROC by up to 4.1%, Deep-FedAvg decreases
AUPRC by 1.8%, and Deep-CL decreases AP by 8.7%.
In contrast, Deep-CFL retains stable performance, with only
a 1.6% loss in AUROC and 0.2% loss in AP, whereas
its AUPRC metric is unaffected. The performance of
Deep-CFL remains stable when assessed with nine clients,
exhibiting improvement in AUPRC and AP (both increasing
by 0.7%).

The observed decrease in performance for Deep-LL, Deep-
FedAvg, and Deep-CL as the number of clients grows is most
likely owing to data fragmentation, in which smaller training
subsets result in less representative models. Deep-CFL’s
consistent performance, even with additional clients, demon-
strates its durability, which is ascribed to the contrastive
learning mechanism that aligns local models with the global
model, reducing performance disparities. This alignment
contributes to great performance despite fragmented data.
Furthermore, the improvement in AUPRC and AP with
nine customers indicates that Deep-CFL efficiently uses
data diversity, hence improving its generalization potential.
The stability of the AUPRC metric suggests that Deep-
CFL maintains a balance of precision and recall, which
is critical for finding real positives while avoiding false
positives. These results highlight the superior robustness and
adaptability of Deep-CFL in managing data fragmentation
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TABLE 5. Results of present-time prediction of clinical deterioration by the number of clients on RRT dataset. CI: Confidence interval.

TABLE 6. Results of present-time prediction of ICU mortality by number of clients on MIMIC III.

TABLE 7. Results of present-time prediction of ICU mortality by number of clients on eICU.

across an increasing number of local data centers, solidifying
its effectiveness in FL environments, particularly in class
imbalance challenges in the RRT dataset.

In MIMIC III and eICU, Deep-CFL demonstrates out-
standing and stable performance across varying client num-
bers in ICUmortality prediction tasks. Although performance
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typically declines for comparative approaches as the client
count increases, the performance of the proposed method
significantly improves with an increase to nine clients.
During the MIMIC III dataset shift from seven to nine
clients, the MEWS loses 0.2% in AUROC, 0.4% in AUPRC,
and 3.9% in AP, whereas Deep-CFL gains 0.7%, 0.9%,
and 0.3% in AUROC, AUPRC, and AP, respectively. The
improved communication efficiency between clients in Deep-
CFL compared to other learning methods is the reason for its
superior performance as the number of clients increases [92],
[93]. The contrastive learning component allows the local
models to benefit from the global model’s knowledge,
maintaining high predictive accuracy even with increased
client fragmentation. These findings indicate that Deep-
CFL is particularly adept at handling data diversity and
fragmentation, ensuring robust and reliable performance
across different ICU settings. The ability to improve
rather than degrade with more clients highlights Deep-
CFL’s scalability and effectiveness in federated learning
environments, making it a valuable tool for ICU mortality
prediction tasks. In eICU, although comparison approaches
achieve high AUROC scores (more than 0.80), the majority
perform poorly in AUPRC and AP metrics, with scores
typically dropping below 0.50. This finding demonstrates the
effect of the class imbalance on model evaluation measures.
In addition, AUROC can still be relatively high even if the
model performs poorly in the ICU mortality (minority class)
because it assesses the ability to distinguish classes without
considering the class distribution. In contrast, AUPRC and
AP are more sensitive to an interclass imbalance because they
are explicitly concerned with the minority class prediction
performance.

Moreover, the results indicate a considerable precision-
recall trade-off in these models [94]. They may accomplish
better recall (hence the decent AUROC scores) but at the
expense of extremely low precision, as indicated by the
low AUPRC and AP scores. This trade-off is apparent
in imbalanced datasets, where accurately identifying the
minority class without producing too many FPs is difficult.
Despite these results, Deep-CFL still achieves stable AUPRC
and AP scores (e.g., 0.908 for AUROC, 0.658 for AUPRC,
and AP for five clients). In Deep-CFL, CFL enables the
local model to acquire the robust prediction abilities of the
global model during each communication round, resulting
in a final global model with optimal prediction efficiency.
This observation is corroborated by the ablation study
experimental results, revealing that Deep-CFL outperforms
comparable approaches that skip CFL during implementa-
tion. The inclusion of Li serves as a corrective solution,
directly addressing the skewed distribution of classes.
In addition, Li penalizes misclassifications of the minority
class more harshly, ensuring that the model does not neglect
these critical cases, enhancing recall. This enhancement
is accomplished without a considerable increase in FPs,
ensuring high precision. To evaluate the performance of the

models in solving alarm error problems, we performed an
error analysis on the experimental results of a random local
dataset, presented in the next section.

2) TYPE ERROR ANALYSIS
To evaluate the level of late and false alarms for prediction
models on the likelihood of events occurring in the ICU,
Figures 11 and 13 present the confusion matrix of some
experimental methods in the RRT dataset (for seven clients)
and MIMIC III dataset (for five clients), respectively.
Figures 12 and 14 provide detailed analyses of each error type
in the same cases for the comparisonmethods for the RRT and
MIMIC III datasets, respectively.

In a random local data subset from the RRT dataset
comprising 3, 619 samples dispersed across seven clients,
Deep-CFL reliably detected 24 TPs from 28 event occur-
rences, the highest among the comparison methods. Without
the implementation of Li during its training phase, Deep-
FedAvg demonstrated less effectiveness, correctly predicting
the occurrence of clinical events in 18 samples. In addition,
Deep-CL is ineffective despite aggregating data from local
data during training when the event class prediction per-
formance is lowest (12 samples). However, this method is
effective in reducing false alarms with six FP samples.

The two main error types in the targeted clinical setting
context are Type I (false alarm) and II (late alarm) errors.
Type I errors lead to unnecessary anxiety, additional testing,
and therapies that are not required, straining resources and
harming patient well-being. Type II errors are especially con-
cerning in ICU settings because they reflect missed detections
of critical events, potentially leading to delays in necessary
treatment and affecting patient outcomes.Minimizing Type II
errors is critical because they significantly contribute to
unsatisfactory outcomes in ICU settings [95]. Figure 12
depicts the proportion of error prediction samples of the
comparison methods for each error type. For Type I errors,
Deep-CL has the highest efficiency, at 9.4% of the total for
this error type (Figure 12(A)).
However, as an inevitable consequence of each trade-

off relationship between Type I and II errors [96], [97],
this method suffers from high type II errors, with 16 out
of 59 predicted samples encountering type II errors
(27.1% - (Figure 12(B)). While maintaining a high degree of
sensitivity that may result in several false alarms, Deep-CFL
reduces the occurrence of Type I mistakes to the greatest
extent, accounting for just 17% of Type I errors—a figure
only slightly exceeded by Deep-CL. Critically, in addressing
the problem of delayed alerts, the proposed method restricts
the number of instances to four cases, accounting for only
6.7% of all Type II failures.

In Figure 13, for 3, 657 samples in a random local data of
MIMIC III, with splitting for five clients, Deep-CFL exhibits
the most TPs (147 samples) and TNs (3, 370 samples),
displaying a superior capacity to detect event and nonevent
instances accurately. This result reveals that Deep-CFL

VOLUME 12, 2024 117191



T.-N. Nguyen et al.: Explainable Deep-CFL System for Early Prediction of Clinical Status in ICU

FIGURE 11. Confusion matrices of the comparison methods on the random testing local data from the RRT dataset for seven client cases. Panels (a),
(b), (c), and (d) present the confusion matrices for Deep-CFL, Deep-LL, Deep-CL, and Deep-FedAvg, respectively.

FIGURE 12. Error distribution of the comparison methods (for each error type) on the RRT dataset for splitting
for seven clients.

effectively balances sensitivity and specificity, achieving high
performance across both classes. Moreover, the MEWS,
Deep-CL, and Deep-FedAvg perform slightly worse in TPs
and TNs than Deep-CFL, indicating that these approaches

may struggle more to categorize positive and negative cases
reliably.

Out of 214 testing samples with Type I errors, Deep-CFL
accounts for the lowest percentage, with 16.4% (35 error
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FIGURE 13. Confusion matrices of the comparison approaches on the random testing local data from the MIMIC III dataset for five client cases.
Panels (a), (b), (c), and (d) present the confusion matrices of Deep-CFL, the MEWS, Deep-CL, and Deep-FedAvg, respectively.

FIGURE 14. Error distribution of comparison methods (for each error type) on MIMIC III for splitting for five
clients.

samples), whereas Deep-FedAvg accounts for the highest
percentage, with 23.5% (Figure 14). In contrast, Deep-LL,
which is expected to perform better due to direct data sharing,
accounts for 21.1% of the total samples with Type I errors,
on par with traditional methods, such as the MEWS. This
outcome demonstrates that data sharing violates security

principles and contributes less to prediction performance
in this context. The increased precision of Deep-CFL in
avoiding false alarms indicates a considerable improvement
in ICU performance measures. In a study of 165 samples
that resulted in Type II mistakes, the suggested Deep-CFL
approach demonstrated superior performance, accounting for
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just 9.1% (15 error samples ). Further, Deep-CL, the MEWS,
and Deep-FedAvg accounted for a higher proportion of these
mistakes, with percentages of 19.5%, 28.7%, and 25.6%,
respectively. Notably, Deep-FedAvg, which excludes Li
throughout the training phase, has some of the poorest results,
emphasizing the importance of using imbalance learning
techniques to address the problem of delayed detections in
ICU settings successfully.

FIGURE 15. Prediction results of federated learning-based methods over
50 communication rounds on eICU (nine-client splitting case).

3) EXPERIMENTAL RESULTS OVER COMMUNICATION
ROUNDS
Figure 15 illustrates the average prediction AUROC and
AUPRC for FL-based methods (Deep-FedAvg and Deep-
CFL) in eICU for the splitting case with nine clients.
For AUROC (Figure 15(A)), the performance results of
Deep-CFL and Deep-FedAvg rise rapidly by the second com-
munication round, with Deep-CFLmaintaining its advantage.
Notably, following this first surge, both approaches sub-
stantially stabilized, although Deep-CFL regularly reports
a higher AUROC in subsequent rounds (over 0.800 of
AUROC).

The AUROC for Deep-CFL remains consistent at
0.860 from the fifth round onward, eventually rising
to 0.890 in Round 13 and maintaining stability. This
constant result demonstrates that Deep-CFL can preserve
predictions throughout numerous communication rounds,
demonstrating a stable and robust learning process. The
AUROCperformance for Deep-FedAvg varies, with a notable
decrease to 0.830 in Round 25 and oscillations around
0.850 in later rounds. This method ends on a slight increase,
reaching and sustaining an AUROC of 0.852 from Round
46 onward. In Figure 15(B), Deep-CFL displays superior
performance compared to the traditional FL method for the
AUPRC. In particular, Deep-FedAvg experiences a rapid
increase in AUPRC by the second communication round
and gradually improves until reaching a peak of 0.495 by
Round 50. A reduction in the AUPRC occurs between
Rounds 18 and 23, exhibiting performance volatility. A result
below 0.500 for AUPRC is unconvincing in the problem of
class-imbalanced binary classification, especially in clinical
settings, where a high degree of event recognition is required.

Moreover, Deep-CFL presents acceptable results with a
stable value of 0.618 for AUPRC from the 13th round
onwards. From the same FedAvg structure, when adding
CFL and Li, the proposed method demonstrates remarkable

improvement in performance. This result suggests that CFL
and Li are better suited to managing the precision-recall
balance in FL contexts, particularly in instances including
class imbalance. In contrast, Deep-FedAvg, which omits CFL
and Li, fails to achieve the early and consistent performance
improvements achieved in Deep-CFL. This result emphasizes
the significance of personalized techniques for managing
class imbalances in a FL environment. Despite the superior
results compared with the comparison methods, the current
performance of Deep-CFLmust be improved in future studies
for practical applications.

E. FUTURE-TIME PREDICTION RESULTS
1) EXPERIMENT WITH FUTURE PREDICTION TIMES
Tables 8, 9, and 10 exhibit the experimental findings of the
future-time prediction performance of comparison methods
on the RRT, MIMIC III, and eICU datasets, respectively, with
variations in the prediction interval length (k = 8, 16, and
24) and the observation window size (d = 8 h). Table 8
demonstrates that Deep-CFL surpasses the comparative
approaches across all three ranges of future prediction
intervals. When employing an observation window size of 8 h
and forecasting the clinical state in the following 8 h, with a
sample size of five clients, Deep-CFL achieves an AUROC
of 0.911, an AUPRC of 0.855, and an AP of 0.853. These
results are an increase of 2.6% for AUPRC and 6.9% for both
AUPRC and AP compared to Deep-CL, which has superior
results compared to the rest. When the range of future
predictions is expandedwhile maintaining a fixed value of the
observation window, the forecasting process becomes more
challenging due to the uncertainty regarding the adequacy
of previous information in determining outcomes over an
extended future time. The assertion is substantiated by
the observation that all comparative methodologies decline
in efficacy when the future prediction range is expanded
to 16 and 24 h, correspondingly. Nevertheless, Deep-CFL
ensures low degradation with a decrease of 1.9% in AUROC,
9.6% in both AUPRC and AP for 16 h and 5.0% in AUROC,
5.1% in AUPRC, and 9.9% in AP for 24 h when the future
prediction interval is increased, compared to the scenario in
which k is set to 8 h. In contrast, Deep-FedAvg declines by
up to 5.0%, 11.6%, and 8.4% in AUROC, AUPRC, and AP
values, respectively, when scaling k to 24 h, demonstrating
how model-contrastive and imbalance learning contribute
to the predictive flexibility of the system. For k = 24 h,
except Deep-CL and Deep-CFL, the performance of most
experimental methods degrades below 0.800 in the AUROC
and 0.700 for both AUPRC and AP. Known for its sharing
of local data inside a CL framework, Deep-CL has exhibited
exceptional performance compared to traditional LL- and
FL-based methodologies. However, Deep-CFL demonstrates
superior performance compared to Deep-CL, highlighting its
capacity to offer accurate predictions while conforming to the
rigorous data security protocols necessary for EHR data in the
proposed approach.
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TABLE 8. Results of future-time prediction of clinical deterioration by number of future prediction intervals on RRT dataset (the observation window size
d = 8h for five clients).

TABLE 9. Results of future-time prediction of in-ICU mortality by number of future prediction intervals on MIMIC III (the observation window size d = 8h
for clients).

TABLE 10. Results of future-time prediction of in-ICU mortality by number of future prediction intervals on eICU (the observation window size d = 8h for
clients).

For ICU mortality prediction (as shown in Table 9 and 10
for MIMIC III and eICU, respectively), performance tends

to degrade when expanding the value of k is depicted for
all experimental methods. Despite that trend, Deep-CFL
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exhibits stable performance and outperforms all comparison
methods in all prediction interval value settings. Typically,
with k = 24 h in MIMIC III, Deep-CFL achieves 0.882 in
AUROC, 0.705 in AUPRC, and 0.706 in AP, decreasing
by 1.2%, 3.6%, and 3.7%, respectively, compared to its
performance in the case for k = 16 h. In contrast, Deep-
CL reduces AUROC, AUPRC, and AP by 5.0%, 4.1%,
and 4.4%, respectively, indicating much greater reductions
than the proposed technique in the same configuration.
Similar results were observed in the eICU dataset, especially
in situations in which clinical outcomes were predicted
24 h in advance. The performance metrics for AUPRC and
AP fall below 0.700 for all comparison methods except
Deep-CFL. The proposed method consistently maintains
performance levels over 0.720 for both of these metrics.
Based on these results, particularly in the context of
prediction across various intervals, Deep-CFL demonstrates
remarkable resilience to performance dips associated with
extended prediction horizons and consistently outperforms
comparative methods in accuracy and reliability, confirming
its superior adaptability and effectiveness in future prediction
tasks.

In future-time prediction tasks, Deep-CFL maintains high
performance across different future prediction intervals,
effectively managing the increased uncertainty and com-
plexity associated with longer-term predictions through its
contrastive learning component and efficient communication
framework. In contrast, Local Learning (Deep-LL) and
FedAvg show greater performance declines over longer pre-
diction intervals, indicating their limitations in dealing with
extended future predictions and fragmented data. MEWS
continues to underperform compared to Deep-CFL, espe-
cially in predicting minority-class events, demonstrating the
advantage of using advanced machine learning techniques.

These results validate the robustness of the Deep-CFL
system in predicting future clinical states over varying
intervals. Deep-CFL’s superior performance across different
future prediction intervals can be attributed to its advanced
FL framework combined with contrastive learning and
supervised learning techniques. The minimal performance
degradation observed in Deep-CFL, even as the prediction
interval increases, highlights its ability to effectively leverage
historical data to make accurate future predictions. This
resilience is due to Deep-CFL’s ability to balance the
contributions of local models with the global model through
contrastive learning, ensuring each local model benefits
from the broader data distribution without direct data
sharing. The system’s incorporation of imbalance learning
techniques helps maintain high precision and recall, which
is particularly crucial in handling the imbalanced nature
of clinical data. The system’s use of imbalanced learning
approaches helps to retain high precision and recall, which
is especially important when dealing with the imbalanced
nature of clinical data. Deep-CFL’s steady performance as
the prediction interval increases implies that the system
effectively controls the inherent uncertainty and complexity

of longer-term predictions. In contrast to comparison models,
which exhibit more significant performance reductions with
longer prediction intervals, Deep-CFL’s ability to retain
accuracy illustrates its robustness and practical usefulness
in real-world healthcare situations. Deep-CFL’s consistent
performance across multiple scenarios demonstrates its
ability to give reliable and secure predictive insights, making
it an important tool for assisting clinical decision-making in
ICU settings. Overall, Deep-CFL’s robust performance across
varied prediction intervals demonstrates its capacity to handle
the challenges of long-term prediction.

FIGURE 16. Probability sample results of comparison methods in the RRT
dataset for the future 24-h clinical outcome prediction.

For a clearer understanding of the outcomes within the
future-prediction framework, we visualized the probability
predictions of events for a patient sample, as illustrated
in Figures 16 and 17. Figure 16 illustrates the prediction
probability of future 24-h clinical outcomes of a testing
sample in the RRT dataset for five clients. This pattern tends
to perform a normal state in the first time steps and an event
occurs in the later time steps. Based on the ground truth of this
sample, we placed a vertical line tomark the alarm occurrence
time and a horizontal line to mark the threshold probability
value (threshold = 0.50 for all cases in this study) such
that any time point that is returned with a higher probability
than the threshold is considered an event time. The two lines
divide the resulting sample illustration into four regions. The
top left area of the figure is the false alarm area, where
false prediction points for the nonevent class are placed.
The bottom right part is the late alarm area, containing
false prediction points for the event class. The Deep-LL
(red curve) and Deep-CL (blue curve) methods distribute
the most prediction samples in the false alarm area among
the compared methods. This result demonstrates that the
excessive sensitivity due to the influence of Li causes these
methods to raise unnecessary alarms during the prediction
process. Both Deep-FedAvg (green curve) and the MEWS
(violet curve), without implementing Li, return the latest
alarm samples in the late alarm region. This outcome is a
particularly fatal error with prediction in the ICU, where
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FIGURE 17. Probability sample results of comparison methods in the
eICU dataset for the future 16-h clinical outcome prediction.

the prediction model cannot recognize the time points that
require intervention from the intensive care team. In contrast,
Deep-CFL (brown curve) displays exceptional efficiency in
applying Li while ensuring a balance between sensitivity and
specificity, with none of its prediction points falling within
the two error regions. The proposed method returns predicted
points with an event probability higher than the threshold of
0.50 when the ground truth is an event and vice versa.

Figure 17 presents the prediction probability of future
16-h clinical outcomes of a testing sample in the eICU
dataset for five clients. This pattern can be considered easy,
as most methods avoid false alarm regions in prediction
errors. Therefore, we compared the performance of methods
based on the late alarm area and true alarm area (top right
region of the figure). In the late alarm area, theMEWS, Deep-
FedAvg, and Deep-CLmethods exhibit more instances of late
prediction (three samples), whereas Deep-CFL guarantees
performance with zero samples of late alarm. In the results of
the true alarm area, the more efficient method returns a higher
probability and a more stable curve. In addition, Deep-CFL
excels in this criterion by returning the highest probability
and a stable curve at the last time points. In contrast,
although displaying a stable curve at the early time points
from the alarm occurring time (time point 11), Deep-CL
fluctuates strongly from the 14th time point before returning
to equilibrium at the last time point.

2) BASE DEEP LEARNING MODEL STRUCTURE VALIDATION
To evaluate the contribution of IG in the proposed method,
we performed an additional experiment on the RRT dataset
for splitting with five clients. We conducted experiments
using Deep-CFL to predict clinical outcomes for 8 and 16 h
into the future. However, in Deep-CFL, different structures
of the base model were used as comparison methods. For
the time-series context, typical and widely used RNN-
based models were selected, including the LSTM, TCN,
and GRU. We applied the discussed encoders to derive
the representation z for each input sample x. For example,

FIGURE 18. IG values of the extracted representations from three
temporal-based model structures over 24 time steps in a sample of the
RRT dataset.

zlstm = Elstm(x), where Elstm refers to an LSTM-based
encoder. Then, the IG values of each extracted z were
calculated and compared to select the most optimal structure
for the system.

Figure 18 presents the IG values of the extracted repre-
sentation from three temporal-based model structures over
24 time steps in a sample from the RRT dataset. The IG values
of the extracted features from LSTM always reach the highest
values across time steps compared to the GRU and TCN-
based encoders. The IG values for GRU have relatively high
values but gradually decrease and have negative values when
running until the last time steps, revealing that the influence
of the extracted representation of this method gradually
decreases over time. Based on this result, choosing the LSTM
structure for the base model of the system is considered the
choice of IG. In contrast, choosing the TCN or GRU structure
for Deep-CFL can be considered a random selection.

Table 11 presents the experiment results of three model-
selected cases for Deep-CFL in the RRT dataset for predicting
the future 8- and 16-h clinical statuses for five clients.
Corresponding to the results of comparing IG values,
LSTM (choice based on IG) achieves superior results
compared to the other two random-choice structures. These
results demonstrate the importance of IG in improving
model selection, interpretability, and performance within the
prediction system. By directing the selection to LSTM as
the most successful architecture for future event prediction,
IG displays its utility as a reliable criterion for choosing
models that capture meaningful information. This technique
improves model interpretability, allowing for deeper insight
into the decision-making process, and establishes IG as
a useful benchmarking tool for comparing DL structures.
The higher performance of LSTM, as demonstrated by IG,
underlines its capacity to manage complicated temporal
contexts, which is vital for ICU predictions. Overall, the
application of IG lays a solid platform for future research into
XAI, with the potential to advance the construction of reliable
and effective prediction systems in hospitals.
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TABLE 11. Results for deep learning structures for the base model.

V. DISCUSSION
The results in Section IV demonstrate the superior perfor-
mance of Deep-CFL over comparative methods across a
variety of case studies and prediction contexts. We conducted
ablation studies to evaluate the contribution of CFL, imbal-
anced learning, and IG techniques in solving the challenges
of EHR data and alarm error problems of predictive tasks in
the ICU.

Regarding interpretability, IG offers a robust and effective
XAI solution for DL in healthcare application systems. This
method evaluates the impact of extracted features from a
certain DL structure on the classification model, changing
its structure and increasing prediction performance. The
ability to evaluate IG values usingmagnitude gradients boosts
physicians’ trust in the rationale for selecting a DL network
architecture for a medical system. The ablation trial results
for IG show its efficacy. This study illustrates that using
IG yields superior outcomes while needing fewer training
and validation operations than the typical hyperparameter
approach.

Deep-CFL contributes to the solution of the problem
of alarm errors in prediction systems by addressing the
underlying problems. To address security concerns that
may hinder adoption and data sharing between healthcare
institutions, Deep-CFL combines contrastive learning with
the FedAvg algorithm to ensure security while keeping strong
prediction performance. The proposed method outperforms
CL approaches (Deep-CL), which profit from breaking data
security rules. Compared to the standard FedAvg approach
(Deep-FL), Deep-CFL addresses the often overlooked ele-
ment of the model performance difference between local
and global models, resulting in more stable and superior
performance. Contrastive loss improves local models before
the FL algorithm combines them. Initially, contrastive loss
enables local models to produce representations that closely
mirror those of the global model. As a result, it enables
local models to learn more refined representations than
their predecessors, steadily improving until they reach
a satisfactory performance level. Furthermore, Deep-CFL
ensures that each local update adds significantly to the
global knowledge base by encouraging a more sophisticated
update process that highlights similarities with the global
model as well as contrasts from previous local iterations.
This methodological innovation improves model accuracy
while reducing the danger of overfitting to local variables,
a common problem in federated contexts.

Imbalance learning is used in the system as a primary
strategy for addressing data quality issues (data imbalance),
which have a direct impact on the alarm error rate. This
experiment was carried done without modifying the datasets’
class distribution, such as through under- or oversampling,
to simulate practical situations in which ICU data retain their
intrinsic qualities. This strategy assures that physicians do
not change data settings, which limits the development of
prediction biases that could jeopardize the validity of the
results. Extensive analysis provides a clear knowledge of
the impact of imbalance loss on comparison methods. This
research highlights the importance of imbalance learning
in correcting data imbalances, lowering late alarms, and
providing early interventions to ICU patients.

A. BENEFITS FOR REAL-WORLD APPLICATION
From an application perspective, our experiments focus
on two tasks corresponding to three datasets: predicting
clinical deterioration (RRT dataset) and predicting ICU
mortality (MIMIC III and eICU datasets). For clinical
deterioration prediction using the RRT dataset, Deep-CFL
can be applied to monitor patients in ICUs and predict clinical
deterioration, allowing for timely interventions. For ICU
mortality prediction using the MIMIC III and eICU datasets,
Deep-CFL is effective in predicting ICU mortality, aiding
in the early identification of high-risk patients. FL approach
is ideal for decentralized healthcare systems where data
privacy and security are paramount. The method enables
collaboration across multiple healthcare centers without the
need for data sharing, making it scalable and practical
for large healthcare networks. By addressing these critical
areas, Deep-CFL offers a robust, accurate, and interpretable
solution for early prediction of clinical status in ICU settings,
supporting effective patient management and improving
clinical outcomes.

The proposed system has practical advantages for practical
integration in the emergency department. Firstly, it dra-
matically improves data security by keeping EHR data
localized within each healthcare facility, reducing the danger
of data breaches, and protecting patient privacy without the
requirement for data exchange across institutions. Second,
combining contrastive learning and federated averaging
enhances clinical alarm accuracy, significantly lowering false
and late alarms. This results in more timely and consistent
clinical treatments, which are crucial in ICU settings. Third,
using explainable AI techniques improves the interpretability
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of model predictions, giving healthcare practitioners clear
insights into the AI system’s decision-making process.
Finally, the FL framework facilitates scalability, allowing
the system to be deployed across different healthcare
centers without the need for a centralized data source.
This decentralized method protects data privacy while also
allowing for more institutional adoption and collaboration.

Several practical considerations must be addressed to
implement a Deep-CFL system effectively. First, partici-
pating healthcare centers must ensure adequate computing
infrastructure to handle local model training and updates,
including sufficient CPU/GPU resources and connectivity
Reliable Internet. The two main teams in the system are
healthcare practitioners and IT staff. The IT team takes on the
role of integrating proposed techniques and developing the
current system. Doctors monitor, verify, and make decisions
about the intervention process. When Deep-CFL is integrated
into RRS, it plays an alarming role through DL risk score.
A risk score exceeding a certain threshold means that
doctors need to intervene and provide treatment based on
their experience. Pilot tests should be conducted in a small
number of healthcare centers to identify and address potential
challenges before scaling up implementation.

B. LIMITATION
As part of the RRS project, the ultimate goal of this research
was to implement the proposed algorithm in a real-world
hospital monitoring system. Despite the encouraging results,
we acknowledge that this study still has limitations that must
be addressed. First, data diversity can limit the usefulness
of the system. Data collection and representation standards
vary by hospital or healthcare center, necessitating a more
flexible and generally applicable preprocessor with numerous
pre-input features when incorporating them into the predic-
tion model. Moreover, IG improves system interpretability;
however, converting these scientific discoveries into practical
clinical information might be challenging. This approach
necessitates establishing an efficient correlation system
between AI and medicine. Finally, for an ICU prediction
system, a sensitivity of more than 80% ensures reliable
decision-making ability. Despite achieving higher perfor-
mance on all three datasets, Deep-CFL exhibits sensitivity
concerns in specific samples. Improving and maintaining
system performance is the primary focus. However, the novel
concept of integrating contrastive learning and FL suggests a
bright future for medical AI application systems.

The computational burden is also considered a shortcom-
ing of our study. The computational load of Deep-CFL
is mostly due to the combination of federated learning,
contrastive learning, and supervised learning approaches.
During our tests, we discovered that this burden is greatest
in the local training phase of each communication round,
where both contrastive and supervised learning losses are
applied concurrently. This combination greatly increases
the training length when compared to other approaches in
similar experimental conditions. In actual implementations,

this computational cost has little impact on the prediction
system’s real-time performance, but it does present issues
during the development phase. Because of this increased
complexity, the development process takes longer and
requires more resources. Potential options include using
advanced optimization techniques and studying incremental
training methodologies, to balance the computational load
across centers.

VI. CONCLUSION
In this investigation, we introduced Deep-CFL, an innovative
approach to predicting clinical status in the ICU. This
novel approach combines FL, contrastive learning, and an
XAI technique to address the interpretability and alarm
error problems of the ICU prediction system. The critical
concept of Deep-CFL is to improve the learning ability
of local models by teaching them essential capabilities
from the global model, which consistently delivers more
accurate predictions. Through comprehensive experiments on
multiple datasets and analyses in various case studies and
prediction contexts, Deep-CFL demonstrated outstanding
performance in predicting clinical outcomes, effectively
managing the imbalance between classes, and enhancing
model interpretability without compromising patient data
privacy. The application of Deep-CFL in the RRS project
demonstrates its potential to transform patient monitoring
systems by enabling timely and accurate clinical condition
prediction. This study enables further research into more
sophisticated FL models, improving model interpretation
and integrating advanced AI technology into healthcare
procedures. Finally, the success of Deep-CFL in resolving
the complexity of ICU patient data analysis is a critical step
forward in the application of FL and AI in healthcare.
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