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ABSTRACT This research paper explores the rising interest in utilising deep learning methods, specifically
Convolution Neural Network (CNN), to improve the reconstruction of Compressively Sampled Magnetic
Resonance Imaging (CS MRI) images from under-sampled data. By training deep learning architectures on
extensive data sets of paired under sampled and fully sampled MR images, these models aim to capture
intricate patterns and structures, ultimately enhancing the accuracy of MR image reconstructions. A novel
deep learning model is proposed dubbed as *‘Deep Iterative Shrinkage Thresholding Algorithm-Compressed
Sensing Network” (DISTA-CSNet), specifically designed for efficient recovery of CS MRI. Our model
showcases impressive results with only 20 epochs and can be effortlessly trained on diverse datasets.
To ensure robustness across different datasets, the dropouts are incorporated into the model, evident from
testing results. The trained DISTA-CSNet exhibits remarkable performance in recovering CS MRI from
various data sets, surpassing several advanced deep learning techniques with changing compression ratios
consistently. The proposed model demonstrates significant enhancements in both Peak Signal-to-Noise Ratio
(PSNR) and Structural Similarity Index (SSIM) metrics, affirming the efficacy of our proposed model. The
capability of our DISTA-CSNet in accurately reconstructing CS MRI images from 5-fold undersampled data
shows promise in improving medical imaging applications and advancing the field of compressed sensing
MRIL

INDEX TERMS Compressed sensing, MRI, deep neural networks, iterative shrinkage, dropouts, soft
thresholding, compressively sampled MRI.

I. INTRODUCTION techniques may result in reduced field of view, decreased
Magnetic Resonance Imaging (MRI) is a non-invasive signal-to-noise ratio, or unwanted nerve stimulation.

diagnostic technique based on nuclear magnetic resonance,
providing high-quality soft tissue contrast. It is valuable for
monitoring oxygen saturation levels in the brain, assessing
blood flow, and measuring body temperature. Efforts to
improve MRI speed have focused on hardware mechanisms,
including faster data acquisition, improved pulse sequences,
and parallel imaging with multiple coils. However, some

A. COMPRESSIVELY SAMPLED MRI
There is a challenge of further reducing MRI scan time due
to hardware limitations. Compressed Sensing (CS) combined
with non-linear reconstruction techniques offers a solution
by reducing the number of samples collected in k-space,
enabling high-quality MRI recovery with shorter scan times.
Although MRI acquisition is devoid of potentially harmful
The associate editor coordinating the review of this manuscript and waves, its long scanning duration, and image quality remains
approving it for publication was Humaira Nisar . susceptible to object motion, thereby inducing discomfort in

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
VOLUME 12, 2024 For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 118551


https://orcid.org/0000-0002-2662-604X
https://orcid.org/0000-0002-5121-3044
https://orcid.org/0000-0003-2026-5666

IEEE Access

H. Haider et al.: DISTA-CSNet: Efficient Data Aware DL Model for CS MRI Recovery

patients. The temporal extent of MRI scanning is intricately
tied to the number of samples acquired within the Fourier
domain, commonly referred to as k-space. Compressed
Sensing (CS) serves to mitigate these challenges by yielding
clinically acceptable MR images utilising a reduced number
of samples, consequently reducing scan duration. Due to its
inherent sparse representation within established domains
such as Finite Difference, Discrete Cosine Transform and
Wavelet, MRI stands as a promising domain for CS appli-
cation. CS MRI acquisition leverages non-uniform random
undersampling techniques to maximise incoherence with the
sparsifying domain. The efficacious recovery of MRI from
compressively sampled k-space data poses computational
complexities and temporal demands within the realm of CS,
albeit executed offline to alleviate patient discomfort. The
extant body of literature introduces several adept algorithms
advanced for the purpose of CS MRI recovery [1], [2], [3],
[4], [5], [6], [7], [8]. Equation (1) defines the optimisation
problem posed by CS MRI recovery.

X = argmin | Wx||; subjectto ||Fy,x —yII% <e (1)
X

where % is the estimated image, Psi is the sparsifying
transform, /; norm is the sparsity promoting constraint in
estimated solution. F), is the undersampling domain, y is the
undersampled measurements in k-space and € is the tolerance
level for noise.

B. MACHINE LEARNING AND CS MRI

Recently, there has been notable interest in utilising deep
learning techniques to enhance the reconstruction of CS MRI
images from sparsely sampled data. Among these techniques,
CNN have demonstrated their capacity to capture intricate
image patterns and structures, facilitating the recovery of
high-quality MRI images. Researchers have devised deep
learning architectures to cater specifically to CS MRI
reconstruction, trained to establish a mapping between
undersampled input data and fully-sampled MRI images.
These architectures leverage extensive data sets containing
paired undersampled and fully sampled MR images, with
the intent of assimilating knowledge about underlying image
structures to enhance the accuracy of reconstruction [9], [10],
[11], [12].

Deep learning strategies for CS MRI recovery often adopt
an end-to-end learning approach, where the network takes
undersampled data as input and directly produces fully
sampled images as output, eliminating the requirement for
intermediate iterative reconstruction stages. This framework
not only enhances efficiency but also reduces computational
intricacies [13]. Researchers have explored methods to
address limited training data in various ways, includ-
ing artificial dataset augmentation. Approaches encompass
diverse techniques such as random transformations, patch
extraction, and simulated undersampling patterns. Further-
more, regularisation methods, including sparsity and total
variation constraints, have been integrated to improve the
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generalisation and reconstruction quality of deep learning
models [14], [15], [16]. In response to limited annotated
training data, researchers have explored transfer learning as
a viable approach for addressing CS MRI reconstruction.
This involves refining models pre-trained on extensive image
datasets to cater to CS MRI reconstruction tasks. By initially
training convolutional neural network (CNN) models on
extensive natural image datasets such as ImageNet, founda-
tional image features are acquired, which can subsequently be
harnessed to enhance CS MRI reconstruction [17], [18], [19].
Nonetheless, these techniques exhibit limitations due to their
utilisation of fixed measurement matrices and predetermined
image dimensions. A solution to mitigate these limitations
was introduced through a CNN-based approach [20]. This
method facilitated the learning of mappings from initial CS
reconstructions to significantly improved outcomes. In the
pursuit of achieving superior quality CS reconstructions,
the implementation of Generative Adversarial Networks
(GANs) has emerged [17], [21]. These CNNs employed
Mean Squared Error (MSE) as their underlying cost function.
To enhance the quality of MR image reconstructions, a Deep
Learning framework incorporating the Bayesian methodol-
ogy was presented in [22], utilising prior probabilities as a
training loss.

C. ITERATIVE SHRINKAGE METHODS IN DEEP LEARNING
The iterative sparse coding algorithm, introduced by [23],
serves as the foundational concept for the discrimina-
tive learning techniques explored in this study. These
methodologies incorporate insights from trained models into
deep learning (DL) approaches. Notably, a single iteration
within these methods bears resemblance to conventional
Convolutional Neural Network (CNN) training. In contrast
to conventional CNNSs, these frameworks possess the ability
to learn the required mapping during training by iteratively
increasing the number of iterations, eliminating the need for
extra parameters. Consequently, the depth of the network
can be expanded without incurring the parameter overhead
associated with traditional CNNs in [24], where proximal
operators were replaced with a CNN, drawing inspiration
from primal-dual hybrid gradient techniques.

A novel variant of projected gradient descent, designed
to enforce measurement consistency between reconstructed
images and their corresponding measurements, thus ensur-
ing convergence under specific conditions in [25]. This
technique demonstrated superior performance in recon-
structing sparse-view computed tomography (CT) images.
Furthermore, [26] proposed a gradient descent method for
reconstructing knee MR images with a 4-fold undersampling
factor, incorporating a variational model. This approach
exhibited enhanced computational efficiency for undersam-
pled reconstructions, utilizing a single graphics card. The
unrolled approximate message passing (D-AMP) algorithm,
introduced [27], incorporates a deep CNN to replace the
denoising operator within each iteration of the learned-AMP
method.
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To overcome the challenge of proving the bounded
properties of complex deep denoisers. Provable and
trainable bounded denoiser using dual tight frames and
spatial-variation thresholds are introduced in [28], Video
snapshot compressive imaging (SCI) to recover multiple
video frames from a single measurement, with recent
plug-and-play (PnP) methods leveraging pre-trained deep
Gaussian denoisers is proposed in [29]. A novel provable
bounded denoiser, BMDual, which integrates a trainable
denoiser using dual tight frames with the BM3D denoiser and
incorporates multiple dual frames into a new regularization
model for CSMRI is proposed in [30].

In a similar vein, previous work [31] presented a com-
pressed sensing (CS) reconstruction strategy for MR and nat-
ural images using an unrolled alternate direction method of
multipliers (ADMM) algorithm. The discriminatory learned
CS recovery and ADMM parameters of this model yielded
impressive results for both real-valued natural images and
complex-valued MR images.

An innovative approach was proposed in [10], where an
iterative thresholding technique (ISTA) was employed to
recover real images from undersampled observations. This
ISTA-Nets framework seamlessly integrates optimization-
based and network-based methodologies, showcasing a
well-structured topology optimized for CS image recon-
struction. Notably, ISTA-Nets offer interpretability, shedding
light on their operational mechanics. All parameters within
ISTA-Nets are end-to-end discriminatively learned, ensuring
efficient harnessing of the network’s potential for image
reconstruction. By fusing the strengths of optimization-based
and network-based approaches and emphasizing inter-
pretability, ISTA-Nets emerge as a promising avenue for
advancing CS image recovery techniques.

A novel high-throughput deep unfolding network
(HiTDUN) [32] is proposed, capable of transmitting
multi-channel information between adjacent network stages,
resulting in superior performance compared to state-of-the-
art DUNs in CS-MRI applications. HITDUN investigates
the optimization algorithms unfolded into deep unfolding
networks (DUNs) for CS-MRI, addressing the lack of
discussion on the optimal algorithm and existing DUN
bottlenecks.

In the context of Compressed Sensing MRI (CS-MRI)
restoration, the Multi-Layer Convolutional Sparse Coding
(ML-CSC) system [11] leverages iterative thresholding
techniques to extract nonlinear mapping parameters from
CS MRI k-space data. This framework effectively learns
the requisite mapping from CS measurements, specifically
benefiting knee and brain MRI reconstruction. Notably, the
incorporation of additional learn-able parameters in the deep
neural network yields improved CS reconstruction results
with minimal parameter overhead.

Some of the limitations of modern existing techniques are
listed below:

o Presently, contemporary deep learning architectures

heavily lean on heuristic methodologies for training.
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However, the absence of meticulous theoretical analysis
obstructs the optimal enhancement of feature acqui-
sition. This concern takes on heightened significance
within the realm of biomedical images, where precise
solutions to inverse problems are pivotal for clinical
comprehension and diagnosis.

o The proposed frameworks designed to tackle inverse
problems via deep learning necessitate extensive train-
ing on specialised datasets. This requisite poses
considerable challenges when it comes to adapting
these models to real-world applications, particularly in
scenarios where tailored datasets are not immediately
accessible or practical to construct.

« A notable research gap emerges from the necessity
for a versatile architecture capable of being tailored to
diverse datasets and imaging protocols. The creation
of such adaptable models could significantly elevate
the integration of Al-assisted tools into the expansive
biomedical imaging landscape, facilitating consistent
and efficacious solutions across a spectrum of scenarios.

o Despite substantial efforts directed towards mastering
model parameters, the translation of these acquired
parameters into pragmatic implementations within
clinical settings remains a formidable obstacle. The
demand is for streamlined methodologies that facilitate
the seamless deployment of testing and restoration
frameworks, ensuring their usability within authentic
medical environments devoid of unnecessary intricacies.

o A significant number of current methodologies expe-
rience extended training duration, leading to potential
vulnerability when confronted with novel environments
or circumstances. Swift adaptability to evolving con-
ditions remains pivotal in clinical practice, prompting
research endeavours aimed at formulating algorithms
that strike a harmonious equilibrium between training
time and resilience, thus guaranteeing efficient perfor-
mance within dynamic medical contexts.

« While deep learning models exhibit exceptional per-
formance, their intricacy frequently impedes interpret-
ability and explanation. Bridging the gap between
achieving exemplary accuracy and providing clinicians
with intelligible insights remains an enduring trial. The
evolution of techniques that generate outcomes possess-
ing both precision and comprehensibility for medical
practitioners is an ongoing frontier of investigation.

The proposed DISTA-CSNet model introduces a novel

approach by incorporating an iterative soft thresholding algo-
rithm, enabling the augmentation of network depth without
incurring additional feature complexity and computational
overhead. This innovative strategy not only enhances the
model’s capacity to capture intricate image features but
also minimises computational demands. The efficacy of
the proposed model is demonstrated through its impressive
performance in accurately reconstructing under-sampled
Brain and Knee MRI data. This signifies its potential as
a valuable tool for advancing the field of medical imaging
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by providing robust solutions for challenging reconstruction
tasks. Following are the major contributions of our proposed
model.

o Versatile Training and Swift Convergence: Our proposed
DISTA-CSNet model offers the advantage of easy adap-
tation to various datasets, showcasing its versatility. The
Data Consistency Constraint is added at every stage
of proposed model that ensures the estimated solution
is consistent with the actual samples taken during
scanning process of MRI. It significantly improved
the convergence in just 20 epochs, indicating swift
convergence during training.

o Shrinkage and ly-norm approximation by tanh(): We
have introduced hyperbolic tangent based thresholding
as well as /1-norm approximation that gives us flexibility
to make our shrinkage function flexibility. Hyperbolic
tangent based shrinkage function gradually become
soft thresholding to hard thresholding function as the
model progressed towards finding the optimal solution.
Similarly, /;-norm approximation by hyperbolic tangent
allows us to gradually move from smooth approximation
of [{-norm to more accurate approximation that avoids
local minima and converges to optimal solution more
swiftly.

o Robustness through Dropout Integration: The DISTA-
CSNet has proven to be Robust by introduction of
Dropout. The model’s robustness across diverse datasets
i.e. Two Brain MRI and One Knee MRI by incorporating
dropouts into its architecture. This integration ensures a
more resilient performance during testing, contributing
to its reliability in handling different imaging scenarios.

o Consistent Excellence in CS MRI Recovery: The trained
DISTA-CSNet stands out for its remarkable ability to
recover Compressive Sensing (CS) MRI from a range
of datasets, a feat accomplished through the strategic
application of dropouts. This consistent excellence
underscores the model’s potential to provide accurate
and reliable image reconstructions.

o Quantifiable Improvements in Quality Metrics: Our
approach yields substantial improvements in both
PSNR and SSIM metrics, underscoring its efficacy in
enhancing image quality. This quantifiable boost in
image fidelity reaffirms the valuable contribution of our
DISTA-CSNet model in advancing the field of CS MRI
recovery.

Section II defines the proposed DISTA-CSNet Model
alongwith the DISTA-CSNet Training and Testing mecha-
nism of the proposed model. Training and Testing results
are discussed in Section III. This article culminates with
conclusions and future work directions in Section IV and
Section V respectively.

Il. DIST-CSNet MODEL
In the context of deep learning architectures, training
often relies on heuristic techniques, necessitating theoretical
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analysis for improved feature learning and accurate solutions
to inverse problems, especially pertinent in biomedical
imaging where reconstruction quality is pivotal for accurate
diagnoses. Custom dataset-intensive training precedes the
real-world deployment of frameworks, highlighting the
demand for adaptable, broadly applicable architectures to
integrate machine learning into MRI procedures. Ensuring
ease of use in clinical settings is crucial once model
parameters are acquired to promote wider usability.

The novel DISTA-CSNet model capitalises on the
effectiveness of iterative shrinkage-based techniques in
addressing CS-MRI’s inverse problem, showcasing its
suitability within the deep learning domain. It harnesses
the concept of CNN unfolding, a strategy that augments
network depth without introducing additional parameters
or computational complexities, setting it apart from con-
ventional CNN-based approaches. This innovation leads to
substantial improvements in reconstruction performance,
as substantiated by extensive experiments conducted
across diverse datasets, consistently yielding high-quality
reconstructions.

The model’s prowess extends to its generalisation capa-
bilities, demonstrated through training on three benchmark
datasets and subsequent restoration of images using this
adaptable framework. Rigorous testing on both GPU and
CPU platforms confirms commendable restoration times
and showcases elevated PSNR/SSIM metrics, affirming the
model’s potential for real-world medical imaging scenarios.
Overall, the DISTA-CSNet model emerges as a compelling
solution with the ability to efficiently and accurately
reconstruct MR images, holding promise for transformative
impacts in the field.

The proposed CS-MRI restoration approach introduced
in this study integrates novel insights from theoretical
deep-learning research [10], [33]. This innovative method
combines an iterative shrinkage-based technique with a
multi-layered convolutional neural network to swiftly learn
the mapping between fully sampled MR images and
corresponding CS MRI k-space. A key advantage of the
DISTA-CSNet model lies in its rapid training capability
(20 epochs) and comprehensive global pursuit strategy,
enhancing the efficiency of learning the mapping function.

During the training phase, the DISTA-CSNet model
benefits from GPU acceleration, ensuring fast training
times and effective parameter learning. Once trained, the
model showcases its versatility by restoring CS-MR images
across various CS ratios and random masks, exhibiting
robustness and accuracy under diverse undersampling con-
ditions. Notably, the framework’s ability to perform test set
reconstructions on a CPU without relying on GPUs is a
notable advantage. This feature ensures feasible restoration
times, highlighting the efficiency of the trained parameters.
As a result, the approach holds practical value for clinical
settings, where GPU availability might be limited, providing
an efficient solution for CS-MRI restoration and significantly
reducing processing times.
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In general, the iterative shrinkage thresholding-based
algorithms in the context of CS MRI recovery recast the cost
function defined by (1) as follows:

. 1 H_|?
x:argmm—”y—d)\l/ x” + Allxlly 2
x 2 2

The layered iterative shrinkage methods proposed by [30]
and [143] attempt to unfold neural networks by simulta-
neously minimising the above cost function by iterative
thresholding methods. This approach is aimed at achieving
a global multi-layer sparse model, where it is not attainable.
Instead, the focus is on obtaining representation estimates that
solely describe the local layer defined by (3)

1

X = argmin =
Xi

2

where x; represents the current layer of the model.

2
)yi —owhfy_, H2 + Allxi—illy - (3)

A. DISTA-CSNet TRAINING MODEL

The suggested approach processes images in k-space with
related CS measurements using multi-layer Iterative Shrink-
age Thresholding Algorithms (ML-ISTA). The proposed
DISTA-CSNet aims to effectively train to quickly map fully
sampled MR images and matching CS MRI k-space and
store these mappings as model parameters. The model trains
with only 20 epochs while achieving better PSNR and
SSIM than other state-of-the-art algorithms as evident from
experimental results. The testing module then reconstructs
test images using the trained ML-ISTA learning parameters
and computes the recovered images’ PSNR and SSIM.
For all layers, it uses Xavier initialisation to initialise the
dictionaries. Algorithm-1 presents the multi-layered basis
pursuit algorithm, which makes use of the iterative threshold-
ing process. To train the model parameters, the framework
collects ground truth images, k-space data, and masks for
under-sampling. Without the use of additional parameters,
the learning process, Algorithm-1, uses ML-ISTA unfolding
to deepen the learning framework. The model was trained
separately on Brain MR image and Knee MR image. Both
models were tested for CS MRI recovery based on PSNR and
SSIM.

The first dataset comes from earlier work [10], and it
comprises 850 brain MRIs that were captured in the sagittal
and axial planes as a pair of (CS MRI, Label (Ground Truth
Image) (Dataset 1). 621 Knee MRIs from patients comprise
the second dataset used to train the CS-MRI framework.
These Knee MRIs are fully sampled of the coronal view with
PD fat saturation and were taken using a 1.5T imaging device
(Siemens MAGNETOM Symphony) at the Hospital Kuala
Lumpur (Dataset 2). A certified radiologist classified the
MRIs into three categories: full tear, partial tear, and normal
knee. The images were collected to diagnose anterior cruciate
ligament (ACL) damage. The performance was evaluated
using a test set of 50 and 21 MRIs randomly from both
datasets, respectively. The third dataset comprises 123 slices
thick, 256 x 256 size MRIs of ageing-normal brains in the
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Algorithm 1
Task: Training of DISTA-CS Net with CS MRI data along
with its fully sampled labels

. 1 2 .
X =arg n}czn 3 Hy — FM\IJHxHZ + A le,-tanh(yxi)
=

Input:  Training Data (CS MRI
labels),Dictionary ®eR™*",

Masks for Undersampling, Thresholing Parameter A, 8.
Adams Optimizer learning rate u, undersampled data y.
Output: Trained DISTA - CSNet Model for CS-MRI
Recovery

along  with

1) Initialisation: Initialise Wieghts and Conv filters
using Xavier Initialisation
Set thresholding A and g to a learn-able parameter.
initial residual: ro = xo — oF 1(yo — Fuxp)

2) DISTA-CSNet Main Iteration: Increment i by 1,and
apply the following steps:
a) Residual: Compute r; = F,] l(yi_ 1 — Fuxi—1)
b) Data Consistency in Fourier Domain:

Xiljl = Fu(X;)
|t itxi=0
Xpclil = [x[j] otherwise

¢) Convolution: Perform convolution as shown in
Figure 1.
d) Dropouts: Perform dropouts as shown in Figure 1.
e) Convolutions: Perform convolution transpose as
shown in Figure 1.
f) ReLU: Apply ReLU as shown in Figure 1.
g) Shrinkage: Compute
s ~ ) xitanh(B(|xil — X)) if |x| > A
A0 = )
0 otherwise
h) Adam Optimisation: Compute updated x; using
learning rate u
1) Residual Update: Compute r;11 =y — F,x;
j) Stopping Rule: Go to step (2) until the maximum
number of epochs criteria is met.

3) Output: Trained DISTA-CSNet Model

coronal plane [34] (Dataset 3), this dataset was used for
testing purposes only. It was tested by using the model trained
on the first dataset. The Harvard Medical School’s AANLIB
database makes this dataset accessible to the public.

The incorporation of Monte Carlo (MC) Dropout has
notably enhanced the robustness of the model, evident
from its performance across diverse datasets by mitigat-
ing overfitting. Dropout, initially introduced by Gal and
Ghahramani [35], offers a practical and computationally effi-
cient approach to estimate model uncertainty in deep neural
networks. This technique involves applying dropout during
both training and inference, facilitating the computation of
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Model Output
| DISTA- CSNet Trained
Training Model DISTA- CSNet
Model
{CS MRI, Label}
XDC: Data Consistency Constraint
G(1) (1) G(R) H(k G(N) F(N)
N
=P Relu ;?I)N.X(k ;E)WX(N S0
=P Dropout ~
p Xpc(0)  1(0) e — Xpck) 1K) Xpc(N— +@)
=» Conv' | XO — _ _——— T——_ Xm
—_— =
=»> Conv | (%) E) |
| |
=» [FFT | |
| P |
Sy pl0) = {'S’“‘""'("j("*“ B, I______________SO) _________ J|

FIGURE 1. DISTA-CSNet training model.

predictive uncertainty and effectively tackling overconfi-
dence issues in deep learning models. Through the repeti-
tion of dropout during inference, MC Dropout introduces
prediction variability, thereby enhancing the reliability and
effectiveness of deep neural networks.

Using a new thresholding method based on the tanh was
used for training [7]. The tanh offers the advantage of
an adjustable slope near the origin and bounded function,
making it a preferable choice as an estimation for soft thresh-
olding (ST). Consequently, the mathematical description of
tanh-based ST is represented as:

xi(tanh(B(lx;| — X)) if [x] > A
0 otherwise

Sx,plx) = { “

The proposed shrinkage function includes a thresholding
parameter A, and a parameter B that controls the shape
of the tanh. 2 and 3 illustrate the behavior of regular-
ization parameters B and A respectively. In 2, when B
increases, the thresholding function behavior changes from
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soft thresholding to hard thresholding, When g is close to
zero, (4) approximates the behaviour of a soft thresholding
function. As B approaches infinity, the (4) transforms into
a hard thresholding function. We utilize this property in
iterative manner, where 8 grows with each iteration results in
faster convergence. In 3, the Lagrangian multiplier A defines
the sparsity level in the estimated solution. Higher value of
A yields more sparsity in the solution and lower value of
A will result in denser solution. So, we have to choose A\
appropriately by evaluating it over the range of values and
choosing the optimal value for the specific problem. Both A
and B are learnable parameters.

The data consistency constraint (DCC) is introduced
in the training model which significantly improves the
learning rate of the training model. DCC in the frequency
domain is a fundamental principle in CS MR recovery [6].
It ensures that the samples acquired in the k-space domain
remain constant throughout the recovery process. In other
words, the measured data points in the frequency domain,
which correspond to the acquired MRI measurements, are
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B effects on Thresholding

tanh ( 8 * x)

02 04 0.6 0.8 1

FIGURE 2. Shapes of tanh for varying 8.
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FIGURE 3. SSIM achieved against different values of ).

preserved, and not altered during the iterations of the recovery
algorithm. The data consistency constraint is crucial because
it guarantees that the recovered MRI stay consistent with
sampled data. It prevents the algorithm from introducing
spurious information or modifying the original measure-
ments, which could lead to erroneous results. By preserving
the actual samples from the k-space domain, the algorithm
ensures that the recovered image accurately represents the
underlying structure of the imaged object, even with limited
or under-sampled data. The data consistency constraint in the
frequency domain is a vital aspect of CS MRI recovery, as it
maintains the integrity of the acquired data and helps achieve
reliable and accurate image reconstruction. Let X;[j] =
F,(X;) be the FFT of estimated image.

xljl if x[jl=0
x[j1  otherwise
In deep neural networks, convolutions are a fundamental

operation used in convolutional layers to process and extract
features from input data. A filter or kernel is slid across

Xpclil = &)
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the input data during the convolutional procedure, and
element-wise multiplication is done between the filter and
kernel and the corresponding local input region. The result
is then summed to produce a single value in the output
feature map. Whereas, convolution transpose, also known as
deconvolution, is an operation used in deep neural networks
for tasks like image segmentation and image generation. It is
the opposite of standard convolution and is used to increase
the spatial dimensions of the feature maps.

ReLU is used as an activation function commonly used in
deep neural networks to introduce non-linearity. It returns the
input if it is positive, and zero otherwise. Xavier Initialisation
was first proposed in [36]. The technique is widely used
to initialise weights in neural network layers, especially in
networks using the ReLU activation function, as it helps
in maintaining signal variance and promoting stable and
efficient training.

The optimisation approach used in training the proposed
DISTA-CSNet model is Adam (Adaptive Moment Estima-
tion) [37] which is frequently used in deep learning to update
the weights of a neural network while it is being trained.
To adapt the learning rate for each parameter based on

their historical gradients and second moments, it utilises the
advantages of both the RMSprop and momentum methods.
Adam dynamically adjusts the learning rate, which makes
it ideal for training complicated, high-dimensional neural
networks and promotes faster convergence and improved
performance across a range of deep learning applications.

The discrepancy loss evaluates the disparity between
predicted neural network outputs and true target values, quan-
tifying the alignment of model predictions with task-specific
ground truth. It encompasses mean squared error (MSE) for
regression and cross-entropy loss for classification tasks. The
constraint loss integrates extra constraints or regularisation
components, such as /1orl, norm terms, to shape the model’s
behaviour in training, encouraging weight sparsity and a more
interpret-able model. These two losses combined form the
total loss function, striking a balance between accurate data
fitting (minimising discrepancy loss) and meeting constraints

or regularisation (minimising constraint loss), culminating in
an optimised model aligned with task objectives and specified

preferences.

Lt =Li+yLc (6)
Nua
1 N, 2
d NygN zi:l i i, @
Le= Garten -5 ®
Ny4N i 2

where Ly, Ly and L¢ are a total loss, discrepancy loss and
constraint loss respectively. N, Ny, N, and y are the size
of each block x;, total training blocks, total phases, and
regularisation constraint respectively. All these three losses
during the training process by our model are depicted in
Fig. 4 and 5. Fig. 4 shows the convergence of total loss,

118557



IEEE Access

H. Haider et al.: DISTA-CSNet: Efficient Data Aware DL Model for CS MRI Recovery

Loss Curves for Brain MR Images at CR:20%
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FIGURE 4. Loss functions vs Epochs for 5-fold compression of Brain and Knee MRIs.

Loss Curves for Brain MR Images CR:50%
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FIGURE 5. Loss functions vs Epochs for 2-fold compression of Brain and Knee MRIs.

discrepancy loss and constraint loss with respect to Epochs
when the compression ratio (CR) is set to only 20% that
gives five fold compression. Whereas Fig. 5 shows the
convergence of discrepancy loss, constraint loss and total loss
with compression ratio is set to 50% that result in half the
samples acquired during MRI scanning process.

B. DISTA-CSNet TESTING MODEL

After training two separate DISTA-CSNet models for Com-
pressed Sensing MRI reconstruction of Brain and Knee
MRIs. The testing phase evaluated the models’ accuracy by
reconstructing MRIs from three test datasets: Brain MRI
(50 slices), Knee MRI (21 images), and an additional Brain
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MRI dataset (123 slices). The trained models performed
with great accuracy regarding PSNR and SSIM, demon-
strating their ability to produce high-quality MRI estimates
from compressed measurements. Overall, the DISTA-CSNet
models proved effective in accurately reconstructing MRIs,
showcasing their potential for practical medical imaging
applications. The process of testing the model is illustrated
in Fig. 6. Algorithm 2 describes the testing process.

Ill. DISTA-CSNet MODEL TESTING RESULTS AND
DISCUSSION

The DISTA-CSNet Model was subjected to testing using
three distinct datasets: the first dataset consisted of Brain
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Model Testing

Input

FIGURE 6. DISTA-CSNet testing model.

Algorithm 2 Testing DISTA-CSNet Process
Task: Test the Trained DISTA-CSNet for CS MRI
Reconstruction.
Inputs: Trained Model, Test MR images, Undersampled
Masks.
Output: Reconstructed MRI from CS-MRI, PSNR and
SSIM of reconstructed image, Recovery time by GPU /
CPU
1) Initialisation: Initialise Weights and Convolution
filters using Xavier Initialisation
Set A and B to a learn-able parameter for
thresholding.
initial residual: ro = xg — otF;l(yo — Fux0)
2) Loading Model: Load pre-trained DISTA-CSNet
Model
3) DISTA-CSNet Main Iteration: For every CS MRI in
the test dataset:

a) Loading Model:
dictionary

b) Masking: Apply masking to input MRI at appro-
priate CR in k-space

¢) Reconstruction: Apply a pre-trained model for
MRI reconstruction.

d) Calculate Performance Measures: Calculate
PSNR and SSIM of the recovered image.

e) Stopping Rule: If all images are tested in dataset
go to Step 4 otherwise go to Step 3a.

Load pre-trained learnt

4) Output: Reconstructed Image, Recovery Time, PSNR
and SSIM in comparison to Ground Truth.

MRIs with 50 slices [10] (Dataset 1), the second dataset
included 21 Knee MR images (Dataset 3), and the third
dataset contained 123 Brain MRI slices [34] (Dataset 3).
To assess the performance of the proposed algorithm,
the reconstruction losses are calculated using performance
metrics like Structural Similarity Index (SSIM) and Peak
Signal to Noise Ratio (PSNR). If SSIM is equal to 1 that
means exact compressively sampled MRI is recovered while
if SSIM is equal to zero means very poor recovery and
there is no similarity in reconstructed image and original
image. The reconstructed MRI has value very close to 1 e.g.,
0.9899 in case of Brain MRI with compression ratio of
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Trained
DISTA- CSNet
Model

50% that means recovered image is almost equal to original
image and reconstruction losses are negligibleBy measuring
the PSNR and SSIM values, the experiments aimed to
quantitatively evaluate how accurately the DISTA-CSNet
Model reconstructed the MRIs compared to the original
ground truth images, providing insights into the algorithm’s
efficacy and potential for medical imaging applications.

The training and testing of the proposed model were
performed on the Lambda (\) Quad AI Workstation with
a single Nvidia GeForce RTX 3090 GPU using JupyterLab
platform. The batch size was set to 4 for training for Brain
and Knee MRI training datasets.

Fig. 7 presents a selection of randomly recovered
images, which were obtained during the testing phase
using three distinct datasets. These datasets were sub-
jected to a 5-fold compression in the sampling process,
resulting in a significant 5-time reduction in scanning
time compared to conventional methods. The PSNR /
SSIM of the recovered images are also shown. The visual
evidence from the recovered images indicates that they
meet the required standards for clinical treatment. The
reconstructed images demonstrate high quality and accuracy,
making them suitable for practical medical applications with
confidence.

Table 1 presents the effectiveness of the proposed
DISTA-CSNet model that was trained on 800 Brain MR
images, showcasing its superior performance in terms of
PSNR and SSIM across various compression ratios. Even
at a 5-fold compression, the model achieves an impressive
average SSIM value of 0.9634, indicating its proficiency
in producing high-quality reconstructions. During testing,
the computational efficiency of the model demonstrated
significant improvements when executed on a GPU, with
computation times in the sub-second range. However, even
on a CPU, the computational time has been reduced, making
it feasible to test the model without relying on a GPU.
Moreover, the training time for the DISTA-CSNet model was
substantially reduced when trained on Dataset 1, requiring
only 20 epochs and approximately 16 minutes to reach a
near-optimal performance level. This observation highlights
the fast-learning capability of the proposed method compared
to other state-of-the-art approaches, further solidifying its
potential for practical and time-efficient applications in
medical image reconstruction.
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Dataset 1

50 100 150 50 100

PSNR / SSIM
34.96/0.9347

Dataset 2

PSNR / SSIM
39.18/0.9467

Dataset 3

150

PSNR / SSIM
33.98/0.9120

FIGURE 7. Sample recovered images from testing with different datasets having 5-fold compression.

TABLE 1. Dataset 1: Brain MRI with 50 slices testing results.

Compression Ratio GPU/ . CPY . QPU . Epochs
. Testing Training Time
Algorithms Ti
ime
20% 30% 40% 50%
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
ADMM-Net 37.17 0.9374 39.84  0.9526 41.56 0.9664 43.00 0.9734  0.9535s /5.2s 03:31:23 200
ISTA-Net+ 38770 0.9484  40.97 0.9639  42.65 09729 4412 09792 0.1437s /4.8s 02:38:15 200
ML-CSC 39.25 0.9551 41.50  0.9689  43.66 09774 4596 09855 0.0688s /2.8s  01:09:22 50
HiT-DUNS 39.27 0.9529  41.37 0.9660  43.66 09774 46.06 09801 0.0118s /1.57s  01:34:20 200
DISTA-CSNet  40.36  0.9634  42.67 0.9755 45.24 0.9839 47.51 0.9899 0.0114s /1.36s  00:16:18 20
TABLE 2. Dataset 2: Knee MRI testing results with 21 MR images.
Compression Ratio GI:[,U / .CPU . (%PU . Epochs
. esting Training Time
Algorithms Ti
ime
20% 30% 40% 50%
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

ADMM-Net 3430  0.9385 38.29 0.9385  40.78 0.9665 41.33 0.9775  0.8935s/2.32s  02:38:27 200
ISTA-Net+ 33.51 0.8533 36.23 0.9089 39.42 09502 41.86  0.9723 0.1261s/2.05s  01:58:07 200
ML-CSC 36.93 0.9262  39.68 0.9569 42.04 09738 4344 09824 0.0538s/2.18s  00:49:35 50
HiT-DUNS 37.14 09299 39.85 0.9658  42.19 09761 44.09  0.9839 0.0119/1.67s 01:10:29 200
DISTA-CSNet  38.06  0.9395 41.04 09661 4342  0.9799 46.21 0.9898  0.0112s/1.34s  00:12:15 20

Table 2 illustrates the effectiveness of the proposed
DISTA-CSNet model, which was trained on a dataset
containing 600 Knee MR images, showcasing its superior
performance in terms of PSNR and SSIM across various
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compression ratios. Remarkably, even at a 5-fold com-
pression, the model achieves an impressive average SSIM
value of 0.9395, demonstrating its proficiency in generating
high-quality reconstructions. The model’s computational
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TABLE 3. Dataset 3: Testing results of brain MR images with 123 slices.

PSNR

PSNR

Compression Ratio

Algorithms 20% 30% 40% 50% TSSI:HI/ (':l‘l;?le
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM g
ADMM-Net 29.29 0.84386  33.00 0.89599  36.02 0.92406  38.95 0.94158  0.9730s /5.4s
ISTA-Net+ 30.50 0.8786 33.94 0.9214 36.96 0.9483 39.96 0.9661 0.1528s /4.94s
ML-CSC 31.68 0.8782 35.21 0.9234 38.35 0.9554 41.60 0.9724 0.0732s/3.79s
DISTA-CSNet  33.32 0.8975 37.9 0.9522 41.37 0.9749 44.50 0.9863 0.0429s/1.40s

PSNR for Brain MRI with 50 Slices at CR:20%
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FIGURE 8. PSNR and SSIM for dataset 1 of brain MRI with 20 slices at a compression ratio of 20%.
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FIGURE 9. PSNR and SSIM for dataset 2 of knee MRI at a compression ratio of 20%.

efficiency during testing was notably improved when utilising
a GPU, resulting in computation times within the sub-
second range. Nevertheless, the computational time on a
CPU has also been significantly reduced, making it viable
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to test the model without relying on a GPU. Additionally,
the training time for the DISTA-CSNet model on Dataset
2 showed substantial reductions, requiring only 20 epochs
and approximately 12 minutes to achieve near-optimal

118561



IEEE Access

H. Haider et al.: DISTA-CSNet: Efficient Data Aware DL Model for CS MRI Recovery

PSNR for Brain MRI with 123 Slices at CR: 20%
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FIGURE 10. PSNR and SSIM for dataset 3 of 123 brain MRI slices at a compression ratio of 20%.

performance. The reduced training time compared to Brain
MRI training time was mainly due to fewer MR images being
available for training i.e., 600 instead of 800 MRIs. This
observation emphasises the proposed method’s fast-learning
capability compared to other state-of-the-art approaches,
further validating its potential for practical and time-efficient
medical image reconstruction applications at clinical
standards.

Table 3 demonstrates the effectiveness of the proposed
DISTA-CSNet model, which was tested using Dataset 3 on
the same model that was trained on a dataset comprising 800
Brain MR images, showcasing its exceptional performance
concerning PSNR and SSIM across different compression
ratios and robustness against varying test data. Even at a
5-fold compression, the model achieves remarkable average
SSIM and PSNR scores, underscoring its ability to generate
high-quality reconstructions. Notably, during testing, the
model exhibited significant improvements in computational
efficiency when employed on a GPU, achieving computation
times in the sub-second range. However, the computational
time on a CPU has also been reduced, making it feasible to
test the model without relying solely on a GPU. These finding
highlights the proposed method’s adaptability and robustness
mainly by introducing dropouts, compared to other state-
of-the-art approaches, further reinforcing its potential for
practical and time-efficient applications in medical image
reconstruction.

In Fig. 8, the performance of the trained DISTA-CSNet
model is depicted when it was tested on Dataset 1, which
consisted of 50 slices of Brain MRI used for testing. The
graph shows the PSNR and SSIM values achieved by the
model at different compression ratios. Notably, the red dotted
line highlights the average PSNR and SSIM attained by the
proposed model when the compression ratio was set at only
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20%. This emphasises the efficacy of the proposed model
in recovering Compressed Sensing (CS) MRI data. Even
at a relatively low compression ratio of 20%, the model
achieves high PSNR and SSIM values, indicating its ability
to produce accurate and high-quality MRI reconstructions.
This result demonstrates the robustness and effectiveness
of the DISTA-CSNet model in handling CS MRI recovery
tasks, making it a promising solution for medical imaging
applications that involve compressed data.

Fig. 9 illustrates the performance of the trained
DISTA-CSNet model during testing on Dataset 2, compris-
ing 21 MRIs of Knee MRI used for evaluation. The graph
showcases the PSNR and SSIM values achieved by the
model at various compression ratios. The red dotted line
highlights the average PSNR and SSIM obtained by the
proposed model when the compression ratio was set to just
20%. This emphasises the model’s effectiveness in recovering
Compressed Sensing (CS) MRI data. Even at a relatively
5-fold compression, the model can produce accurate and
high-quality MRI reconstructions with better PSNR and
SSIM. These results underscore the robustness and efficacy
of the DISTA-CSNet model in handling CS MRI recovery
tasks, rendering it a promising solution for medical imaging
applications that deal with compressed data.

Fig. 10 presents the performance of the trained
DISTA-CSNet model during testing on Dataset 3, which
consists of 123 slices of Brain MRIs used for evaluation.
The graph showcases the PSNR and SSIM values achieved
by the model at different compression ratios. Of particular
significance is the red dotted line, indicating the average
PSNR and SSIM obtained by the proposed model at a
compression ratio of 20%. This highlights the model’s
effectiveness in recovering Compressed Sensing (CS) MRI
data. Even at a relatively high 5-fold compression, the model
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can produce accurate and high-quality MRI reconstructions,
with improved PSNR and SSIM values. These results
underscore the robustness and efficacy of the DISTA-CSNet
model in handling CS MRI recovery tasks, making it a
promising solution for medical imaging applications that
involve compressed k-space data.

IV. CONCLUSION

The proposed DISTA-CSNet model has introduced data
consistency constraints and a flexible tanh-based shrinkage
technique, leading to remarkable advancements in terms of
reduced training time, requiring only 20 epochs adapt to
different datasets for specific applications efficiently. Despite
the reduced training time, the model’s testing performance
significantly improves in both SSIM and PSNR values that
are acceptable for clinical applications. Moreover, incorpo-
rating dropouts in the proposed model has demonstrated
its robustness when confronted with varying datasets, that
can significant where dataset is scarce. This resilience is
evident from the testing results on Dataset 3, Brain MRI
with 123 slices, where the proposed model outperforms other
state-of-the-art methods in recovering Compressed Sensing
MRI data. These findings highlight the effectiveness and
versatility of the DISTA-CSNet model, making it a promising
and competitive solution for medical image reconstruction
tasks.

V. FUTURE WORK

This research work can be further enhanced by replacing
analytical sparsifying transforms (dictionary) by integrating
an adaptive dictionary learning mechanism could further
elevate recovery outcomes. Moreover, the research suggests
extending CS recovery to patch-based reconstruction, facil-
itating localized and adaptive modelling that is anticipated
to yield superior reconstruction quality compared to tra-
ditional global modelling approaches. Within the domain
of deep learning, the transfer learning methodology could
be used in development of more universally applicable CS
recovery models capable of adaptation to diverse datasets
without necessitating extensive initial training. Additionally,
the proposed DISTA-CSNet model, with its demonstrated
efficacy, could be optimized for parallel processing using
multiple GPUs, thereby accelerating its training process.
Furthermore, an intriguing avenue for future exploration lies
in the modification of the DISTA-CSNet model to incorporate
classification capabilities for biomedical images within the
CS framework, potentially offering a holistic solution for
both reconstruction and analysis tasks in medical imaging.
Through these advancements, the research endeavors to
propel the field of CS-MRI towards more efficient, adaptable,
and comprehensive solutions with significant implications for
medical imaging.
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