EE Access

Received 15 July 2024, accepted 16 August 2024, date of publication 23 August 2024, date of current version 4 September 2024. Digital Object Identifier 10.1109/ACCESS.2024.3449033

RESEARCH ARTICLE

Performance Analysis of Reactive Power Circulation Control on Extra High Voltage Transmission System Parameters

NEERAJ KANWAR^{©1}, (Senior Member, IEEE), HARSHITA KHANDLE^{©1}, AND VINAY KUMAR JADOUN^{®2}, (Senior Member, IEEE) ¹Department of Electrical Engineering, Manipal University Jaipur, Jaipur, Rajasthan 303007, India ²Department of Electrical and Electronics Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India

Corresponding author: Vinay Kumar Jadoun (vinay.jadoun@manipal.edu)

The work of Vinay Kumar Jadoun was supported by Manipal Academy of Higher Education.

ABSTRACT In this research paper, a real time case study on Jaipur city Extra High Voltage (EHV) system for reactive power circulation is presented. Jaipur's EHV system, consisting of 20 buses, 18 transmission lines, 10 power transformers, 6 load buses, and 2 shunt reactors, has been modelled in MATLAB Simulink. Hourly recorded system parameters are collected from the grid substations for simulation studies. A methodology is proposed based on coordinated changes of tap positions of power transformers for circulating reactive power control in EHV transmission systems. As per simulation studies, average reactive power circulation is reduced to 5.6 MVAR, reactive power circulation is reduced by 87%, network voltage at 220 kV and 132 kV voltage levels is improved, and voltage variation index is decreased, transmission losses are reduced by 0.0618%, reactive power loss is reduced by 2.23%. Proposed methodology reduces reactive power and apparent power flow on lines and transformers considerably as compared to the base case. An annual energy savings of 20.76 lac is envisaged, which corresponds to an annual cost savings of Rs 1.03 crore in the Jaipur EHV transmission system with the application of the proposed methodology.

INDEX TERMS Power flow, reactive power, tap changing transformer, transmission line loss reduction, voltage stability, extra high voltage (EHV) system.

I. INTRODUCTION

Electrical power quality has been an important problem and attracted more and more attention from power system engineers. The reformation of the electric power industry has been done in recent years by distribution network operators (DNOs) to improve their energy efficiencies, reduce costs, and maintain reliability and power quality [1]. Voltage fluctuations are expected in power system because of mismatching in power generation and load demand, also loads and currents are unpredictable. Therefore, voltage regulation (VR) is required in the transmission system operation. The main function of VR is to stabilize the steady state voltage within its standardized permissible limits [2]. A load causes wide

The associate editor coordinating the review of this manuscript and approving it for publication was Binit Lukose^{\square}.

voltage fluctuations and renders the system unsuitable for operation near the maximum load transfer level. One of the important indicators for measuring power quality is the stability of the voltage [3], [4]. By controlling the voltage directly and through reactive power flow that will affect the voltage drop, we can achieve the required voltages [5]. It has been observed that reactive power circulation is reduced by virtue of the coordinated tap position of adjacent grid sub-stations (GSS) [6], [7]. It results in an increase in transmission system efficiency and voltage with reduction of loading on lines and transformers. The equipment that is normally used for voltage stability and reactive power control is tap changing transformers and shunt capacitor injection [8]. Transformer taps and phase-shifting transformers may be the causes for circulating flows in power system [9]. Unbalanced tap ratios for transformers generates circulating MVARs. In the same manner,

phase-shifting transformers generates circulating MWs. Out of these, the more common type of circulating flow is circulating MVARs. In case of parallel transformers, unbalanced tap ratios also cause circulating MVARs that result in reactive power flowing from higher bus voltage to lower bus voltage and thus forming a loop [10]. There is a need to study the impact of tap changing transformers on loss minimization because of the circulating power between adjoining grid substations.

In parallel connected two or more transformers, the voltage difference produced by the transformers causes a circulating current, as shown in Fig. 1. The circulating currents for each transformer are of equal magnitude and flow in opposite direction for a two-transformer substation. They are also independent of the load current. Due to inductive nature of transformer impedance, the circulating current lags the transformer voltage by 90 degrees. Generally, operators change tap ratios as per the requirements and conditions that are prevailing at a given sub-station [10]. In the current Indian power system, there is no methodology available for the change of tap position of installed transformers at adjacent GSS, which are directly interconnected through two voltage level transmission lines. Also, the impact of coordinated changes in the tap position of transformers on-grid parameters, viz., MVAR circulation, voltage profile, loading, and system losses on a real system, is not considered.

FIGURE 1. Reactive power circulation between two transformers.

Based on the above discussion, the following work has been presented in this paper:

- A methodology is proposed to change the tap position of transformers to control circulating MVAR flows in the EHV transmission system.
- A part of the Indian Power System of 20 buses consisting of 765 kV, 400 kV, 220 kV, and 132 kV voltage levels are selected for the application of the proposed methodology.
- Hourly simulation studies are carried out to assess the impact of coordinated changes in the tap position of 220/132 kV transformers on MVAR circulation, system losses, the network voltage profile, and element loading.
- The impact of unequal tap position vs equal tap position on circulating reactive power flow, transmission losses, voltage profile, line loading, and transformers has been studied and presented in the result section.

Various requisite data of transformers, transmission lines, load, and shunt reactors have been gathered from respective Jaipur GSS and modelled in MATLAB Simulink. Hourly system parameters, viz. bus-wise MW and MVAR demand and tap position of transformers, are also collected from respective GSSs. Results obtained by proposed methodology show the improvement in the system performance in terms of power flow control, reducing the losses, improve voltage profile, line loading and transformer loading.

II. PROBLEM IDENTIFICATION

In the Jaipur EHV transmission system, six 220 kV GSS are directly connected through 220 kV and through 132 kV lines, forming five loops of 220 kV and 132 kV lines. 220/132 kV transformers are installed at 220 kV GSS. Substation operators change taps on 220/132 kV transformers through OLTC to regulate 132 kV bus voltage. It has been observed that in an interconnected system, 220 kV bus voltage is decreased, and 132 kV bus voltage is increased with the increase of taps on 220/132 kV transformers, respectively, and vice versa. In the present power system operation condition, there is no coordination to change the tap position of transformers; therefore, GSS operators change the taps of transformers independently at their level. In the Jaipur EHV transmission system, the 220 kV GSS, Sitapura, and Sanganer are directly connected through 11 km 220 kV line and through the 11 km 132 kV line.

Both GSS have 220/132 kV transformers, and the load of these GSS is connected to a 132 kV bus. The connection diagram has been shown through a single-line diagram in Fig. 2. Recorded parameters at 220 kV GSS Sitapura on 15.2.2021 from 11 a.m. to 1 p.m. are shown in Table 1. Positive and negative signs indicate import and export of power, respectively, at 220 kV GSS Sitapura.

FIGURE 2. Transmission system between 220 kV GSS of Sitapura and Sanganer.

It can be observed from the table that:

i. There is no coordination between GSS operators at 220 kV GSS Sitapura and Sanganer to change the tap position of 220 kV transformers. GSS operators change the tap position of 220 kV transformers independently. Therefore,

TABLE 1. Recorded system parameters on 15.2.2021 at 220 kV GSS Sitapura.

Particulars	1	11 a.m.		2 p.m.	1 p.m.		
	MW	MVAR	MW	MVAR	MW	MVAR	
220 kV S/C Sitapura-	63	13.1	63	16.7	50	-27.3	
Sanganer Line							
132 kV S/C Sitapura-	7	-39.1	9	-39.8	11	7.1	
Sanganer Line							
220 kV Transformers	13		13		8		
Tap Position at							
Sitapura							
220 kV Transformers	9		9		9		
Tap Position at							
Sanganer							
220 kV Bus Voltage	215.8		220.8	5	225		
at Sitapura (kV)							
132 kV Bus Voltage	130.9		134.4		133.2		
at Sitapura (kV)							
220 kV Bus Voltage	215.8		220.8	5	225		
at Sanganer (kV)							
132 kV Bus Voltage	130.9		134.4		133.2		
at Sanganer (kV)							
Reactive power	13.1		16.7		7.1		
circulation between							
Sitapura & Sanganer							

reactive power is being circulated from a high-potential bus to a low-potential bus, thus forming a loop.

ii. From 11 a.m. to 12 p.m., the tap position of 220 kV transformers at 220 kV GSS Sitapura is higher than at 220 kV GSS Sanganer. Therefore, 220 kV GSS Sitapura exports reactive power at 132 kV voltage level and imports it at 220 kV voltage level from 220 kV GSS Sanganer.

iii. At 1 p.m., the tap position of 220 kV transformers at 220 kV GSS Sitapura is lower than that of 220 kV GSS Sanganer. Therefore, 220 kV GSS Sitapura imports reactive power at 132 kV voltage level and exports it at 220 kV voltage level from 220 kV GSS Sanganer.

Five such loops at 220 kV and 132 kV voltage levels exist in the Jaipur EHV transmission system, as can be observed from Table 2.

TABLE 2. 220 kV and 132 kV voltage level loops in the Jaipur EHV transmission system.

Loop	Substa	tion Name	Len	gth (km)
No.	From	То	220 kV	132 kV Line
			Line	
1	220 kV GSS	220 kV GSS	11	11
	Sanganer	Sitapura		
2	220 kV GSS	220 kV GSS	35	35
	Sanganer	Chaksu		
3	220 kV GSS	220 kV GSS	16	9- 5
	Sanganer	Mansarovar		
4	220 kV GSS	220 kV GSS	18	18
	Sanganer	Vatika		
5	220 kV GSS	220 kV GSS IG	9	9
	Sitapura	Nagar		

It can be seen from the table that loops are forming between adjoining substations. Across this loop, MVAr flows from higher bus voltage to lower bus voltage, and therefore a significant amount of losses is incurred. As the tap ratio of the 220/132 kV transformers is not equal, reactive power is being circulated across these loops, which also results in an increase in system losses. Existing data from substations is being collected and used for analysis. The coordinated tap setting of the transformer is proposed in this work between adjoining substations to control the circulated MVAr flow and reduce losses caused by this MVAr flow.

III. TEST SYSTEM

A. TRANSMISSION LOSSES

The transmission losses of the Rajasthan power system for the last five years are shown in Table 3 [11]. From the table, it can be observed that in FY 2020–21, if transmission losses are reduced by 0.1%, then energy savings are 88.71 MUs/per annum, which is equivalent to a cost savings of Rs 44.35 crore per year. Transmission losses depend on active and reactive flow in lines and transformers and on the network voltage profile [12]. Reactive power management and voltage control in the transmission losses [13], [14].

TABLE 3. Transmission losses in the Rajasthan power system (2017 to 2021).

Year	Availabi lity of energy (MU)	Drawl by DISCO M (includin g auxiliary consump tion of GSS) (MU)	Transmi ssion losses (in MU)	% Transm ission losses	Cost of energy losses (@5 Rs /unit) (in Cr.)
2016-	73769.5	71293.2 9	2470.30	3.35	1235.15
2017- 2018	76684.0 5	74102.1 6	2581.89	3.37	1290.94
2018- 2019	81326.4 6	78607.0 8	2719.38	3.34	1359.69
2019- 2020	81951.9 0	79219.1 5	2732.75	3.33	1366.38
2020- 2021	81951.9 0	83162.1 1	2867.46	3.33	1433.73

B. TEST SYSTEM MODELLING

A real-time test network is considered to have a part of the Rajasthan Grid, consisting of a total of 20 buses of 765 kV, 400 kV, 220 kV, and 132 kV voltage levels. The test network initializes with a swing generator (bus-1) placed at a 765 kV voltage level at the 765 kV GSS Jaipur. It is connected to 400 kV GSS at Heerapura, Bassi, and Jaipur (PG) via 400 kV lines. Further, 220 kV GSS are connected to 400 kV GSS via 220 kV lines. Auto power transformers are installed at

765 kV, 400 kV, and 220 kV GSS. Loads are connected to 132 kV buses at 220 kV GSS. A load for Jaipur city is being met by one 765 kV GSS, three 400 kV GSS, and six 220 kV GSS EHV transmission systems. Adjacent 220 kV GSS are directly connected through 220 kV as well as 132 kV lines. 220/132 kV transformers installed at 220 kV GSS have On-load tap changers (OLTC) attached to them, which are used to change the tap position of transformers to regulate 132 kV bus voltage. Jaipur's EHV system is modelled in MATLAB Simulink. Ten grid substations that are connected with the Jaipur transmission system with different voltage levels are: 765 kV GSS Phagi, 400 kV GSS Heerapura, 400 kV GSS Bassi, 400 kV GSS Jaipur PG, 220 kV GSS Sanganer, 220 kV GSS Mansarovar, 220 kV GSS Chaksu, 220 kV GSS Vatika, 220 kV GSS Sitapura, and 220 kV GSS IG Nagar as shown in Figure 8 of the Appendix.

Table 4 presents different components connected with systems, such as the minimum and maximum values of the real and reactive loads. It also depicts the number of buses, lines, and transformers, load buses, generator buses, and shunt reactors. Information of bus voltages and line details is shown in Table 18 and Table 19 of the Appendix, respectively.

TABLE 4. Abstract of the Jaipur EHV transmission system.

SL.	Input Data	Quantity	Data Values
No	mput Data	Quantity	Data Values
1	System Real Power Load	-	maximum: 415
	5		MW (at 11AM)
			minimum: 366
			MW (at 5 pm)
2	System Reactive Power Load	-	maximum: 104
_	~,~		MVAR (at 11PM)
			minimum: 64
			MVAR (at 11
			AM)
3	Total Number of Buses	20	-
4	765 KV buses	01	-
	400 KV buses	04	-
	220 KV buses	09	-
	132 KV buses	06	-
5	Number of total lines	18	-
6	765 KV buses	03	-
	400 KV buses	10	-
	220 KV buses	05	-
7	Number of Transformers	10	
	765/400 KV Transformers	01	6000 MVA
	400/220 KV Transformers	03	3195 MVA
	220/132 KV Transformers	06	1200 MVA
8	Number of Load Buses	06	-
9	Number of Generator Buses	01	-
10	Shunt Reactors	02	25 MVAr

Positive and zero-sequence inductance and capacitance of lines are presented in Table 5. Details of different transformers are shown in Table 20 of the appendix, showing voltage ratio, rating, percentage impedance, and losses in the transformer. The voltage ratio at different taps of the 220/132 kV transformer is shown in Table 21 of the Appendix.

IV. PROPOSED METHODOLOGY

In this paper, a methodology is adopted to control the circulating MVAR in the EHV system. The methodology is based on

TABLE 5. Positive and zero-sequence inductance and capacitance of lines.

S				Line Pa	rameters	
N	Type of	Volt	Positive	sequence	Zero se	quence
IN	Condu	age	Inductanc	Capacita	Inductanc	Capacita
0	ctor	(kV)	e (L)	nce (C)	e (L)	nce (C)
•	0.01		(H/km)	(F/km)	(H/km)	(F/km)
1	Quad	400	8.471e-4	1.59e-8	3.35e-3	9.19e-9
	Moose					
2	Twin	400	1.057e-3	1.10e-8	3.949e-3	7.13e-9
	Moose					
3	Zebra	220	1.272e-3	9.34e-9	4.265e-3	5.86e-9
4	Panther	132	1.230e-3	9.32e-9	5.166e-3	8.39e-10

an equal tap position of 220/132 kV transformers at adjacent 220/132 kV GSS while satisfying maximum and minimum voltage limits [15]. It has been observed that 220 kV bus voltage is decreased, whereas 132 kV bus voltage is increased, with an increase in the tap position of 220/132 kV transformers, and vice versa. The following methodology is proposed for the control of reactive power circulation in the integrated network where more than two 220 kV GSS substations are connected through 220 kV and 132 kV lines.

The following steps have been followed for simulation:

Step-1: Check the direction of reactive power flow on 220 kV and 132 kV lines that are directly connected to a 220 kV GSS. If the direction of reactive power flow on both lines is the same, then there is no requirement to take any action.

Step-2: If the direction of reactive power flow on 220 kV and 132 kV lines at any GSS is opposite, then the nominal tap position is set on transformers at all GSS.

Step-3: Check the limits of voltage for all buses of the GSS. If the voltage of few 132 kV buses is lower than the lower limit, then increase the tap position of the transformer at the GSS, which has the lowest 132 kV bus voltage.

Step-4: Again, check the 132 kV bus voltage for all buses. Still, if any 132 kV bus voltage is lower than the prescribed lower limit, then repeat Step 3 until the voltage of all 132 kV buses is greater than the lower limits.

Step-5: If the voltage of a few 132 kV buses is greater than the upper limit, then decrease the tap position of transformers at the GSS that have the highest 132 kV bus voltage.

Step-6: Again, check the 132 kV bus voltage for all buses. Still, if any 132 kV bus voltage is higher than the upper limit, then repeat Step 5 until the voltage of all 132 kV buses is within limits.

Step-7: If the voltage of a few 220 kV buses is lower than the lower limit, then decrease the tap position of transformers at the GSS that have the lowest 220 kV bus voltage.

Step-8: Again, check the 220 kV bus voltage for all buses. Still, if any 220 kV bus voltage is lower than the lower limit, then repeat Step 7 until the voltage of all 220 kV buses is within limits.

Step-9: If the voltage of a few of the 220 kV buses is greater than the upper limit, then increase the tap position

of transformers at the GSS that have the highest 220 kV bus voltage.

Step-10: Again, check the 220 kV bus voltage for all buses. Still, if any 220 kV bus voltage is higher than the upper limit, then repeat Step 9 until the voltage of all 220 kV buses is within limits.

Step-11: Finally, check that all bus voltages are within limits. If it is not, then repeat all steps from 3 to 10.

V. OPERATIONAL PARAMETERS OF THE TEST SYSTEM

The load for Jaipur city is being met by 765 kV, 400 kV, and 220 kV GSS EHV transmission systems. Hourly recorded parameters of the six 220 kV GSS on 15.2.2021 from 11 a.m. to 5 p.m. were collected from the respective GSS and discussed in the following sections:

A. GSS LOAD

Hourly recorded power flow on 220/132 kV transformers at 220 kV GSS is tabulated in Table 6. This power flow on 220/132 kV transformers is considered a GSS load in simulation studies. Total MW and MVAR power flow at all six GSS are also presented in Table 6.

TABLE 6. Hourly recorded power flow on 220/132 kV transformers.

S	NAME OF	RECOR	11	12	1	2	3	4	5
	220 KV	DED	А.	No	Ρ.	Р.	Р.	Р.	Р.
Ν	GSS	PARAM	м.	ON	м.	М.	м.	М.	М.
0		ETER							
1	SANGANER	MW	63	59	55	55	55	56	56
		MVAR	13	11	9	19	18	25	30
2	MANSARO	MW	78	77	70	69	68	68	67
	VAR	MVAR	6	8	6	12	12	5	5
3	CHAKSU	MW	88	82	90	93	89	89	86
		MVAR	18	17	18	19	18	18	18
4	VATIKA	MW	48	46	44	40	40	40	39
		MVAR	5	2	1	12	12	9	19
5	SITAPURA	MW	53	53	50	53	51	50	52
		MVAR	7	8	7	8	8	7	8
6	IG NAGAR	MW	85	89	72	69	67	67	66
		MVAR	15	16	25	27	26	25	24
TO	TAL SYSTEM	MW	41	406	38	37	37	37	36
	LOAD		5		1	9	0	0	6
		MVAR	64	62	66	97	94	89	10
									4

B. TAP POSITION OF 220/132 kV TRANSFORMERS

Hourly tap positions of 220/132 kV transformers installed at 220 kV GSS are shown in Table 7. This table shows that the tap positions are different between two substations that are next to each other. This causes MVAr flow to go back and forth between the two substations.

C. GSS VOLTAGE

Hourly recorded bus voltages at 220 kV GSS are presented in Table 8.

D. POWER FLOWS ON 220 kV AND 132 kV LINES

Hourly recorded power flows on 220 kV and 132 kV lines are shown in Table 9. Positive and negative signs indicate the import and export of power, respectively.

TABLE 7. Hourly recorded power flow on 220/132 kV transformers.

S.	Name of	Tap Position of Transformers						
No	220 KV	11	12	1	2	3	4	5
	GSS	a.m	noo	p.m	p.m	p.m	p.m	p.m
			n					
1	Sanganer	9	9	9	9	9	9	9
2	Mansarova r	10	10	10	9	9	8	8
3	Chaksu	6	6	6	6	6	6	6
4	Vatika	9	9	9	7	7	7	6
5	Sitapura	13	13	8	8	8	8	8
6	IG Nagar	8	10	10	6	6	6	6

TABLE 8. Hourly recorded bus voltage (kV).

S.	Name	Partic	11	12	1	2	3	4	5
Ν	of 220	ulars	a.	no	p.	p.	p.	p.	p.
0.	kV		m.	on	m.	m.	m.	m.	m.
	GSS								
1	Sangan	220	22	22	22	22	22	22	22
	er	kV	0	0	0	2	2	2	4
		bus							
		132	13	13	13	13	13	13	13
		kV	1	1	1	1	1	1	2
		bus							
2	Mansar	220	22	22	22	22	22	22	22
	ovar	kV	1	1	1	4	3	5	6
		bus							
		132	13	13	13	13	13	13	13
		kV	1	1	2	2	2	3	4
		bus							
3	Chaksu	220	22	21	22	22	22	22	22
		kV	4.8	9.8	5.1	5.7	5.6	6.6	7
		bus							
		132	13	13	13	13	13	13	13
		kV	3	1.5	2	2	2.5	3.2	3.5
		bus							
4	Vatika	220	22	22	22	22	22	22	22
		kV	2	3	2	7	5	6	8
		bus							
		132	13	13	13	13	13	13	13
		kV	2.5	2.5	2.4	2.5	2.2	2.4	2.5
		bus							
5	Sitapur	220	21	22	22	22	22	22	22
	а	kV	5.8	0.9	5	6	3.9	4.7	5.2
		bus							
		132	13	13	13	13	13	13	13
		kV	0.9	4.4	3.2	3.8	2.6	2.5	3.2
		bus							
6	IG	220	22	22	22	22	22	22	22
	Nagar	kV	4.1	2.1	3.4	6.5	6	8	9
	-	bus							
		132	13	13	13	13	13	13	13
		kV	2.7	3.5	35	2.6	1.5	2.6	3.4
		bus							

E. MVAR CIRCULATION BETWEEN ADJACENT 220 kV GSS LINES

Hourly recorded reactive power circulation on 220 kV and 132 kV lines is shown in Table 10.

VI. SIMULATION RESULT AND DISCUSSION

The Jaipur EHV transmission system was looked at by recording system parameters every hour from 11 a.m. to 5 p.m. on February 15, 2021. Total seven cases have been

TABLE 9. Hourly recorded power flow on 220 kV and 132 KV lines.

S.	Name of		11	12	1	2	3	4	5
Ν	Line		a.	noo	p.	p.	p.	p.	p.
0.		MW	m. 63	n 63	<u>m.</u> 50	m. _46	<u>m.</u> 44	m. 42	<u>m.</u> 40
1	220 kV	MV	13	16	-	-40	-		-26
	S/C	AR	15.	7	27	25	26	26	-20
	Sangane	7110		,	3	5	1	6	
	r-				5			0	
	Sitapura								
	line								
	(Sitapur								
	a end)								
2	132 kV	MW	7	9	11	11	13	13	15
	S/C	MV	-	-	7.1	1.4	-	-	-1
	Sangane	AR	39.	39.			1.1	1.1	
	r-		1	8					
	Sitapura								
	line								
	(Sitapur								
	a end)								
3	220 kV	MW	-	-	-	-	-	-	-
	S/C		88.	99. 2	94. 7	93.	91. 4	94.	96. C
	Sangane	MV	1	3 20	/	11	4 7 0	0	0 5 1
	I- Chaken		0	20.	11. 2	11. 2	7.0	0.5	5.1
	line		,	U	2	2			
	(Sangan								
	er end)								
4	132 kV	MW	_	_	_	_	-	_	-
	S/C		7.2	9.5	25.	28.	23.	21.	16.
	Sangane				2	3	5	3	6
	r-	MV	1.4	-	-	-	-	-	-
	Chaksu	AR		22.	17.	11.	10.	6.0	4.6
	line			9	9	6	2		
	(Sangan								
	er end)								
5	220 kV	MW	-	-	-	-	-	-40	-
	S/C		27.	33.	37.	38.	37.		42.
	Sangane		8	2	6	2	9		2
	r-	MV	-	-	-	-	-	-	-
	Mansaro	AK	5.6	9.8	12.	13.	12.	6.3	6.4
	(Sangan				1	0	3		
	(Sangan er end)								
6	$132 \mathrm{kV}$	MW	_	_	_	_	_	_	_
0	S/C	101 00	1.7	1.4	1.3	3.8	4.4	2.6	0.2
	Sangane	MV	-	-	15.	9.1	8.9	2.4	0.9
	r-	AR	0.3	4.5	8				
	Mansaro								
	var line								
	(Sangan								
	er end)								
7	220 kV	MW	-	-82	-84	-80	-78	-82	-80
	S/C		79						
	Sangane	MV	-	-11	-10	-15	-10	-	-
	r-Vatika	AR	2.1					10.	14.
	line							3	6
	(vatika								
0	122 by	M337		26			24	25	
0	152 KV S/C	IVI W	- วง	-20	- 26	-	-24	-23	- 28
	Sangane		20		20. 9	2 <i>3</i> . 5			∠o. 3
	r-Vatika	MV	0	9	4	15	15	13	20
	line	AR	v	,		1.5	8	1.5	20. 9
	(Vatika								-
	end)								

IEEE Access

9	220 kV	MW	-	-19	-16	-11	-8	-6	-2
	S/C		18						
	Sitapura	MV	31.	30	20.	25.	26.	31	30.
	-IG	AR	9		6	3	6		5
	Nagar								
	line								
10	132 kV			Ι	line Op	bened			
	S/C								
	Sitapura								
	-IG								
	Nagar								
	line								

 TABLE 9. (Continued.) Hourly recorded power flow on 220 kV and 132 KV lines.

TABLE 10. Hourly recorded power flow on 220 kV and 132 KV lines.

Name of Line	11	12	1	2	3	4	5
	a.m.	Noon	n.m.	– p.m.	p.m.	n.m.	n.m.
Reactive power	13.1	16.7	7.1	1.4	0	0	0
circulation		1017			, in the second s		
between 220							
kV GSS							
Sanganer and							
Sitapura							
(Loop1)							
Reactive power	1.4	20.0	11.2	11.2	7.8	6.0	4.6
circulation							
between 220							
kV GSS							
Sanganer and							
Chaksu							
(Loop2)							
Reactive power	0	0	12.1	9.1	8.9	2.4	0.9
circulation							
between 220							
kV GSS							
Sanganer and							
Mansarovar							
(Loop3)							
Reactive power	0	9	4	15	10	10.3	14.6
circulation							
between 220							
kV GSS							
Sanganer and							
Vatika (Loop4)							
Reactive power			Loop	was op	ened		
circulation							
between 220							
kV GSS							
Sitapura and IG							
Nagar (Loop5)							

studied, and load flow has been performed in each case for both actual and nominal positions of tap. Abstracts of simulated cases are shown in Table 11. Load flow studies with actual tap positions (ATP) of 220/132 kV transformers are termed as "Base case" and load flow studies with nominal tap positions (NTP) of 220/132 kV transformers are termed "Proposed case".

TABLE 11. Load flow cases in Simulink for Jaipur EHV transmission system.

Case No.	Particulars of Case
Case 1A	LFS with ATP of 220/132 kV transformers at 11 a.m.
Case 1B	LFS with NTP of 220/132 kV transformers at 11 a.m.
Case 2A	LFS with ATP of 220/132 kV transformers at 12 o'clock
	noon
Case 2B	LFS with NTP of 220/132 kV transformers 12 o'clock
	noon
Case 3A	LFS with ATP of 220/132 kV transformers at 1 p.m.
Case 3B	LFS with NTP of 220/132 kV transformers at 1 p.m.
Case 4A	LFS with ATP of 220/132 kV transformers at 2 p.m.
Case 4B	LFS with NTP of 220/132 kV transformers at 2 p.m.
Case 5A	LFS with ATP of 220/132 kV transformers at 3 p.m.
Case 5B	LFS with NTP of 220/132 kV transformers at 3 p.m.
Case 6A	LFS with ATP of 220/132 kV transformers at 4 p.m.
Case 6B	LFS with NTP of 220/132 kV transformers at 4 p.m.
Case 7A	LFS with ATP of 220/132 kV transformers at 5 p.m.
Case 7B	LFS with NTP of 220/132 kV transformers at 5 p.m.

FIGURE 3. Bus average voltage of the 220 kV Jaipur EHV transmission system for the base and proposed case.

FIGURE 4. Bus average voltage of the 132 kV Jaipur EHV transmission system for the base and proposed case.

For each case, the Voltage Variation Index (VVI) is also calculated. VVI represents the degree of voltage variation from the nominal value over a specified period and is com-

FIGURE 5. Load Comparison for reactive power circulation in the base and proposed case.

TABLE 12. Reactive power circulation in all five loops.

Particulars of case	Reduction in circulating MVAR flow	% Reduction in circulating MVAR flow
Case 1A	64.09	96
Case 1B	04.09	90
Case 2A	50.40	02
Case 2B	30.49	92
Case 3A	4.20	36
Case 3B	4.29	30
Case 4A	25.1	9.4
Case 4B	35.1	84
Case 5A	25.10	9.4
Case 5B	35.18	84
Case 6A	22.47	9.4
Case 6B	32.47	84
Case 7A	28.426	00
Case 7B	38.420	90
Average value	37.1	87

puted by using the following equation [16]:

$$\% VVT = \frac{100}{V_s} \times \frac{\sqrt{\sum_{i=1}^{N} (V_i - V_s)^2}}{N}$$
(1)

where, $V_i = RMS$ value of voltage in kV at an ith hour in the period for which VVI is computed

 V_s = the nominal voltage in the RMS value of the system

Particular	s	%	Reduction	Reduction	System	
		Loss	in loss	in loss	load	
			(MW)	(%)	(MW)	
Case 1A		0.8274	0.253	10.28	415	
Case 1B		0.7424	0.333	10.28	415	
Case 2A		0.8126	0.216	0.58	406	
Case 2B		0.7346	0.310	9.38	400	
Case 3A		0.7787	0.101	6.44	201	
Case 3B		0.7285	0.191	0.44	301	
Case 4A		0.8161	0.227	7 24	270	
Case 4B		0.7561	0.227	7.34	319	
Case 5A		0.8065	0.224	7.51	270	
Case 5B		0.7460	0.224	7.51	570	
Case 6A		0.7814	0.141	1 88	370	
Case 6B		0.7432	0.141	4.00	370	
Case 7A		0.8141	0.204	6 95	366	
Case 7B		0.7585	0.204	0.85	300	
	Base	0.8075				
Average	case	0.0075	0.237	7.65	383	
Value	Proposed	0.7457			202	
	case					

TABLE 13. Transmission losses in the base and proposed case.

 TABLE 14. Energy savings in the proposed case as compared to the base case.

Particulars of Cases	Energy loss	Energy saving in proposed
	(kWh)	case (kWh)
Case 1A	3434	353
Case 1B	3081	
Case 2A	3299	316
Case 2B	2983	
Case 3A	2967	191
Case 3B	2776	
Case 4A	3093	227
Case 4B	2866	
Case 5A	2984	224
Case 5B	2760	
Case 6A	2891	141
Case 6B	2750	
Case 7A	2980	204
Case 7B	2776	
Base case (average	2002	
value)	3093	227
Proposed case	2856	- 231
(average value)	2000	

N = number of hourly measurements over the specified period

Detailed simulation results are explained in the following sections:

A. IMPACT ON VOLTAGE

The 220 kV and 132 kV bus voltages at 220 kV GSS for the base and proposed cases are compared and presented in Table 22 of the Appendix for all six GSS.

The average bus voltage for each bus is calculated from the values of voltages in all seven load flow cases. A comparison for the 220 kV bus and 132 kV bus average voltages of the

TABLE 15. Energy reactive power loss.

Particulars of	Reactive loss	Reduction in	Reduction in
Cases	(MVAR)	loss (MVAR)	loss (%)
Case 1A	152.7	8	5.24
Case 1B	144.7		
Case 2A	149.5	3.8	2.54
Case 2B	145.7		
Case 3A	143.0	2	1.40
Case 3B	141.0		
Case 4A	145	2.3	1.59
Case 4B	142.7		
Case 5A	142.9	2.3	1.61
Case 5B	140.6		
Case 6A	142.2	2	1.41
Case 6B	140.2		
Case 7A	142.8	2.3	1.61
Case 7B	140.5		
Base case	145 4		
(average value)	145.4	2.2	2.22
Proposed case	142.2	3.2	2.23
(average value)	142.2		

Jaipur EHV transmission system is shown in Fig. 3 and Fig. 4 for the base case and proposed case, respectively.

A significant improvement in VVI for the proposed case can be observed. In the case of the 132 kV bus, a drastic reduction in VVI can be seen, going from 2.59% in the base case to 0.66% in the proposed case.

It can be observed from the above analysis that

i. With the increased tap position of the 220/132 kV transformer, the 220 kV bus voltage is decreased, and the 132 kV bus voltage is increased.

ii. With the decrease in tap position of 220/132 kV transformers, 220 kV bus voltage is increased, and 132 kV bus voltage is decreased.

iii. System average 220 kV Grid voltage in the proposed case increased to 219.42 kV as compared to 219.32 kV in the base case.

iv. System average 132 kV Grid voltage in the proposed case increased to 130.64 kV as compared to 129.26 kV in the base case.

v. The average 220 kV VVI in the base and proposed cases are the same. Average 132 kV VVI in the proposed case is decreased to 0.66 % as compared to 2.59 % in the base case.

TABLE 16.	Average MVAR	flow on lines	and transformers.
-----------	--------------	---------------	-------------------

Particulars MVAR f		R flow	R flow MVA flow		
	Base	Proposed	Base	Proposed	
	Case	Case	Case	Case	
220 kV S/C Sanganer-	12.48	4.21	12.64	4.33	
Sitapura Line					
220 kV S/C Sanganer-	4.22	5.80	14.70	13.90	
Chaksu Line					
220 kV S/C Sanganer-	20.83	26.56	48.56	52.82	
Mansarovar Line					
220 kV S/C Sanganer-	4.10	7.13	4.18	7.42	
Vatika Line					
220 kV S/C Sitapura-IG	26.24	8.23	54.06	47.42	
Nagar Line					
Total (220 kV line)	67.86	51.93	134.14	125.90	
132 kV S/C Sanganer-	19.22	2.77	21.47	9.87	
Sitapura Line					
132 kV S/C Sanganer-	22.06	3.16	29.23	17.24	
Chaksu Line					
132 kV S/C Sanganer-	29.25	13.92	41.91	30.82	
Mansarovar Line					
132 kV S/C Sanganer-	9.29	2.03	9.31	2.19	
Vatika Line					
132 kV S/C Sitapura-IG	24.82	5.38	25.63	7.64	
Nagar Line					
Total (132 kV line)	104.63	27.27	127.54	67.76	
200 MVA, 220/132 kV	25.68	12.12	62.05	56.55	
Transformer at Sanganer					
160 MVA, 220/132 kV	6.88	16.74	69.51	73.24	
Transformer at Chaksu					
160 MVA, 220/132 kV	40.67	24.74	109.06	101.67	
Transformer at					
Mansarovar					
160 MVA, 220/132 kV	1.75	8.17	42.14	43.95	
Transformer at Vatika					
200 MVA, 220/132 kV	9.87	19.30	67.98	70.90	
Transformer at IG Nagar					
160 MVA, 220/132 kV	32.21	11.51	58.32	50.14	
Transformer at Sitapura					
Total (220/132 kV	117.06	92.58	409.06	396.44	
Transformers)					

VVI in the base case is exceeding the limits prescribed by Rajasthan Electricity Regulatory Commission (RERC) [12].

vi. In all proposed cases, the voltage of all buses is within the limit of $\pm 3\%$ of the nominal voltage, whereas in a few base cases there is a deviation in voltage from $\pm 3\%$.

B. IMPACT ON CIRCULATING REACTIVE POWER FLOW

The reactive power circulation in all five loops for the base and proposed cases is tabulated in Table 23 of the Appendix. Total reactive power circulation in all five loops for the base and the proposed case is calculated. A comparison of MVAR circulation for the base and the proposed case is shown in Fig. 5, and consolidated results are presented in Table 12. It can be observed from the above analysis that

i. With an equal tap position of 220/132 kV transformers, the difference between the 220 and 132 kV bus voltages of adjacent 220 kV GSS is decreased. Therefore, reactive power circulation is reduced in the proposed case.

TABLE 17. Comparison of MW flow and power factor for lines and transformers.

Particulars	MW flow Power Fact		er Factor	
	Base	Proposed	Base	Proposed
	Case	Case	Case	Case
220 kV S/C Sanganer-	2.01	1.04	0.159	0.239
Sitapura Line				
220 kV S/C Sanganer-	14.08	12.64	0.958	0.909
Chaksu Line				
220 kV S/C Sanganer-	43.87	45.66	0.903	0.864
Mansarovar Line				
220 kV S/C Sanganer-	0.80	2.07	0.192	0.279
Vatika Line				
220 kV S/C Sitapura-IG	47.26	46.70	0.874	0.985
Nagar Line				
Total (220 kV line)	108.03	108.11	0.617	0.655
132 kV S/C Sanganer-	9.57	9.47	0.446	0.960
Sitapura Line				
132 kV S/C Sanganer-	19.18	16.95	0.656	0.983
Chaksu Line				
132 kV S/C Sanganer-	30.02	27.49	0.716	0.892
Mansarovar Line				
132 kV S/C Sanganer-	0.51	0.83	0.055	0.376
Vatika Line				
132 kV S/C Sitapura-IG	6.40	5.42	0.250	0.709
Nagar Line				
Total (132 kV line)	65.67	60.16	0.425	0.784
200 MVA, 220/132 kV	56.49	55.24	0.910	0.977
Transformer at Sanganer				
160 MVA, 220/132 kV	69.17	71.30	0.995	0.974
Transformer at Chaksu				
160 MVA, 220/132 kV	101.19	98.62	0.928	0.970
Transformer at				
Mansarovar				
160 MVA, 220/132 kV	42.10	43.18	0.999	0.983
Transformer at Vatika				
200 MVA, 220/132 kV	67.26	68.22	0.989	0.962
Transformer at IG Nagar				
160 MVA, 220/132 kV	48.62	48.80	0.834	0.973
Transformer at Sitapura				
Total (220/132 kV	384.83	385.35	0.943	0.973
Transformers)				

ii. Reactive power flow on lines is proportional to the difference in bus voltages; therefore, reactive power circulation on 220 kV and 132 kV lines is reduced in the proposed case as compared to the base case.

iii. Average reactive power circulation among 220 kV and 132 kV networks in the proposed case is reduced to 5.6 MVAR as compared to 42.7 MVAR in the base case. Therefore, there is a reduction of 87% (37.1 MVAR) in the circulating MVAR flow.

C. IMPACT ON POWER LOSS

1) IMPACT ON MW LOSS

Transmission losses in the base and proposed cases are compared in Fig. 6, and consolidated results are presented in Table 13. It can be observed from the above analysis that

 TABLE 18. Bus data in Simulink model of Jaipur EHV transmission system.

S.	Bus	Base
No.	identification	voltag
		e (kV)
1	bus_1 (765 kV bus at 765 kV GSS Phagi)	765
2	bus_2 (400kv bus at 765 kV GSS Phagi)	400
3.	bus_3 (400 kV bus at 400 kV GSS Heerapura)	400
4.	bus_4 (400 kV bus at 400 kV GSS Bassi)	400
5.	bus_5 (400 kV bus at 400 kV GSS Jaipur PG)	400
6.	bus_6 (220 kV bus at 400 kV GSS Heerapura)	220
7.	bus_7 (220 kV bus at 400 kV GSS Bassi)	220
8.	bus_8 (220 kV bus at 400 kV GSS Jaipur PG)	220
9.	bus_9 (220 kV bus at 220 kV GSS Sanganer)	220
10	bus_10 (220 kV bus at 220 kV GSS Mansarovar)	220
11	bus_11 (220 kV bus at 220 kV GSS Chaksu)	220
12	bus_12 (220 kV bus at 220 kV GSS Vatika)	220
13	bus_13 (220 kV bus at 220 kV GSS Sitapura)	220
•		
14	bus_14 (220 kV bus at 220 kV GSS IG Nagar)	220
•		
15	bus_15 (220 kV bus at 132 kV GSS Sanganer)	132
•		
16	bus_16 (132 kV bus at 220 kV GSS Mansarovar)	132
17	bus_17 (132 kV bus at 220 kV GSS Chaksu)	132
		100
18	bus_18 (132 kV bus at 220 kV GSS Vatika)	132
	1 10(1201 1 (2001) V CGG S'()	122
19	Dus_19(132KV Dus at 220 KV GSS Sitapura)	132
20	$h_{\rm MR} = 20$ (122 kW has at 220 kW CSS IC Masses)	122
20	bus_{20} (152 KV bus at 220 KV GSS IG Nagar)	132

i. In the proposed case, average transmission loss is reduced to 2.856 MW as compared to 3.093 MW in the base case. Average transmission loss is reduced by 237 kW.

ii. In the proposed case, average transmission losses are reduced by 7.65% as compared to the base case. The maximum reduction in transmission loss is 10.28% at 11 a.m.

iii. Average transmission losses in the proposed case are 0.7457 % as compared to 0.8075% in the base case. Losses are reduced by 0.0618%.

2) ENERGY SAVING

Energy savings in the proposed case as compared to the base case are shown in Table 14. From the simulation study, it is observed that in the proposed case, average hourly energy loss was reduced to 2856 kWh as compared to 3093 kWh in the base case. The average hourly energy saving is 237 units. Annual cost savings with the obtained simulation results can be calculated as follows:

• Average hourly cost savings = No. of units saved * per unit tariff = 237 * 5 = Rs 1185/hour

• Annual energy savings (AES) = 237 * 8760 = 20, 76, 120 kWh

• Annual cost savings = 20,76,120 * 5 = Rs 1, 03, 80,600.00

S.	Name of line	Line length	Line
No.		(km)	conductor
1	400 kV S/C Phagi-Heerapura	52	Twin
	line		Moose
2	400 kV S/C Phagi-Bassi line	48	Quad
			Moose
3	400 kV S/C Bassi-Jaipur PG	37	Quad
	line		Moose
4	220 kV S/C Sanganer-	16	Zebra
	Mansarovar line		
5	220 kV S/C Sanganer-Chaksu	35	Zebra
	line		
6	220 kV S/C Sanganer-Vatika	18	Zebra
	line		
7	220 kV S/C Sanganer-Sitapura	11	Zebra
	line		
8	220 kV S/C Sitapura –IG	9	Zebra
	Nagar line		
9	220 kV S/C Heerapura-	5	Zebra
	Mansarovar line		
10	220 kV S/C Jaipur PG-Chaksu	8	Zebra
	line		
11	220 kV S/C Jaipur PG-Vatika	28	Zebra
	line		
12	220 kV S/C Heerapura-IG	36	Zebra
	Nagar line		
13	220 kV S/C Bassi-IG Nagar	28	Zebra
	line		
14	132 kV S/C Sanganer-	5	Panther
	Mansarovar line		
15	132 kV S/C Sanganer-Chaksu	35	Zebra
	line		
16	132 kV S/C Sanganer-Vatika	18	Panther
	line		
17	132 kV S/C Sanganer-Sitapura	11	Zebra
	line		
18	132 kV S/C Sitapura –IG	9	Zebra
	Nagar line		

TABLE 19. Line data in Simulink model of Jaipur EHV transmission

system.

3) IMPACT ON POWER LOSS

Reactive power losses in the base and proposed cases are compared in Fig. 7, and consolidated results are presented in Table 15.

It can be observed from the above analysis that

• In the proposed case, average reactive power loss is reduced to 142.2 MVAR as compared to 145.4 MVAR in the base case. The average loss is reduced by 3.2 MVAR.

• In the proposed case, average reactive power loss is reduced by 2.23%.

4) IMPACT ON MVAR AND MVA FLOWS ON LINES AND TRANSFORMERS

Average MVAR and MVA flow on lines and transformers in the base and proposed case is calculated from the output values of seven load flow study cases and is presented in Table 16. It can be observed from this table that:

i. Average total reactive power flow on 220 kV lines is reduced to 51.93 MVAR in the proposed case as compared to 67.86 MVAR in the base case. Reactive power flow on 220 kV lines is reduced by 23.49% in the proposed case as compared to the base case.

TABLE 22. 220 kV and 132 kV bus voltages at 220 kV GSS.

S.	Name of	Volta	Ratin	%	Transfor	PU
Ν	GSS	ge	g	Impeda	mer loss	loss
0		Ratio	(MV	nce	(kw)	
		(kV)	A)			
1	765/400	765/4	3000	14	3240	0.0010
	kV GSS	00				8
	Phagi					
2	400/220	400/2	1065	12	1725	0.0016
	kV GSS	20				2
	Heerapur					
	а					
3	400/220	400/2	1130	12	1655	0.0016
	kV GSS	20				55
	Bassi					
4	400/220	400/2	1000	12	1210	0.0012
	kV GSS	20				1
	Jaipur					
	PG					
5	220/132	220/1	200	10	350	0.0017
	kV GSS	32				5
	Sanganer					
6	220/132	220/1	320	10	472	0.0014
	kV GSS	32				75
	Mansaro					
	var					
7	220/132	220/1	160	10	236	0.0014
	kV GSS	32				75
	Chaksu					
8	220/132	220/1	160	10	236	0.0014
	kV GSS	32				75
	Vatika					
9	220/132	220/1	160	10	236	0.0014
	kV GSS	32				75
	Sitapura					
1	220/132	220/1	200	10	350	0.0017
0	kV GSS	32				5
	IG Nagar					

TABLE 20. Transformer data in the Simulink model of the Jaipur EHV transmission system.

TABLE 21. Voltage ratio at different taps of a 220/132 kV transformer in the Simulink model.

Transformer Parameters			Model of Transformer in Simulink				
Тар	Voltage	Per tap	Тар	Voltage	Per tap		
No.	ratio (kV)	voltage	No.	ratio (kV)	voltage		
		variation			variation		
		(pu)			(pu)		
1	242/132	0.0125	8	242/132	0.0125		
2	239.25//132	0.0125	7	239.25//132	0.0125		
3	236.5//132	0.0125	6	236.5//132	0.0125		
4	233.75//132	0.0125	5	233.75//132	0.0125		
5	231//132	0.0125	4	231//132	0.0125		
6	228.25//132	0.0125	3	228.25//132	0.0125		
7	225.5//132	0.0125	2	225.5//132	0.0125		
8	222.75//132	0.0125	1	222.75//132	0.0125		
9	220/132	0.0125	0	220/132	0.0125		
10	217.3/132	0.0125	-1	217.3/132	0.0125		
11	214.5/132	0.0125	-2	214.5/132	0.0125		
12	211.8/132	0.0125	-3	211.8/132	0.0125		
13	209/132	0.0125	-4	209/132	0.0125		
14	206.3/132	0.0125	-5	206.3/132	0.0125		
15	203.5/132	0.0125	-6	203.5/132	0.0125		
16	200.8/132	0.0125	-7	200.8/132	0.0125		
17	198/132	0.0125	-8	198/132	0.0125		

ii. Average total reactive power flow on 132 kV lines is reduced to 27.27 MVAR in the proposed case as compared to 104.63 MVAR in the base case. Reactive power flow on 132 kV lines is reduced by 73.94%.

iii. Average total reactive power flow on 220 kV transformers is reduced to 92.58 MVAR in the proposed case as

GSS	Time	Tap position in base	Tap position in	Voltage in base case (kV)		Volta propos (k	nge in ed case V)
		case	proposed case	220 kV	132 kV bus	220 kV	132 kV
0	11.134	0	0	bus	121 7	bus	bus
Sanganer	11 AM	9	9	219.5	131.7	219.8	131.3
	12 noon	9	9	219.8	132.3	220	131.4
		9	9	220.1	131.5	220	131.4
	2 PM	9	9	218.5	128.7	218.8	130.3
	3 PM	9	9	218.7	128.8	219	130.5
	4 PM	9	9	218.8	128.5	219.2	130.6
	5 PM	9	9	218.2	127.7	218.6	130.1
	Average voltage	-	-	219.09	129.89	219.34	130.80
	%VVI	-	-	0.51	2.07	0.39	0.59
Mansarovar	11 AM	10	9	220.3	132.3	220.8	131.6
	12 noon	10	9	220.5	132.7	220.9	131.7
	1 PM	10	9	220.5	132.1	221	131.8
	2 PM	9	9	219.3	129.4	219.8	130.7
	3 PM	9	9	219.5	129.5	220	130.8
	4 PM	8	9	219.9	129	220.2	131
	5 PM	8	9	219.3	128.4	219.6	130.5
	Average voltage	-	-	219.90	130.49	220.33	131.16
	%VVI	-	-	0.23	1.71	0.28	0.44
Chaksu	11 AM	6	9	219.9	128	219.4	130.4
	12 noon	6	9	220.2	128.5	219.6	130.6
	1 PM	6	9	220.2	128	219.6	130.5
	2 PM	6	9	218.8	126.3	218.4	129.6
	3 PM	6	9	218.9	126.4	218.6	129.8
	4 PM	6	9	219	126.3	218.8	129.9
	5 PM	6	9	218.5	125.8	218.3	129.5
	Average voltage	-	-	219.36	127.04	218.96	130.04
	%VVI	_	_	0.42	3.83	0.53	0.91
Vatika	11 AM	9	9	219.5	131.5	219.6	131.3
	12 noon	9	9	219.9	132.1	219.7	131.5
	1 PM	9	9	219.9	131.6	219.8	131.5
	2 PM	7	9	218.6	128.0	218.5	130.2
	3 PM	7	9	218.8	128.1	218.7	130.4
	4 PM	7	9	218.8	128	218.9	130.6
	5 PM	6	9	218.4	126 5	218.2	129.8
	Average voltage	-	-	219.13	129.40	210.2 219.06	130.76
	%VVI	-	-	0.48	2.53	0.51	0.63
Sitapura	11 AM	13	9	218.9	132.5	219.8	131.1
-	12 noon	13	9	219.1	133.4	219.9	131.2
	1 PM	8	9	220	131.1	220	131.2
	2 PM	8	9	218.6	127.9	218.7	130.2
	3 PM	8	9	218.8	128	218.9	130.3
	4 PM	8	9	218.9	127.9	219.1	130.5
	5 PM	8	9	218.3	127.3	218.5	130
	Average voltage	-	-	218.94	129.73	219.27	130.64
	%VVI	-	-	0.53	2.48	0.42	0.65
IG Nagar	11 AM	8	9	219.8	131.4	220	131

TABLE 22. (Continued.) 220 kV and 132 kV bus voltages at 220 kV GSS.

%VVI	-	-	0.28	2.95	0.31	0.74
voltage						
Average	-	-	219.49	129.04	219.56	130.46
5 PM	6	9	218.9	126.6	218.9	129.9
4 PM	6	9	219.5	127	219.4	130.3
3 PM	6	9	219.4	127.1	219.2	130.1
2 PM	6	9	219.2	126.9	219	129.9
1 PM	10	9	220	131.3	220.2	130.9
12 noon	10	9	219.6	133	220.2	131.1

TABLE 23. Voltage difference vs. reactive power circulation in different loops.

Loon	Particular	Diff of 220	Diff	Diff	MVAR
No	s of case	kV	of 220	of 132	Circulatio
110.	3 01 0430	Transformer	61 220 kV	61 152 kV	n
		s Tan	voltag	voltag	п
		siup	e (kV)	e (kV)	
Loon	Case 1A	-4	0.6	-0.8	23
_1	Case 1B	0	0.0	0.2	0
1	Case 2A	-4	07	-1.1	33.65
	Case 2R	0	0.1	0.2	0
	Case 3A	1	0.1	0.2	Õ
	Case 3B	0	0.1	0.4	0
	Case 4A	1	-0.1	0.2	7.04
	Case 4B	0	0.1	0.0	0
	Case 5A	1	-0.1	0.1	718
	Case 5B	0	0.1	0.0	0
	Case 6A	1	-0.1	0.2	5 99
	Case 6B	0	0.1	0.0	0
	Case 7A	1	-0.1	0.1	5.67
	Case 7B	0	0.1	0.1	0.19
Loon	Case 1A	3	0.1	37	5.44
2000	Case 1A	0	-0.4	0.0	0
-2	Case 1B	0	0.4	2.9	5 61
	Case 2A	3	-0.4	5.0 0.9	3.04
	Case 2D	0	0.4	0.0	2.07
	Case 3A	3	-0.1	<i>3.3</i>	2.07
	Case 3B	0	0.4	0.9	0
	Case 4A	3	-0.3	2.4	4.18
	Case 4B	0	0.4	0.7	0
	Case 5A	3	-0.2	2.4	4.17
	Case 5B	0	0.4	0.7	0
	Case 6A	3	-0.2	2.2	2.97
	Case 6B	0	0.4	0.7	0
	Case 7A	3	-0.3	1.9	4.49
	Case 7B	0	0.3	0.6	0
Loop	Case 1A	-1	-0.8	-0.6	0
-3	Case 1B	0	-1	-0.3	0
	Case 2A	-1	-0.7	-0.4	0
	Case 2B	0	-0.9	-0.3	0
	Case 3A	-1	-0.4	-0.6	0
	Case 3B	0	-1	-0.4	0
	Case 4A	0	-0.8	-0.7	0
	Case 4B	0	-1	-0.4	0
	Case 5A	0	-0.8	-0.7	0
	Case 5B	0	-1	-0.3	0
	Case 6A	1	-1.1	-0.5	0
	Case 6B	0	-1	-0.4	0
	Case 7A	1	-1.1	-0.7	0
	Case 7B	0	-1	-0.4	0
Loop	Case 1A	0	0	0.2	2.34
-4	Case 1B	0	0.2	0	0.19
	Case 2A	0	-0.1	0.2	3.79
	Case 2B	0	0.3	-0.1	1.82
	Case 3A	0	0.2	-0.1	1.70
	Case 3B	0	0.2	-0.1	2.49
	Case 4A	2	-0.1	0.7	5.04
	Case 4B	0	0.3	0.1	0
	Case 5A	2	-0.1	0.7	4.96

VOLUME 12, 2024

	Case 5B	0	0.3	0.1	0	
	Case 6A	2	0	0.5	3.23	
	Case 6B	0	0.3	0	0	
	Case 7A	3	-0.2	1.2	7.16	
	Case 7B	0	0.4	0.3	0	
Loop	Case 1A	5	-0.9	1.1	35.82	
-5	Case 1B	0	-0.2	0.1	2.31	
	Case 2A	3	-0.5	0.4	12.06	
	Case 2B	0	-0.3	0.1	2.83	
	Case 3A	-2	0	-0.2	8.15	
	Case 3B	0	-0.2	0.3	5.16	
	Case 4A	2	-0.6	1.0	25.67	
	Case 4B	0	-0.3	0.3	6.88	
	Case 5A	2	-0.6	0.9	25.41	
	Case 5B	0	-0.3	0.2	6.54	
	Case 6A	2	-0.6	0.9	26.58	
	Case 6B	0	-0.3	0.2	6.31	
	Case 7A	2	-0.6	0.7	25.45	
	Case 7B	0	-0.4	0.1	4.16	

compared to 117.06 MVAR in the base case. Reactive power flow on 220 kV transformers is reduced by 20.91 %.

iv. The average total MVA flow on 220 kV lines is reduced to 134.14 MVA in the proposed case as compared to 125.90 MVA in the base case. MVA flow on 220 kV lines is reduced by 6.14%.

v. The average total MVA flow on 132 kV lines is reduced to 67.76 MVA in the proposed case as compared to 127.54 MVA in the base case. MVA flow on 132 kV lines is reduced by 46.88 %.

vi. The average total MVA flow on 220 kV transformers is reduced to 396.44 MVA in the proposed case as compared to 409.06 MVA in the base case. MVA flow on 220 kV transformers is reduced by 3.08 %.

5) IMPACT ON REAL POWER FLOW AND POWER FACTOR OF LINES AND TRANSFORMERS

The average real power flow and power factor of lines and transformers are compared in Table 17 for the base and proposed case. It is calculated from the output values of seven load flow studies. It can be observed from this table that

i. There is a marginal change in MW flow on lines and transformers.

ii. The average power factor of 132 kV lines improved to 0.784 in the proposed case as compared to 0.425 in the base case.

iii. The average power factor of 220 kV lines improved to 0.655 in the proposed case as compared to 0.617 in the base case.

iv. The average power factor of 220 kV transformers improved to 0.973 in the proposed case as compared to 0.943 in the base case.

VII. CONCLUSION

This paper has presented a methodology based on coordinated changes of tap positions of power transformers for

FIGURE 8. Single line diagram of Jaipur EHV transmission system.

circulating reactive power control in EHV transmission systems. A Simulink model of 20 Indian bus power systems consisting of four voltage levels (viz., 765 kV, 400 kV, 220 kV, and 132 kV) is developed to carry out simulation studies to assess the impact of circulating reactive power flow on system parameters with the application of the proposed methodology. Average reactive power circulation among 220 kV and 132 kV networks in the proposed case is reduced to 5.6 MVAR as compared to 42.7 MVAR in the base case. Reactive power circulation is reduced by 87%. The network voltage at 220 kV and 132 kV voltage levels is improved, and the 132 kV voltage variation index is decreased to 0.66% as compared to 2.59% in the base case. Transmission losses in the proposed case are reduced by 0.0618%. Annual energy savings of 20.76 lacs units are envisaged, which corresponds to an annual cost savings of Rs 1.03 crore in the Jaipur EHV transmission system with the application of the proposed methodology. Reactive power loss is reduced to 142.2 MVAR as compared to 145.4 MVAR in the base case. Reactive power loss is reduced by 2.23%. Reactive power and apparent power flow on lines and transformers are considerably reduced in the proposed case as compared to the base case, and the power factor of lines and transformers is also improved.

With coordinated tap position of adjacent GSS reactive power circulation is reduced which results in an increase in transmission system efficiency, better voltage, reduce loading of lines and transformers.

APPENDIX

See Tables 18–23 and Figure 8.

ACKNOWLEDGMENT

The authors would like to thank Dr. M. P. Sharma, Executive Engineer (SOLD), Rajasthan Rajya Vidyut Prasaran Nigam Ltd., Jaipur, India, for continuously guiding the research work. They would also like to thank to RVPN Engineers working at 220-kV GSS Sitapura and Sanganer for providing the transmission system data to simulate the real power system condition and Manipal University Jaipur, for providing all the facilities, constant support, and encouragement for this work.

REFERENCES

 N. Kanwar, N. Gupta, K. R. Niazi, A. Swarnkar, and R. C. Bansal, "Simultaneous allocation of distributed energy resource using improved particle swarm optimization," *Appl. Energy*, vol. 185, pp. 1684–1693, Jan. 2017, doi: 10.1016/j.apenergy.2016.01.093.

- [2] P. L. Swe, W. Swe, and K. M. Lin, "Effects of tap changing transformer and shunt capacitor on voltage stability enhancement of transmission networks," *World Acad. Sci., Eng. Technol.*, vol. 51, pp. 268–271, Mar. 2011.
- [3] B. Vyas, M. K. Gupta, and M. P. Sharma, "Distributed volt ampere reactive power compensation of modern power system to control high voltage," *J. Inst. Eng. India B*, vol. 101, no. 1, pp. 93–100, Feb. 2020, doi: 10.1007/s40031-020-00422-3.
- [4] B. Vyas, M. K. Gupta, and M. P. Sharma, "Assessment of voltage changeability with reactive power source allotment for real time network," *Sādhanā*, vol. 45, no. 1, p. 233, Dec. 2020, doi: 10.1007/s12046-020-01469-0.
- [5] R. K. Agrawal, M. P. Sharma, N. K. Kumawat, and B. Vyas, "High voltage mitigation of EHV system by shunt reactor vs shunt capacitor," in *Proc.* 8th Int. Conf. Power Syst. (ICPS), Jaipur, India, Dec. 2019, pp. 1–6, doi: 10.1109/ICPS48983.2019.9067594.
- [6] R. Panwar, V. Sharma, M. P. Sharma, and B. Vyas, "Circulating MVAR control in Rajasthan (India) transmission system," in *Proc. IEEE 1st Int. Conf. Power Electron., Intell. Control Energy Syst. (ICPEICES)*, Jul. 2016, pp. 1–6, doi: 10.1109/ICPEICES.2016.7853696.
- [7] D. Mitra, M. P. Sharma, T. Suman, and B. Vyas, "Identification & reduction of circulating MVAR loops at high voltage substations," in *Proc. 21st Nat. Power Syst. Conf. (NPSC)*, Dec. 2020, pp. 1–6, doi: 10.1109/NPSC49263.2020.9331763.
- [8] C. M. Davis, J. Weber, and K. Johnson, "Circulating MW and MVAr flows in large systems," in *Proc. 41st North Amer. Power Symp.*, 2009, pp. 1–6, doi: 10.1109/NAPS.2009.5484032.
- [9] B. Hampson, "Circulating current scheme using IEC 61850 and relay logic for junior or graduate engineers," in *Proc. 22nd Conf. Electr. Power Supply Ind.*, Kuala Lumpur, Malaysia. Pullman, WA, USA: Schweitzer Engineering Laboratories, Sep. 2018, pp. 1–15. [Online]. Available: https://electrical-engineering-portal.com/downloadcenter/books-and-guides/relays/circulating-current-scheme
- [10] P. Mishra, M. P. Sharma, T. Agarwal, and B. Vyas, "Optimum tap position of 400 kv transformer in Rajasthan power system," in *Proc. Women Inst. Technol. Conf. Electr. Comput. Eng. (WIT-CON ECE)*, Nov. 2019, pp. 6–12, doi: 10.1109/WITCONECE48374. 2019.9092891.
- [11] Transmission Losses. Accessed: Feb. 20, 2021. [Online]. Available: https://energy.rajasthan.gov.in/rrvpn/#/pages/sm/departmentpage/138474/664
- [12] M. Manglani, S. Ola, M. P. Sharma, and B. Vyas, "Integrated approach for loss reduction in power system," in *Proc. IEEE 7th Power India Int. Conf. (PIICON)*, Nov. 2016, pp. 1–6, doi: 10.1109/POWERI.2016. 8077382.
- [13] A. Dandotia, H. Kaushik, M. P. Sharma, and B. Vyas, "Loss reduction of 220 kV substation with optimum reactive power management at 33 kV voltage level a case study," in *Proc. IEEE 7th Power India Int. Conf. (PIICON)*, India, Nov. 2016, pp. 1–6, doi: 10.1109/POW-ERI.2016.8077398.
- [14] S. K. Khichar, P. K. Singhal, and M. P. Sharma, "High voltage control of power system by changing generator transformer tap positions case study," in *Proc. Innov. Power Adv. Comput. Technol. (i-PACT)*, 2017, pp. 1–6, doi: 10.1109/IPACT.2017.8245153.
- [15] (May 24, 2008). Regulation 74: Rajasthan Electricity Grid Code. [Online]. Available: https://rerc.rajasthan.gov.in/rerc-user-files/regulations
- [16] (Apr. 20, 2004). Regulation-24: Transmission Licensee's Standards of Performance. [Online]. Available: https://rerc.rajasthan.gov.in/rerc-userfiles/regulations

NEERAJ KANWAR (Senior Member, IEEE) received the B.E. degree in electrical engineering from Rajasthan University, Jaipur, India, in 2005, and the M.Tech. and Ph.D. degrees in power systems from the Malaviya National Institute of Technology Jaipur, India, in 2010 and 2017, respectively. She is currently an Associate Professor with the Department of Electrical Engineering, Manipal University Jaipur. Her research interests include renewable energy sources, smart grids,

network reconfiguration (NR), distributed generations (DGs), demand side management, power system operation and planning, bio-inspired and swarm-based optimization techniques, and application of optimization techniques in power systems.

HARSHITA KHANDLE received the B.Tech. degree from Manipal University Jaipur, in 2021. She has published her research work in *Journal of The Institution of Engineers (India): Series B.* Her research interest includes power system operation and planning.

VINAY KUMAR JADOUN (Senior Member, IEEE) received the B.E. degree from the Samrat Ashok Technological Institute (SATI), Vidisha, India, and the M.Tech. and Ph.D. degrees from the Department of Electrical Engineering, Malaviya National Institute of Technology (MNIT) Jaipur, India. He is currently an Associate Professor with the Department of Electrical and Electronics Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education (MAHE), Manipal,

India. Previously, he was a Faculty Member with the National Institute of Technology Delhi and the National Institute of Technology, Hamirpur, India. He has more than nine years of teaching experience. He has supervised B.Tech., M.Tech., and Ph.D. thesis in different research areas. He has published more than 80 papers in respected international journals, international and national conferences, and book chapters in different books. His research interests include the economic operation of power systems, hydrothermal scheduling, multi-area economic dispatch, renewable power generation, microgrids, smart grids, electric vehicles, condition monitoring of electrical apparatus, DGA, health monitoring of power transformers, and soft computing techniques. He is a Senior Member of PES and Smart Grid Community. He is a member of the technical program committee of different international and national conferences. He received best researcher awards, best reviewer awards, and a certificate of outstanding contribution in reviewing awards from various reputed journals. He is the Student Activity Committee Chair of the IEEE Mangalore Subsection and an Executive Committee Member of IEEE PES and Young Professional, Bangalore Section, Women in Engineering (WiE), and the IEEE Mangalore Subsection.

...