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ABSTRACT The increasing prevalence of non-invasive, portable Electroencephalography (EEG) sensors
for neuro-physiological measurements has propelled EEG-based assessments of cognitive load (CL) into the
spotlight. In this study, we harnessed the capabilities of a four-channel, wearable EEG device that captured
brain activity data during two distinct CL states: Baseline (representing a non-CL, resting state) and the
Stroop Test (a CL-inducing state). The primary objective of this study is to estimate the CL index through
an innovative approach that employs a hybrid, cluster-based, unsupervised learning technique seamlessly
integrated with a 1D Convolutional Neural Network (CNN) architecture tailored for automated feature
extraction, rather than conventional supervised algorithms, which facilitated in the acquisition of latent
complex patterns without the need for manual categorization. The approach was rigorously evaluated using
stratified cross-validation, with several assessment criteria assessing both its quality and predictive capability
to estimate the CL index. The results obtained (e.g., homogeneity score of 0.7, adjusted rand index of 0.78,
silhouette coefficient of 0.5, and an accuracy rate of 93.2%) demonstrate that our module exhibits superiority
over supervised approaches. These results are indicative that the adoption of multi-channel wearable EEG
devices may facilitate real-time CL estimation, minimizing the need for extensive human intervention, and
reducing potential bias, paving the way for more objective and efficient CL assessments.

INDEX TERMS Cognitive load, unsupervised machine learning, electroencephalography (EEG),
brain—computer interface (BCI).

I. INTRODUCTION

Complex tasks demand the integration of diverse cognitive
faculties, including the assimilation of task-related data,
utilization of working memory, sustained attention, and
nuanced decision-making. Previous inquiries [1], [2], [3]
have introduced the CL theory, positing the finite nature of
human cognitive resources for information processing and
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retention. When cognitive demands exceed human working
memory capacity, performance decline ensues, characterized
by cognitive overload and task incapacity [4]. Recognizing
the limited cognitive capacity of the human cognitive
system [5], scholars in Brain-Computer Interface (BCI), cog-
nitive science, psychology, and Human-Computer Interaction
(HCI) systems must acquaint themselves with user cognitive
processing capacity, memory workload intricacies, and task
engagement dynamics [6].
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The cognitive workload has been scrutinized from diverse
perspectives. Within [1], CL is defined as the constraining
force on working memory during cognitive task execution,
with Brouwer et al. [7] contextualizing cognitive workload as
the burden on working memory within an n-back task. Mills
et al. [8] strategically utilized true-false questions for minimal
workload and open-ended queries for heightened workload,
necessitating more precise memory retention. Additional
research underscores the role of skill acquisition in simulating
cognitive stress [3]. As emphasized by Logan et al. [9],
expertise acquisition and task automation lead to a reduction
in cognitive workload [10]. Consequently, task complexity
influences cognitive burden and an individual’s capacity for
task execution. A highly intricate task by an inexperienced
individual results in elevated CL, whereas a straightforward
task by a skilled individual yields a lower cognitive burden.
Cognitive demands are categorized into intrinsic and extrinsic
CL [11], with intrinsic CL stemming from cumulative
cognitive demands in a learning task. In contrast, extrinsic
CL involves the demands from the design of a learning
assignment [3].

The evaluation of CL is essential due to its intricate
connection with the learning process. Its significance extends
to various domains, including education [12] and the
design of human-computer interfaces [13]. In education,
CL assessment is commonly employed to gauge the effec-
tiveness of learning materials and environments, aiming to
improve student learning outcomes. This evaluation supports
users in maintaining an optimal CL level, especially in
diverse environments and challenging tasks [14]. Heightened
emphasis has been placed on maintaining an ideal CL level
during learning tasks, considering the brain’s limited capacity
for cognitive processing [15], [16]. Both insufficient and
excessive CL can lead to adverse consequences, emphasizing
the need to minimize such situations, particularly in critical
decision-making scenarios [5].

In the realm of HCI, challenges arise in conceptualizing
and quantifying CL in perceptually rich learning environ-
ments. Contrary to the prevalent notion that lower CL is
always favorable, recent studies challenge this understanding
in digital learning, indicating instances where higher CL
leads to improved performance [17], [18], [19], [20], [21].
Skulmowski et al. [22] posit this as an inherent principle of
perceptually rich virtual environments. Design elements such
as interactivity, immersion, and realism, while contributing to
extraneous CL, can also be essential components of a learning
task. Interactive simulations, despite introducing extraneous
CL, may lead to superior performance, especially if the
assessment aligns with the interactive learning approach [22],
[23], [24]. Hence, when assessing CL, considering the
objective of the task is crucial, and the presence of extraneous
CL should be evaluated based on whether it genuinely hinders
learners from achieving their task objectives [22].

CL assessment encompasses five distinct types: overall,
accumulated, average, peak, and instantaneous load [6].
Instantaneous load specifically refers to the CL imposed at
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each moment during a cognitive task [6]. Previous studies
have employed both analytical and empirical approaches for
CL assessment [5], [25]. There are two main methods for
assessing CL: subjective and objective [26], [27], [28], [29].
Historically, subjective methods, relying on self-reporting
and behavioral data like reaction times and error rates,
dominated CL assessment. Instruments like the NASA task
load index are popular subjective measures [30]. However,
subjective methods have limitations in providing real-time
assessments and may introduce bias [31], [32].
Physiological signals have emerged as a viable alternative
to address these challenges. Traditionally, it is widely
acknowledged that physiological signals constitute the most
effective indicators of cognitive load due to their ability to
offer an efficient temporal resolution for long-term moni-
toring [33] and greater feasibility for estimating CL when
compared to subjective rating methods [34]. Objective physi-
ological measurements possess the advantage of continuously
assessing CL throughout a cognitive task using online capa-
bilities [6]. These physiological techniques are based on the
premise that changes in cognitive functioning are reflected in
physiological variables such as heart rate variability [4], task-
evoked brain activity [35], skin conductance [36], and eye
movement patterns [37]. Changes in behavioral signals may
result from alterations in physiology or from different mental
processing strategies. These measurements can be utilized to
visualize intricate trends and patterns of CL, encompassing
instantaneous, peak, and accumulated load [38]. Specifically,
EEG has been validated as an effective, noninvasive method
for the detection, estimation, or prediction of the human brain
activities [39], [40]. EEG measurements directly capture
brain activity rather than relying on indirect measurements
of other physiological responses triggered by the brain.
In recent years, numerous empirical investigations have
explored the connection between cognitive demands and
EEG activity across different frequency bands and brain
regions. These investigations have employed EEG as a
standalone method or in conjunction with other subjective
and objective measures to evaluate participants’ cognitive
workload in diverse settings. Examples include studies
involving arithmetic tasks [51] and engagement in virtual
reality human-computer interaction environments [52], [53].
EEG, as a neurophysiological measure with a high temporal
resolution (approximately 1 millisecond), presents itself
as a suitable choice for assessing instantaneous CL. This
capability opens up the opportunity to monitor the dynamic
changes in cognitive load on working memory during
a cognitive task as numerous portable EEG devices are
readily accessible for real-time CL assessment [41]. This
method is characterized by its objectivity, non-invasiveness,
and relative lack of constraints in comparison to other
conventional methods [6]. The various rhythms generated
by electrical brain activity, including delta (1-3 Hz), theta
(4-7 Hz), alpha (8-13 Hz), beta (14-30 Hz), and gamma
(31-50 Hz), hold paramount significance in the realm of CL
recognition [42]. Notably, the theta and alpha ranges appear
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to be closely associated with higher brain functions, reflecting
task difficulty or CL across diverse task demands [43], [44],
[45], [46], [47], [48], [49], [50].

While prior research has employed a combination of sub-
jective and objective measures to assess CL, it has predom-
inantly relied on a range of supervised learning techniques.
However, when dealing with EEG data, the utilization of
supervised strategies may entail certain drawbacks. Our study
addresses limitations of supervised learning for Cognitive
Load (CL) assessment using EEG data. Supervised methods
require labeled data, which can be subjective, expensive, and
time-consuming to obtain for real-time applications.

As a solution to these challenges, our study proposes
unsupervised learning as a promising alternative. It eliminates
labeling bias and facilitates feature extraction, making it
suitable for complex EEG data. Unsupervised methods can
find hidden patterns, group similar brain states, and identify
anomalies, offering valuable insights. Additionally, they are
adaptable to various EEG data without extensive adjustments.

In our study, we utilized a 1D CNN for unsupervised
feature extraction from EEG data streams. 1D CNNs are
adept at learning sequential patterns and extracting features
at different levels of complexity. This allows them to adapt to
the data’s intricacies, especially when the data is structured
in a way that makes sense in terms of time or order, like
continuous EEG signal streams. These networks automati-
cally learn hierarchical representations of sequential patterns,
capturing both local and global dependencies in the data. 1D
CNNs focus on short-term dependencies, providing benefits
such as local pattern recognition, translation invariance,
parameter sharing, and efficient processing of sequences.
Shared weights in convolutional layers reduce parameters,
enhancing computational efficiency and preventing overfit-
ting, especially with limited data.

This study explores the viability of using unsupervised
learning techniques for real-time assessment of Cognitive
Load (CL) from EEG data. This approach offers several
advantages over traditional methods that rely on supervised
learning with labeled data. The potential of our proposed
method are as follows:

o Unsupervised learning eliminates the subjectivity and
potential bias inherent in labeling EEG data for super-
vised learning. This can lead to more accurate and
reliable CL assessments.

« By notrequiring pre-labeled data, unsupervised learning
becomes much faster and more cost-effective. This
opens doors for real-time CL assessment in various
practical scenarios i.e., personalized learning, task
optimization, and healthcare advancements.

o Unsupervised methods excel at uncovering hidden
patterns and structures within EEG data. This can
lead to a deeper understanding of how the brain
functions under different cognitive loads. Additionally,
unsupervised clustering can group similar brain states
together, revealing new insights into brain activity.
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o Unsupervised methods are adaptable to various EEG
datasets without extensive adjustments. This makes
them a more flexible and efficient approach compared
to supervised learning, which often requires significant
re-labeling for new data.

From these perspectives, our study introduces the follow-
ing contributions and highlights their significance within the
existing body of literature:

o The study proposes a method for quantifying CL in
real-world settings, minimizing biases associated with
controlled laboratory environments. This opens doors
for practical applications.

o The introduction of a 1D CNN offers a streamlined
and automated tool for extracting relevant features from
EEG data streams. This is crucial for unsupervised
learning as it eliminates the need for manual feature
selection.

o The study proposes a unique approach for real-time CL
assessment using unsupervised clustering techniques.
This is a significant contribution as it offers a new way
to estimate CL without relying on pre-labeled data.

Overall, this study presents a promising approach which
has been proven in Section V by showing a comparative
analysis with existing supervised literature. This real-time,
objective CL assessment approach has the potential to
revolutionize various fields like education, healthcare, and
workplace optimization.

The remainder of this paper is structured as follows:
Section II offers an overview of related studies, Section III
provides insights into the dataset’s structure, Section IV
outlines our proposed methodology, Section V delves into
the discussion of achieved results, and finally, Section VI
concludes the paper while also suggesting avenues for future
research.

Il. LITERATURE STUDY
In this section of the literature, we present a review of
previous research relevant to our work.

Prior research endeavors [57] have illuminated the poten-
tial of Electroencephalography (EEG) as an invaluable
resource for delving into an individual’s Cognitive Load
(CL). However, the nuanced outcomes of these investigations
are intricately entwined with a myriad of factors. These
include making smart choices about the number of EEG
channels used, the size of the training and testing datasets
for machine learning (ML) algorithms, the tasks that need
to be done and how they change over time, choosing
the right time-domain and frequency-domain features, and
deciding whether to use personalised or generalised mod-
els. Importantly, within the realm of evaluating CL, the
deployment of wearable EEG systems featuring four channels
or fewer is relatively scarce [58], [59], [60]. Furthermore,
there is a discernible paucity of studies conducted on CL
assessment using dry electrode measurements [61]. Notably,
a study utilizing four electrodes for stress classification
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primarily focuses on discerning perceived stress rather than
instantaneous stress levels [62]. A pivotal contribution of our
research resides in the inventive utilization of an economical
wearable device equipped with merely four dry electrodes to
comprehensively assess CL. This groundbreaking approach
establishes a foundational method for real-world monitoring
of an individual’s cognitive performance across diverse
everyday scenarios.

The landscape of cognitive state evaluation has tradition-
ally leaned on statistical analysis techniques, amalgamating
subjective, behavioral, and physiological measures [45], [53],
[54]. Nevertheless, contemporary research has progressively
redirected its focus towards embracing advanced machine
learning and deep learning methodologies to elevate the
precision of CL assessments [51], [55], [56], [72], [81], [82].
For instance, [51] conducted subject-independent cognitive
load estimation from EEG signal streams, achieving optimal
results with K Nearest Neighbour (KNN) and ensembles
of decision trees. In a notable instance, [55] introduced
Riemannian geometry-based classifiers (RGC), showcasing
a capacity to compete effectively with other deep learning-
based approaches, boasting the highest mean accuracy
of 72.73%. In the domain of real-time cognitive state
classification, [63] presented a lightweight Convolutional
Neural Network (CNN) model that reduces trainable param-
eters while sustaining high performance. Another robust
avenue involves the extraction of spectral components from
EEG data, as evidenced by the work of [64] and [65].
Through the application of machine learning techniques,
these authors [66] unveiled correlations between CL and
alpha-to-theta ratios and theta-to-alpha ratios. Moreover, the
comprehensive study by [67] achieved CL prediction by
amalgamating handcrafted spatial, temporal, and spectral
EEG features. This involved calculating EEG-based func-
tional connectivity, microstates, and power spectral densities
(PSD) across three different CL levels. Experimental out-
comes showcased associations between heightened CL and
increased theta power, reduced alpha power, and noteworthy
alterations in inter-channel connectivity and microstates. The
predictive model exhibited accuracy exceeding 80% in cross-
validation, real-time, and over-time prediction scenarios.
Furthermore, leveraging 24 EEG channels, [68] achieved a
classification accuracy of 75.9% for personalized models,
underscoring the versatility and efficacy of machine learning
in advancing CL assessment methodologies.

Typically, the effectiveness of machine learning and deep
learning classifiers relies on various factors, including the
chosen training paradigm. Many previous significant studies
have predominantly employed supervised learning strategies.
However, in contrast to these approaches, our research takes
an unsupervised route to instantly estimate real-world CL
from EEG data recorded through four channels. By opting for
this unsupervised approach, we aim to reduce the subjective
influence inherent in supervised techniques and establish a
fundamental framework for real-time monitoring of CL from
EEG signals.

118788

IIl. DATASET DESCRIPTION

In our research, we employed the freely accessible
open-access CogWear database [69]. The subsequent section
provides a summary of the dataset’s organization.

A. DATASET STRUCTURE

Data gathering occurred in two phases: a pilot study and
a survey gamification experiment. Each of these stages
encompassed two shared data recording sessions: one for
establishing a baseline (representing a non-CL resting state)
and another for conducting the Stroop test (representing a CL
state). The survey gamification experiment consisted of two
stages: pre and post-gamification sessions, where pre is the
recording session before gamification and post is the gamified
session. The baseline and Stroop test recording procedures
were the same in both of these sessions. Each session lasted
for roughly about 3-4 minutes. According to the dataset
authors, throughout these data collection sessions, minimal
interventions were applied to the participants without intro-
ducing any external stimuli, ensuring a natural and uninter-
rupted progression of activities. The motivation of the origi-
nal dataset was to see if gamifying a survey structure has any
significant impact on cognitive load. For our study, the goal
is to estimate cognitive load states through the EEG signals.
Thus, the gamified structure was ignored during our analysis,
and the sample sets were treated as CL and non-CL states.

B. PARTICIPANT INFORMATION

The pilot study involved 11 participants, while the survey
gamification experiment included 13 participants. Conse-
quently, we are provided with a total of 11 recording sessions
during the pilot study and 26 recording sessions during
the survey gamification experiment, accounting for both
pre-session and post-session measurements (13 x (1 pre-
session + 1 post-session) = 26 sessions).

C. MODALITIES

Throughout the entire experiment, participants’ physiological
signals were recorded using three different wearable devices:
the Empatica E4 watch, the Samsung Galaxy Watch4, and the
Muse S (Gen2).

The Empatica E4 device captured various physiological
parameters, including Blood Volume Pulse (BVP), which
served as the basis for deriving Heart Rate Variability
(HRV) and Inter Beat Interval (IBI) measurements. It also
recorded skin temperature (TEMP), Electrodermal Activity
(EDA), and 3-axis acceleration data (ACC). The Empatica
E4 operated in online mode, recording BVP at a frequency
of 64Hz, EDA at 4Hz, and TEMP at 4Hz.

The Samsung Galaxy Watch4 was utilized to collect the
photoplethysmogram (PPG) signal, which had a frequency
of 25 Hz.

The Muse S EEG headband measured brain activity
through dry electrodes placed on specific locations on the
scalp corresponding to prefrontal (AF7 and AF8 sensors)
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FIGURE 1. Electrode placement areas of the used EEG device.

@ Baseline (non-CL resting state) () Stroop test (CL state)

FIGURE 2. Cognitive load states sample distribution in the dataset.

and temporal (TP9 and TP10 sensors) brain regions. Fig. 1
depicts the electrode placement of the used device. The
Fpz sensor served as a reference electrode, and data
was sampled at a rate of 256 Hz. Electrode placement
followed the standardized 10-20 system, which allows for
the identification of specific brain regions (frontal, central,
parietal, temporal, and occipital areas) using a standardized
nomenclature for the sensors. This standard ensures the
subject’s analysis outcomes can be compiled and reproduced.

In our research, we only utilized the data collected by the
Muse S EEG Headband, which included 4-channel EEG data.

D. SAMPLE DISTRIBUTION

In the recorded session data we received, not every partic-
ipant had consistent EEG recordings throughout the entire
experimental process. Consequently, we had to exclude
one participant from the pilot study and five participants
from the survey gamification experiment. This resulted in
a total of 26 usable recorded sessions containing both
baseline (representing non-cognitive load) and Stroop test
(representing cognitive load) data. The fig. 2 illustrates the
distribution of the final sample set.

IV. METHODOLOGY
In our study, the raw stream of the dataset at time step n
can be expressed as d, = {p;, tpo, af7, afy, tp10}, where, p;
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represents participant ID; tpg represents raw EEG recording
of channel TP9; af; represents raw EEG recording of channel
AFT7; afg represents raw EEG recording of channel AFS; tp1g
represents raw EEG recording of channel TP10.

For cognitive load estimation from 4 channel EEG stream,
we have to design a learning classifier that relates raw data
d, with cognitive load index cli, using the function Ry
d, — cliy, where, ¢ is the parameter of the classifier.
Constructing this system involved several steps, including
data pre-processing, feature extraction, and unsupervised
cognitive load (CL) estimation. These individual steps are
discussed in detail in the following subsections. Fig. 3
illustrates the entire training phase process for this system.
During the testing phase, the system remains largely identical,
with the exception that the model is evaluated in the final step
instead of undergoing training.

A. PRE-PROCESSING

Prior to training our estimator, it is essential to condition the
data for the model. This data preparation procedure is detailed
in this subsection. Initially, the data underwent cleaning by
removing any missing values. Subsequently, various steps
were implemented, encompassing filtering, segmentation and
epoch formation, the rejection of problematic epochs (manual
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FIGURE 5. Notch filtered signal snippet.

inspection and automated rejection based on minimum and
maximum peak-to-peak amplitude thresholds), independent
component analysis, and the identification and removal of
artifacts (visual inspection based on spatial characteristics
and automated artifact detection using a pre-trained model).
These steps are elaborated upon in the subsequent portion of
this subsection.

1) FILTERING

The EEG signal often suffers from interference caused
by powerline noise, which can lead to distortion of the
genuine brain wave patterns observed in the signal stream.
To address this issue and eliminate powerline noise at 50Hz,
we employed a notch filter. Fig. 4 shows the raw signal
snippet of participant 2, and fig. 5 depicts the signal snippet
after applying the notch filter.

In a recent investigation, researchers in [52] examined
the feasibility of passively monitoring cognitive workload
using EEG while individuals engaged in a traditional n-back
task within an interactive virtual reality (VR) environment.
They extracted EEG spectral powers from eight electrode
positions (Fz, F3, F4, C3, C4, P3, P4, and Pz) across
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four frequency bands (theta, alpha, beta, and gamma). The
outcomes of their study indicated a positive correlation
between alpha activity in the parietal area and levels of
workload. In another experimental scenario, [44] employed
theta and alpha band power to assess cognitive workload in a
multitasking context. Participants were tasked with complet-
ing a challenge commonly utilized in airline pilot recruitment,
which involved an increasing number of concurrent sub-tasks
as the task progressed. EEG analysis was conducted on five
electrodes located in the frontal area (Fz, F3, F4, F7, and
F8) for the theta rhythm and five electrodes situated in the
parietal area (Pz, P3, P4, P7, and P8) for the alpha rhythm.
In addition to these EEG features, the researchers collected
performance data, subjective assessments (NASA-TLX), and
pupillometry measurements as comprehensive indicators of
overall cognitive workload. The results indicated that both
theta and alpha band powers increased with task complexity,
highlighting the direct influence of these bands on CL.
In another study, [45] assigned different levels of CL based
on the linguistic complexity of the presented content. Their
findings showed that theta oscillations are potentially an
objective indicator of CL. While various indicators have
been proposed in previous literature, it is imperative to
explore the most optimal indices for assessing CL. The
noteworthy research findings suggest that alpha and theta
band power serve as direct indicators of fluctuations in CL.
These compelling pieces of evidence have motivated our
decision to place a strong emphasis on these aspects of
EEG signals in our own research. The theta band power
encompasses frequencies from 4 to 7.5 Hz, while the alpha
band power falls within the range of 8 to 13 Hz. So the
frequency range of 4 Hz to 13 Hz, with some saturating
to both extremes, contains the most significant information
about cognitive load, but substantially larger (e.g., >50 Hz)
or smaller (e.g., | Hz) frequencies potentially do not include
much valuable information about cognitive load states.
Consequently, after implementing the notch filter to eliminate
powerline noise, we applied a second-order Infinite Impulse
Response (IIR) Butterworth filter. This filter featured a low
cutoff frequency of 1 Hz and a high cutoff frequency of 50 Hz.
This configuration was chosen to minimize redundant brain
activity information while preserving the integrity of the
essential frequency range. Fig. 6 visualizes the signal after
applying the second-order IIR Butterworth filter.

One of the notable advantages of this filter design is
its ability to maintain a maximally flat frequency response
within the passband. This characteristic ensures minimal
distortion of the signal within the passband, which is
crucial for preserving signal characteristics. Additionally,
Butterworth filters are inherently stable, guaranteeing reli-
ability in their performance. Another noteworthy feature is
the smooth and gradual roll-off from the passband to the
stopband, which further contributes to the preservation of
signal characteristics.

For these reasons, we incorporated this filter architecture
into our study.
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(b) Frequency domain PSD plot of the signal snippet.
FIGURE 6. Second-order IIR Butterworth filter applied signal snippet.

2) SEGMENTATION AND EPOCH CREATION

Due to the transient nature of EEG brain wave events, it is
necessary to divide the raw data stream into appropriate seg-
ments to ensure that important information is not misaligned.
To achieve this, each continuous stream from every session
was divided into 1-second segments.

Once the continuous stream was segmented into equal
lengths, we created epochs by taking these individual
segments. Epochs provide a means of representing and
analyzing continuous data by breaking it into time-locked,
equally-sized trial chunks. They are particularly valuable for
various statistical methods in neuroscience and allow for a
quick overview of what happens during each trial. Epochs
are commonly used to represent data that is time-locked
to repeated experimental events, such as stimulus onsets or
subject button presses. However, they can also be employed to
store sequential or overlapping frames of continuous signals,
for instance, in the analysis of resting-state and cognitive
load activity. Segmenting the data into epochs facilitated the
identification of problematic data streams and enabled us to
rectify these issues through the rejection of faulty epochs.

3) EPOCH REJECTION

Following the creation of epochs, the data undergoes a
process of preparing for the identification and removal of
problematic epochs. This involves two approaches: manual
inspection to identify consecutive segments with no events
and automated rejection based on minimum and maximum
peak-to-peak amplitude thresholds. To establish these ampli-
tude thresholds, we applied the automated rejection threshold
estimation algorithm as proposed in [70].

This algorithm functions by dividing the data stream into
K folds for each threshold candidate. For each fold, a specific
threshold rejection is applied. After rejection, the mean and
median of the signal trial are calculated, and the error is
assessed using the Frobenius norm. Subsequently, the error
is linked to the corresponding thresholds. After evaluating all
the candidates, the threshold associated with the least amount
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of error is selected. The automated nature of this method
reduces the need for manual inspection, thus enhancing
scalability and reliability.

Fig. 7 visualizes the statistics of the signal snippet after bad
epoch rejection.

4) INDEPENDENT COMPONENT ANALYSIS

EEG signal recordings often suffer from interference caused
by factors like eye blinks, muscle movements, and other
anomalies [76], [77], [78], [79], [80]. Removing these
artifacts is essential before using the data for analysis, as they
introduce misleading non-brain-related information that can
distort the results.

One widely adopted method for detecting and eliminating
these artifacts is Independent Component Analysis (ICA).
ICA is a computational technique applied in EEG data
processing to break down the recorded EEG signals into
a collection of statistically independent components. This
decomposition proves valuable for artifact removal and the
isolation of meaningful brain signals from sources of noise
or disturbances.

The fundamental concept behind ICA is to identify a linear
transformation of the mixed EEG signals that generates a set
of independent components. These independent components
possess statistical independence, indicating that they lack
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shared information or correlations. ICA effectively disen-
tangles the mixed EEG signals into distinct components,
some of which represent genuine brain activity, while others
correspond to various artifacts.

One significant advantage of ICA is that it doesn’t
necessitate prior knowledge about the sources of artifacts;
it blindly separates the mixed signals solely based on
their statistical independence. Subsequently, the separated
independent components are scrutinized and analyzed to
pinpoint which ones are associated with artifacts.

After ICA analysis, a total of 4 independent components
were determined from the epoched EEG streams. Fig. 8
shows the 4 independent components obtained from the
independent component analysis.

5) ARTIFACT REJECTION
After identifying the independent components, we distin-
guished the artifact components through a combination of
visual inspection based on spatial characteristics and auto-
mated artifact detection using a pre-trained model outlined
in [71]. This automated approach reduces the necessity for
manual review, thereby improving scalability and reliability.
Once the components associated with artifacts were detected,
they were eliminated from the EEG data by subtracting them
from the original recordings. This process effectively purifies
the EEG data, leaving only the components related to brain
activity. Following the removal of artifacts, the cleaned EEG
data was reconstructed by reversing the ICA transformation,
resulting in a set of EEG signals that were devoid of the
identified artifacts.

Fig. 9 demonstrates the final clean signal snippet after
artifact rejection process.

B. FEATURE EXTRACTION

In order to estimate cognitive load accurately, it is crucial to
derive meaningful features from the raw EEG data. These
extracted features enable us to examine intricate patterns,
providing a deeper understanding of the characteristics of
brain waves. The process of feature extraction is briefly
outlined in the subsequent section of this document.

1) EXTRACTION STRATEGY
In our study, we chose an automated feature extraction
approach using a 1D Convolutional Neural Network (CNN)
pipeline instead of traditional manual feature engineering.
Utilizing 1D CNNss for feature extraction in EEG data offers
numerous advantages over the conventional handcrafted
feature extraction methods.

1D CNNs possess the ability to autonomously learn
pertinent features from the raw EEG data, eliminating
the need for domain-specific knowledge or manual feature
crafting. This adaptability proves particularly valuable when
dealing with intricate EEG patterns that might not be effec-
tively captured by handcrafted features. Additionally, CNNs
operate in a hierarchical manner, with early layers identifying
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FIGURE 8. 4 independent components after independent component
analysis.

basic patterns like edges and simple oscillations, while the
deeper layers acquire more intricate and abstract represen-
tations. This hierarchical approach enables the discovery
of informative EEG patterns that may elude traditional,
handcrafted feature extraction methods. Furthermore, CNNs
can automatically reduce data dimensionality by selecting
the most pertinent features during training, addressing the
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FIGURE 9. Artifact rejected clean signal snippet.

challenges posed by the curse of dimensionality and yielding
more efficient and proficient models.

In terms of generalization, properly regularized and
diversified CNNs have the potential to perform well on
unseen EEG data. This contrasts with handcrafted features,
which may struggle to generalize effectively due to their
reliance on specific assumptions about data distribution.
Notably, manual feature extraction often involves subjective
decisions by experts, introducing human bias and variability
into the process. Manual feature extraction may also struggle
to capture complex patterns and relationships within the
data. Some patterns may be subtle or non-intuitive, making
it challenging for human experts to identify and encode
them as features. Furthermore, manual feature extraction may
be sensitive to noise and outliers in the data and may not
scale well with high-dimensional data. Considering these
rationales, we made the decision to employ a 1D CNN
architecture for automated feature extraction.

2) EXTRACTOR MODEL ARCHITECTURE

Our initial 1D CNN structure consisted of eight consecutive
1D convolutional layers. We used the original recording
session types to categorize the input samples into CL and
non-CL states to train the 1D CNN architecture for feature
extraction. No additional data labeling was used for this
purpose. In contrast to the earlier layers in the architecture,
the intermediate layers incorporated a higher number of
filters. We adopted this configuration to enhance the level
of abstraction. Deeper layers are expected to capture more
intricate and complex features, and by increasing the number
of filters, we enabled the network to learn a broader spectrum
of patterns and features within the data stream. Additionally,
CNNs follow a hierarchical feature-learning process. The
initial layers detect low-level features, while the deeper ones
amalgamate these foundational features to identify more
intricate objects or patterns. Enlarging the neuron count in
the deeper layers allows for richer combinations of low-level
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TABLE 1. Cluster quality evaluation of feature vectors from 2 different
CNN architectures.

Type [ V Measure

Adjusted Rand Silhouette Coefficient
ndex

Single
L

0.097 0.098 0.098 0.176

0.185

M

) Ting "
Layer Architecture 0.205 0.200 0.203 0.302 0202 0.301

features. Moreover, augmenting the number of neurons grants
the network an increased capacity to represent complex
relationships within the data, enhancing its capacity to learn
from the training data.

Following the final convolutional layer, we introduced
a max-pooling layer, followed by a dropout layer, aiming
to diminish dimensionality and enhance regularization.
By extracting the feature vector from the layer just before the
ultimate output layer, we obtained our feature representation.
We employed the leaky ReLU activation function and the
Adam optimizer for our feature extractor. The justification
for using leaky ReLU is that it introduces a small, non-
zero slope for negative inputs, ensuring that even when the
input is negative, there is still a small gradient that allows
weight updates. Additionally, leaky ReLU facilitates a more
continuous gradient flow during back-propagation. This leads
to improved training dynamics and faster convergence. This
also helps to mitigate the saturation problem associated with
standard ReL.U. Saturation occurs when a large portion of
the input space leads to the same output, resulting in a
loss of gradient information. Leaky ReLU introduces a non-
zero slope, making it less prone to saturation for negative
inputs. On the other hand, as an optimizer, Adam includes an
element of RMSprop, which involves dividing the learning
rate for a parameter by the square root of the moving
average of the squared gradients for that parameter. This
element helps normalize the updates, especially when dealing
with features with varying scales. Also, Adam performs
bias correction to account for the fact that the moving
averages of the gradients (first and second moments) are
initialized with zeros. The bias correction helps in the early
stages of training when the estimates of moments are less
accurate. Furthermore, the adaptivity of the learning rates
in Adam makes it robust to noisy or sparse gradients.
This led us to employ Adam in our network architecture.
While constructing our CNN architecture, we observed an
intriguing phenomenon. Including an additional max-pooling
layer after each convolutional layer, rather than just at the
end, significantly improved the predictive capabilities for
estimating cognitive load. To assess and compare prediction
performance, we trained simple KMeans clustering algo-
rithms using feature vectors from both architectures. The
results of these two architectures are presented in the table 1
and 2. Notably, the addition of max-pooling layers after
each convolutional layer substantially improved prediction
performance, leading us to adopt this architecture as our final
feature extraction pipeline.

Upon feature extraction using the proposed 1D CNN,
we obtained a feature vector of size 128. Fig.10 visualizes
the general structure of the feature extractor architecture.
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FIGURE 10. General structure of the feature extractor architecture.

TABLE 2. Cognitive load estimation performance evaluation of feature
vectors from 2 different CNN architecture.

Architecture Type Precision | Recall | F1 Score | Accuracy
Single Max Pooling

Layer Architecture 68 68 68 72
Multi Max Pooling

Layer Architecture 74 7 743 775

C. UNSUPERVISED CL ESTIMATION
For the task of estimating cognitive load from 4-channel
EEG data, we opted for an unsupervised learning approach
based on clustering, rather than a supervised one. There are
several compelling reasons behind this choice. Unsupervised
learning eliminates the need for labeled data during training,
which can be particularly challenging and subjective in
EEG cognitive load estimation. It enables us to derive
patterns and relationships directly from the EEG data
without the necessity of labor-intensive and potentially biased
labeling efforts. Unsupervised learning techniques, such as
clustering, have the capability to unveil concealed patterns
and structures within the EEG data, often leading to insights
and discoveries that might remain hidden in a supervised
setting. Additionally, unsupervised learning methods exhibit
adaptability to various EEG data types and tasks without the
requirement to redefine labels or annotations for each specific
task. This adaptability proves advantageous when working
with diverse EEG datasets.

The details of our proposed unsupervised approach are
elaborated upon in the subsequent section of this document.

1) NORMALIZATION
While participants generally exhibit common patterns across
various features, the specific numerical values often vary
from one individual to another, particularly in the case of
brain wave patterns. Consequently, our prediction system
focuses solely on the magnitude of these features, dis-
regarding their units. This approach results in significant
fluctuations in outcomes across individuals, as features with
larger magnitudes disproportionately influence the distance
estimation between sample points compared to features with
smaller magnitudes. Consequently, our model may exhibit
an erroneous bias toward features with high magnitudes.
To mitigate this effect, it is essential to normalize all
features to a consistent magnitude level. This is where feature
normalization proves valuable.

In our specific case, we followed a two-step normal-
ization process. This process has a comparatively higher
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computational overhead but provides scale invariance. This
ensures that the normalized vectors have a constant norm,
making them invariant to scaling. Initially, we subtracted
the minimum value within each feature from every feature
value and then divided the result by the feature’s range.
We employed the L2 norm, which involves taking the square
root of the sum of squared values. By squaring the values,
greater weight is assigned to larger values, while smaller
values have less impact. The reason for using the L2 norm is
that it scales the vectors to have a unit norm, which simplifies
the interpretation of the data. Normalized vectors lie on the
surface of a unit hypersphere, and their magnitudes represent
relative proportions rather than absolute values. This can
simplify computations and improve the interpretability of the
learned weights. Thus the approach ensures computationally
efficient solutions during the calculation process.

2) EVALUATION CRITERIA

For our analysis, the evaluations were conducted using
cross-validation to ensure that no sample data was omitted
from either the training or testing tasks. For our cross-
validation approach, we adopted a stratified K-fold cross-
validation algorithm. This algorithm offers several advan-
tages. In stratified K-fold cross-validation, each fold or
data partition maintains the same class distribution as the
original dataset, guaranteeing that each fold comprises a
representative sample of every class. By preserving the class
distribution in each fold, stratified K-fold cross-validation
effectively mitigates bias in model evaluation. It ensures
that the model undergoes testing on all classes under
consistent conditions, resulting in a more precise assessment
of its generalization performance. When you keep the class
distribution, the evaluation results are more reliable and
consistent. This makes it easier to compare different models
or hyperparameter configurations because the evaluation
does not depend as much on picking random data points
within each fold. Stratified K-fold cross-validation also gives
more accurate estimates when figuring out performance
metrics or confidence intervals for model evaluation because
the class distribution is kept the same. This makes the
evaluation results less variable.

In the analysis, we assessed not only the ultimate prediction
performance but also the quality of the clusters themselves,
preceding the computation of the final prediction scores.
To assess the quality of our cluster models, we employed a
variety of metrics, including the homogeneity score, com-
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pleteness score, V-measure, adjusted Rand index, adjusted
mutual information, and silhouette coefficient. These metrics
offer insights into different aspects of clustering performance.
The following portion of the literature will give a brief
overview of all these metrics:

« Homogeneity: Homogeneity score measures the extent
to which each cluster contains only data points from a
single class, irrespective of the specific class labels. It is
bounded between O and 1, with low values indicating
low homogeneity. The term is defined with the following
attribute:

_ | HXIK)
~ T HX)

where & is the homogeneity score, functions H(X|K)
and H(X) are defined by Shannon’s entropy, X is the
information of the number of samples labelled x in
cluster k and K is information for the total number of
samples in cluster k.

o Completeness: The completeness score evaluates
whether all data points belonging to the same class are
grouped together in a single cluster. This score is also
bounded between 0 and 1. The following attribute is used
to calculate the metric:

ey *

that the mutual information is generally higher for two
clusterings with a larger number of clusters, regardless
of whether there is actually more information shared. For
two clusterings A and B, the adjusted mutual information
is given as:

miA,B — emiA,B
avg(H(A), H(B)) — emiy p
where amiy p is the adjusted mutual information, mis g
is the mutual information, H(A) and H (B) are defined by
Shannon’s entropy for cluster A and B, and lastly emiy p
is the expected mutual information.
Silhouette Coefficient: the Silhouette Coefficient is
computed using both the mean intra-cluster distance
and the mean nearest-cluster distance for each sample.
A value of 1 represents ideal clustering, while negative
values suggest misclassification. The silhouette coeffi-
cient ranges from -1 to 1 and is calculated using the
following formula:

&)

amia g =

b—a
§= ——— (6)
max(a, b)
where s is the silhouette coefficient, b is the mean
nearest-cluster distance, and a is the mean intra-cluster

distance.

=1- HEKX) 2) In our evaluation of prediction performance, while accu-

H(K) racy is a widely used metric, we also employed a range of

where c is the completeness score, functions H (K |X) other performance measures to obtain a more comprehensive

and H(K) are defined by Shannon’s entropy, X is the understanding of the effectiveness of our proposed approach.

information of the number of samples labelled x in These additional metrics include precision, recall, and the

cluster k and K is information for the total number of F1 score. A brief overview of these metrics is given in the
samples in cluster k. following portion of the literature:

o V Measure: The v measure is a harmonic mean between « Precision: Precision talks about out of all the predicted

homogeneity and completeness. It is defined by the
following attribute:

_(d+B)xhxc
V= Bxh+c

where v is the v measure, % is the homogeneity score,

3

c is the completeness score, and B is used to adjust the .

weight of /2 and c. V measure ranges from O to 1.

o Adjusted Rand Index: The Rand Index quantifies the
similarity between two clusterings by considering how
samples are assigned to clusters in both the predicted
and true clusterings. It takes into account the fact that
some agreement between two clusters can occur by
chance, and it adjusts the rand index to account for this
possibility. The score is calculated from the following
attributes:

(ri — eri) o

“

" (max(ri) — eri)
where A,; is the adjusted rand index, ri is the rand index,
and eri is the expected rand index.

o Adjusted Mutual Information: Adjusted mutual infor-
mation is an adjustment of the mutual information
score to account for chance. It accounts for the fact
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positive, how many of them are actual positive. It is
calculated by the following attribute:

. TP
precision = ————— (7)

TP + FP

where TP is the true positive and FP is the false positive.
Recall: Recall is the true positive rate and is calculated
with the following attribute:

TP
recall = —— ®)
TP + FN

where TP is the true positive and FN is the false negative.
F1 Score: F1-score is a metric which takes into account
both precision and recall and is defined as follows:

f] — 9% precision x reca (9)

precision + recall

Accuracy: Accuracy represents the number of correctly
classified data instances over the total number of data
instances and is calculated using the following attribute:

TN + TP
accuracy = (10)
TP+ FP+ TN + FN

where TN is the true negative, TP is the true positive,
FN is the false negative, and FP is the false positive.
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TABLE 3. Cluster quality evaluation of 3 different cluster algorithms.

Adjusted Rand

Adjusted mutual

Model

Homogeneity

Completeness | V Measure

Index

Silhouette Coefficient

Kmeans

0.209

0.206

0.208

0.310

0.207

0.602

Consensus

0322

0315

0.319

0.44%

0318

0417

BIRCH

0.650

0.652

0.651

0.723

0.651

0.410

TABLE 4. Cognitive load estimation performance evaluation of 3 different

cluster algorithms.

Model Precision | Recall | F1 Score | Accuracy
Kmeans 74.5 75 75 78
Consensus 81 82 82 84
BIRCH 90.5 90.5 90.5 91.5

3) CLUSTER ALGORITHM EVALUATION

In our study, we conducted tests using three distinct clustering
algorithms: KMeans clustering, Consensus clustering, and
a hybrid approach involving the BIRCH algorithm in
conjunction with agglomerative clustering.

Consensus clustering, regarded as an ensemble technique,
is employed to consolidate predictions from multiple cluster
models, resulting in improved final prediction performance
compared to individual algorithms. Initially, we trained sev-
eral KMeans cluster models. Subsequently, we constructed
a cluster similarity matrix based on these initial KMeans
clusters. Following this step, we applied a spectral clustering
algorithm to amalgamate the outcomes of these initial
KMeans cluster predictions, guided by the cluster similarity
matrix.

Regarding the hybrid pipeline, which combines BIRCH
and the agglomerative algorithm, our approach entailed
training a BIRCH model on the training data. BIRCH
is an efficient, memory-friendly, online learning algorithm
that constructs a tree data structure with cluster centroids
derived from the leaf nodes. After generating these centroids,
we utilised them as input for an agglomerative clustering
model. The model was fit by treating the sub-clusters as new
samples, and the initial data points were mapped to the label
of the nearest sub-cluster.

To assess the performance of these three distinct clustering
algorithms, we first created stratified folds from the training
data. Stratified K-fold cross-validation was chosen for its
advantage in maintaining the original category distribution
within each fold, closely resembling the distribution in the
original data. This approach ensures that no fold lacks any
categories or classes during model training, thereby reducing
bias toward any specific class.

Table 3 and 4 display the evaluation results of the three
different clustering algorithms used for a single fold. Fig. 11
depicts cluster plots of the 3 different clustering algorithms
from the sample distribution’s primary component analysis.
From the figure, we can clearly see that the hybrid pipeline
cluster has the best quality. Based on these results, we selected
the hybrid pipeline of BIRCH and agglomerative clustering as
our final estimator due to its superior performance.
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(c) PCA cluster plot for the Hybrid (BIRCH + agglomerative) algo-
rithm.
FIGURE 11. PCA cluster plot for the 3 different cluster algorithms.

4) EXECUTION ENVIRONMENT

For this work we used a Ryzen 7 5800H series cpu, 32
Gigabytes of ram, and a NVIDIA Geforce RTX 3050 Ti
graphics unit with 4 gigabytes of vram. The component
models and our pipeline training and testing time are provided
in table 5.
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TABLE 5. Pipeline execution environment details.

CPU AMD Ryzen 7 5800H

GPU NVIDIA GeForce RTX 3050 Ti
RAM 32 GB

Training Time | 2 hrs 45 mins (approximately)
Testing Time 20 mins (approximately)

TABLE 6. Cluster quality evaluation of the final cluster algorithm with
10 fold stratified cross validation.

Adjusted rand | Adjusted Mutual
Index Information

1 0.8 0.839 0.818 0.873 0.818 0.499
0.635 0.638 0.636 0.705 0.636 0.476
3 0.67 0.665 0.667 0.748 0.667 045
4 0.708 0.737 0.721 0.786 0.721 0.481
5 0.664 0654 0.658 0.724 0638 0.5
6

7

8

Fold | Homogeneity | Completeness | V Measure Silhouette coefficient

0.689 0.691 0.689 0.757 0.689 0.442
0.715 0.715 0.705 0.787 0.704 0.501

0.727 0.745 0.735 0.816 0.735 0.5
9 0.691 0.7 0.695 0.773 0.695 0.46
10 0.685 0.709 0.697 0.761 0.696 0.481
Mean 0.6984 0.7093 0.7021 0.773 0.7019 0.479
STD 0.044523 0.057176 0.050194 0.047451 0.050201 0.021995

V. RESULT AND DISCUSSION

The findings from our study exhibited some impressive
results establishing our model as a serious competitor
to conventional supervised techniques. Our hybrid cluster
model achieved an average homogeneity score of 0.7,
indicating that the majority of samples within a cluster belong
to a single class. For completeness measure, our model
achieved an average score of 0.71, signifying that data points
from the same class tend to be placed within the same cluster.
Our achieved V-measure score is 0.7, indicating a balance
between homogeneity and the completeness of clustering
quality. The adjusted Rand index is designed to have a value
close to 0.0 for random labeling, exactly 1.0 for identical
clusterings, and values below —0.5 for highly dissimilar
clusterings. For our model, the average adjusted Rand index is
0.77, suggesting a high degree of similarity between predicted
and true clusterings. The adjusted mutual information returns
a value of 1 when two partitions are identical and typically
hovers around O for random partitions. Our model achieved an
average adjusted mutual information score of 0.7, indicating
a meaningful level of agreement between partitions. Lastly,
our model achieved an average Silhouette coefficient score
of 0.5, indicating generally well-separated clusters with a
low amount of overlap. These metrics collectively provide
a comprehensive evaluation of the quality and effectiveness
of our cluster models. Table 6 shows the overall summary
of these metrics for each fold in a 10-fold cross-validation
process.

The results of our model’s prediction performance across
10-fold cross-validation are presented in Table 7. Precision,
which relates to the ability to minimize false positives,
was achieved at an average rate of 93% with our model.
Higher recall scores indicate lower false-negative rates,
and our model achieved an average recall of 91.6%.
The F1 score, which considers both precision and recall,
averaged 92%. Additionally, our unsupervised predictor
model demonstrated an average accuracy of 93.2%. The
fig. 12 depicts the confusion matrix of the proposed
architecture.
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TABLE 7. Cognitive load estimation performance evaluation of the final

cluster algorithms with 10-fold stratified cross-validation.

Fold | Precision Recall F1 Score | Accuracy

1 97.5 94 95.5 96.5

2 91 90 89.5 89.5

3 90.5 91.5 91 92.5

4 94.5 91.5 92.5 94

5 90 91.5 90.5 91.5

6 92 92 92 92.5

7 93.5 91 92 94

8 94.5 92.5 93.5 95

9 92.5 91.5 92 93.5

10 93.5 90.5 91.5 93
Mean 93 91.6 92 93.2
STD | 2.254009 | 1.100505 | 1.649916 | 1.917753
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FIGURE 12. Normalized confusion matrix of the proposed model.

The scores obtained from the assessment of our proposed
methodology exhibit considerable promise; however, certain
caveats merit attention. Notably, while the quality of our
clustering algorithm remains commendable, the homogeneity
and v-measure of the clusters are in 0.7 mark in the range of
0to 1. So there is a gap of roughly 0.3 for these scores with the
highest standard. This limitation arises primarily due to the
inherent complexity of our utilized dataset, which comprises
solely resting baseline cognitive states and CL states,
lacking more refined categories. Moreover, the participants
experienced minimal interventions during recording sessions,
a deliberate attempt to simulate a natural environment.
Consequently, there exists the potential for the inclusion
of cognitive load-inducing cogitation data with the non-CL
resting state data. This overlap contributes to a reduction
in both homogeneity and v-measure within the clusters
associated with CL states. To address these challenges
effectively, it is imperative to acquire datasets featuring
precisely marked events for enhanced data granularity and
reliability.

Despite encountering these challenges, our model asserts
its competitive standing within the domain of supervised
EEG-based cognitive load (CL) detection pipelines. A thor-
ough performance comparison between our proposed method
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TABLE 8. Performance comparison between other EEG-based supervised
approaches and our proposed unsupervised method.

Method Peak Precision | Peak Recall | Peak FI Score | Peak Accuracy
Autoencoding + Transfer Learning [74] NA NA 71.17 74.55
Bi-LSTM Attention [72] 88 87 87 87

CNN [55] NA NA NA 7273
Linear Mixed Models + ERD/ERS [75] NA NA NA 90

1D CNN Transfer Learning [73] NA NA 91.6 NA

Our Proposed Method 93 91.6 92 932

and recent works is meticulously presented in table 8.
To ensure clarity and transparency, the comparison was
performed between the original results of these works and our
proposed method. Upon scrutinizing the results, it becomes
evident that many of these prior works lack the compre-
hensive set of evaluation criteria employed in our study,
wherein our model surpasses all counterparts. Noteworthy is
the work by [73], which, utilizing the same dataset as the
foundation for our research, approached our results closely
in terms of the F1 score. However, it is crucial to highlight
that their optimal performance was attained only subsequent
to employing a model pre-trained on an additional dataset.
In contrast, our methodology achieves these commendable
results by employing a singular dataset. The robustness of our
performance evaluation scores unequivocally affirms that our
innovative unsupervised cluster-based approach to cognitive
load estimation stands not only as a contender but, in fact, can
outperform recent and prominent works reliant on supervised
learning methodologies.

VI. CONCLUSION

This investigation endeavors to assess the real-time cognitive
load instantaneously using 4-channel EEG data as an
objective metric. Departing from prevalent practices that
predominantly employ supervised methods in cognitive load
studies, necessitating human intervention in data labeling
and posing challenges in collecting diverse data at scale,
our approach leverages an innovative unsupervised learning
strategy employing a hybrid cluster-based model. This model
proficiently estimates various cognitive load states without
relying on continuous human pre-labeled data. Address-
ing the challenge of selecting optimal evaluation metrics,
we departed from conventional practices and employed
a diverse set of metrics for a comprehensive evaluation,
including but not limited to the F1 score and accuracy. The
intricate process of feature selection was streamlined through
the utilization of automated feature extraction facilitated
by a 1D CNN architecture. Rigorous validation ensured
through cross-validation employing a spectrum of evaluation
criteria, revealing promising results with an adjusted Rand
index of 0.77, a silhouette coefficient of 0.5, and an
accuracy rate of 93.2%. Despite these achievements, certain
limitations persist, notably the restricted diversity of our
dataset containing only two cognitive load states. To address
this, we are actively in the process of developing a more
varied dataset. Additionally, we acknowledge the need for
broader scenario representation and aim to compensate for
data scarcity by creating a diversified dataset in the future.
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Considering a homogeneity score of 0.7, indicating room
for performance enhancement, we plan to explore a hybrid
cognitive load index merging both subjective and objective
measures. Envisioning a hybrid approach that integrates
aspects of both supervised and unsupervised learning,
we foresee the potential of unsupervised learning informing
data exploration, feature extraction, or anomaly detection,
subsequently integrated into a supervised model for cognitive
load estimation. Through this study, we seek to establish
a foundation for future research, laying the groundwork
for advancements in real-time instantaneous cognitive load
estimation, and contributing to the evolution of the field.
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