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ABSTRACT This study investigates a continuous-time method for sparse signal recovery, which is
suitable for analog optical circuit implementation. The proposed method is defined by a nonlinear ordinary
differential equation (ODE) derived from the gradient flow dynamics of the Lasso objective function.
Numerical experiments show that the proposed method certainly finds original sparse vectors within
reasonable accuracy. To gain insight into the local convergence properties of the proposed method, a linear
approximation around the equilibrium point is applied, yielding a closed-form error evolution ODE. This
analysis shows the behavior of convergence to the equilibrium point. In addition, a variational optimization
problem is proposed to optimize a time-dependent regularization parameter in order to improve both
convergence speed and solution quality. The deep unfolded variational optimizationmethod is introduced as a
means of solving this optimization problem, and its effectiveness is validated through numerical experiments.

INDEX TERMS Optical computing, analog computing, optical circuit, sparse signal recovery, Lasso,
compressed sensing, gradient flow, deep unfolding, variational optimization.

I. INTRODUCTION
A. BACKGROUND
Optical computing has experienced remarkable advance-
ments in recent years [2]. The Mach–Zehnder Interferometer
(MZI) has become foundational for the development of
integrated programmable optical circuits, as highlighted by
Capmany and Peŕez [3]. The exploration of light-based
computing holds significant promise for transcending the
constraints inherent in electronic systems. Analog optical
computing offers the potential for computation speeds that
are orders of magnitude faster than what is currently
achievable with traditional electronic systems. Additionally,
it is characterized by its notably low power consumption.

Silicon photonics stands as a key enabler in optical com-
puting, harnessing established silicon microfabrication tech-
niques to integrate optical functions onto silicon chips [4], [5].
This technology allows for the creation of compact, energy-
efficient optical components. Silicon photonics significantly
advances data processing speeds and miniaturization, inte-
grating seamlessly with existing semiconductor technologies
and propelling optical computing forward.

The associate editor coordinating the review of this manuscript and
approving it for publication was Sukhdev Roy.

Recently, the trend in Moore’s law, which asserts that the
number of transistors in an integrated circuit will double
every 24 months, has not been reflected in reality. A major
limiting factor is the power consumption of the integrated
digital electric circuit, which hampers the ability to handle
large-scale signal processing problems that require high
throughput. For instance, base stations (BSs) in wireless
network systems [9], [10] need to perform a significant
number of signal processing tasks, including multiple-input
and multiple-output (MIMO) signal detection and beam
forming. In next-generation systems (e.g., beyond 5G or
6G), the limitations of the central processing unit are
likely to become a major obstacle to achieving desired
specifications. A potential solution to this challenge would
be to use an optical computing-based signal processing
unit as a specialized processing unit with lower power
consumption [6], i.e., hardware accelerator.

Recent examples of optical computing include a neural
network implemented in the optical domain [13] and an
optical Ising machine [14] for combinatorial optimization.
Programmable integrated optical circuits [3] are becoming
an active research topic in optical computing. In the
field of optical numerical computing, optical adders and
multipliers have been used to solve ordinary differential
equations (ODEs) [12]. Optical computing has the potential
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to perform large-scale signal processing tasks with high
energy efficiency and extremely fast computation.

FIGURE 1. Relationship among ODE, state evolution, and optical circuit.

B. CONTINUOUS-TIME METHOD
There have been several studies on continuous-time methods
suitable for optical circuit implementation. A pioneering
work by Rozell et al. [15] introduced continuous dynam-
ical systems for solving sparse coding. Wang et al. [16]
recently presented a continuous-time resistivememory circuit
for solving compressed sensing problem. In [17], RRAM
(resistive random-access memory)-based analog computing
is applied for implementing MIMO precoding problems.
A recent work [18] proposed an ODE-based method for
MMSE signal detection in MIMO systems and presented
a concise analytical formula for the mean squared error.
Another example is the gradient flow decoding that is a
continuous-time method for decoding LDPC codes [19].
An optical implementation of these methods would provide a
certain impact on the wireless communications context.

Figure 1 explains the concept of continuous-time methods
for signal processing with a simple example. The ODE
depicted in Fig.1(a) defines the system and its continuous-
time behavior. A solution of the ODE shown in Fig.1(b) can
be seen as a trajectory of the state evolution of the system. The
state evolution can be emulated by a simple analog optical
circuit consisting of a multiplier and an integrator in this
case. If the state evolution of the system can solve a certain
meaningful signal processing task, the ODE corresponding
to the state evolution can be seen as a blueprint of the optical
circuit for that task. Despite the promising research direction,
there remains a plethora of opportunities for such signal
processing methods.

C. CONTRIBUTIONS
The focus of this paper is on a continuous-time method for
sparse signal recovery [31], [32]. Our work is motivated by
growing demand for high-speed and large-scale sparse signal
recovery tasks in a compressed sensing context [33]. For
instance, grant-based random access schemes [53] require
efficient sparse signal recovery algorithms for the detection
of active users and channel estimation. Such sparse signal

recovery algorithms play a pivotal role in enhancing the
efficiency and reliability of grant-based random access
systems, especially in scenarios characterized by high user
density. Although the advancements of the sparse signal
recovery algorithms is significant, all of them are discrete-
time algorithms working on a digital computer or a digital
circuit. The extension to continuous-time methods suitable
for optical circuit implementation is not so straightforward.

Our main contributions of this work are summarized as
follows:

• Proposal of a continuous-time method for sparse signal
recovery,

• Numerical analysis for assessing the recovery perfor-
mance,

• Theoretical analysis on convergence behavior,
• Optimization of the system by using deep unfolding.
Our approach is based on the Lasso formulation [34],

which can be viewed as a typical regularized least-squares
(LS) objective function. The proposed ODE corresponds to
the gradient flow based on the Lasso objective function.
To gain insight into the local convergence properties of
the system, a linear approximation around the equilibrium
point is applied, which yields a closed-form error evolution
ODE. The analysis tracks system behavior as the solution
converges to the equilibrium point. In addition, a variational
optimization problem is proposed to optimize a time-
dependent regularization parameter in order to improve both
convergence speed and solution quality. A deep unfolding-
based method is presented for solving the variational
problem. The methodology presented in the paper is directly
applicable to any type of continuous-time methods.

D. OUTLINE
The method presented in this paper was first introduced in a
conference paper [1]. The present paper significantly expands
upon the initial presentation, providing a comprehensive
explanation of the derivation of the proposed method, an in-
depth analysis of its convergence, and detailed studies on the
optimization of the system through deep unfolding.

The remainder of the paper is organized as follows: In
Section II, the system model and the Lasso formulation
used in the paper are introduced. Section III presents the
proposed continuous-time method for sparse signal recovery,
including numerical demonstrations. Section IV provides an
analysis of the local convergence of the proposed method,
supported by numerical examples. Section V introduces
a parametric ODE with a continuous-time function to be
optimized. It presents a deep unfolding-based optimization
method for solving a variational optimization problem, aimed
at improving convergence behavior and solution quality.
Section VI concludes the discussion.

II. PRELIMINARIES
A. NOTATION
The following mathematical notation is used throughout the
paper: The symbols R and R+ represent the set of real
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numbers and the set of positive real numbers, respectively.
The one-dimensional Gaussian distribution with mean µ

and variance σ 2 is denoted by N (µ, σ 2). The multivariate
Gaussian distribution with mean vector µ and covariance
matrix 6 is represented byN (µ, 6). Assume that a function
f : R → R is given. The same function f can be applied to
x ≡ (x1, x2, . . . , xn) as f (x) = (f (x1), f (x2), . . . , f (xn)). The
expectation operator is denoted by E[·]. The notation diag(x)
denotes the diagonal matrix whose diagonal elements are
given by x ∈ Rn. The matrix exponential exp(X)(X ∈ Rn×n)
is defined by

exp(X) ≡

∞∑
k=0

1
k!
Xk . (1)

The spectral norm of X ∈ Rn×n is denoted by ∥X∥2. The
notation [n] denotes the set of consecutive integers from 1 to
n.

B. SYSTEM MODEL
In this paper, we follow a common system model for
compressed sensing [31], [32]. It is assumed that the original
sparse signal s ∈ Rn follows the Bernoulli-Gaussian
distribution, where a non-zero element follows a Bernoulli
distributionwith probability p and a non-zero element follows
a Gaussian distribution N (0, 1). A linear observation vector
y ∈ Rm is generated by

y = As+ n, (2)

where A ∈ Rm×n is the sensing matrix. The vector n ∈ Rm is
an additive Gaussian noise vector following n ∼ N (0, σ 2I).
The goal of the sparse signal recovery problem is to estimate
the original sparse vector s from the knowledge of y and A as
accurately as possible.

C. LASSO FORMULATION FOR SPARSE SIGNAL RECOVERY
The Lasso objective function is defined as

f (x) ≡
1
2
∥y− Ax∥22 + λ∥x∥1, (3)

where λ(> 0) is the regularization parameter. The L1
regularization term is included in order to promote a sparse
solution in the regularized LS estimation. The optimization
problem is then defined as

x̂ = arg minx∈Rn f (x). (4)

This optimization problem is convex and can be solved by
any convex optimization algorithm. A common approach to
solving the Lasso problem is to use a proximal gradient
descent method, such as ISTA [39].

D. RELATED WORKS
A number of discrete time sparse signal recovery algo-
rithms [33] have been developed based on the Lasso
formulation [34], [35], [36], [37]. The Iterative Shrinkage
Thresholding Algorithm (ISTA) [38], [39] is one of the

best-known algorithms for solving the Lasso problem. ISTA
is an iterative algorithm comprising two processes: a linear
estimation process and a shrinkage process based on a soft
shrinkage function. ISTA can be seen as a proximal gradient
descent algorithm [40] and can be directly derived from
the Lasso formulation. Another powerful iterative algorithm
is Approximate Message Passing (AMP) [41], [42] which
provides much faster convergence than ISTA. Ma and Ping
proposed Orthogonal AMP (OAMP) [43], which can handle
various classes of sensingmatrices including unitary invariant
matrices. Rangan et al. proposed Vector AMP [44] for right-
rotationally invariant matrices and provided a theoretical
justification for its state evolution.

III. CONTINUOUS-TIME METHOD
A. GRADIENT FLOW FOR SPARSE SIGNAL RECOVERY
In the following argument, we introduce a gradient flow
dynamics [45]. Gradient flow is a dynamical system of the
form

dx(t)
dt

= −∇f (x(t)), (5)

where f : Rn
→ R is called an energy function. The

value of the energy f (x(t)) decreases monotonically as time
t increases. The behavior of many physical systems can be
described by an energy minimization process given by the
gradient flow.

Figure 2 presents an example of the gradient flow dynamics
for a simple convex energy function f defined on two
dimensional Euclidean space. The state vector following the
ODE (5) gradually approaches the minimum point of f .
The gradient flow can be considered as a continuous-time
counterpart of the gradient descent method.

FIGURE 2. An example of gradient flow dynamics.

Although LCA is based on Lasso objective function [15],
the Lasso objective function f (x) in (3) is not differentiable
at x if x includes zero elements. This means that the gradient
∇f (x) is not well-defined at some x. Instead of the objective
function f defined in (3), we use the differentiable function
g : Rn

→ R defined by

g(x) ≡
1
2
∥y− Ax∥22 + λξα(x) (6)

as an energy function in the gradient flow. The introduction of
the differentiable regularizer makes the convergence analysis

VOLUME 12, 2024 118143



T. Wadayama, A. Nakai-Kasai: Continuous-Time Sparse Signal Recovery

FIGURE 3. Proxy function for |x|: Left: ξα(x), Right: ξ ′
α(x) = tanh(αx).

in Section IV possible. The function ξα : R → R is given by

ξα(x) ≡
log(exp(αx) + exp(−αx))

α
, (7)

where α ∈ R+ is called the proximity parameter. The
function ξα(x) can be seen as a proxy function of the absolute
value function, i.e., ξα(x) ≃ |x| for sufficiently large α. At the
limit α → ∞, the function g converges to the function f . The
derivative function of ξα is given by

ξ ′
α(x) = tanh(αx). (8)

Figure 3 shows the shapes of ξα(x) and ξ ′
α(x) = tanh(αx) for

α = 1, 5, 100. It can be observed that ξα(x) approaches the
absolute value function |x| as α increases.
Note that we thus have the gradient of the energy function:

∇g(x) = AT (Ax(t) − y) + λ tanh(αx(t)). (9)

In this paper, we focus on the gradient flow defined by the
following nonlinear ODE:

dx(t)
dt

= −

(
AT (Ax(t) − y) + λ tanh(αx(t))

)
, (10)

x(0) = x0, (11)

where x(t) ∈ Rn is the state vector at time t , and it can be
regarded as the estimate of the original vector s at time t .
The variable t represents continuous time in our context. The
vector x0 is the initial state providing a boundary condition.

A possible architecture of the analog optical circuit
corresponding to the above ODE (10) is presented in Fig.4.
The core of the optical circuit shown in Fig.4 is the
two matrix-vector product circuit. A programmable MZI-
based matrix-vector product circuit [3] can be utilized for
implementing this part. The operation of the circuit can be
described as follows: The output of the second matrix-vector
multiplier is integrated by the optical integrator. These
integrated optical signals are then fed back to the input
of the first multiplier, creating a closed-loop system that
implements the continuous-time dynamics of the ODE. The
most challenging aspect of this implementation might be the
optical realization of the nonlinear function tanh(·). However,

a hybrid optical-electrical implementation, as demonstrated
in [14], can make this task more manageable. In such a hybrid
approach, the nonlinear function and the integrator could be
implemented in the electrical domain, where these operations
are relatively simpler to realize. The optical-to-electrical and
electrical-to-optical conversions would need to be carefully
designed to maintain the advantages of optical processing.

FIGURE 4. Block diagram of analog optical circuit corresponding to
ODE (10).

B. NUMERICAL EXPERIMENTS
Figure 5 shows the state trajectories of x(t), which can be
considered as the solution of the ODE (10). Each component
of x(t) corresponds to a curve in Fig. 5. The Euler method
(see Appendix for more details) with N = 1000 was used to
solve the ODE where N represents the number of bins. The
observation vector ywas generated randomly according to the
system model (2). We can see, in Fig. 5, that the values of
many components approach zero and that only a fraction of
the curves corresponding to non-zero elements in s deviate
from zero. Namely, we can see that the state vector x(t)
becomes a sparse vector with time.

FIGURE 5. A solution of the ODE (10). Each component of x(t) is depicted
as a function of time t . The parameters are: n = 128, m = 64, p = 0.07,

σ = 0.1,λ = 3, α = 50, x0 = 0, T = 1.

To evaluate the performance and characteristics of our
ODE-based sparse signal recovery method (10), numerical
experiments were conducted. The parameter settings for the
experiments were as follows. The length of the sparse signal
s was set to n = 128. The length of the observation vector
y was m = 64. The standard deviation of the Gaussian
noises was set to σ = 0.1. The sensing matrix A was
randomly generated. Each element in A follows N (0, 1).
In the following part of this paper, the same A is used for
the experiments.
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FIGURE 6. Estimates of mean squared error MSE(t) as a function of time
t (n = 128, m = 64, p = 0.1, σ = 0.1, α = 50).

Figure 6 plots the estimates of the mean squared error
(MSE) MSE(t) as a function of time t . The MSE at time t
is defined by E[∥x(t) − s∥22], which can be estimated by

MSE(t) ≡ E[∥x(t) − s∥22] ≃
1
M

∑
i∈[M ]

∥x(k)i − si∥22, (12)

where x(k)i is the output of the Euler method for the ith trial at
index k corresponding to time t . The MSE estimates in Fig. 6
are based on 100 trials of sparse signal recovery processes,
i.e., M = 100. The Euler method with N = 5000 was used
for T = 3 to estimate MSE(t)(0 ≤ t ≤ T ). The parameter
settings are nearly the same as in the previous experiment.

We examined three cases: λ = 0.5, 1.5, 3. From Fig. 6, it is
apparent that the MSE curve for λ = 0.5 has the largest MSE
in the range 0 ≤ t ≤ 3; however, the MSE value continues
to decrease after t = 3. On the other hand, the MSE curve
for λ = 3 shows the fastest convergence, but the value of
MSE(t) saturates to a relatively high constant value in the
range t > 1.0. TheMSE curve for λ = 1.5 provides a slightly
slower convergence compared with the case of λ = 3, but it
shows a lower floor for the MSE values.

These experimental results imply that the regularization
constant λ has a strong influence on convergence behavior,
similar to discrete time sparse signal recovery algorithms
such as ISTA.

IV. LOCAL CONVERGENCE ANALYSIS
A. LINEAR APPROXIMATION
In the previous section, we saw that the convergence behavior
of the ODE (10) is highly dependent on the choice of the
regularization parameter λ. In this section, the mechanism by
which the regularization parameter affects the convergence
behavior is examined. The core of the analysis presented here
is the use of a linear approximation around the equilibrium
point [45] of the ODE to study the local convergence
behavior.

In the following analysis, we consider the objective
function (6). The gradient of g is thus given by (9).
We can now examine the local convergence behavior of the

continuous-time dynamical system defined by the ODE (10).
The initial vector x(0) = x0 is assumed to be given as a
boundary condition.

The equilibrium point x∗ of the above ODE is the point
satisfying∇g(x) = 0. Thus, the equilibrium point x∗ satisfies
the equality

AT (Ax∗
− y) + λ tanh(αx∗) = 0, (13)

which is called equilibrium equality.
To establish the dynamics of the residual error, we change

the coordinate of the ODE according to

x(t) = x∗
+ e(t), (14)

where e(t) ≡ x(t) − x∗ represents the residual error
vector. In the following analysis, e(t) is abbreviated to e for
simplicity. Due to the change in the coordinate, the right-hand
side of ODE (10) can be transformed to

−

(
AT (Ax− y) + λ tanh(αx)

)
(15)

= −

(
AT (A(x∗

+ e) − y) + λ tanh(α(x∗
+ e))

)
(16)

= −

(
AT (Ax∗

− y) + ATAe+ λ tanh(α(x∗
+ e))

)
(17)

= −

(
ATAe+ λ tanh(α(x∗

+ e)) − λ tanh(αx∗)
)

. (18)

The last equality is due to the equilibrium equality.
By expanding tanh(αx) using the Taylor expansion and

ignoring the higher-order terms, we can obtain the linear
approximation around the equilibrium point:

tanh(αx) ≃ tanh(αx∗) + J(x∗)(x− x∗), (19)

where J(x∗) is the Jacobian matrix of tanh(αx) at x∗. The
Jacobian matrix is given by

J (x∗) = diag

(
α

cosh2(αx∗

1 )
,

α

cosh2(αx∗

2 )
, . . . ,

α

cosh2(αx∗
n )

)
,

(20)

where x∗
= (x∗

1 , x∗

2 , . . . , x∗
n )
T . Note that cosh2(x) > 0 for

any x ∈ R. This implies that J (x∗) is positive definite for any
x∗

∈ Rn.
By using the linear approximation, we immediately have

the following approximation:

λ tanh(α(x∗
+ e)) − λ tanh(αx∗) ≃ λJ (x∗)e. (21)

In the following argument, we will treat this approximated
equality as an equality for the sake of simplicity. Substituting
this equation into (18), we obtain the linear approximation of
the right-hand side of (10):

−

(
AT (Ax− y) + λ tanh(αx)

)
= −

(
ATA+ λJ(x∗)

)
e.

(22)

Finally, we have the ODE representing the evolution of the
residual error vector:

de(t)
dt

= −

(
ATA+ λJ(x∗)

)
e(t), (23)
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e(0) = e0, (24)

where e0 represents the initial error vector. This is a linear
ODE, which can be solved in a concise form [20]:

e(t) = exp
(
−

(
ATA+ λJ(x∗)

)
t
)
e(0). (25)

We can expect the above solution to reflect the actual error
behavior well if the initial error e(0) is sufficiently close to the
zero vector, i.e., in the case where the linear approximation is
appropriate.

From the error evolution equation (25), it is clear that the
eigenvalues of the matrix

(
ATA+ λJ(x∗)

)
t dominate the

behavior of the error evolution. Due to the positive defi-
niteness of the Jacobian matrix J(x∗) and the semi-positive
definiteness of the Gram matrix ATA, all the eigenvalues of
the matrix

(
ATA+ λJ(x∗)

)
t are positive real numbers. This

means that the time evolution of error vector (25) is locally
asymptotically stable; that is, limt→∞ e(t) = 0 for any initial
error e(0) sufficiently close to the zero vector.

B. UPPER BOUND ON CONVERGENCE SPEED
From the time evolution or error vector (25), we immediately
have the following theorem, under the assumption that the
linear approximation is appropriate.
Theorem 1: If the initial vector x(0) is sufficiently close to

x∗, then the following inequality holds:

∥e(t)∥2
∥e(0)∥2

≤ exp(−ω1t), (26)

where {ωi}
n
i=1 is the set of eigenvalues ofA

TA+λJ(x∗),with
the order 0 < ω1 ≤ ω2 ≤ · · · ≤ ωn.
(Proof) Taking the norm of both sides of (25), we have an

inequality:

∥e(t)∥2 = ∥ exp
(
−

(
ATA+ λJ(x∗)

)
t
)
e(0)∥2 (27)

≤ ∥ exp
(
−

(
ATA+ λJ(x∗)

)
t
)

∥2∥e(0)∥2, (28)

where the matrix norm is the spectral norm. By dividing both
sides by ∥e(0)∥2, we obtain

∥e(t)∥2
∥e(0)∥2

≤ ∥ exp
(
−

(
ATA+ λJ(x∗)

)
t
)

∥2. (29)

Note that the above matrix exponential can be rewritten as

exp
(
−

(
ATA+ λJ(x∗)

)
t
)

= Udiag(e−ω1t , . . . , e−ωnt )UT ,

(30)

where U is an orthogonal matrix. Since the spectral norm of
a semi-positive definite symmetric matrix X coincides with
the largest eigenvalue of X , we have

∥ exp
(
−

(
ATA+ λJ(x∗)

)
t
)

∥2 = exp(−ω1t). (31)

Substituting this equality into (29), we obtain the claim of the
theorem.

The above theorem indicates that the term exp(−ω1t)
dominates the convergence speed around an equilibrium

point. The average behavior is described by the following
corollary, which can be derived directly from Theorem 1.
Corollary 1: If the initial vector x(0) is sufficiently close

to x∗, then the following inequality holds:

E
[

∥e(t)∥2
∥e(0)∥2

]
≤ E[exp(−ω1t)]. (32)

Let lmin(X) represent the minimum eigenvalue of a
symmetric matrix X . When m < n, i.e., typical setting for
a sparse signal recovery problem, the minimum eigenvalue
of ATA+ λJ(x∗) satisfies

lmin(ATA+ λJ(x∗)) ≥ lmin(ATA) + lmin(λJ(x∗)) (33)

= λmin
i∈[n]

α

cosh2(αx∗
i )

(34)

Note that the condition m < n implies lmin(ATA) = 0.
Therefore, increasing the value of λ leads to larger ω1, which
increases the convergence speed.

C. MSE FLOOR
The value on the right-hand side of equation (32) can be
reduced by choosing a larger λ. This implies that a larger λ
will achieve faster convergence to the equilibrium point. This
qualitative argument explains the numerical results shown in
Fig. 6; in particular, a larger λ results in a faster decrease of
MSE(t).
On the other hand, from the equilibrium equation (13),

we have

∥AT (Ax∗
− y)∥2 = λ∥ tanh(αx∗)∥2. (35)

Consider a scenario where the noise is negligible. Recall that
the original sparse vector s should satisfy

∥AT (As− y)∥2 ≃ 0 (36)

under the assumption of negligible noise. In such a case,
an increase in λ can lead to an increase in the discrepancy
∥x∗

− s∥2. From this observation, it can be concluded that a
larger λ leads to higherMSE floors, which is indeed observed
in Fig. 6.

D. NUMERICAL EXPERIMENTS
The analysis presented in the previous sections is based
on a linear approximation around the equilibrium point.
Therefore, the accuracy of this approximation should be
verified by numerical experiments.

The error norm ratio ρ(t) is defined by

ρ(t) ≡
∥e(t)∥2
∥e(0)∥2

=
∥x(t) − x∗

∥2

∥x(0) − x∗∥2
. (37)

In the following experiment, we will evaluate the norm ratio
ρ(t) for the two cases λ = 1.5 and λ = 5.

The parameter settings are nearly the same as in the
previous experiment: n = 128,m = 64, σ = 0.1, α = 50.
The equilibrium point x∗ is approximated by the value of x(T )
where T = 4.
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We consider two types of initial points, x(0) = 0 and

x(0) = x̂ ≡ x∗
+ ϵ, (38)

where ϵ ∼ N (0, 0.12I). Note that x(0) = 0 may not be in
the region where the linear approximation is valid but x̂ can
be in such a region because the norm of ϵ is so small.

FIGURE 7. Error norm ratio ρ(t) as a function of time t . Left λ = 1.5, Right
λ = 5 (n = 128, m = 64, p = 0.1, σ = 0.1, α = 50).

Figure 7 displays the error norm ratio ρ(t) as a function
of time t . The solid line labeled ‘‘Theory’’ corresponds to
the value of exp(−ω1t). The left panel shows the case where
λ = 1.5. The error norm ratio curve of ρ(t) with the initial
condition x(0) = 0 has a shallower slope than that of the
curve of exp(−ω1t) when t < 0.7. This may be due to the
invalidity of the linear approximation for small t . It can be
observed that the curve of ρ(t) with x0 = 0 has almost the
same slope as that of exp(−ω1t) when t > 0.7. This can be
explained by the fact that the state point x(t) gradually enters
the region where the linear approximation is valid. Once the
state point enters such a region, the linear approximation
theory can be applied. On the other hand, in the case of
x(0) = x̂, the slope of ρ(t) is almost the same as that of
exp(−ω1t) from the beginning. The result is consistent with
the claim of Theorem 1. Since x̂ is sufficiently close to x∗, the
linear approximation is valid from the beginning.

The right panel shows the numerical results for λ = 5.
Nearly the same observations can be made as in the left panel.
Compared to the left panel, the value of ρ(t) is much smaller
for each t . This observation is consistent with the argument
concerning the relationship between λ and the convergence
rate in the previous section.

Note that in all the cases, the asymptotic slope of ρ(t)
can be accurately estimated by the slope of exp(−ω1t). This
observation supports our claim that the smallest eigenvalue
ω1 determines the convergence rate around an equilibrium
point. The numerical results presented in Fig. 7 can be seen
as a numerical validation of the argument in the previous
sections.

Figure 8 shows MSE(∞), E[|λ tanh(αx∗)∥22], and E[ω1]
estimated from 500 trials. For estimating the asymptoticMSE
MSE(∞), we used T = 4 rather than T = ∞. The

numerical results of MSE(∞) indicate that the MSE floor
increases as λ increases. We can also observe that the values
E[|λ tanh(αx∗)∥22] (center panel) is an increasing function
of λ. This observation is consistent with the argument in
Subsection IV-C. The local convergence rate is determined
by ω1. The tendency of E[ω1] is shown in the third panel
of Fig. 8. It can be confirmed that a larger λ achieves faster
convergence.

FIGURE 8. Values of MSE(∞), E[|λ tanh(αx∗)∥2
2], and E[ω1] from left

to right (n = 128, m = 64, p = 0.1, σ = 0.1, α = 50).

Finally, we will experimentally confirm the relationship
between α and the MSE convergence behavior. Figure 9
shows the values of MSE(∞) and E[ω1] where the value
of λ is fixed to 3. From the results of MSE(∞), we
can say that a larger α results in a smaller MSE floor.
The right panel showing E[ω1] indicates that a larger α

leads to faster convergence. In summary, α should be large
in order to achieve faster convergence and a high-quality
solution. We therefore use a relatively large constant α =

50 throughout this paper.

FIGURE 9. Values of MSE(∞) and E[ω1] (n = 128, m = 64, p = 0.1,

σ = 0.1,λ = 3).

V. DEEP UNFOLDED-VARIATIONAL OPTIMIZATION
A. PARAMETRIC ODE AND ITS OPTIMIZATION
A summary of the theoretical analysis and numerical results
presented in the previous section is illustrated in Fig. 10,
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which shows the typical behavior of the convergence of
MSE(t) = E[∥x(t) − s∥22]. As discussed earlier, there is
a trade-off between the MSE floor value (the asymptotic
MSE, MSE(∞)) and the convergence rate. If we use a large
λ, we can expect fast convergence, but we will need to
compromise on the quality of the solution, i.e., higher MSE
floor. On the other hand, if we use a small λ, we must allow
for slow convergence despite of lower MSE floor.

An important consideration is the time period during which
sub-linear convergence occurs. If the state point x(t) is close
enough to the equilibrium point, the linear approximation
can be applied and linear convergence can be expected, as
discussed in a previous section. However, if x(t) is not close
enough to the equilibrium point, linear convergence cannot
be expected. The left panel of Fig. 7 illustrates such a regime,
specifically for 0 ≤ t ≤ 0.6. As shown in Fig. 10, the linear
convergence regime appears after a sub-linear regime.

FIGURE 10. Typical tendency of the convergence behavior of MSE(t).

To improve both convergence speed and solution quality,
one strategy is to introduce a time-dependent regularization
parameter, i.e., varying the value of λ. Starting with a
large λ shortens the sub-linear regime and increases the
convergence rate. Changing λ judiciously keeps x(t) in
the linear convergence regime. By adjusting λ to take on
the smallest value at the end of the process, a high-quality
solution can be obtained.

This idea is closely related to the homotopy or continuation
method, where the value of the regularization parameter is
gradually changed so that the state vector progresses along the
solution path. For example, Xiao and Zhang [52] proposed a
technique for solving the Lasso problem by using a proximal
algorithm, which incorporates a sequence of decreasing
values of the regularization parameter. The concept of the
continuation method is shown in Fig. 11.

The above idea naturally leads to the following parametric
ODE:

dx(t)
dt

= −

(
AT (Ax(t) − y) + λ(t) tanh(αx(t))

)
, (39)

where the regularizing constant is replaced with the function
λ : R → R and x(0) = x0.
In this section, we examine the optimization of λ(t) in this

parametric ODE. The optimization problem at hand can be
formulated as

minimize E[∥x(T ∗) − s∥22] subject to λ : R → R, (40)

FIGURE 11. Concept of continuation method: x∗(λi )(i ∈ [5]) represents
the equilibrium point when λ = λi . Using an appropriately chosen set of
parameters {λi }, the solution path is fully covered by the linear
convergence regions. We can anticipate both faster convergence and a
high-quality solution in such a case.

where T ∗ is the predetermined target time. In essence, we aim
to find the optimal continuous-time schedule for λ that
produces a high-quality solution at a given time T ∗. This
optimization problem falls into the category of variational
optimization problems. Unfortunately, we cannot expect to
derive a compact analytical solution to this problem, and,
thus, it must be solved numerically.

B. DEEP UNFOLDED-VARIATIONAL OPTIMIZATION
The development of deep neural networks has also had
a significant impact on the design of algorithms for
communications and signal processing [21], [22], [23].
Deep unfolding, as described in works such as [26], [29],
and [30], can be seen as a highly effective method for
improving the convergence of iterative algorithms. Gregor
and LeCun introduced the Learned ISTA (LISTA) [26],
which uses learnable matrices. LISTA achieves a recovery
performance that is much superior to that of the original
ISTA. Borgerding et al. also presented variants of AMP and
VAMP with learnable capability [27], [28]. Trainable ISTA
(TISTA) [30] is a recent learnable sparse signal recovery
algorithm with fast convergence. TISTA requires a small
number of trainable parameters, which provides a fast and
stable training process. It is important to note that algorithms
like LISTA operate within a discrete-time framework. Con-
sequently, their methodologies are not directly transferable to
the continuous-time sparse signal recovery system examined
in this study.

The concept of deep unfolding is simple: Embed trainable
parameters in the original iterative algorithm, followed by the
unfolding of the signal-flow graph of the original algorithm.
The standard supervised training techniques used in deep
learning, such as stochastic gradient descent (SGD) [24] and
back propagation [25], can then be applied to the unfolded
signal-flow graph to optimize the trainable parameters.

In the following, we will introduce the deep unfolded-
variational optimization (DU-VO) method for the numerical
solution of variational optimization problems. The combina-
tion of deep unfolding and the Euler method for differential
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equation solvers [48] is an active research area in scientific
machine learning. However, it should be noted that the
technique is not limited to applications within scientific
machine learning; rather, it seems to be a powerful tool for
optimizing continuous-time systems.

This subsection deals with variational optimization prob-
lems in a general context. We will return to the specific
optimization problem defined in (40) later.
Assume that we have an ODE

dx(t)
dt

= h(x(t), u(t), t) (41)

and it defines the dynamics of x(t). For a given integrable
function F , a functional J to be minimized is defined by

J [u(t)] ≡

∫ T

0
F(x(t), u(t), t)dt. (42)

In the following argument, we assume the case where u(t)
is one-dimensional, i.e., u : R → R, and can control
this function. We here consider a variational optimization
problem including x(t) defined by an ODE (41):

minimize u(t) J [u(t)]. (43)

Namely, we want to find a one-dimensional function u
minimizing the value of the functional J .
This type of variational optimization problem often

appears in the field of optimal control [50]. The optimal
solution of (43) can be obtained by solving a Hamilton-
Jacobi-Bellman (HJB) equation [50]. However, solving the
HJB equation is generally difficult because it requires solving
a non-linear partial differential equation. In a stochastic
context, solving a stochastic HJB equation [50] becomes even
more complex and challenging.

The DU-VO method is a numerical approach that aims
to solve the variational problem (43). The first step in the
implementation of the DU-VO method is to introduce a
function approximation using a radial basis function (RBF),
which is used to approximate u(t).
Let φ : R → R be a RBF, which satisfies φ(x) = φ(|x|).

A continuous function u(t) can be approximated by

ũ(t) ≡

S∑
i=1

wiφ(t − ci), (44)

where the weight vector w ≡ (w1,w2, . . . ,wS )T ∈

RS is a trainable parameter that can be updated in an
optimization process. The above function approximation is
known as the RBF approximation. The shift parameter c ≡

(c1, c2, . . . , cS )T ∈ RS is treated as a hyperparameter. Thus,
we will use the parametric model of u(t) defined by (44) in
the following discussion.

The advantage of using the RBF is that it requires only
a small number of trainable parameters to approximate a
one-dimensional continuous function, resulting in a stable
and efficient learning process.

In order to approximate the solution of (41), we have
a number of numerical methods to choose from, such as

Runge-Kutta methods; however, for simplicity, the simplest
of these, the Euler method, will be used in the following
argument. Similarly, for the numerical integration of the
functional (42), we will exploit the simplest rectangular
method. If necessary, the accuracy of the following DU-VO
method can be improved by replacing the ODE solver
algorithm and the numerical integration method.

The core of the DU-VO method is the Euler method for
numerically solving differential equation (41),

x(k+1)
= x(k) + ηh(x(k), ũ(t (k)), t (k)), k = 0, 1, . . . ,N − 1,

(45)

and the numerical integration step for the functional (42),

J (k+1)
= J (k) + ηF(x(k), ũ(t (k)), t (k)), k = 0, 1, . . . ,N − 1.

(46)

If the width of the bins is small enough, we can expect that
J (N ) will become an approximation of J [ũ(t)]. The concept
of deep unfolding can be naturally applied to (45) and (46) to
optimize the weight vector w that controls the shape of u.

The DU-VO method uses a loss function J (w) ≡ J (N ) to
approximate the solution of the variational problem (43). The
gradient of the loss function with respect to the weight vector
w, ∇J (w), is evaluated by back propagation. The gradient is
then used to update the weight vector w. This process can
be optimized using common optimizers such as Stochastic
Gradient Descent (SGD) or Adam with mini-batch learning.
Due to the use of mini-batch learning, we can expect that
the weight parameter w can be optimized on average across
multiple instances, rather than being tailored to a specific
instance of a sparse vector. The entire process is summarized
in Algorithm 1.
Even if the functional to be optimized contains random

variables, the DU-VO method can minimize the expected
functional E[J (w)] by using mini-batch training. This is the
one of major advantages of the DU-VO method.

C. DU-VO METHOD FOR PROPOSED METHOD
In the following, we consider the parametric ODE (39)
and the optimization problem (40) once again. In order to
optimize the convergence behavior with respect to λ(t), we
need a functional of λ to be minimized that is consistent with
the optimization problem (40).We here introduce a functional
J defined by

J [λ(t)] ≡ E

[∫ T ∗

0
δ(t − T ∗)∥x(t) − s∥2dt

]
, (47)

where s represents the original sparse vector and x(t) in the
functional is the solution of the ODE (39). The function
δ represents the Dirac’s delta function. The functional (47)
measures closeness of the solution x(T ∗) to the original
vector. The time T ∗ is the predetermined target time. This
recursive equation becomes the basis of the following DU-
based optimization. The function λ : R → R is replaced
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Algorithm 1 DU-VO Method
Input: x0 (initial state), w0 (initial weight)
Output: w (optimized weight)
1: Set the initial values: x(0) ≡ x0, J (0) ≡ 0, w = w0.
2: for i = 1 to I do
3: for i = 0 to N − 1 do
4: Compute the Euler step:

x(k+1)
≡ x(k) + ηh(x(k), ũ(t (k)), t (k)).

5: Compute the numerical integration step:

J (k+1)
≡ J (k) + ηF(x(k), ũ(t (k)), t (k)).

6: end for
7: Compute the gradient of the loss function by using

back propagation:

g ≡ ∇J (w).

8: Theweight parameterw is updated by using g (an SGD
optimizer is used).

9: end for
10: Output the weight vector w.

with a trainable Gaussian RBF approximation [49] defined
by

λ(t) ≡

S∑
i=1

wi exp(−β(t − 1i+ θ )2), (48)

where {wi}Si=1 are the trainable weight parameters. The
parameters β, 1, and θ are treated as hyperparameters given
before an optimization process.

In an optimization process, we randomly generate multiple
mini-batches. Amini-batch is composed ofK pairs of vectors,
namely D ≡ {(s1, y1), . . . , (sK , yK )} where si(i ∈ [K ])
is a sparse random vector following the Bernoulli-Gaussian
distribution, and yi(i ∈ [K ]) follows our system model
yi = Asi + ni. The noise vector ni follows N (0, σ 2I).
The functional J can be approximated as

J [λ(t)] = E

[∫ T ∗

0
δ(t − T ∗)∥x(t) − x∗

∥
2dt

]

≃
1
K

K∑
i=1

∥x(N )
i − si∥2, (49)

where the vector x(N )
i is the state vector corresponding to the

data (si, yi). The state vector x
(k)
i is evolved according to the

Euler recursive equation with the initial condition xi(0) = 0.
From this approximation above, it is reasonable to define

the loss function:

Loss(D) ≡
1
K

K∑
i=1

∥x(N )
i − si∥2, (50)

which gives an approximation of MSE as Loss(D) ≃

E[MSE(T ∗)]. For each given mini-batch, the trainable
parameters {wi}Si=1 are updated based on the gradient of
Loss(D). The optimization process is illustrated in Fig. 12

D. NUMERICAL EXPERIMENTS
In the previous sections, we introduced the DU-based
optimization method for solving variational optimization
problems. This section presents the results of numerical
experiments conducted to evaluate the performance of
the proposed method. These experiments were performed
using the automatic differentiation mechanism provided
by the Flux.jl library [46] in the Julia programming
language [47].
The problem setup for the first experiment is similar

to the previous ones, with n = 128,m = 64, p =

0.1, σ = 0.1. The Euler method with N = 5000 was used
for the optimization process and for estimating the MSE.
The following parameters were used for the optimization
process. The mini-batch size was set to K = 10.
The Adam optimizer with a learning rate of 10−2 was
used. The number of mini-batches, or iterations, used for
training was 100. The parameter settings for the RBF
approximation of λ(t) were 1 = 0.25, β = 20, S = 20,
θ = 0.5.

The left panel of Fig. 13 shows the MSE curve of the
parametric ODE (39) with the optimized λ(t). The MSE
curves corresponding to constant regularization parameters
λ = 0.5, 1.5, 3.0 are also shown. As can be seen here,
the optimized λ(t) attains the smallest MSE value among
the four curves at T ∗

= 3. Additionally, the convergence
rate, i.e., the slope of the optimized MSE curve, is nearly
identical to that of the MSE curve with λ = 0.5 over the
range 2 ≤ t ≤ 3. The right panel of Fig. 13 shows the
shape of the curve for the optimized λ(t). The curve starts
at a value of approximately 2.2 and rapidly decreases over
the range of 1 ≤ t ≤ 2. This result supports the argument in
Subsection V-A and suggests that the curve of the optimized
λ(t) provides an appropriate schedule for decreasing the value
of the regularization parameter.

To confirm that the optimized λ(t) provides the best
MSE among the ODE systems with constant λ, the MSE
at T ∗

= 3 was evaluated numerically for several values
of λ. The results are plotted in Fig. 14. As shown, the
MSE values for the constant λ are above 10−1, while
the optimized λ(t) achieves an MSE below 10−1. This
result thus demonstrates the effectiveness of the proposed
method in finding an optimal λ(t) that improves the
MSE.

We now examine another problem setup that assumes a
sparser original signal. Here, the probability is set to p =

0.05. The parameters and hyperparameters remain unchanged
from the previous experiments, i.e., n = 128,m = 64, σ =

0.1. The target time is set to T ∗
= 2. The numerical results of

this case are shown in Fig. 15. It is clear that the ODE system
with the optimized λ(t) consistently gives the lowest MSE.
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FIGURE 12. Block diagram of Deep Unfolded-Variational Optimization (DU-VO) method for optimizing the parametric ODE (39).

FIGURE 13. Left: MSE as a function of t . Right: optimized λ(t). Target time
is T ∗ = 3. (n = 128, m = 64, p = 0.1, σ = 0.1, α = 50).

FIGURE 14. MSE at T ∗ = 3 as a function of λ
(n = 128, m = 64, p = 0.1, σ = 0.1, α = 50).

It is also noteworthy that the optimized system consistently
achieves close to the optimal value in the range of 0 ≤ t ≤ 2.
Both the convergence rate and the quality of the solution are
improved by the optimization.

In summary, for both cases, the proposed DU-VO method
successfully finds an optimized schedule for λ(t) that

improves the convergence speed and the quality of the
solution.

FIGURE 15. Left: MSE as a function of t , Right: Optimized λ(t). Target
time is T ∗ = 2. (n = 128, m = 64, p = 0.05, σ = 0.1, α = 50).

VI. CONCLUSION
In this study, we presented a novel approach for solving sparse
signal recovery problems using continuous-time method
suitable for analog circuits. The method is based on a simple
continuous-time gradient flow dynamics of the Lasso objec-
tive function. We presented the local convergence analysis
of the proposed method using a linear approximation around
the equilibrium point. In addition, we introduced a variational
optimization problem to optimize the regularization schedule
and applied deep unfolding techniques [26], [29] to solve
this problem. To the best of our knowledge, this is the first
work to propose the use of deep unfolding techniques to solve
variational optimization problems.

It should be noted that the methodology proposed in this
paper can be applied to various forms of regularized LS
problems such as binary quadratic minimization problems.

In this paper, we focused on optical computing paradigms
but other analog computing paradigms, such as electronic
analog computing based on RRAM [16], [17], might be also
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promising for implementing the method presented in the
paper. A sequence of research efforts focusing onODE-based
signal processing, including studies by [18], [19], and the
contributions of this paper, signify a new direction in the field
of signal processing.

It should be remarked that the proposed method is
evaluated under the ideal condition in this paper, i.e., all the
devices are correctly aligned and no noises are involved in
the circuit. However, in general, analog computation may be
suffered from fabrication errors and system noises. An analog
device included in the circuit tends to have parameter errors
when it is fabricated. System noises in the circuit may cause
non-trivial effect to the system dynamics. Sensitivity analysis
and development of mitigation methods for these errors are
important issues to be addressed in the future.

APPENDIX
NUMERICAL SOLUTION VIA EULER METHOD
The Euler method is the simplest numerical method for
solving simultaneous nonlinear differential equations [20].
Although the convergence order of the Euler method is
inferior to that of higher-order methods such as the Runge-
Kutta methods [20], the Euler method is simple to use
and can provide sufficiently precise solutions if sufficient
discretization of the time interval is used. Thus, in this work,
we use the Euler method to solve (10).
Consider the ODE in (10). Assume that we need an

approximation of the numerical solution of the above ODE
in the time interval 0 ≤ t ≤ T . This interval is first divided
intoN bins. The discrete-time ticks tk = kη(k = 0, 1, . . . ,N )
define the boundaries of the bins, where the width of a bin,
η, is given by η ≡ T/N . It should be noted that the choice
of the bin width η is crucial in order to ensure the stability
and the accuracy of the Euler method. A small width leads
to a more accurate solution, but requires more computational
time. A large width may be computationally efficient but may
lead to instability in the solution. Let us define a discretized
sample x(k) as x(k) ≡ x(tk ).

By using the Euler method, the solution of (10) can be
approximated by the following recursive formula:

x(k+1)
= x(k) − η∇g(x(k))

= x(k) − η
(
AT (Ax(k) − y) + λ tanh(αx(k))

)
(51)

for k = 0, 1, 2, . . . ,N−1. The initial value is set to x(0) = x0.
To confirm the accuracy of the Eulermethod, we conducted

an experiment in which we examined the relationship
between the MSE and the number of bins N . We first
generated a set of sparse signals s1, s2, . . . , sM according
to the Bernoulli-Gaussian distribution with p = 0.1 and
non-zero elements followingN (0, 1). The parameter settings
are nearly the same as the settings in the previous experiment;
that is, n = 128,m = 64, σ = 0.1, λ = 5, α = 50.

Table 1 shows the estimates of MSE for several different
discretizations. Parameter T for the discretizations was set
to 4. From Table 1, we can see that the values of the

MSE estimates converge as N increases. This result provides
evidence that the Euler method works adequately for this
ODE. In the following experiments, we use N = 5000 to
ensure good accuracy and a reasonable computational time.

TABLE 1. Number of bins N and estimated MSE (T = 4).
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