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ABSTRACT Missing data is a critical challenge in industrial data analysis, particularly during anomaly
incidents caused by system equipment malfunctions or, more critically, by cyberattacks in industrial systems.
It impedes effective imputation and compromises data integrity. Existing statistical and machine learning
techniques struggle with heavily missing data, often failing to restore original data characteristics. To address
this, we propose Anomaly Signal Imputation Using Latent Coordination Relations, a framework employing
a variational autoencoder (VAE) to learn from complete data and establish a robust imputation model based
on latent space coordination points. Experimental results from a water treatment testbed show significant
improvements in output signal fidelity despite substantial data loss, outperforming conventional techniques.

INDEX TERMS Data imputation, time series analysis, anomaly detection, neural networks, variational
autoencoder, latent coordination relations.

I. INTRODUCTION
Anomaly detection and classification in industry present sig-
nificant challenges in machine learning, requiring advanced
methodologies. Accurately identifying and categorizing
anomalous events is crucial for preventing malicious
cyberattacks that aim to disrupt machinery, mitigating
potential catastrophic incidents, and safeguarding human
lives.

The implementation of machine learning systems for
anomaly detection and prediction in industrial scenarios
presents significant complexities in real-world applications
[1], [2]. These challenges arise from various obstacles,
including the scarcity of data due to the rarity of events and
privacy concerns regarding sensitive information. This paper
primarily focuses on addressing data loss during anomaly
incidents [3], which may be caused by system equipment
malfunctions or, more critically, by cyberattacks in industrial
systems.

One efficient technique to restore signal loss is data impu-
tation. Traditional data imputation methods predominantly
rely on statistical techniques, including: (i) Data deletion,
which removes records with missing values, resulting in
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substantial information loss [4], [5], [6]; (ii) Imputingmissing
values with fixed numbers or the mean/median, potentially
oversimplifying dataset variability [7], [8], [9]; and (iii)
Hot-deck and cold-deck imputation, utilizing attributes from
other datasets to fill missing data, thereby introducing
inconsistencies and bias, especially in datasets with extensive
missing data [10], [11], [12]. Despite their occasional
effectiveness, these methods face challenges when applied
to continuous data, particularly signal information, where
maintaining temporal coherence is critical. Moreover, they
can introduce significant bias by overly relying on a limited
subset of records, such as anomalous datasets, thereby
compromising the overall accuracy and reliability of the
imputation process.

To address the limitations inherent in traditional imputation
methods, researchers have introduced the K-nearest neigh-
bors (KNN) approach for handling missing data [13], [14],
[15]. This method involves identifying the nearest data points
based on learned samples and utilizing their values to impute
the missing data. The methodology leverages the similarity
between data points to provide more accurate imputations.
However, despite its potential, the KNN method has several
drawbacks. It can exhibit poor performance, especially when
dealing with large volumes of missing data. Additionally,
there is a significant risk of introducing bias during the
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imputation process, which can affect the overall accuracy and
reliability of the results.

Another attempt [16] proposed using machine learning for
data imputation by implementing a variational autoencoder
(VAE) [17]. This approach involves learning the complete
data distribution through a VAE, encoding the data with miss-
ing values, reconstructing it via the decoder, and replacing
the missing values with the reconstructed data. The authors
demonstrated that this technique could successfully impute
simulated missing windmill sensor data at various speeds.
However, themethod has notable drawbacks. It struggles with
heavily missing data, leading to suboptimal performance,
and does not fully address potential issues when applied to
datasets containing anomalous samples.

Therefore, this paper proposes Latent Coordination Rela-
tions that aim to improve upon the previous VAE attempt [16]
for imputing data and pushing the boundaries of performance.
As for the procedures, visualized in detail in Fig. 1, this
framework first learns complete data through a variational
autoencoder to obtain the latent space. It then learns the
coordination points of samples in the latent space via a
feed-forward neural network. To impute missing data with
this approach, the framework inserts partially lost signals
into the trained encoder from an already-learned variational
autoencoder to obtain the coordination position in the latent
space. After that, it sets that coordination as an input in the
learned feed-forward neural network to predict the output
coordination. Then, it feeds that output into the learned
decoder to reconstruct the signal. Lastly, it replaces only
missing values with the data gained from this technique. With
this approach, one can gain a significant advantage in both
data imputation and anomaly detection tasks.

To validate our method, comprehensive experiments were
conducted using the proposed framework on datasets from
iTrust, a prominent cybersecurity organization. Specifi-
cally, the Water Treatment (SWaT) and Water Distribution
(WADI) datasets [18], [19] were employed, as elaborated
in Section IV-B. These datasets are derived from water
treatment testbeds where researchers engineered cyberattacks
to disrupt workflow or induce machinery breakdowns. Each
dataset comprises distinct cyberattacks, exerting varying
effects on sensor signals, thereby yielding both complex
and simple anomaly patterns. Our investigation replicated
heavy data missing scenarios with up to 90% of the total
signal lost in both contexts. The findings underscore the
superior performance of the proposed methods compared to
baseline approaches in terms of data restoration fidelity and
enhancements in machine learning performance, even when
confronted with complex anomaly signals. This achievement
can be attributed to the efficacy of enhanced data imputation
methods that facilitate neural networks in accurately discern-
ing anomalous events.

To summarize, the main contributions of this paper are
listed as follows:

1) The use of latent space coordination relations can
substantially assist in restoring and imputing heavily

lost complex anomaly data to be like original
signals.

2) Restoredmissing data using the proposedmethod helps
improve the performance of anomaly detection since
the signals have been restored back to almost original-
like

3) The experiments can proves the above 1) and 2)
contributions.

II. PROBLEM STATEMENT
In real-world datasets, missing data is a common issue caused
by technical malfunctions during data capture or transfer,
as well as unintentional errors during data management.
These missing values can have significant consequences,
leading to biased reports and impacting the performance of
machine learning models designed for specific tasks. Ignor-
ing missing data can distort analysis results, making findings
less accurate and unreliable. It can also hinder machine
learning models from learning effectively and performing
well for their intended purpose. Therefore, it is crucial to
develop effective strategies for handling missing data to
ensure trustworthy data analysis and enable the creation of
efficient and accurate machine learning algorithms.

To mitigate the issue of missing data, researchers have
proposed and implemented various solutions, which are
outlined as follows:

A. DATA ELIMINATION
Data elimination is one of the simplest methods used to
address missing data. This approach involves removing
attributes or rows of samples that contain missing values [4],
[5], [6] to eliminate void attributes from the analysis, thus
preventing miscalculations or misunderstandings in further
statistical analyses.

While data elimination is straightforward to implement,
it may not be suitable for datasets with continuous data,
such as time series signals. The primary concern is that
removing incomplete data can lead to datasets of unequal
length, impacting subsequent analyses and modeling tasks
[20], [21]. Therefore, alternative approaches are necessary
to effectively handle missing values in continuous data,
ensuring the dataset’s integrity and usability.

B. STATISTIC IMPUTATION
Another traditional approach to handle missing data involves
utilizing simple mathematical and statistical methods, such
as computing the mean or median of samples [22], [23], [24].
This method offers advantages over complete data removal as
it preserves the data length by replacing missing values with
the global or local mean or median [7], [8], [9]. However, this
approach may yield unreliable results when applied to data
with high variability. Additionally, when a dataset contains
a significant number of missing values, relying solely on
the mean or median as replacements can be inappropriate.
These summary statistics may not accurately represent the
missing data, leading to considerable bias during the data
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analysis process. As a result, such alternative techniques are
necessary to effectively address missing values, particularly
in cases where data exhibits high variance or when there is a
substantial amount of missingness in the dataset.

C. HOT DECK AND COLD DECK IMPUTATION
Alternative approaches commonly utilized for completing
missing data include Hot Deck and Cold Deck imputations
[10], [11], [12]. In the Hot Deck method, missing values
are imputed by randomly selecting a value from a similar
attribute within the same record. Conversely, the Cold Deck
approach involves selecting data from another dataset or a
previously available record as a reference to fill in the missing
values. However, it is important to note that these techniques
can introduce bias into the data, potentially leading to
incorrect analysis, particularly in cases where the data has a
high degree of missingness. In such scenarios, the availability
of suitable donors becomes limited, resulting in a lack of
diversity in the imputed values. Consequently, the imputation
process may yield the same or similar value for all missing
values, further aggravating the potential for biased results.

D. K-NEAREST NEIGHBOR IMPUTATION
An advanced and increasingly popular approach to tackle the
missing data problem is through the application of machine
learning mechanisms, particularly the K-Nearest Neighbor
(KNN) imputation technique. KNN imputation harnesses the
power of machine learning algorithms to address missing
values by learning from existing data points that remain
unaffected by the missing data issue. The algorithm learns
the attributes and characteristics of complete instances and
utilizes this knowledge to identify the nearest neighbors based
on a user-defined K-value [13], [14], [25]. Subsequently,
the missing values are replaced with numbers obtained from
these nearest neighbors. The KNN imputation method has
gained attention as an effective approach for data imputation
due to its capability to capture underlying patterns and
relationships in the dataset [26], [15], [27]. However, like
any technique, it has certain limitations. One limitation is
that KNN imputation heavily relies on the available learned
data and may encounter challenges when dealing with a
limited amount of samples, such as anomalous incident data
that rarely happens in real-world scenarios. Furthermore,
the technique’s weakest point lies in its performance with
noisy data, such as anomalous signals, as the presence of
noise can affect the accuracy of the imputed values. Despite
these limitations, KNN imputation represents a valuable and
promising approach in the field of missing data imputation,
warranting further research and refinement.

E. DEEP LEARNING TECHNIQUES FOR DATA IMPUTATION
To address complexities within high-dimensional data,
numerous researchers have introduced frameworks and
methodologies rooted in deep learning paradigms. Notably,
Recurrent Neural Networks (RNNs) and transfer learning

techniques have been employed to impute scientific data,
such as the monthly frequency of sunspots [28]. Similarly,
Long Short-Term Memory Neural Networks (LSTMs) have
shown promise in restoring vehicle speed data [29]. Another
significant approach involves the Denoising Deep Belief
Network architecture, which excels in denoising, imputa-
tion, and dimensionality reduction for industrial data [30].
Furthermore, various deep learning techniques have been
adapted and modified for data imputation across different
applications, demonstrating their versatility and effectiveness
[31], [32], [33]. Despite the advances, these methodologies
require continuous refinement to enhance their robustness
and applicability in handling diverse datasets.

While these state-of-the-art techniques hold promise,
their effectiveness is notably impacted by the scarcity
of anomalous data. Deep learning inherently demands a
substantial volume of data to achieve optimal performance.
Insufficient samples during the training phase often lead to an
overfitted model, resulting in imprecise imputation outputs.
Consequently, the applicability of this approach to address
anomaly data imputation tasks, as discussed in this paper,
is notably unsuitable for handling such challenges.

F. VARIATIONAL AUTOENCODER FOR DATA IMPUTATION
The Variational Autoencoder (VAE) is a neural network
architecture introduced in [17]. In essence, the fundamental
concept of this approach revolves around implementing
the VAE model, which comprises an encoder and decoder
within the neural network. By utilizing the mean and
standard deviation vectors, the VAE generates a probability
distribution in the latent space. Mathematically, the VAE is
defined by (1).

log P(X ) − DKL[Q(Z |X )||P(Z |X )]

= E[log P(X |Z )] − DKL[Q(Z |X )||P(Z )] (1)

where the training data are denoted by X and the latent
variable is represented by Z . The conditional probability of
the encoder is denoted as P, while the conditional probability
of the decoder is denoted as Q. The Kullback-Leibler
divergence is symbolized as DKL .
VAE has demonstrated its versatility across various

applications, with a particular focus on generative tasks
like image generation [34], [35], [36] and image super-
resolution [37], [38], [39]. However, its utility extends beyond
data generation, as it excels as a reliable tool for data
reconstruction. This characteristic makes it highly valuable in
signal restoration applications, where it plays a crucial role in
filling the missing values with reconstructed data.
In 2018, an exemplary study conducted by John et al.

[16] shed light on the advantageous capabilities of VAE for
data imputation. Specifically, they explored the application
of VAE architecture in reconstructing and imputing missing
data in a simulated milling circuit, as explained in Section III.
While our study shows advantages over traditional meth-

ods, it is important to acknowledge its limitations, especially
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when dealing with heavily missing data. Because there is
not enough reference data during the encoding process, the
VAE’s performance suffers, leading to suboptimal results
during the decoder process. Additionally, the full potential
of the learned latent space remains untapped. This latent
space has the potential to represent data in a way that could
improve data restoration. Therefore, developing a model that
effectively uses the latent space could greatly enhance the
process of data reconstruction and imputation. Leveraging the
latent space would lead to improvements in data imputation

III. PROPOSED METHOD
To address the aforementioned challenges and fully exploit
the potential of the latent space, this section introduces a
novel framework called Anomaly Signal Imputation Using
Latent Coordination Relations. The framework adopted the
core idea from the mentioned approach in Section II.

The methodology devised by John et al [16] involved a
step-by-step procedure, beginning with the training of the
VAE model on clean data that contain no missing values.
Subsequently, as a pre-processing step, the missing values
were imputed using either a constant number or random
values. The encoded representation of the data was then
obtained using an encoder, which transformed the input data
into latent variables. The decoder component of the VAE
model played a crucial role in the reconstruction process by
transforming the latent variables back into the original data.
Importantly, this method replaced the missing values with
the reconstructed data while preserving the integrity of the
original data.

To simplify the data restoration procedures, the following
steps can be summarized:

1) Replace every missing data and Not a Number (NaN)
value with 0 or a random number;

2) Feed the pre-processing data into a trained encoder.
At this step, it will yield latent variables;

3) Feed the latent variables into the trained decoder. In this
process, it will yield the reconstructed data; and

4) Substitute every reconstructed sample at the same
position as the original input that contains missing data
or a NaN value, while the initial data remains stable.

While this method may seem prominent for the data
imputation task, it still faces challenges in scenarios involving
heavily lost data. Moreover, there is room for improvement to
leverage the latent space for further advantages.

Therefore, to overcome the limitations of existing
approaches and fully utilize the latent space, this paper
proposes a framework that uses latent coordinates obtained
from the VAE model and applies neural networks to learn
and predict these coordinates as closely as possible to the
original ones in the latent space. This enables the decoder to
accurately reconstruct the signal.

The overall concept of the framework is depicted in
Fig. 1. Below, we outline the step-by-step description of the
framework.

A. TRAINING PHASE
The training phase aims to achieve several key objectives,
including acquiring the encoder and decoder models from the
VAE latent space and training a prediction model for latent
coordinate points using a feed-forward neural network. The
procedures involved in this phase are outlined below:

1) DATA PREPROCESSING
Prior to training, it is important to note that the data used in
this phase is complete data. The input data undergoes prepro-
cessing steps such as normalization and data augmentation to
ensure compatibility with the subsequent models.

2) VAE TRAINING
The VAE model is trained using the entire dataset, as illus-
trated in the VAE Training module in Fig. 1(a). Each sensor
signal is independently trained with its corresponding VAE,
rather than employing a single VAE to collectively process
all sensor signals. The encoder component of the VAE
maps the input data to a lower-dimensional latent space,
while the decoder reconstructs the input data from the
latent space. During this step, the focus lies on obtaining
the latent space and coordination points that accurately
represent the complete samples learned through the VAE.
Comprehensively, latent space can be defined as stated in
Definition 1:
Definition 1 (Latent Space): The Latent Space Z is a set

of real numbers that consist of coordination point z, where
z ∈ Z ; Z ∈ R.

Note that Z from Eq. (1) andDefinition 1 refers to the same
entity: the set of latent variables obtained after training the
VAE model.

3) LATENT COORDINATION RELATION TRAINING
This stage forms the main concept of this paper, as depicted
in the Latent Coordination Relation Training procedure in
Fig. 1(a). A feed-forward neural network is constructed
to predict latent coordinate points obtained from the VAE
encoder, which serve as inputs, while the corresponding target
coordinate points act as ground truth labels. The objective
of this prediction model is to establish correlations between
the latent coordinates of the sensor data, enabling latent
coordination of the sensors to aid in predicting and restoring
signal data in subsequent steps.

4) MODEL EXTRACTION
Once the VAE and latent relation prediction models are
trained, the encoder and decoder models are extracted from
the VAE architecture, along with the latent relation prediction
model. The encoder model facilitates the transformation of
input data into the latent space, while the decoder model
reconstructs data from the latent space back to the original
input space. The latent coordinationmodel, on the other hand,
enables the discovery of relationships between each sensor’s
data, aiding in the restoration of missing or incomplete data.
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FIGURE 1. The overall framework of the Anomaly Signal Imputation Using Latent Coordination Relations: (a) is training phase and (b) is predicting
phase.

By following these outlined procedures, the ultimate goal
of obtaining the encoder and decoder models from the VAE
latent space, as well as the prediction model for latent
coordinate points, can be accomplished.

B. IMPUTATION PHASE
The imputation phase utilizes the encoder, decoder, and latent
relation prediction models obtained from the training phase
for data imputation. The steps involved in this phase are as
follows:

1) DATA PREPROCESSING
Similar to the training phase, the data undergoes preprocess-
ing steps to handle missing values. In this case, the data

includes both the samples with missing values and those
with complete values. Additionally, the missing values (NaN
values) within the dataset are addressed by using two distinct
approaches: filling with zeroes and imputing with randomly
generated numbers. These methods are applied separately
for each imputation case, ensuring that missing values are
appropriately handled before inputting the data into the VAE
model. This ensures that the dataset is complete and ready for
further processing and analysis within the VAE framework.

2) ENCODING THE MISSING DATA
During this stage, the framework processes the input signal
with missing values by feeding it into the encoder component
of the VAE, as established in the previous phase. This
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procedure is illustrated in Fig. 1(b), where the trained encoder
component is depicted. By mapping the input signal with
missing values to the latent space, the framework generates
the latent coordinates based on the learned data from the
training phase. This step helps identify the closest data points
in the latent space that are similar to the missing data point,
allowing for efficient imputation. The encoder in this stage
can be defined as Definition 2.
Definition 2 (Encoder): Encoder E is a function that

encodes a sample d to a coordination point z on latent space
Z , such that E : d → z; z ∈ R and z ∈ Z .

3) LATENT PREDICTION
In this step, a neural network is utilized to predict the
relationships between the latent coordinates projected onto
the latent space, as illustrated in Fig. 1(b). This model is
derived from the training phase, where it learned the latent
coordination from the training samples. The concept of the
latent prediction function can be expressed in theDefinition 3.
Definition 3 (Latent Coordination Relation): The Latent

Coordination Relation is the function f that maps the
coordination point of Latent Space Za with another latent
space Zn, f : Za → Zn. Therefore, coordination point in
Za and Zn are also mapped through f : za → zn, where za,
zn ∈ R, za ∈ Za, and zn ∈ Zn.

It is important to note that Za and Zn are latent spaces
derived from different VAE trainings and models. Therefore,
these variables are distinct, and the latent coordinate relation
function (f ) serves as a tool to establish connections between
these latent spaces.

This prediction model is to identify and capture the
underlying relationships of its own sensor signal. By seeking
these relationships through this function (Definition 3), the
model assists in predicting and restoring the missing data in
the subsequent steps of the imputation process.

4) DATA RECONSTRUCTION WITH THE DECODER
Once the latent coordinates from the model are obtained,
they are used as input for the decoder. The decoder acts as a
reconstruction tool within the VAE framework, restoring the
shape of the signal based on the latent coordinates projected
by the encoder. This step involves reconstructing the missing
data and results in a signal that restores most of the lost data,
improving the completeness of the dataset. Mathematically,
the idea of the decoder is stated below:
Definition 4 (Decoder): Decoder D is a function that

reconstructs a coordination point z as close to the original data
d̂ as possible, hence, D: x → d̂ ; x ∈ R and z ∈ Z .
To clarify, d from Definition 3 represents the original

sample, while d̂ denotes the reconstructed sample aimed to
closely resemble d .

5) DATA IMPUTATION
This imputation step effectively fills in the missing values,
ensuring a more complete dataset for further analysis,
training, or implementation in reliable machine learning

models. This process is equivalent to the replace missing
values with the reconstructed signal procedure as depicted in
Fig. 1(b). Once these steps are completed, the data imputation
process is finalized and the imputed dataset is ready for
training, analysis, or implementation within a robust machine
learning framework.

IV. EXPERIMENTAL DESIGN
This section of the paper serves the purpose of presenting
a thorough performance comparison of various methods,
providing a description of the dataset, explaining the process
of simulating missing values, and outlining the experimental
setup. The specific details are as follows:

A. PERFORMANCE COMPARISON METHODS
To conduct an experimental comparison in data imputation,
two key factors must be considered: the baseline methods to
be compared with the proposed method and the evaluation
metrics used to assess the performance of the imputed signal,
as explained below.

1) BASELINE METHODS
For performance comparison, four different baseline methods
were employed: (i) Mean imputation, which involves calcu-
lating the mean based on available values [7], [8], [9]; (ii) Hot
Deck imputation, wherein values from the most recent record
remaining in the dataset are used to impute missing values
[11], [12], [40]; (iii) KNN imputation, where the completed
data is trained beforehand to identify the nearest data points
for imputing missing values [13], [14]; and (iv) Variational
Autoencoder for Imputation (VAE), utilizing sensor signal
as inputs for a VAE model. This VAE model was trained
using data from sensors within the system where anomalies
occurred [16].

2) EVALUATION METRICS
The effectiveness of the proposed imputation methods was
assessed using two key groups of metrics: (i) Root Mean
Squared Error (RMSE) [41], [42] and Normalized Dynamic
Time Warping (N-DTW) [43], [44] to evaluate signal fidelity
and shape similarity, ensuring that the imputed signals
retain the characteristics of the originals; and (ii) Accuracy,
Precision, Recall, and F1-Score for anomaly classification,
confirming the practical viability of the imputed data for real-
world applications [45], [46].

The first metric employed was Root Mean Square Error
(RMSE), which measures the dissimilarity between the
ground truth signals and the imputed results [41]. Lower
RMSE scores indicate higher similarity and superior impu-
tation performance. The RMSE is calculated using Eq. (2):

r(y, ŷ) =

√∑n−1
i=0 (yi − ŷi)2

n
(2)

where r is the RMSE score, y is original time series, ŷ is the
imputed time series, and n is the quantity of samples.
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In summary, the primary purpose of RMSE is to compare
the original and imputed signals point by point.

Additionally, Normalized Dynamic Time Warping
(N-DTW) serves as an additional metric, alongside RMSE,
to ensure the quality of imputed signal characteristics.
N-DTW normalizes the dynamic time warping value for
comparison purposes, providing a comprehensive assessment
of signal similarity. It is calculated by applying min-max
normalization to the range between 0 and 1 and using
fast dynamic time warping [43]. The N-DTW equation is
expressed in Eq. (3):

Nd (y, ŷ) =
D(y, ŷ) − σmin

σmax − σmin
(3)

where Nd (y, ŷ) is the normalized dynamic time warping,
σmax is the maximum value of the dynamic time warping
algorithm, σmin is the minimum value of the dynamic
time warping algorithm, and D(y, ŷ) dynamic time warping
function that calculates the distance between the actual
observation time series y and the comparison time series ŷ.
The main property of N-DTW is its ability to evaluate the

similarity of signal characteristics even if the imputed signal
is slightly shifted. This feature is crucial in classification, as in
real-world applications, the shape and characteristics of an
anomaly are more important for accurate anomaly prediction
than its exact position.

The last metric employed in this experiment is the standard
confusion metric, consisting of: Accuracy, Precision, Recall,
and F1-Score [45], which assesses the imputation models.
A neural network was trained using the imputed data from
each model for the task of anomalous signal classification.
The accuracy score was then computed to evaluate the
performance of the classification model. Higher accuracy
scores indicate that the restoration method successfully
restores data that closely resembles the original time series,
without adversely affecting the classification model’s perfor-
mance. The equations of the Accuracy (Sa), Precision (Sp),
Recall (Sr ), and F1-Score (Sf ) are denoted in Eqs. (4)-(7),
respectively:

Sa =
CTP + CTN

CTP + CTN + CFP + CFN
(4)

where CTP is the true positive value, CTN is the true negative
value, CFP is the false positive value, and CFN is the false
negative value.

Sp =
CTP

CTP + CFP
(5)

Sr =
CTP

CTP + CFN
(6)

Sf =
2 × Sp × Sr
Sp + Sr

(7)

To ensure the reliability of the experimental results, a 10-
fold cross-validation method was employed. This approach
mitigates potential biases and variability by dividing the
data into ten subsets or folds. The models were trained and

evaluated on different combinations of training and testing
folds, enhancing the robustness and generalizability of the
conclusions drawn from the experiments.

In summary, RMSE and N-DTW serve as statistical
metrics for assessing signal similarity to the original,
while Accuracy, Precision, Recall, and F1-Score gauge its
suitability for real-world applications.

B. DATASET EXPLANATION
To evaluate the effectiveness of the VAE model in imputing
lost values, we utilized the Secure Water Treatment (SWaT)
and Water Distribution (WADI) datasets from iTrust, Centre
for Research in Cyber Security [18], [19]. iTrust is a cyberse-
curity organization established by the Singapore University
of Technology and Design and the Singapore Ministry of
Defence. These datasets consist of signals collected from
sensors installed on electronic components within a water
treatment testbed. The data captures both normal operating
conditions and anomalous events, which were simulated by
researchers to mimic cyberattacks. These cyberattacks aim
to disrupt the system, partially damage machinery, or, in the
worst case, compromise the entire testbed. The goal of this
testbed is to create a dataset that closely approximates real-
world scenarios, enabling researchers to study and develop
preventative measures against cyberattacks.

The selection of these datasets for the experimental inves-
tigation in this study is motivated by two key factors. Firstly,
they are derived from real-world systems, demonstrating
their practical applicability in real-world scenarios. Secondly,
these datasets are well-suited for assessing their effectiveness
in data imputation, particularly when dealing with various
patterns of anomalous signals.

As for the type of anomaly signals, in the testing phase,
two sensor signals were specifically chosen to evaluate the
performance of the VAEmodel in imputing lost values caused
by cyber attacks: (i) The water reservoir sensor (LIT002) was
targeted with a cyber attack that involved turning off valves
related to the reservoir, resulting in its drainage; and (ii) The
reverse osmosis water tank sensor (LIT401) experienced a
cyber attack that manipulated the water level, setting it at a
constant value of 1,000 mm.

These two sensors not only exhibit distinct characteristics
but also display different variances in the signal, influenced
by anomalies. Specifically, the LIT002 sensor tends to
demonstrate higher variance compared to the LIT401 signal.
This variance difference is attributed to the anomaly events
causing significant fluctuations in sample values and a
dramatic change in signal characteristics throughout the
anomaly incident, as depicted in Fig. 2. Consequently, it is
evident that LIT002 represents complex anomaly samples,
while LIT401 represents simple anomalies.

These selected sensor signals with anomalous events serve
as test cases to evaluate the VAE model’s ability to impute
missing values and restore the signals to their original
patterns.
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FIGURE 2. Examples from the SWaT and WADI datasets illustrating distinct anomaly scenarios. (a) depicts the behavior of the LIT401 signal under the
influence of a simple attack, while (b) showcases the response of the LIT002 signal to a more complex anomalous incident.

C. MISSING DATA TYPES AND SIMULATION
Various types of missing data can occur in time series
signals, particularly in electronic components such as IoT
devices or machinery sensors. The literatures [16], [47], [48],
[49] highlight two common types: point missing and range
missing. Point missing refers to sporadic occurrences of
empty values in a dataset, without any discernible pattern.
These missing values are randomly scattered throughout
the dataset, resulting in irregular gaps in the time series.
On the other hand, range missing exhibits a specific pattern
where a contiguous segment of data is missing for a
certain length. This type of missing data often occurs
in a structured manner, attributed to specific events or
conditions.

To address these different types of missing data and
provide a comprehensive evaluation, the experiment phase
incorporates simulated missing data based on the mentioned
patterns. The NaN values are randomly inserted into the
selected sensors’ signals using the following two main types:
(i) Similar to the approach described in [16] and [47], two
missing data scenarios are simulated: 20% of missing values
(1,440 seconds in total) and 90% of missing values (6,480
seconds in total). Additionally, this experiment also include
50% of missing values cases to observe the affect of missing
between minimum and maximum losses. These missing
values are distributed randomly across the signals by applying
Gaussian Noise; (ii) The range missing scenario from [48]
is also considered. Five missing ranges are implemented
per signal sample, where each missing range spans 288,
720, and 1,296 seconds, resulting in a total of 1,440, 3,600,
and 6,480 seconds of missing data, respectively. The reason
behind these numbers is to mimic the percentage setting from
Gaussian cases.

In this paper, heavy loss cases are defined as instances
where data loss amounts to 90% of the total signal, while
medium loss refers to 50% loss, and low loss corresponds to
20% data loss.

D. EXPERIMENTAL SETUP
To ensure an unbiased evaluation of the VAE performance for
data imputation, the experiment settings for both VAEmodels
were standardized as follows:

• BothVAEmodels were configuredwith an input layer of
72 nodes and a second layer of 36 nodes for the encoder.
The decoder architecture was set differently. The VAE
models were trained using two-dimensional samples and
underwent 100 epochs.

• The dataset consisted of 2,000 samples per sensor.
Of these, 50% of the samples were allocated for training,
while the remaining 50% were reserved for testing
purposes.

• Each sample in the dataset contained 7,200 seconds
of records for an anomalous signal, as described in
Section IV-B.

• All data underwent normalization using the Min-Max
Scaling method, which ensured that the normalized data
values fell within the range of 0 and 1.

• For evaluation purposes, three main types of missing
data were simulated: Gaussian Noise and Range. Within
each type, varying levels of missing data were consid-
ered: 20%, 50%, and 90% to simulate low, medium, and
heavy loss of signals.

Furthermore, to demonstrate the significance of imputed
data in improving classification models for anomalous time
series, experiments were conducted using a neural network.
The experiment settings were configured as follows:

• The experiment utilizes the dataset detailed in
Section IV-B. Two sensors, one demonstrating complex
anomaly and the other simple anomaly characteristic,
are deliberately selected to examine the imputation
method’s capability in managing such scenarios.

• The classification dataset consisted of a total of 2,000
samples, with 1,000 samples representing normal sig-
nals and the other half representing anomalous signals.
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• 50% of the total samples was selected as a training
set, while the remaining samples were allocated to
the testing set for performance evaluation of the
classification models.

• In the training set, the normal data were collected
directly from the original sources, while the abnormal
data were obtained from the imputed data generated by
each imputation method.

• Similar to the VAE model, the data underwent min-max
normalization, scaling the values to the range of 0-1.

• The neural network model for abnormal signal classi-
fication consisted of three layers, each with 72 nodes,
and an output layer with a single node. A dropout rate
of 0.5 was applied between each layer to mitigate the
risk of overfitting. The neural network was trained for
100 epochs.

To gain a better understanding of the experimental
procedures, we summarize them as follows:

1) Preprocess all sensor signals for training.
2) Train the VAE model with complete signals.
3) Train the Neural Network with the latent coordinates

obtained from the VAE. Remarkably, both the input
and output for this neural network are the same latent
coordinates.

4) Preprocess testing signals by cleaning the data and
addressing any missing values, either by filling them
with zeros or random values.

5) Feed the test signal as an input to the trained VAE’s
encoder.

6) Use the previously derived latent coordinates as the
input for a dedicated neural network, which predicts the
expected latent coordinates based on patterns in their
latent coordination relation.

7) Feed the predicted latent coordinates into the decoder
component of the trained VAE to reconstruct the
original signal, ensuring the data remains coherent.

8) Replace missing values with the reconstructed data.
Following the completion of these experiment steps,

a rigorous evaluation is conducted, employing neural network
anomaly classification models to verify the effectiveness
of imputed data in supporting anomaly classification tasks.
Furthermore, we apply Root Mean Square Error (RMSE)
and Normalized Dynamic Time Warping (N-DTW) to assess
the extent to which the reconstructed and imputed signals
retain the essential characteristics of the original data.
This methodology ensures the robustness and reliability of
our approach in handling missing data, providing valuable
insights into anomaly detection and signal integrity.

V. RESULTS AND DISCUSSION
The experimental results of each sensor’s data imputation
are reported in Tables 1-12, and the example of the output
imputed signal is visualized in Fig. 3. Noted that additional
experimental results are shown in Appendix. Additionally,
each table highlights the superior method for imputing each
missing data type and fill strategy.

As anticipated, our proposed methodology excels in han-
dling complex and heavily lossy signal scenarios, particularly
with range missing data around 90%. The fidelity of the
imputed signal surpasses the baselines, as shown in Tables 1,
3, 7, and 8. This is evidenced by superior Root Mean Square
Error (RMSE) scores, achieving 0.0145 ± 0.0040 for the
LIT002 dataset (Table 1) and 0.0128± 0.0015 for the LIT401
dataset (Table 7). Similarly, Normalized Dynamic Time
Warping (N-DTW) scores are impressive, with 8.1688 ±

0.8048 for LIT002 and 10.5954 ± 0.7159 for LIT401. Our
model consistently outperforms baselines, with accuracy,
precision, recall, and F1-scores all achieving 100.0000 ±

0.0000 in the LIT002 and LIT401 scenarios. This superiority
is especially notable in cases with significant data loss.

In scenarios with simple anomalies and low tomedium data
loss, the performance disparity among various imputation
methods is minimal, as most methods handle these cases
effectively. For instance, in the LIT401 experiment refer-
enced in Tables 7 and 8, with 20% Gaussian missing data, the
hot deck method achieved an RMSE of 0.0000 ± 0.0000 and
N-DTW of 0.1946 ± 0.0070, slightly outperforming our
proposed method, which had an RMSE of 0.0003 ±

0.0001 and N-DTW of 0.1537 ± 0.3392 in the best cases.
Therefore, it can be concluded that our proposed method
excels in more challenging scenarios, such as those with high
variance and significant data loss.

In certain scenarios, achieving flawless accuracy, preci-
sion, recall, and F1-score metrics can be attributed to the
binary classification nature of the task. Despite potential
inadequacies in the imputed training data, distinctive anoma-
lies that deviate from the norm are readily recognized and
categorized as abnormal instances, thus facilitating accurate
classification. For instance, as shown in Table 2, the accuracy
scores of our proposed method consistently reach 100.0000.

However, a comparison of results reveals that accuracy
performance may decline in cases of severe signal loss,
such as a 90% missing data range in the LIT002 dataset.
The accuracy of the Mean Method is 50.0050 ± 0.0150,
the Hot Deck Method achieves 93.8600 ± 2.1032, and
K-Means scores 92.7150± 3.3765. The VAEmethod reaches
a perfect score of 100.0 only in the mean fill type case.
In contrast, our method consistently achieves a perfect score
of 100.0 across all fill types. This strongly indicates that our
method is particularly effective in reconstructing heavily lost
signals.

Although the results may not deviate drastically from
perfection, slight differences in accuracy, precision, recall,
and F1-score are observed in certain cases. Considering these
factors alongside RMSE and N-DTW metrics, it becomes
evident that our method performs exceptionally well, partic-
ularly in scenarios with substantial loss of range information.
As shown in Tables 1, 3, 7 and 8, the LIT401 experiment with
90% of rangemissing data demonstrates the following RMSE
scores (Table 7): 0.0250 ± 0.0001 (Mean), 0.0229 ± 0.0009
(Hot Deck), 0.0409 ± 0.0022 (KNN), and 0.0196 ± 0.0015
(VAE). Our proposed method outperforms these with an
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TABLE 1. A comparison of the RMSE results based on the LIT002 dataset.

TABLE 2. A comparison of the ACCURACY results based on the LIT002 dataset.

RMSE of 0.0128 ± 0.0015 (Table 7). Similarly, for N-DTW
scores (Table 8), the results are 15.8007 ± 0.0402 (Mean),
14.5425 ± 0.3347 (Hot Deck), 18.7235 ± 0.7288 (KNN),
and 13.5004 ± 0.4600 (VAE), while our method achieves a
superior score of 10.5954 ± 0.7159.

In most instances involving Gaussian noise, the Hot-Deck
method may outperform the proposed approach. For exam-
ple, in the LIT401 experiment with 50% Gaussian miss-
ing data, the RMSE score for the Hot-Deck method
is 0.0000 ± 0.0001, while the proposed method scores
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FIGURE 3. The presented method’s output is illustrated through a series of visual representations: (a) depicts the original signal,
serving as the expected output; (b) displays the signal with randomly generated range missing values; (c) exhibits the signal with
zero-value imputation; (d) showcases the reconstructed output achieved through the proposed methodology; (e) demonstrates the
incorporation of the reconstructed signal (from (d)) into the missing value positions (from (b)); and finally, (f) presents the ultimate
output of the proposed method in blue, contrasted with the expected output in red for comparative analysis.

0.0024 ± 0.0010, as shown in Tables 7 and 8. This
outcome is expected, as the Hot-Deck technique fills in
missing values based on the most recent available data,
leading to near-perfect imputation of signals with Gaussian-
style loss, provided their characteristics exhibit limited
variance.

Conversely, the Hot-Deck method struggles significantly
with extensive data loss, particularly in cases of rangemissing
data. This is due to its tendency to fill in missing values
with the most recent data, introducing biases and resulting
in irregular signal shapes.

Consequently, our method remains effective, particu-
larly in scenarios with significant data loss, reflecting its
applicability across various industries. This effectiveness is
supported by scores from RMSE and N-DTWmetrics; lower

scores indicate better preservation of the shape, position
of anomalies, and overall characteristics by the imputation
methods used.

These observations are evident in the case of LIT002 with
90% rangemissing data (Tables 1 and 3), where the Hot-Deck
method’s RMSE andN-DTW scores are 0.0440± 0.0030 and
19.4883 ± 0.7796, respectively, while the proposed method
achieves 0.0145 ± 0.0040 and 8.1388 ± 0.8048. Similarly,
in the LIT401 experiment under the same conditions (Tables 7
and 8), the Hot-Deck method shows RMSE and N-DTW
scores of 0.0229 ± 0.0009 and 14.5425 ± 0.3347, while the
proposed method achieves 0.0128 ± 0.0015 and 10.5954 ±

0.7159.
It is crucial to emphasize that in real-world scenarios,

downtime or data loss often exhibits a pattern within a
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TABLE 3. A comparison of the N-DTW results based on the LIT002 dataset.

TABLE 4. A comparison of the PRECISION results based on the LIT002 dataset.

range, frequently involving substantial levels of missing data.
Therefore, our proposed method is well-suited for addressing
challenges in industrial settings susceptible to cyberattacks,
where attackers seek to inflict persistent and severe damage
to the system.

As to be expected, the results shows that the proposed
method gain superiority in most aspect and cases. The
error of the imputed signal compares the ground truth
using the proposed method are better in both RMSE and
N-DTW aspect. As for the accuracy, precision, recall,
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TABLE 5. A comparison of the RECALL results based on the LIT002 dataset.

TABLE 6. A comparison of the F1-SCORE results based on the LIT002 dataset.

f1-score perspective, the proposed model also outperformed
baseline as well. Though, in some 20% and 5 Ranges cases,
the performance might be slightly poorer compared to the
baseline.

The cornerstone of this research’s success stems from
the innovative data imputation method, which harnesses

the power of Variational Autoencoders (VAE) and latent
space coordination. It is noteworthy that while the baseline
framework also employs VAE, it primarily fails to capture the
intricate interplay between sensor data. Additionally, limited
data samples pose a significant challenge for the VAE in the
baseline method, hindering its capacity to effectively learn
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TABLE 7. A comparison of the RMSE results based on the LIT401 dataset.

TABLE 8. A comparison of the N-DTW results based on the LIT401 dataset.

and exploit the latent space during the imputation process.
In contrast, our proposed model not only adeptly predicts
latent space relationships but also excels in reconstructing the
original data, resulting in imputed signals that closely mirror

their original counterparts in terms of quality and structural
fidelity.

It is imperative to acknowledge that in a limited subset of
cases, constituting approximately 20% of instances falling
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TABLE 9. A comparison of the ACCURACY results based on the LIT401 dataset.

TABLE 10. A comparison of the PRECISION results based on the LIT401 dataset.

within specific value ranges and some range missing data
cases, our method’s performance may exhibit slight devia-
tions when compared to the baseline. These disparities can be
attributed to the nuances inherent in the signal reconstruction
process, stemming from the decoder’s capabilities and the
neural network’s latent predictions. These deviations tend to

affect finer details of the signal, as the framework primarily
learns the prominent data characteristics. Consequently,
in certain scenarios, our model may not capture the signal
with the desired precision. Hence, it is reasonable to infer that
our framework excels in extreme cases where substantial data
reconstruction is required.
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TABLE 11. A comparison of the RECALL results based on the LIT401 dataset.

The industrial sector often faces the imminent risk of
severe data loss due to anomalies, which can extend to
the disruption of sensors and actuators responsible for
data acquisition. As a consequence, the available reported
data may contain only a scant number of data samples.
It is precisely within these challenging scenarios that our
framework reveals its remarkable potential, proficiently
restoring the majority, if not the entirety, of the lost data close
to its original, unaltered form.

To summarize the advantages and limitations of our
proposed method, the Anomaly Signal Imputation Using
Latent Coordination Relations is specifically designed for
industrial data containing anomalies such as cyberattacks.
This framework excels in cases where signal data is
substantially and continuously lost, as it effectively utilizes
the latent space relations based on the training model.
However, in scenarios where signal loss is minimal or follows
a Gaussian distribution, simpler methods may perform better.
In real-world situations involving cyberattacks, continuous
data loss is more common than random noise, highlighting
the practical relevance of our framework.

VI. CONCLUSION
In conclusion, the presence of missing data poses significant
challenges in data analysis, particularly in the context
of anomalous events. Traditional methods and existing
techniques have struggled to effectively restore the original
characteristics of the data and handle heavily missing
data. To overcome these limitations, we have introduced a
novel framework named Anomaly Signal Imputation Using

Latent Coordination Relations. This framework leverages a
variational autoencoder (VAE) to learn from complete data
and capture the latent space representation. By extracting
coordination points from the latent space, we establish a
prediction model for data imputation. Experimental eval-
uations conducted on anomalous signals from a water
treatment testbed demonstrate the superiority of our proposed
method, outperforming baseline techniques in most scenario,
specifically in the highly loss of signal data cases. Moreover,
the proposed framework significantly enhances the similarity
of the output signals. This success can be attributed to
the restorative capabilities of the VAE’s decoder and the
framework’s ability to uncover relationships among indi-
vidual signals. Our approach offers a promising solution to
address missing data challenges in the presence of anomalous
events, contributing to advancements in data imputation
techniques.

Future research should explore the broader application
of latent coordination relations. While our framework has
proven effective in signal data, extending its use to domains
such as image and video analysis is essential. Experiments
involving diverse anomaly cases beyond signal data will
provide valuable insights into the framework’s versatility
and applicability. Additionally, it is crucial to investigate the
impact of various anomaly types and develop a modification
model capable of detecting multiple anomalous incidents to
enhance real-world applicability. Moreover, fields such as
radio astronomy research [50] may benefit from applying
the proposed framework, with appropriate modifications,
to improve data imputation across various applications.
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TABLE 12. A comparison of the F1-SCORE results based on the LIT401 dataset.

APPENDIX
SUPPLEMENTARY EXPERIMENTS
A. THE EXPERIMENTAL RESULTS BASED ON THE LIT002
DATASET
The experimental results for imputing LIT002 sensor data are
shown in Tables 3 through 6.

B. THE EXPERIMENTAL RESULTS BASED ON THE LIT401
DATASET
The experimental results for imputing LIT401 sensor data are
shown in Tables 7 through 12.
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