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ABSTRACT There is a great concern regarding themisuse of deepfake speech technology to synthesize a real
person’s voice. Therefore, developing speech-security systems capable of detecting deepfake speech remains
paramount in safeguarding against such misuse. Although various speech features and methods have been
proposed, their potential for distinguishing between genuine and deepfake speech remains unclear. Since
speech-pathological features with deep learning are widely used to assess unnaturalness in disordered voices
associated with voice-production mechanisms, we investigated the potential of eleven speech-pathological
features for distinguishing between genuine and deepfake speech, i.e., jitter (three types), shimmer (four
types), harmonics-to-noise ratio, cepstral-harmonics-to-noise ratio, normalized noise energy, and glottal-
to-noise excitation ratio. This paper proposes a method of combining two models on the basis of two
different dimensions of speech-pathological features to greatly improve the effectiveness of deepfake speech
detection, along with mel-spectrogram features, to enhance detection efficiency. We evaluated the proposed
method on the datasets of the Automatic Speaker Verification Spoofing and Countermeasures Challenges
ASVspoof 2019 and 2021. The results indicate that the proposed method outperforms the baselines in terms
of accuracy, recall, F1-score, and F2-score, achieving 95.06, 99.46, 97.30, and 98.59%, respectively, on the
ASVspoof 2019 dataset. It also surpasses the baselines on the ASVspoof 2021 dataset in terms of recall,
F1-score, F2-score, and equal error rate, achieving 99.96, 96.65, 98.18, and 15.97%, respectively.

INDEX TERMS Deepfake speech detection, speech-pathological feature, jitter and shimmer, glottal-to-
noise, harmonics-to-noise ratio, cepstral-harmonics-to-noise ratio, normalized noise energy.

I. INTRODUCTION
Deepfake speech refers to a synthesized human voice
generated using advanced voice conversion and text-to-
speech techniques [1], [2]. It finds applications in various
domains, such as audiobooks, customer services, and virtual
assistants. However, the misuse of deepfake speech poses a

The associate editor coordinating the review of this manuscript and

approving it for publication was Lin Wang .

significant threat to economies and societies. For instance,
criminals have exploited deepfake speech to impersonate a
CEO’s voice, successfully defrauding over USD 243, 000
[3]. Therefore, detecting deepfake speech is crucial for fraud
protection and ensuring the reliability of automatic speaker
verification (ASV) systems.

Detecting deepfake speech has involved using several
advanced techniques primarily focusing on two approaches:
creating efficient classifiers [4], [5], [6] and exploring
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acoustic features [7], [8], [9], [10], [11], [12], [13], [14],
[15], [16], [17]. In the first approach, various classifiers
have been used, including Gaussian mixture models (GMMs)
[18], deep neural networks [19], recurrent neural networks
(RNNs) [20], convolution neural networks (CNNs) [21], and
residual neural networks (ResNets) [22]. The selection of
these classifiers might depend on the characteristics and
dimensions of the features. For example, features with small
dimensions are suitable for traditional machine-learning
models, while those with large dimensions are better handled
with deep-learning models, such as CNNs, RNNs, and
ResNets [23].
The second approach is focused on using speech and

acoustic features as front-end features [24]. Numerous
features have been used for detecting deepfake speech,
including spectrograms, linear-frequency cepstral coefficients
(LFCCs) [25], mel-frequency cepstral coefficients [26],
constant-Q transform [27], and constant-Q cepstral
coefficients [28]. For example, Yi [29] and Wang [30]
independently proposed deepfake-detection methods using
LFCCs with GMM. These features are represented in phase,
power spectrum, and cepstral coefficients. These features,
however, were used without thoroughly clarifying their
potential for distinguishing between genuine and deepfake
speech.

FIGURE 1. Relationship between disordered voice and deepfake speech.

Speech-pathological features, on the other hand, have
been introduced to detect the unnatural characteristics of
synthesized audio [17], [31]. Speech-pathological features
are crucial components closely intertwined with the complex
human speech-production mechanisms, representing relevant
acoustic, phonatory, and aerodynamic parameters. Speech-
language pathologists and otolaryngologists typically
use these features to distinguish between normal and
disordered voices [32]. In combination with machine-
learning algorithms, speech-pathological features are also
used in automatic voice assessment and evaluation systems.
These systems assist healthcare professionals and medical
doctors in classifying, diagnosing, assessing the severity of,
and identifying the types of voice disorders [33], [34], [35].
However, the study of pathological features for deepfake
speech detection is limited. A method proposed by Kai et al.
uses only a few features and is used for fake audio

detection [17]. Therefore, a comprehensive investigation of
the potential of speech-pathological features in distinguishing
between genuine and deepfake speech is necessary.

The motivation for using speech-pathological features to
detect deepfake speech is that both fake speech and speech
affected by voice disorders can sound different from typical,
natural speech. They share common acoustic variations, such
as changes in pitch, loudness, and overall quality, whichmake
them sound unnatural.

The relationship of speech-pathological features derived
from disordered voice (Hyperkinetic dysarthria) [36],
deepfake, and genuine speeches is investigated. Figure 1
shows an example of shimmer features. We can observe that
the shimmer (local), shimmer (APQ3), and shimmer (APQ5)
exhibit notable distinctions. The feature values of disordered
voice and deepfake speech are close to each other, whereas
the feature values of genuine speech are different. Therefore,
these speech-pathological features, particularly the shimmer
features, might be crucial indicators for detecting deepfake
speech so that we investigate the potential of the 11 speech-
pathological features in more detail in Section II.
This paper focuses on two research questions: whether

speech-pathological features can be used to detect deepfake
speech and which features contribute to the detection process.
To effectively detect such unnaturalness in deepfake-speech
signals, we propose a method that combines two models:
one based on ten segmental speech-pathological features
with their first- and second-order derivatives, denoted as
1 and 11, respectively, and the other based on the mel-
spectrogram. ResNet-18 models are used as classifiers,
outputting the deepfake score through score fusion.

The novelty and main contributions of this paper are as
follows:

• The speech-pathological features of jitter, shimmer,
harmonics-to-noise ratio (HNR), cepstral-harmonics-to-
noise ratio (CHNR), normalized noise energy (NNE),
and glottal-to-noise excitation ratio (GNE), have
potential to distinguish between genuine and deepfake
speech, similar to how medical professionals identify
speech disorders in patients.

• The effectiveness of these features to distinguish
between genuine and deepfake speech can be enhanced
using the segmental frames of analysis technique.

• The proposed method combines two models based
on two different dimensions of speech-pathological
features to greatly improve the effectiveness of deepfake
speech detection.

This paper is organized as follows. Section II briefly
introduces speech-pathological features. Section III presents
the proposed deepfake-speech-detection method and the
analysis of the potential of speech-pathological features
for distinguishing between genuine and deepfake speech.
Section IV describes the experimental setup and experiments,
and Section V presents the evaluation results. Our findings
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and limitations are also discussed. Finally, Section VI
summarizes the key points of this paper.

II. SPEECH-PATHOLOGICAL FEATURES
Speech-pathological features are typically used to distinguish
between normal and pathological voices [37] to diagnose
diseases such as Parkinson’s disease [38], neck and head
cancers [39], and organic pathologies [40]. This section
describes deriving the speech-pathological features, which
have the potential to be used for distinguishing between
genuine and deepfake speech.

A. JITTER FEATURES
Jitter measures the variation in the period from cycle to cycle
of a fundamental frequency (F0) waveform. References [41]
and [42], as shown in Fig. 2. Since Jitter can be defined with
several methods, we focused on three definitions as follows.

FIGURE 2. Jitter and shimmer concept illustration.

1) JITTER (local)
Jitter (local) is the percentage of the average absolute
difference between consecutive periods divided by the
average period, i.e.,

Jitter (local) =

100
N−1

∑N−1
i=1 |Ti − Ti+1|

1
N

∑N
i=1 Ti

, (1)

where Ti is the period lengths of the extracted F0, and N is
the number of F0 periods [42].

2) JITTER (PPQ3)
Jitter (PPQ3), also known as jitter rap, is the percentage of the
average absolute difference between a period and the average
of that period with its two neighbors divided by the average
period. It is defined as [42]:

Jitter (PPQ3) =

100
N−1

∑N−1
i=1 |Ti − ( 13

∑i+1
i=i−1 Ti)|

1
N

∑N
i=1 Ti

. (2)

3) JITTER (PPQ5)
Jitter (PPQ5) is the percentage of the average absolute
difference between a period, and the average of that period
with its four neighbors, divided by the average period. It is
defined as [42]:

Jitter (PPQ5) =

100
N−1

∑N−2
i=2 |Ti − ( 15

∑i+2
i=i−2 Ti)|

1
N

∑N
i=1 Ti

. (3)

B. SHIMMER FEATURES
Shimmer measures the amplitude variation of aF0 waveform,
resulting from irregular vocal-fold vibrations, as shown in
Fig. 2. Jiang et al [43] demonstrated that shimmer has
significant differences in speaking styles. This feature can
be used to assess the vocal quality and potentially indicate
a voice disorder [42]. Since there are various ways to identify
shimmer characteristics, we focused on the following two
types of shimmer.

1) SHIMMER (local)
Shimmer (local) refers to the percentages of the average
of absolute differences between the source-signal amplitude
related to each index (Ai) and its next neighbor (Ai+1) divided
by the average of the signal amplitudes. It is defined as [42]:

Shimmer (local) =

100
N−1

∑N−1
i=1 |Ai − Ai+1|

1
N

∑N
i=1 Ai

, (4)

where N is the number of F0 periods, and Ai denotes the
signal amplitude at index i.

2) SHIMMER (x-POINT AMPLITUDE PERTURBATION
QUOTIENTS)
Shimmer x-point amplitude perturbation quotients, shimmer
(APQx), are defined similarly to shimmer (local). However,
it takes into account the absolute difference between the
amplitude of each index (Ai) and an average of the x-point
closest neighbors around Ai. It is defined as [42]:

Shimmer (APQx) =

100
N−m+1

∑N−m
i=m |Ai − ( 1x

∑i+m
n=i−m An)|

1
N

∑N
i=1 Ai

,

(5)

where m =
x−1
2 . We investigated three x-point shimmer

features: APQ3, APQ5, and APQ11.

C. HARMONICS-TO-NOISE RATIO (HNR)
The HNR is a metric that quantifies the balance between the
harmonic and noisy elements present in speech. Calculating
the noise component (ιEn) involves computing the energy
of the residual signal obtained by subtracting the average
waveform from each cycle. The harmonic energy (γEn) is
derived from the energy of an average waveform created from
a frame pitch that is synchronized with approximately ten
consecutive glottal cycles. Therefore, this feature relies on an
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earlier estimation of F0 [44]. HNR is defined as:

HNR = 20 log
γEn

ιEn
. (6)

D. CEPSTRAL-HARMONICS-TO-NOISE RATIO (CHNR)
The CHNR is used to compute the HNR by quantifying
the disparity in energy levels between the overall spectrum
and energy attributed to noise. In this context, noise energy
represents the portion of energy that cannot be attributed to
the original signal’s spectrum [44]. The CHNR calculation
procedure is illustrated in Fig. 3.

FIGURE 3. CHNR calculation procedure [44].

E. NORMALIZED NOISE ENERGY (NNE)
NNEmeasures the extended additive noise and is determined
by comparing the noise’s energy to the overall energy of the
signal within each analyzed frame [44]. The NNE calculation
procedure is illustrated in Fig. 4.

FIGURE 4. NNE calculation procedure [44].

F. GLOTTAL-TO-NOISE EXCITATION RATIO (GNE)
TheGNE characterizes turbulent noise in speech, disregarding
modulation effects [45]. Glottal pulses are assumed to
generate simultaneous and synchronous excitation across
multiple frequency channels, as evidenced by the correlation
observed in the Hilbert envelopes of these distinct frequency
bands [44]. The calculation procedure of the GNE is
illustrated in Fig. 5.

G. MEL-SPECTROGRAM
The Mel-spectrogram is widely used in various types of
speech-signal processing such as speech recognition and
speaker identification [46], [47], [48]. It has also been
used for detecting pathological voices [49], [50]. The

FIGURE 5. GNE calculation procedure [44].

mel-spectrogram is derived through the following steps [51].
An input speech signal is divided into short, overlapping
windows. A fast Fourier transform is then applied to convert
a time-domain signal into a frequency spectrum. Finally, the
mel-frequency filter bank is used to convert a linear frequency
scale into the mel-frequency scale. The mel-spectrogram
calculation procedure is illustrated in Fig. 6.

FIGURE 6. Mel-spectrogram calculation procedure [44].

III. DEEPFAKE SPEECH DETECTION BASED ON
SPEECH-PATHOLOGICAL FEATURES
A. FEATURE ANALYSES
Two preliminary studies are conducted to investigate the
potential of speech-pathological features for distinguishing
between genuine and deepfake speech. First, we analyze the
fundamental effectiveness of each pathological feature on the
basis of only their average values. Those speech-pathological
features are then incorporated into a basic classifier, which is
a multi-layer perceptron neural network, as shown in Fig. 8.

Jitter and shimmer are first derived using the instantaneous
robust algorithm for pitch tracking (IRAPT) [52], while the
HNR, CHNR, NNE, and GNE are extracted using the AVCA-
ByO toolbox [44]. We randomly select 1,000 genuine and
1,000 fake speech signals from the 2019 version of the
ASVspoof dataset, as detailed in Table 1. The speech signals
are set to 4 s, with a sample rate of 16 kHz. Note that to
ensure all signals are 4 s long, signals shorter than 4 s are
repeated from the beginning, whereas signals longer than 4 s
are truncated.

Figure 7 shows the box plots illustrating the differences of
each pathological feature in distinguishing between genuine
and fake speech signals. The line inside each box represents
the median of each feature. The box itself represents the
interquartile range (IQR), which is the range between the first
quartile (Q1) and the third quartile (Q3). The bottom of the
box represents Q1, and the top represents Q3 of each feature.
The dashed lines extend from the top and bottom of the box
to indicate the range of each feature, extending 1.5 times the
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FIGURE 7. Box plots of speech-pathological features derived from 1,000 signals of both genuine (green) and fake (red) speech: (a) jitter (local ), (b) jitter
(PPQ3), (c) jitter (PPQ3), (d) shimmer (local ), (e) shimmer (APQ3), (f) shimmer (APQ3), (g) (APQ11), (h) CHNR, (i) NNE, (j) GNE, and (k) HNR.

IQR from the top and bottom of the box. Data points beyond
these dashed lines are considered outliers for each feature.

The results suggest that Jitter (PPQ5), the CHNR,
and GNE are useful for distinguishing between genuine
and deepfake speech signals. Jitter (local), jitter (PPQ3),
jitter (PPQ5), shimmer (local), shimmer (APQ3), shimmer

(APQ5), shimmer (APQ11), and NNE are less effective
in distinguishing between genuine and deepfake speech
signals. The HNR may be unsuitable for this because
the median of both fake and genuine signals is mostly
zero, and their distribution does not adhere to a normal
distribution.
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FIGURE 8. Multi-layer perceptron neural network.

A neural network is then used as a classifier. The structure
of the classifier comprises one node in the input layer, one
node in the hidden layer, and one node in the output layer.
The hidden layer is activated with the ReLU function, and
the sigmoid function is the activation function in the output
layer. The training configurations of the classifier consisted
of a maximum of 100 epochs, learning rate of 0.0001, and
batch size of 128. The loss function was binary cross-entropy,
and the Adam optimizer was used. The training set from
the ASVspoof 2019 dataset was used for training, while the
development set was used for evaluation.

TABLE 1. Number of utterances in the ASVspoof 2019 and ASVspoof
2021 datasets [24], [53].

Table 2 presents the effectiveness of the speech-pathological
features when used with the neural network. In addition to
basic evaluation metrics such as accuracy, recall, and F1-
score, an F2-score was also used. The dataset exhibits a high
imbalance, where the positive class (spoofed or fake speech)
is dominant. For the deepfake-detection task, our aim was to
correctly detect as many positive samples as possible rather
than solely maximizing the number of correct classifications.
The F2-score is appropriate for this scenario since reducing
the false negative rate is more important than reducing the
false positive rate.

The results suggest that speech-pathological features,
excluding the HNR, have the potential to effectively detect
deepfake speech. Shimmer (APQ3) and GNE are particularly
notable, while the HNR performs the worst. The last two rows
of Table 2 show the comparison between using a combination
of speech-pathological features with and without the HNR.
These results indicate that using 10 speech-pathological

features (without the HNR) outperforms the use of all
11 features. This method provides 89.94% accuracy and
scores greater than 90% for precision, recall, F1-score, and
F2-score. Thus, we conclude that only ten pathological
features, excluding the HNR, with a simple classifier can
effectively detect deepfake speech.

B. SEGMENTAL FRAMES OF ANALYSIS
Although the average of speech-pathological features has
the potential to distinguish between genuine and deepfake
speech, it might be inadequate. For instance, if the disparity
between genuine and fake speech lies in consistency, with
approximately 70%–80% consistency, while the remaining
portions of the speech exhibit significant fluctuations,
the average between genuine and fake speech becomes
inconsequential. Therefore, instead of deriving the average
of speech-pathological features from the speech signal as the
conventional does, we propose deriving speech-pathological
features by using the segmented frames of analysis technique.

The process of deriving speech-pathological features using
segmented frames of analysis is illustrated in Fig. 9. The
process involves receiving a speech signal and segmenting
it into frames. The speech-pathological feature is then
extracted from each frame. This derivation process starts
from the first frame to the M -th frame. Thus, the number
of speech-pathological features depends on the number of
frames.

FIGURE 9. Segmental frames of analysis of speech-pathological features.

We evaluated the effectiveness of applying segmented
frames of analysis for speech-pathological features. Each
feature is derived on a frame-by-frame basis, using a window
frame of 50 ms with an overlap of 25 ms. Thus, for a 4-s
signal with a sampling rate of 16 kHz, each frame contains
800 samples of data. The data in frame 1 is fed into the feature
extraction process, where feature values are obtained and
stored in an array at position 1. This feature extraction process
is then repeated for frames 2, 3, and so forth, until the last
frame, which in this case is the 159th frame. Consequently,
for each feature, the data for a single voice is located at
position 159. The total number of segmented frames depends
on the duration of the speech and the window frame size.
These features are inputted into a neural network similar to
the previous study. The classifier model consists of three
layers: an input layer with 159 nodes corresponding to the
new dimension of the feature, a hidden layer with 159 nodes,
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TABLE 2. Results from applying an average of speech-pathological features with a neural network on the development set of ASVspoof 2019.

and a single node for the output. The hidden layer is activated
with the ReLU function, whereas the output layer is activated
with the sigmoid function. The classifier’s training settings
included up to 100 epochs, a learning rate set to 0.0001, and
a batch size of 128. Binary cross-entropy served as the loss
function, and the Adam optimizer was used.

Table 3 lists the results of applying segmental frames of
analysis with the speech-pathological features. The results
indicate that extending the dimensions of ten speech-
pathological features, excluding HNR, through segmental
frames of analysis significantly improves performance
compared with using the average method (as shown in
Table 2) as follows: accuracy from 74.60 to 87.79%, recall
from 79.00 to 95.70%, F1-score from 84.00 to 93.60%, and
F2-score 81.20 to 95.00%.

C. PROPOSED METHOD
Although the ten segmental speech-pathological features are
effective for distinguishing between genuine and deepfake
speech, there is still room for improvement. Therefore, our
method combines two models to enhance the effectiveness of
deepfake speech detection: 1) PF+1+11with ResNet-18,
and 2) mel-spectrogram with ResNet-18. These two models
are integrated using score fusion.

The proposed method is illustrated in Fig. 10. The method
involves usingPF+1+11with the ResNet-18model as the
primary model, while the mel-spectrogram with the ResNet-
18 model is the secondary model. If the prediction score
from the primary model exceeds a predetermined threshold
of 0.5, it is considered the final decision. However, if the
score is below the threshold, the final score is determined by
averaging the outputs from both the primary and secondary
models.

A ResNet [54], used as a classifier, is an effective
deep neural network architecture that addresses the
vanishing gradient problem, wherein the gradients during
backpropagation become excessively small. Numerous
studies have leveraged ResNet in audio and speech-signal

processing [55], [56], [57], including detecting synthetic
speech [14], [58], [59]. The learning of the residual function
of the residual block, which incorporates an intermediate
input into the output of a sequence of convolutional blocks,
is defined as:

y = F(x) + x, (7)

where x and y denote the input and output from the previous
layer, respectively, and F(x) is a component of a CNN
comprising several convolutional blocks. Residual blocks are
available across multiple layers, ranging from 10 to over
100 layers, with each layer containing a distinct number
of residual blocks. However, excessive features were not
deemed necessary for this study. Thus, we decided to use
18 residual layers, i.e., the ResNet-18 model, as the classifier.

IV. EXPERIMENTS
The experiments were conducted to analyze the ten segmental
speech-pathological features, their first-order derivative, and
second-order derivative, denoted as PF , 1, and 1 1,
respectively, and evaluate the efficiency of the proposed
method in detecting deepfake speech. The datasets, metrics,
and experimental setup are described as follows.

A. DATASETS AND METRICS
We used the datasets of the ASVspoof 2019 [24] and
ASVspoof 2021 challenges [60] to evaluate the performance
of the proposed method. The ASVspoof is a series of bi-
annual, competitive challenges where the goal is to develop
countermeasures capable of distinguishing between genuine
and spoofed or deepfake speech since 2015. The ASVspoof
2019 is the first edition focusing on countermeasures
for logical access related to spoofing attacks on speech
synthesized by using text-to-speech and voice conversion
techniques. The dataset is divided into three subsets: training
set, development set, and evaluation set.

Similarly, the ASVspoof 2021 challenge extends the
2019 challenge. The evaluation set aims to assess the
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TABLE 3. Results of using segmental frames of analysis of speech-pathological features with neural networks on development set of ASVspoof 2019.

TABLE 4. Ablation study of segmental frames of analysis of speech-pathological features with ResNet-18 on ASVspoof 2019 dataset.

robustness of channel variation of the detection. The
statistical information of bothASVspoof 2019 andASVspoof
2021 datasets is shown in Table 1. The training set was used
to train themodels, while the development and evaluation sets
were used for evaluation.

Various metrics were used to assess the performance of
deepfake speech detection, i.e., accuracy, balanced accuracy,
precision, recall, F1-score, F2-score, and the equal error rate
(EER). Most metrics follow the evaluation as in the two
ASVspoof challenges [24], [30].

B. FEATURE EXTRACTION
The segmental speech-pathological features we used for this
study were derived using the following methods. For jitter
and shimmer, we used the IRAPT algorithm [52]. For the
HNR, CHNR, NNE, and GNE, we used the AVCA-ByO
toolbox [44]. The segmental speech-pathological features
were derived from a speech signal of 4 s with a sampling rate
of 16 kHz. The length of window frames was set to 50 ms
with an overlap of 25 ms. Consequently, the total frames
of a speech signal were 159. The segmental features of ten
of the pathological features were concatenated. Hence, the
dimension of these features was 10 × 159. The design of the
features is illustrated in Fig. 10.

The mel-spectrogram and LFCC were derived using
the torchaudio library [61]. The dimensions of the

mel-spectrogram are 80 × 401, while the dimensions of
the LFCC are 60 × 265. The LFCC and its first-order and
second-order derivatives were baseline features in ASVspoof
2019 [24].

C. CLASSIFIER
The ResNet-18 models were utilized as a classifier. The
training process consisted of 100 epochs, a learning rate of
0.0001, and a batch size of 32. The Adam optimizer was
employed. The binary cross-entropy between the predictions
and the targets was used as the loss function. The output
score was computed using the output of the ‘‘fake’’ node at
the last fully connected layer before the sigmoid operation.
The ResNet-18 used has a size of 140 MB. For the
implementation, the specifications of the computer are as
follows: the graphics card is an NVIDIA GeForce RTX
3090 with 24 GB of memory, the CPU is an Intel Core i9-
10920X 3.50 GHz, and the system memory is 128 GB. The
computational time for feature extraction and prediction is
1.37 seconds per speech sample.

V. RESULTS AND DISCUSSION
Five experiments were conducted to investigate the potential
of speech-pathological features and the proposed method for
deepfake speech detection. The first three experiments were
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FIGURE 10. The proposed method, combining of (1) ten pathological-segment features with their first-order
and second-order derivatives with ResNet-18 and (2) mel-spectrogram with ResNet-18, through score fusion.

presented in Section III. An ablation study and thorough
evaluations were also conducted.

The first experiment involved analyzing whether using
only the average value of each speech-pathological feature
could distinguish between genuine and deepfake speech. The
results are presented in Table 2. Our findings suggest that the
ten speech-pathological features, excluding the HNR, have
the potential to distinguish between genuine and deepfake
speech.

The second experiment involved combining the ten
speech-pathological features with a simple classifier, i.e.,
a three-layer neural network. The results suggest that the
efficiency of speech-pathological features in almost all
evaluation metrics improved, as indicated in Table 2.
The third experiment involved using segmental frames

of analysis instead of relying on a single average value
for each speech signal. This technique increases the feature
dimension, allowing for higher resolution analysis. The
comparisons between standard speech-pathological features
and those features using the segmental frames of analysis
are shown in Table 2 and Table 3, respectively. It was found
that applying segmental frames of analysis can significantly
enhance the overall efficiency of the speech-pathological
features for deepfake speech. Specifically, comparing
segmented features with the original calculation, accuracy,
recall, F1-score, and F2-score showed substantial
improvements, increasing by 13.19, 16.79, 9.60, and 13.80%,
respectively. However, theHNR still performed poorly, which
was similar to its average performance. Therefore, it was
omitted from the features.

The fourth experiment was an ablation study of the
proposed features, as shown in Table 4. ResNet-18 was
a classifier, and the datasets were the development and
evaluation sets of the ASVspoof 2019 dataset. In this study,
one speech-pathological feature was removed at a time to
assess the importance and potential of each feature for
deepfake speech detection. The results of the baselines,
which use all speech-pathological features, are presented in
the last row. The findings indicate that the CHNR is the
most important feature since its removal leads to the lowest
performance in terms of accuracy, recall, F1-score, F2-score,
and EER on the development set. These trends were also
observed in the accuracy and F1-score on the evaluation set.

The fifth and final experiment involved extensive
evaluations of the proposed method, as shown is Tables 5
and 6. We evaluated the proposed ten segmental speech-
pathological features (PF), the first order derivative of PF
(1), the second order derivative of PF (11), and the
combinations of them. The mel-spectrogram and LFCC were
the baseline features.

Table 5 presents the experimental results obtained using
the ASVspoof 2019 dataset. When comparing the LFCC
and mel-spectrogram on the development set, these two
features were comparable. However, on the evaluation set,
the mel-spectrogram was better than the LFCC in terms
of accuracy 94.36%, recall 96.36%, F1-score 96.84%,
F2-score 98.36%, and EER 8.44%, while the LFCC
was slightly better only in terms of balanced accuracy
89.94% and precision 98.27%. The reason is that the
LFCC correctly detects genuine speech better than the
mel-spectrogram but correctly detects deepfake speech less
effectively than the mel-spectrogram on an imbalanced
dataset. Therefore, the mel-spectrogram showed significantly
better results than LFCC. When comparing the efficiency
of the mel-spectrogram in both development and evaluation
sets, the results were similar, with high accuracy, balanced
accuracy, F1-score, and F2-score and low EER.
The third to fifth rows display the results of PF , 1, and

11with dimensions of 10×159. In the comparison between
1 and 11, the results indicate that 1 outperforms 11 in
almost all metrics on both the development and evaluation
sets, except for EER. However, it’s important to note that
the difference in EER between 1 and 11 is less significant.
Nonetheless, the method using PF outperforms both methods
with 1 and 11. Thus, PF is considered to be the most
contributing feature among them in terms of performance.

The results of the combinations of the segmental speech-
pathological features: PF+1, PF+11, and 1+11, each
with a dimension of 20 × 159 are presented in the sixth to
the eighth rows. The row no. 9 presents the results from the
combination of PF + 1 + 11, which has a dimension of
30 × 159.
When comparing the combination of PF + 11 with

PF + 1 + 11, the results indicate that PF + 1 + 11 was
better in terms of accuracy, recall, F1-score, and F2-score on
both datasets. The differences in the rest of the metrics are not

121966 VOLUME 12, 2024



A. Chaiwongyen et al.: Potential of Speech-Pathological Features for Deepfake Speech Detection

TABLE 5. Comparison of the proposed method with methods using different features and feature combinations on the ASVspoof 2019 dataset.

TABLE 6. Comparison of results obtained from the proposed method and the baselines on the ASVspoof 2021 dataset.

significant; this is becausePF+1+11 hasmore dimensions
than 1+11. Among the ten segmental speech-pathological
features listed from the third to the ninth rows, PF+1+11

was the most effective at detecting fake speech. The results of
the PF + 1 + 11 on the development and evaluation sets
are quite similar. Its efficiency was high in terms of accuracy,
recall, F1-score, and F2-score. The rest of the metrics were
also similar, except for the balanced accuracy, which differed
significantly.

In comparison with the LFCC and mel-spectrogram, the
findings indicate that PF + 1 + 11 performed better than
using the LFCC in terms of accuracy 93.96%, recall 99.19%,
F1-score 96.71%, and F2-score 98.51%. Conversely, PF +

1 + 11 marginally underperformed relative to the mel-
spectrogram. However, these differences are not statistically
significant, as they are less than 1%, except the EER.

These results highlight two interesting aspects: (1) the
dimensionality of the features and (2) classification of speech
as genuine or synthetic. Since the dimensions of PF +

1 + 11 are relatively small, i.e., 30 × 159, compared
with those of the LFCC and mel-spectrogram, i.e., 60 ×

265 and 80 × 401, respectively. However, the efficiency of
them was comparable. Thus, it might be possible to enhance
the performance of the proposed method by extending its

resolution, such as reducing the length of window frames.
These results also indicate that themel-spectrogramwasmore
effective for correctly detecting genuine speech, whereas
PF + 1 + 11 was more effective for correctly detecting
fake speech.

The results on the ASVspoof 2019 evaluation set indicate
that the proposed method is comparable in efficiently
detecting deepfake speech to the mel-spectrogram in terms
of accuracy, recall, F1-score, and F2-score. However, its
balanced accuracy exhibits a degree of decline.

Table 6 lists the experimental results on ASVspoof 2021.
In the comparison between LFCC and mel-spectrogram, the
results indicate that the mel-spectrogram provided better
results than LFCC in terms of accuracy 95.50%, recall
99.16%, F1-score 95.96%, and F2-score 97.86%. PF +

1+11 slightly outperformed the mel-spectrogram in terms
of accuracy 92.60%, balanced accuracy 67.61%, precision
93.12%, F1-score 96.01%, and particularly the EER 15.97%.
However, PF + 1 + 11 exhibited only a slight decrease
compared with the mel-spectrogram in terms of recall and
F2-score.

WhenPF+1+11 is combinedwith themel-spectrogram
and ResNet-18, i.e., the proposed method, the results indicate
that the performance of the proposed method surpasses that
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of the individual components in terms of recall 99.96%,
F1-score 96.65%, and F2-score 98.18%. However, balanced
accuracy and precision showed a decrease. The reason for this
is that both PF+1+11 and the mel-spectrogram exhibited
similar characteristics, resulting in high performance in
correctly detecting fake speech but lower performance in
correctly detecting genuine speech.

When comparing the performance of LFCC and the
proposed method in terms of EER, the results showed that
both are comparable, with 16.55% and 15.97%, respectively.
However, in an in-depth analysis, we found that the false
positive rate of LFCC is approximately three times lower than
that of the proposed method. In contrast, the false negative
rate of the proposed method is significantly lower than that
of LFCC, by about sixteen times. This may be due to the
high ratio of the imbalanced dataset, with more fake speech
than genuine, causing the balanced accuracy of the two
models to be significantly different. To improve the efficiency
of distinguishing between genuine and fake speech, further
studies will be investigated.

Although the proposed method, which combines these two
models, did not improve in terms of all metrics, it showed
high recall rates. The advantages of high recall are crucial for
preventing unauthorized access and impersonation. In tasks
involving sensitive scenarios in which unauthorized access
carries a significant cost, prioritizing high recall is crucial for
deepfake speech detection.

As evident from the third row of Table 6, the accuracy,
balanced accuracy, and precision exhibited a slight decrease
compared with the results obtained on the ASVspoof
2019 dataset. The effectiveness of PF + 1 + 11 has
limitations in detecting synthetic audio in environments
involving communication over telephony and Voice over
Internet Protocol (VoIP) networks, particularly due to various
coding and transmission effects [53]. We will further
investigate this scenario.

VI. CONCLUSION
We have proposed a deepfake-detection method that is
based on speech-pathological features. We introduced
speech-pathological features that are typically used to
detect disordered voices for detecting deepfake speech.
This is similar to medical professionals diagnosing speech
disorders in patients. Eleven speech-pathological features
were investigated, including three jitter features: jitter (local),
jitter (PPQ3), jitter (PPQ5); four shimmer features: shimmer
(local), shimmer (APQ3), shimmer (APQ5), shimmer
(APQ11); HNR; CHNR; NNE; and GNE. We found that
the standard derivation of these features, a single average
value for each, effectively distinguished between genuine
and deepfake speech. Applying a simple classifier to these
speech-pathological features, excluding the HNR, could
effectively detect deepfake speech. We introduced segmental
frames of analysis for deriving these speech-pathological
features to enhance the overall performance. The proposed
method combines two models using ten segmental

speech-pathological features and the mel-spectrogram for
detecting deepfake speech. The proposed method was
evaluated and compared with two baselines using datasets
from ASVspoof 2019 and 2021. The results indicated that
the proposed method outperformed the baselines, achieving
a recall of 99.46 and 99.96% on the evaluation sets of
ASVspoof 2019 and ASVspoof 2021, respectively.

However, a limitation of this research is the computational
time required for feature extraction across all segmental
frames during the analysis of speech-pathological features.
This takes approximately 1.25 s, whereas it takes only
approximately 11.20 ms for mel-spectrograms. In the future,
we will evaluate the proposed method on diverse datasets,
including those from noisy environments, and investigate
speech-pathological features such as sampling rate, frame
length, and speech length in more detail. We will also explore
additional speech-pathological features.

REFERENCES
[1] S. H. Mohammadi and A. Kain, ‘‘An overview of voice conversion

systems,’’ Speech Commun., vol. 88, pp. 65–82, Apr. 2017.
[2] Y. Ren, Y. Ruan, X. Tan, T. Qin, S. Zhao, Z. Zhao, and T.-Y. Liu,

‘‘FastSpeech: Fast, robust and controllable text to speech,’’ in Proc. 33rd
Int. Conf. Neural Inf. Process. Syst., 2019, pp. 3171–3180.

[3] K. Hartmann and K. Giles, ‘‘The next generation of cyber-enabled
information warfare,’’ in Proc. 12th Int. Conf. Cyber Conflict (CyCon),
vol. 1300, May 2020, pp. 233–250.

[4] W. Ge, M. Panariello, J. Patino, M. Todisco, and N. Evans, ‘‘Partially-
connected differentiable architecture search for deepfake and spoofing
detection,’’ 2021, arXiv:2104.03123.

[5] A. Luo, E. Li, Y. Liu, X. Kang, and Z. J. Wang, ‘‘A capsule network
based approach for detection of audio spoofing attacks,’’ in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), Jun. 2021,
pp. 6359–6363.

[6] Z. Wang, S. Cui, X. Kang, W. Sun, and Z. Li, ‘‘Densely connected
convolutional network for audio spoofing detection,’’ in Proc. Asia–Pacific
Signal Inf. Process. Assoc. Annu. Summit Conf. (APSIPA ASC), Dec. 2020,
pp. 1352–1360.

[7] M. R. Kamble, H. B. Sailor, H. A. Patil, and H. Li, ‘‘Advances in anti-
spoofing: From the perspective of ASVspoof challenges,’’ APSIPA Trans.
Signal Inf. Process., vol. 9, no. 1, p. 2, 2020.

[8] Z. Zhang, X. Yi, and X. Zhao, ‘‘Fake speech detection using residual
network with transformer encoder,’’ in Proc. ACM Workshop Inf. Hiding
Multimedia Secur., Jun. 2021, pp. 13–22.

[9] J. Yang and R. K. Das, ‘‘Long-term high frequency features for
synthetic speech detection,’’ Digit. Signal Process., vol. 97, Feb. 2020,
Art. no. 102622.

[10] K. Zaman, M. Sah, C. Direkoglu, and M. Unoki, ‘‘A survey of
audio classification using deep learning,’’ IEEE Access, vol. 11,
pp. 106620–106649, 2023.

[11] K. Li, Y. Wang, M. L. Nguyen, M. Akagi, and M. Unoki, ‘‘Analysis
of amplitude and frequency perturbation in the voice for fake audio
detection,’’ in Proc. Asia–Pacific Signal Inf. Process. Assoc. Annu. Summit
Conf. (APSIPA ASC), Nov. 2022, pp. 929–936.

[12] M. Alzantot, Z. Wang, and M. B. Srivastava, ‘‘Deep residual neural
networks for audio spoofing detection,’’ 2019, arXiv:1907.00501.

[13] M. India, P. Safari, and J. Hernando, ‘‘Self multi-head attention for speaker
recognition,’’ 2019, arXiv:1906.09890.

[14] R. Yan, C. Wen, S. Zhou, T. Guo, W. Zou, and X. Li, ‘‘Audio
deepfake detection system with neural stitching for ADD 2022,’’ in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), May 2022,
pp. 9226–9230.

[15] Z. Lv, S. Zhang, K. Tang, and P. Hu, ‘‘Fake audio detection
based on unsupervised pretraining models,’’ in Proc. IEEE Int.
Conf. Acoust., Speech Signal Process. (ICASSP), May 2022,
pp. 9231–9235.

121968 VOLUME 12, 2024



A. Chaiwongyen et al.: Potential of Speech-Pathological Features for Deepfake Speech Detection

[16] J. M. Martín-Doñas and A. Álvarez, ‘‘The vicomtech audio deepfake
detection system based on wav2vec2 for the 2022 ADD challenge,’’
in Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP),
May 2022, pp. 9241–9245.

[17] K. Li, X. Lu, M. Akagi, and M. Unoki, ‘‘Contributions of jitter and
shimmer in the voice for fake audio detection,’’ IEEE Access, vol. 11,
pp. 84689–84698, 2023.

[18] Y. Wang, W. Chen, J. Zhang, T. Dong, G. Shan, and X. Chi, ‘‘Efficient
volume exploration using the Gaussian mixture model,’’ IEEE Trans. Vis.
Comput. Graphics, vol. 17, no. 11, pp. 1560–1573, Nov. 2011.

[19] S. Duraibi, W. Alhamdani, and F. T. Sheldon, ‘‘Replay spoof attack
detection using deep neural networks for classification,’’ in Proc. Int. Conf.
Comput. Sci. Comput. Intell. (CSCI), Dec. 2020, pp. 170–174.

[20] A. Sherstinsky, ‘‘Fundamentals of recurrent neural network (RNN)
and long short-term memory (LSTM) network,’’ Phys. D, Nonlinear
Phenomena, vol. 404, Mar. 2020, Art. no. 132306.

[21] J. Wu, ‘‘Introduction to convolutional neural networks,’’ Nat. Key Lab
Novel Softw. Technol. Nanjing Univ. China, vol. 5, no. 23, p. 495, 2017.

[22] M. Shafiq and Z. Gu, ‘‘Deep residual learning for image recognition: A
survey,’’ Appl. Sci., vol. 12, no. 18, p. 8972, Sep. 2022.

[23] Z. Almutairi and H. Elgibreen, ‘‘A review of modern audio deepfake
detection methods: Challenges and future directions,’’ Algorithms, vol. 15,
no. 5, p. 155, May 2022.

[24] A. Nautsch, X. Wang, N. Evans, T. H. Kinnunen, V. Vestman, M. Todisco,
H. Delgado, M. Sahidullah, J. Yamagishi, and K. A. Lee, ‘‘ASVspoof
2019: Spoofing countermeasures for the detection of synthesized,
converted and replayed speech,’’ IEEE Trans. Biometrics, Behav., Identity
Sci., vol. 3, no. 2, pp. 252–265, Apr. 2021.

[25] M. Sahidullah, T. Kinnunen, and C. Hanilçi, ‘‘A comparison of features
for synthetic speech detection,’’ in Proc. 16th Annu. Conf. Int. Speech
Commun. Assoc. (INTERSPEECH), Sep. 2015, pp. 2087–2091.

[26] H. S. Kumbhar and S. U. Bhandari, ‘‘Speech emotion recognition using
MFCC features and LSTM network,’’ in Proc. 5th Int. Conf. Comput.,
Commun., Control Autom. (ICCUBEA), Sep. 2019, pp. 1–3.

[27] J. Yang and R. K. Das, ‘‘Low frequency frame-wise normalization
over constant-Q transform for playback speech detection,’’ Digit. Signal
Process., vol. 89, pp. 30–39, Jun. 2019.

[28] M. Todisco, H. Delgado, and N. W. Evans, ‘‘A new feature for automatic
speaker verification anti-spoofing: Constant Q cepstral coefficients,’’ in
Proc. Odyssey, 2016, pp. 283–290.

[29] J. Yi, R. Fu, J. Tao, S. Nie, H. Ma, C. Wang, T. Wang, Z. Tian, Y. Bai,
C. Fan, S. Liang, S. Wang, S. Zhang, X. Yan, L. Xu, Z. Wen, and H. Li,
‘‘ADD 2022: The first audio deep synthesis detection challenge,’’ in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), May 2022,
pp. 9216–9220.

[30] X. Wang et al., ‘‘ASVspoof 2019: A large-scale public database of
synthesized, converted and replayed speech,’’ Comput. Speech Lang.,
vol. 64, Nov. 2020, Art. no. 101114.

[31] K. Kuligowska, P. Kisielewicz, and A. Włodarz, ‘‘Speech synthesis
systems: Disadvantages and limitations,’’ Int. J. Eng. Technol., vol. 7, no. 2,
pp. 234–239, May 2018.

[32] V. Dellwo, M. Huckvale, and M. Ashby, ‘‘How is individuality expressed
in voice? An introduction to speech production and description for speaker
classification,’’ in Speaker Classification I: Fundamentals, Features, and
Methods. Berlin, Germany: Springer, 2007, pp. 1–20.

[33] S.-H. Fang, Y. Tsao, M.-J. Hsiao, J.-Y. Chen, Y.-H. Lai, F.-C. Lin, and
C.-T. Wang, ‘‘Detection of pathological voice using cepstrum vectors: A
deep learning approach,’’ J. Voice, vol. 33, no. 5, pp. 634–641, Sep. 2019.

[34] Z. Xie, C. Gadepalli, F. Jalalinajafabadi, B. M. G. Cheetham,
and J. J. Homer, ‘‘Machine learning applied to GRBAS voice
quality assessment,’’ Adv. Sci., Technol. Eng. Syst. J., vol. 3, no. 6,
pp. 329–338, 2018.

[35] T. Kojima, S. Fujimura, K. Hasebe, Y. Okanoue, O. Shuya, R. Yuki,
K. Shoji, R. Hori, Y. Kishimoto, and K. Omori, ‘‘Objective assessment of
pathological voice using artificial intelligence based on the GRBAS scale,’’
J. Voice, vol. 38, no. 3, pp. 561–566, May 2024.

[36] A. L. Goldberger, L. A. N. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov,
R. G. Mark, J. E. Mietus, G. B. Moody, C.-K. Peng, and H. E. Stanley,
‘‘PhysioBank, PhysioToolkit, and PhysioNet: Components of a new
research resource for complex physiologic signals,’’ Circulation, vol. 101,
no. 23, pp. e215–e220, Jun. 2000.

[37] A. Sasou, ‘‘Automatic identification of pathological voice quality based
on the GRBAS categorization,’’ in Proc. Asia–Pacific Signal Inf. Process.
Assoc. Annu. Summit Conf. (APSIPA ASC), Dec. 2017, pp. 1243–1247.

[38] D. Meghraoui, B. Boudraa, T. Merazi-Meksen, and P. G. Vilda, ‘‘A novel
pre-processing technique in pathologic voice detection: Application to
Parkinson’s disease phonation,’’ Biomed. Signal Process. Control, vol. 68,
Jul. 2021, Art. no. 102604.

[39] R. Islam, M. Tarique, and E. Abdel-Raheem, ‘‘A survey on signal
processing based pathological voice detection techniques,’’ IEEE Access,
vol. 8, pp. 66749–66776, 2020.

[40] S. R. Kadiri and P. Alku, ‘‘Analysis and detection of pathological voice
using glottal source features,’’ IEEE J. Sel. Topics Signal Process., vol. 14,
no. 2, pp. 367–379, Feb. 2020.

[41] M. Farrús, J. Hernando, and P. Ejarque, ‘‘Jitter and shimmer measurements
for speaker recognition,’’ in Proc. Int. Speech Commun. Assoc. (ISCA),
Aug. 2007, pp. 778–781.

[42] J. P. Teixeira, C. Oliveira, and C. Lopes, ‘‘Vocal acoustic analysis—Jitter,
shimmer and HNR parameters,’’ Proc. Technol., vol. 9, pp. 1112–1122,
Jan. 2013.

[43] J. J. Jiang, D. B. Wexler, I. R. Titze, and S. D. Gray, ‘‘Fundamental
frequency and amplitude perturbation in reconstructed canine vocal folds,’’
Ann. Otol., Rhinol. Laryngol., vol. 103, no. 2, pp. 145–148, Feb. 1994.

[44] J. A. Gómez-García, L. Moro-Velázquez, J. D. Arias-Londoño, and
J. I. Godino-Llorente, ‘‘On the design of automatic voice condition
analysis systems. Part III: Review of acoustic modelling strategies,’’
Biomed. Signal Process. Control, vol. 66, Apr. 2021, Art. no. 102049.

[45] D. Michaelis, T. Gramss, and H. W. Strube, ‘‘Glottal-to-noise excitation
ratio—A new measure for describing pathological voices,’’ Acta Acustica
united with Acustica, vol. 83, no. 4, pp. 700–706, 1997.

[46] L. Trinh Van, T. Dao Thi Le, T. Le Xuan, and E. Castelli, ‘‘Emotional
speech recognition using deep neural networks,’’ Sensors, vol. 22, no. 4,
p. 1414, Feb. 2022.

[47] X. Wang, F. Xue, W. Wang, and A. Liu, ‘‘A network model of speaker
identification with new feature extraction methods and asymmetric
BLSTM,’’ Neurocomputing, vol. 403, pp. 167–181, Aug. 2020.

[48] A. Meghanani, C. S. Anoop, and A. G. Ramakrishnan, ‘‘An exploration
of log-mel spectrogram and MFCC features for Alzheimer’s dementia
recognition from spontaneous speech,’’ in Proc. IEEE Spoken Lang.
Technol. Workshop (SLT), Jan. 2021, pp. 670–677.

[49] L. Geng, Y. Liang, H. Shan, Z. Xiao, W. Wang, and M. Wei, ‘‘Pathological
voice detection and classification based on multimodal transmission
network,’’ J. Voice, vol. S0892-1997, no. 22, Dec. 2022, Art. no. 00370-8,
doi: 10.1016/j.jvoice.2022.11.018.

[50] X. Peng, H. Xu, J. Liu, J. Wang, and C. He, ‘‘Voice disorder classification
using convolutional neural network based on deep transfer learning,’’ Sci.
Rep., vol. 13, no. 1, p. 7264, May 2023.

[51] L. Rabiner and R. Schafer, Theory and Applications of Digital Speech
Processing. Upper Saddle River, NJ, USA: Prentice-Hall, 2010.

[52] M. Vashkevich, A. Petrovsky, and Y. Rushkevich, ‘‘Bulbar ALS
detection based on analysis of voice perturbation and vibrato,’’ in Proc.
Signal Process., Algorithms, Architectures, Arrangements, Appl. (SPA),
Sep. 2019, pp. 267–272.

[53] H. Delgado, N. Evans, T. Kinnunen, K. A. Lee, X. Liu, A. Nautsch,
J. Patino, M. Sahidullah, M. Todisco, X. Wang, and J. Yamagishi,
‘‘ASVspoof 2021: Automatic speaker verification spoofing and
countermeasures challenge evaluation plan,’’ 2021, arXiv:2109.00535.

[54] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770–778.

[55] M. Yousefi and J. H. L. Hansen, ‘‘Speaker conditioning of acoustic models
using affine transformation for multi-speaker speech recognition,’’ in Proc.
IEEE Autom. Speech Recognit. Understand. Workshop (ASRU), Dec. 2021,
pp. 283–288.

[56] M. B. Shafeen and S. Vijayan, ‘‘Parkinson’s disease prognosis using the
ResNet-50 model from speech features,’’ in Proc. Int. Conf. Innov. Sci.
Technol. Sustain. Develop. (ICISTSD), Aug. 2022, pp. 282–286.

[57] A.Kumar, S. S.Mahmoud, Y.Wang, S. Faisal, andQ. Fang, ‘‘A comparison
of time-frequency distributions for deep learning-based speech assessment
of aphasic patients,’’ in Proc. 15th Int. Conf. Human Syst. Interact. (HSI),
Jul. 2022, pp. 1–5.

[58] M. H. Rahman,M. Graciarena, D. Castan, C. Cobo-Kroenke,M. McLaren,
and A. Lawson, ‘‘Detecting synthetic speech manipulation in real audio
recordings,’’ in Proc. IEEE Int. Workshop Inf. Forensics Secur. (WIFS),
Dec. 2022, pp. 1–6.

VOLUME 12, 2024 121969

http://dx.doi.org/10.1016/j.jvoice.2022.11.018


A. Chaiwongyen et al.: Potential of Speech-Pathological Features for Deepfake Speech Detection

[59] Z. Chen, Z. Xie, W. Zhang, and X. Xu, ‘‘ResNet and model fusion
for automatic spoofing detection,’’ in Proc. Interspeech, Aug. 2017,
pp. 102–106.

[60] J. Yamagishi, X. Wang, M. Todisco, M. Sahidullah, J. Patino, A. Nautsch,
X. Liu, K. A. Lee, T. Kinnunen, N. Evans, and H. Delgado, ‘‘ASVspoof
2021: Accelerating progress in spoofed and deepfake speech detection,’’
2021, arXiv:2109.00537.

[61] A. Paszke et al., ‘‘PyTorch: An imperative style, high-performance deep
learning library,’’ in Proc. Adv. Neural Inf. Process. Syst., vol. 32, 2019,
pp. 1–12.

ANUWAT CHAIWONGYEN received the B.S.
degree in technical education (computer
engineering) from the Rajamangala University
of Technology Lanna, Chiang Mai, Thailand,
in 2008, and the M.Eng. degree in computer
engineering fromThammasat University, Thailand,
in 2017. He is currently pursuing the Ph.D.
degree with the Sirindhorn International Institute
of Technology (SIIT), Thammasat University,
and Japan Advanced Institute of Science and

Technology (JAIST), Japan. From 2008 to 2020, he was a Research Assistant
with the National Electronics and Computer Technology (NECTEC). His
research interests include speech spoofing detection, machine learning, and
deep neural networks.

SURADEJ DUANGPUMMET received the
B.Eng. degree in mechatronics engineering from
the Pathumwan Institute of Technology, in 2002,
the M.Eng. degree in mechatronics engineering
from the Asian Institute of Technology, Thailand,
in 2011, the first Ph.D. degree (Hons.) in
information science from Japan Advanced
Institute of Science and Technology (JAIST),
in 2021, under the supervision of Prof. Masashi
Unoki, and the second Ph.D. degree in engineering

and technology from the Sirindhorn International Institute of Technology,
Thammasat University, in 2023. He has been with the National Electronics
and Computer Technology Center (NECTEC), since 2002, where he
is currently a Researcher. His research interests include speech and
acoustic signal processing, pattern recognition, artificial intelligence, neural
networks, and machine learning.

JESSADA KARNJANA received the B.Eng.
degree in electronics engineering from the King
Mongkut’s Institute of Technology Ladkrabang,
Thailand, in 1999, the M.Eng. degree in
microelectronics from Asian Institute of
Technology, Thailand, in 2006, the first Ph.D.
degree in information science from Japan
Advanced Institute of Science and Technology,
Japan, in 2016, and the second Ph.D. degree in
engineering and technology from the Sirindhorn

International Institute of Technology, Thammasat University, in 2017.
He has been with the National Electronics and Computer Technology
Center (NECTEC), Thailand, since 1999. His research interests include data
analysis andmachine learning, reasoningwith uncertainty, signal processing,
and wireless sensor networks.

WAREE KONGPRAWECHNON (Member,
IEEE) received the B.Eng. degree (Hons.)
in electrical engineering from Chulalongkorn
University, Thailand, the M.Eng. degree in
control engineering from Osaka University, Japan,
in 1995, and the Ph.D. degree in engineering
(mathematical engineering and information
physics) from The University of Tokyo, Japan,
in 1999. Since 1999, she has been a Lecturer
with the School of Information, Computer,

and Communication Technology, Sirindhorn International Institute of
Technology, Thammasat University, Thailand, where she is currently an
Associate Professor. Her research interests include theory in H∞ control,
control theory, robust control, system identification, adaptive control,
learning control, neural networks, and fuzzy control. Since 2019, she has
been a Steering Committee Member of Asian Control Association.

MASASHI UNOKI (Member, IEEE) received
the M.S. and Ph.D. degrees in information
science from Japan Advanced Institute of Science
and Technology (JAIST), in 1996 and 1999,
respectively. He was a Japan Society for the
Promotion of Science (JSPS) Research Fellow,
from 1998 to 2001. He was a Visiting Researcher
with the ATR Human Information Processing
Laboratories, from 1999 to 2000, and the Centre
for the Neural Basis of Hearing (CNBH),

Department of Physiology, University of Cambridge, from 2000 to 2001.
Since 2001, he has been a Faculty Member with the School of Information
Science, JAIST, where he is currently a Full Professor. His current
research interests include auditory-motivated signal processing and the
modeling of auditory systems. He is a member of the Research Institute
of Signal Processing (RISP), the Institute of Electronics, Information and
Communication Engineers (IEICE) of Japan, the Acoustical Society of
America (ASA), the Acoustical Society of Japan (ASJ), and the International
Speech Communication Association (ISCA). He received the Sato Prize
from ASJ, in 1999, 2010, and 2013, for an Outstanding Paper, and the
Yamashita Taro ‘‘Young Researcher’’ Prize from the Yamashita Taro
Research Foundation, in 2005.

121970 VOLUME 12, 2024


