
Received 18 June 2024, accepted 14 August 2024, date of publication 22 August 2024, date of current version 2 September 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3447785

Enhancing Privacy and Integrity in Computing
Services Provisioning Using Blockchain and
Zk-SNARKs
ALBERTO BALLESTEROS-RODRÍGUEZ 1 (Member, IEEE), SALVADOR SÁNCHEZ-ALONSO 2,
AND MIGUEL-ÁNGEL SICILIA-URBÁN 1
1Intelligence, Innovation, Internet and Information (I4) Group, Department of Computer Science, University of Alcalá, 28801 Alcalá de Henares, Spain
2Department of Computer Science and Statistics, Rey Juan Carlos University, 28933 Mostóles, Spain

Corresponding author: Alberto Ballesteros-Rodríguez (alberto.ballesterosr@uah.es)

ABSTRACT The widespread integration of on-demand services founded on proprietary algorithms into
various software applications has ushered into a new era of advanced service capabilities. However, using
these services entails disclosing information by the customer, not only during the payment process but also
when using the service, where certain personal information must be shared to obtain a more personalized
service. This practice potentially exposes users to increased security risks in case of data security breaches.
In this paper, we introduce a novel framework aimed at enhancing client privacy and ensuring service
integrity within the context of computing services that rely on proprietary algorithms. A blockchain-based
approach is proposed to enhance user privacy throughout service provision, encompassing both the payment
process and the verification of the provided service. Our proposal leverages properties of distributed ledger
networks to improve user privacy during payment transactions and incorporates a verification system using
zero-knowledge proofs on blockchain to validate the integrity of the contracted service. Finally, we analyze
the privacy, overhead, and performance aspects of the framework, employing custom proprietary algorithms.
We illustrate this through examples of Convolutional Neural Networks with multiple layers, undisclosed to
the client. This emphasizes the potential benefits of its applicability for both service providers and clients.

INDEX TERMS Blockchain, proprietary algorithms, service verification, privacy, zk-SNARKs.

I. INTRODUCTION
With the continued proliferation of cloud-based services,
the Software as a Service (SaaS) model has proven to
be highly successful in providing a diverse array of solu-
tions to both individual users and companies. Furthermore,
as organizations increasingly adopt SaaS solutions, providers
are expanding their services using not only open-source
algorithms but also proprietary ones. This expansion aims to
offer a greater variety of options to optimize and differentiate
the services provided in the present competitive SaaS
market. Given the propagation of such services, subscription-
based models are becoming increasingly prevalent as an
approach to ensuring consistent revenue streams, ongoing

The associate editor coordinating the review of this manuscript and

approving it for publication was Yan Huo .

service enhancements, and accessible, cost-effective software
solutions.

In this context, it is important to acknowledge that
the development of proprietary algorithms, especially in
the field of artificial intelligence (AI), often represents a
significant investment in terms of research, resources, and
expertise. Advanced algorithms are at the core of many SaaS
solutions, and their creation requires a substantial financial
commitment. To recoup the investment and continue to
fund ongoing research and development, subscription-based
models have become an essential approach. These models
not only ensure the sustainability of SaaS solutions but also
support the continuous refinement and expansion of their
cutting-edge technologies, which are crucial in providing the
diverse and valuable services that users and organizations
demand.

117970

 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0001-6357-8916
https://orcid.org/0000-0002-9949-4797
https://orcid.org/0000-0003-3067-4180
https://orcid.org/0000-0003-0647-1009

A. Ballesteros-Rodríguez et al.: Enhancing Privacy and Integrity in Computing Services Provisioning

FIGURE 1. Simplified Typical Subscription Billing Model in SaaS Services.

To access these provisions, cloud-based services require
user registration on their platform to access all the available
solutions. Subsequently, as illustrated in Fig. 1, to enroll
in a subscription-based solution, the client must provide
a payment method, such as a credit card. This enables
the service provider to issue an initial charge, which will
be refunded once the functionality of the chosen payment
method has been verified. Through this procedure, it becomes
possible to connect the client’s identity, who initiated the pay-
ment, with the provided service. Also, this approach entails
significant limitations in terms of privacy, anonymity, and
confidentiality. On one hand, payments cannot be anonymous
as they are linked to the client’s identity within the service
provider. At present, most service providers only allow
payments associated with the registered client’s identity,
which means that the client’s information is directly tied to
the use of a specific service.Moreover, this can lead to privacy
and security breaches, as payment systems and user databases
become potential points of compromise for sensitive data.
On the other hand, occasionally, the client is not an individual
user but rather a company acting as a customer. Consequently,
the company lacks the capability to conceal its identity from
the provider when consuming a service and interacting with
it, raising notable confidentiality concerns.

Moreover, concerning the payment aspect, it is entirely
plausible that the customer may prefer making the payment
only once the service has been fully provided. Currently, this
is not the case, as payments are made prior to accessing
the service. This becomes even more relevant in the context
of proprietary Machine Learning (ML) models, where users
are unaware of whether the generated computations come
from a specific model or another. Considering the current
trend of engaging cloud-based services oriented towards
achieving outcomes derived from their inputs, it is noticeable
that the field of ML is the most widely exploited. Since
legal agreements bind users and companies, the need for
technical verification becomes crucial, given the prevalent
trend of ML cloud-based services. Nevertheless, in the case
of services based on non-public proprietary algorithms, also
known as black box algorithms, the user cannot be fully
confident that the rendered service aligns with the contracted

one. Black box algorithms are computational models or
algorithms that function as opaque systems, implying that
their internal computations and decision-making processes
are not transparent or understandable to external observers.

These proprietary algorithms, developed internally or
obtained through strategic acquisitions, are designed to
enhance the functionality, performance, and personalization
of the services offered. By leveraging the power of data
analytics and artificial intelligence, these algorithms can
optimize processes, predict trends, and offer personalized
experiences to users. The problem that arises from these
premises is the lack of privacy surrounding client data
when using these services, whose internal functioning is
undisclosed. This extends beyond merely data tied to their
identity to also include the information customers are
required to provide for accessing personalized services.

To address the challenges mentioned above, it is crucial
to decouple the client’s identity from the service usage, both
in the payment process and in terms of the data used for
service provision. This should ensure that the service provider
remains unaware of the client’s identity, thus preventing
the client from being linked to their information, thereby
enhancing privacy, confidentiality, and anonymity. It should
also ensure that the payment is released once the results from
the provided service have been verified. Therefore, achieving
a scenario where customers can make privacy-preserving
payments that can be released to the vendor only once
the service has been undoubtedly completed in a secure
environment is complex and calls for innovative solutions.
Additionally, it is important to consider that such services
often operate on subscription models, so payments should
only occur after verifying all expected computations. The
application of decentralized systems such as blockchain
technology, in combination with cryptographic mechanisms
like zero-knowledge proofs, provides an approach to resolve
the challenges.

Zero-knowledge proof (ZKP) can be defined as an
advanced cryptographic technique that allows the demon-
stration of the possession of certain information without
revealing the information itself. This is particularly valuable
in blockchain environments where privacy and confiden-

VOLUME 12, 2024 117971

A. Ballesteros-Rodríguez et al.: Enhancing Privacy and Integrity in Computing Services Provisioning

tiality are paramount, requiring the avoidance of disclosing
sensitive information to third parties while still being
verifiable. However, ZKP in blockchain presents significant
challenges, as the computational complexity associated
with its implementation directly impacts the network’s
efficiency and speed, leading to increased latency and
higher transaction fees. Furthermore, ZKP deployment might
hinder scalability, as the growing number of transactions
might overload nodes, reducing their processing capacity.
To address these problems, zk-SNARKs (Zero-Knowledge
Succinct Non-Interactive Arguments of Knowledge), a type
of zero-knowledge proof that possesses properties including
reduced proof size, easy verification, and the elimination of
the requirement for interactive communication, is utilized.
In the context of this research, zk-SNARKs are employed
to authenticate the computations conducted by the service
provider, without disclosing critical information about the
proprietary algorithms employed in the service provision.
Because of their intrinsic characteristics, it is feasible to
verify the service rendered at different time periods to assess
the execution of the subscription-based algorithms. This type
of zero-knowledge proof is considered a suitable solution for
enabling recurring transactions commonly required to verify
different responses derived from subscription-based services.
Indeed, zk-SNARKs have been shown to align seamlessly
with the inherent performance of blockchain [1].

Leveraging a decentralized system such as blockchain
allows users to make payments through native tokens, as well
as stablecoins—cryptocurrencies pegged to stable assets—
thus enhancing payment process anonymity and reliability.
The combination of blockchain and zk-SNARKs provides
clients with a high level of assurance and verifiability.
Meanwhile, service suppliers can offer a high level of trust by
ensuring the privacy and confidentiality of sensitive customer
data without incurring additional computational costs.

In this paper, we introduce an innovative model designed
to tackle the aforementioned challenges, specifically by
leveraging blockchain technology and ZKP. The primary
objective of this research is to establish a framework that
enhances client privacy preservation throughout service
provisioning, covering both the payment process and the
service provision, the latter being cryptographically verified
when it depends on proprietary algorithms. The proposed
framework guarantees that payment is only released after
verifying the successful provision of the contracted service.
We efficiently utilize zk-SNARKs for service verification
by deploying a single smart contract on a general-purpose
blockchain instead of creating one for each individual client
request. This approach minimizes the overhead associated
with contract execution and enhances the overall scalability
and performance of the entire proposal. The effectiveness
of the framework is evaluated through the analysis of
deployment cost, proof sizes, proof generation times, and the
cost of each interaction to be performed by each participant.

The rest of this paper is structured as follows. In ‘‘Related
Work,’’ literature related to the proposed model is reviewed.

‘‘Model Overview’’ presents both the architecture and
setup of the proposed framework, as well as its operation.
In ‘‘Results and Discussion’’ evaluations conducted to obtain
metrics are provided, along with the results derived. Finally,
the article offers final conclusions and considerations for
future works in ‘‘Conclusions and Outlook.’’

II. RELATED WORK
This section provides a literature review concerning previous
works where blockchain serves as the foundation for
developing private payment systems across different types
of applications. Furthermore, the state of the art is explored
regarding the implementation of zero-knowledge proofs for
service providers seeking to safeguard the confidentiality of
their algorithms.

A. PRIVACY PRESERVING BLOCKCHAIN-BASED PAYMENT
SYSTEMS
Blockchain technology has brought significant advance-
ments to the field of electronic payment systems, enabling
secure, decentralized, and transparent transactions. However,
in this review, the intrinsic properties of blockchain are
set aside, and protocols built upon this technology that
enable privacy-preserving payment systems are explored.
This is why blockchain platforms that prioritize enhancing
the privacy and anonymity of native transactions are excluded
from this review.

First, a survey from Andola et al. [2] focuses on the
anonymity-provisioning mechanisms in blockchain-based e-
cash protocols. This article emphasizes the importance of
preserving the privacy of identities and transactions in public
blockchain frameworks. The paper identifies the limitations
of pseudonymity and proposes protocols for achieving
stronger anonymity. Additionally, it discusses threats and
attacks that aim to deanonymize e-cash protocols. Some of
the techniques assessed in the work by Andola et al. for
improving privacy in blockchain payment systems include the
Non-Interactive Zero-Knowledge proofs fromBlum et al. [3].
When it comes to blockchain-based payment systems,

the focus on privacy and anonymity of users is the main
objective. Addressing privacy concerns in decentralized
payment systems, Lin et al. [4] present a Decentralized
Conditional Anonymous Payment (DCAP) system. The
paper introduces a novel definition of DCAP and outlines
the security requirements. The system design incorporates a
Conditional Anonymous Payment (CAP) scheme, based on
a proposed signature of knowledge, which assumes concepts
from the cryptography of zero-knowledge proofs. Compar-
isons with other privacy-focused systems demonstrate the
utility and performance of the proposal. Then, building upon
this article as a starting point, Hatefi et al. [5] propose a
blockchain-based electronic payment scheme that prioritizes
the security and privacy of honest users. The scheme employs
fair Blind Digital Signatures, secret sharing, and pseudonyms
to achieve anonymity. Notably, this scheme allows tracking
and punishment of malicious users without relying on a

117972 VOLUME 12, 2024

A. Ballesteros-Rodríguez et al.: Enhancing Privacy and Integrity in Computing Services Provisioning

trusted server, including properties such as traceability,
conditional privacy, and revocation.

As has been evidenced, the research reviewed up to
this point shows a diverse range of solutions leveraging
zero-knowledge proofs to enhance the anonymity and privacy
protection of blockchain-based payment systems. Subse-
quently, we delve into a comprehensive analysis of previous
studies centered on the application of zero-knowledge proofs
in blockchain. Zero-knowledge proofs have emerged as
a fundamental cryptographic technique with significant
applications in the field of blockchain technology. These
mathematical constructions are considered highly valuable
in the context of blockchain, where privacy, security, and
efficiency are critical concerns.

As an operational payment system on blockchain that
employs zero-knowledge proofs, Boo et al. [6] introduces
a framework designed for resource-limited devices to
support multiple anonymous payments through a smart
contract-based ZKP protocol. The proposal addresses chal-
lenges associated with minimizing computational overhead
and achieving full anonymity. Moreover, it demands a
significantly lower block processing fee compared to a naive
ZKP-based scheme. Also using zk-SNARKs, Guo et al. [7]
proposes a zk-SNARKs-based anonymous payment channel,
which supports an unlimited number of off-chain payments
while preserving the privacy of participants. By employ-
ing zero-knowledge proofs and commitment schemes, the
proposed scheme achieves relational anonymity and amount
privacy for both on-chain and off-chain transactions. The
performance evaluation demonstrates the effectiveness of the
method compared to similar schemes.

B. APPLICABILITY OF BLOCKCHAIN-BASED PAYMENT
SOLUTIONS
Apart from payment systems that prioritize anonymization,
other works explore blockchain-based payment solutions
that operate effectively in resource-limited environments,
as well as those specifically designed to address constraints
associated with mobile devices.

Focusing on remote, rural regions with intermittent net-
work connectivity, Hu et al. [8] propose a blockchain-based
digital payment scheme. The system leverages the distributed
verification guarantees of the blockchain for transaction
verification and uses smart contracts for secure service
management. It utilizes probabilistic modeling to ensure
robust operation over unreliable networks. The study vali-
dates the feasibility of the proposed system through practical
implementations and simulations. In relation to the above
and given the emergence of these payment systems and the
current rise of financial technology applications enabling
easy payment transactions, the work of Xu et al. [9] addresses
the challenges of enabling cryptocurrency payments on
mobile devices, especially in developing countries with
limited financial infrastructure. It proposes two schemes for
cryptocurrency mobile payments, one involving a centralized
bank and the other being fully decentralized.

Building on the aforementioned, recent research [10],
[11] explores payment schemes for Electric Vehicles (EVs),
including blockchain-based systems for Vehicular Ad-hoc
Networks (VANETs) and privacy-preserving energy trading
schemes. These systems prioritize customer privacy by con-
cealing charging locations while also ensuring the security
and privacy of vehicle accounts.

C. APPLICATION OF ZERO-KNOWLEDGE PROOFS TO
PROPRIETARY ALGORITHMS
Regarding the integration of ZKP to ensure the trustwor-
thiness and privacy of systems founded on proprietary
algorithms, we will focus on the application of ZKP to
machine learning models that, for business reasons, should
remain private and cannot be disclosed to the general public
in most cases. Additionally, this focus is driven by the
significant surge in demand for those services due to their
widespread use, making the application of Zero-Knowledge
Machine Learning (ZKML) relevant.

There are studies that employ ZKML in various processes
related to machine learning models, and following that,
we refer to those that implement the use of ZKP in both infer-
ence and training processes. Lee et al. [12] present a verifiable
convolutional neural network (vCNN) framework based on
the zero-knowledge Succinct Non-Interactive Argument of
Knowledge construction, aiming to allow clients to verify the
correctness of Artificial Intelligence (AI) inference services
without revealing sensitive weight values or user input
data. This efficient vCNN approach significantly accelerates
the proving performance and achieves formal security
guarantees. Additionally, Liu et al. [13] introduce a ZKP
scheme for convolutional neural networks (zkCNN), enabling
the validation of machine learning predictions’ integrity
without compromising model information. ZkCNN achieves
outstanding efficiency demonstrating its applicability in
verifying CNNpredictions for largemodels like VGG16 [14].
Ultimately, Sun and Zhang [15] address the challenge of
ensuring verifiable computations in deep learning training
by proposing zero-knowledge Deep Learning (zkDL). The
proposed scheme ensures data and model parameter privacy
while reducing both proving time and proof sizes signifi-
cantly.

D. MOTIVATION AND CONTRIBUTION
The previous literature review shows that there is a growing
relationship between blockchain-based payment systems
and the utilization of zero-knowledge proofs. Nonetheless,
these approaches primarily include theoretical studies that,
although applicable, are not associated with any specific
service, as they focus on enhancing privacy through different
applications or protocols. Whereas some studies consider the
potential implementation of such proofs in payment systems,
it is not the prevailing approach, and they often neglect
associating payments with particular services, remaining
exclusively within the domain of theoretical investigations.

VOLUME 12, 2024 117973

A. Ballesteros-Rodríguez et al.: Enhancing Privacy and Integrity in Computing Services Provisioning

Furthermore, if we incorporate ZKML into this analysis,
it becomes apparent that the application of this novel method
does not extend beyond evaluating different validation
components of models, such as training or inference. As a
result, integration with payment systems or blockchain-based
applications has not been explored. None of the analyzed
studies contemplate the combination of zero-knowledge
proofs with blockchain technology for payments to be
released automatically after the cryptographic verification of
service provision. Consequently, we observe that an unmet
need arises from the widespread use of third-party services,
particularly proprietary machine learning models, where the
purpose is to verify the computed results prior to payment
release to the service provider, while keeping the client’s
identity separate from the service usage.

The public release and the expanding use of artificial
intelligence models, such as Gemini [16] or OpenAI
GPT [17], have highlighted the advantages that proprietary
models can offer, such as real-time data or customized dataset
access. These models are backed by significant infrastructure
investment, often exclusive to large corporations, making
replication in open-source models challenging. Additionally,
concerns arise when adapting datasets, as exporting the entire
model can potentially expose users’ personal information.
This is where our proposal gains value, as the use of
zero-knowledge proofs protects the model’s privacy, provid-
ing users with confidence in the authenticity of the results
obtained.

Based on the aforementioned, when employing black
box or proprietary algorithms, users deal with insecurity
concerning whether the outcomes are generated using the
correct version of the selected algorithm. However, even if
users have employed a specific version of the model, they are
not entirely confident that the generated responses are based
on the selected model, despite the existence of a contractual
and legal agreement between the client and the service
provider. In addition, subscriptionmodels are commonly used
for such services, allowing for automatic plan upgrades if a
pre-established threshold is exceeded. Payment is typically
scheduled based on batches of inferences, time intervals,
or token limits, especially for language models.

This work introduces a privacy-preserving framework
that allows verification of the correspondence between the
received sets of inferences and the expected ones, even
when received at different timestamps or corresponding
to different inference batches, as long as it is specified
before the client engages with the service. For the payment
process, we propose that the user makes a deposit through
a smart contract, thus avoiding revealing their identity. This
smart contract is responsible for releasing the payment once
verifying the zero-knowledge proofs associated with the
service based on a specific proprietary algorithm. The proofs,
directly associated with the inferences, are provided by the
vendor, in such a way that the contract will only release the
deposit if and only if all the required proofs by the client are
successfully verified. In this manner, the client is protected

against any malicious behavior from the provider, while the
provider, acting honestly, can be confident of receiving the
payment. It should be noted that the payment can be subject
to a set of inferences, a time interval, or any alternative criteria
determined by the vendor.

III. PRELIMINARIES
A. BLOCKCHAIN & SMART CONTRACTS
Blockchain is a distributed ledger technology that underlies
cryptocurrencies like Bitcoin [18] and provides a secure,
transparent, and tamper-resistant way to record transactions.
It operates as a decentralized and distributed ledger main-
tained by multiple nodes in a Peer-to-Peer (P2P) network
through a consensus protocol. A blockchain consists of a
chain of blocks, where each block contains validated transac-
tions and is linked to the previous block using cryptographic
techniques. This chaining creates an immutable record of
transactions, which are verified and validated. Once a block
is added to the chain, it becomes confirmed and cannot be
altered, ensuring the security and integrity of the data.

The decentralized nature of blockchain promotes trust in
the system, as the network is maintained by a distributed
set of nodes rather than relying on a central authority. Its
transparency enables participants to access stored informa-
tion, fostering openness and accountability. Moreover, the
implementation of cryptographic techniques ensures data
protection and enhances user anonymity.

A significant aspect of blockchain technologies is the
adoption of smart contracts, which are self-executing soft-
ware programs with predefined conditions and actions.
These contracts are stored on the blockchain and replicated
across all network nodes, enabling decentralized execution
and tamper-proof data storage. Smart contracts [19] were
conceptualized and have attracted significant interest since
their introduction. Widely recognized with the development
of Ethereum [20], smart contracts represent an innovative
approach to digital agreements.

Smart contracts are immutable and resilient against unau-
thorized alterations. Blockchain characteristics guarantee
that smart contracts operate in a trustless environment,
removing the need for intermediaries or central authorities.
In multiple industries, smart contracts offer numerous advan-
tages, enabling transparent, efficient, and secure execution
of agreements while minimizing the risk of fraud or
manipulation. By automating contract terms, transaction
costs and processing times are reduced, resulting in an overall
improvement in efficiency.

B. ZERO-KNOWLEDGE PROOFS: zk-SNARKs
1) ZERO-KNOWLEDGE PROOFS
A Zero-Knowledge Proof (ZKP) [21], [22] is a cryptographic
protocol in which the Prover works to convince the Verifier
that a specific statement is true or that certain information is
possessed, abstaining from disclosing the statement itself to
the Verifier. The main idea of this protocol is to prevent the

117974 VOLUME 12, 2024

A. Ballesteros-Rodríguez et al.: Enhancing Privacy and Integrity in Computing Services Provisioning

Verifier from acquiring any knowledge or insight regarding
the statement during the process. To achieve this, three
fundamental properties must be satisfied by any ZKP.

• Completeness: If a true input statement is sent by an
honest Prover, the honest Verifier, adhering correctly to
the protocol, will be convinced of the truthfulness of the
statement.

• Soundness: If the Prover attempts to deceive the Verifier
by submitting a false statement, the Verifier will be
convinced of the statement’s truth with negligible
probability.

• Zero-knowledge(ness): Regardless of whether the state-
ment sent by the Prover is true or false, the Verifier learns
nothing beyond the mere verification of the statement’s
truth.

In order to prevent the interactive communication between
the Prover and the Verifier, resulting in enhanced efficiency
and reduced computational costs, the work by [3] and [23]
addressed the possibility of removing the interaction between
the Prover and the Verifier using a short random string
previously shared, naming this new variant as Non-Interactive
Zero-Knowledge Proofs (NIZKPs). NIZKPs achieve the
same objective but with the additional advantage of requiring
a single round of communication, avoiding back-and-forth
interactions between the Prover and the Verifier. This
one-round interaction significantly reduces the computa-
tional overhead and enhances the efficiency of the proof
process. NIZKPs prove particularly beneficial in scenarios
where reducing the frequency of transactions and minimizing
interactions between involved parties are critical, aligning
seamlessly with the requirements of blockchain contexts.

2) zk-SNARKs
A more sophisticated method that inherits the definition of
ZKP emerged with the use of Zero-Knowledge Succinct
Non-Interactive Arguments of Knowledge (zk-SNARKs).
[24] came up with zk-SNARKs from the protocol described
by [25]. This advanced cryptographic technique enables
highly efficient and compact proofs, making it particularly
valuable in scenarios with limited computational resources
and storage constraints, such as blockchain. By employing
zk-SNARK proofs, it becomes possible to use ZKP without
requiring interactive communications, leading to even greater
computational efficiency and improved privacy protection.

Zk-SNARKs are characterized by their reduced proof size,
allowing the Prover to convincingly demonstrate the validity
of a statement to the Verifier using a single concise message.
This succinctness significantly reduces the communication
overhead, making this construction suitable for applications
where bandwidth or computational resources are limited.
Furthermore, zk-SNARKs have a constant verification cost,
meaning that the computational resources required to verify
a statement remain constant regardless of the statement’s
complexity or size. The non-interactive nature of zk-SNARKs
allows the Prover to undergo verification without requiring

additional interactions. Because of these properties, zk-
SNARKs are used in blockchain networks. Additionally, the
Verifier’s inability to infer any details from the proof ensures
privacy, even within a public blockchain ledger, highlighting
zk-SNARKs as a well-suited verification scheme for such
networks.

C. ZKML: ZERO-KNOWLEDGE MACHINE LEARNING
In a scenario where content generated by artificial intelli-
gence is becoming more prevalent, it is occasionally required
to verify the source of a specific content to determine
whether it has been generated by one model or another.
The integration of zero-knowledge cryptography presents a
highly plausible alternative for assessing the source of such
content. The purpose is not only to determine whether the
content has been generated from one model or another, but
also to assert which version of the same model has generated
the content. Furthermore, the majority of these models are
proprietary, implying that their development depends on their
own implementation to provide a variety of services.

Zero-Knowledge Machine Learning (ZKML) allows not
only the concealment of parts of the model’s input but also
parts of the model itself, as shown in the works from [13]
and [26]. This has diverse applications depending on the
use case. For instance, applying a proprietary algorithm to
a client’s data could enable users to determine if their data
has been processed using a specific model or not. Besides,
this implies that the use of ZKML involves generating proofs
for the model’s inference process rather than for its training
phase.

Although zk-SNARKs are a promising technique for
ZKML [12], [27], it should be noted that their implementation
and scalability for large-scale models still poses significant
computational cost challenges due to arithmetic circuits
transformations and the associated proof generation process.

The utilization of verifiable proofs, specifically zk-
SNARKs, provides a robust mechanism to demonstrate the
correctness of computations. Within the domain of machine
learning, these proofs assume a critical role in verifying the
correctness of model inferences or validating that a specific
model produced a particular output based on a given input.
This property is particularly valuable in scenarios where trust
and privacy are paramount, as the Prover can demonstrate
the validity of a computation without revealing sensitive
details of the inputs or the model. By leveraging zero-
knowledge techniques, these proofs assure that the Prover
has the required information to verify the computation’s
correctness without disclosing any additional information to
the Verifier.

IV. MODEL OVERVIEW
A. PRELIMINARY ASSUMPTIONS
In this section, the preliminary assumptions are introduced,
which serve as the foundation for understanding our
approach. These assumptions establish the conceptual frame-

VOLUME 12, 2024 117975

A. Ballesteros-Rodríguez et al.: Enhancing Privacy and Integrity in Computing Services Provisioning

work needed for a comprehensive grasp of the methodologies
and insights presented. The decisions made at this stage have
a significant impact on the interpretation and validity of the
results.

The outset of our research is defined by a client
who intends to engage a service whose implementation
is unknown, albeit being aware that it is offered by a
specific vendor. Indeed, the service has specific features and
outcomes, which is why the client considers it as a potential
choice to engage with. The following includes assumptions
and trust requirements.

• The client is aware of a service provider that claims to
offer a specific service based on a proprietary algorithm.

• There needs to be public evidence of the service being
rendered and payment being successfully processed.

• The client trusts the service provider because it is a
legally recognized entity exposed to liabilities.

• The service contracting process, as well as the exchange
of data by the client, is assumed to allow the service
provider to effectively execute the contracted algorithm.

a: PARTICIPATING ENTITIES
In the proposed approach, three entities are expected to
interact within the framework: clients, a single service
provider, and the smart contract.

• Clients (Uc):We refer to clients in the plural form since
the framework allows multiple users to make payments
and request validations from the contracted algorithm.

• Service Provider (Us): We specifically refer to a single
service provider, as the smart contract is designed to ver-
ify zero-knowledge proofs for an exclusive proprietary
algorithm.

• Smart Contract (SC): The proposed system includes
two smart contracts. The first one incorporates the
verification logic for a particular proprietary algorithm
using zk-SNARK proofs, whereas the second inherits
this logic to enable verification combined with the
payment mechanism, allowing users to pay for the
service. Hence, clients and the service provider will only
need to interact through this latter smart contract, which
is the one we refer to in the following explanations.

b: PAYMENTS VIA BLOCKCHAIN
As the primary technology to carry out our proposal,
we propose the usage of blockchain, leveraging its privacy
and security features to ensure the confidentiality of client
identities. Specifically, a blockchain capable of supporting
the execution of arbitrary code through smart contracts.
In this instance, we opt for an Ethereum-based network due
to its widespread adoption as a smart contract platform.
Blockchain technology facilitates payments between services
or individuals, with multiple payment system models sup-
ported by smart contracts as intermediaries.

The client Uc making the payment, i.e., the deposit D
through the smart contract SC , does not need to disclose any

identity-related information, as only their blockchain address
(addrc) is used, represented as deposit(addrUc ,D).

Our research proposes carrying out payments through
an intermediary responsible for coordinating clients and
a service provider. This intermediary takes the form of
a smart contract that receives deposits from clients and
releases payments to the service provider as long as the
verification through zero-knowledge proofs of the provided
service is completed. Formally, for each client Ci, the
deposit Di is made to the smart contract SC , represented
as: fdeposit(addrUci ,Di). The smart contract then verifies the
service provided by the service provider Us using zero-
knowledge proofs: fZKPverify(serviceUs). Upon successful
verification, the smart contract releases the payment to
the service provider: freleasePayment(addrUs ,Di). Thus, the
smart contract not only serves as a mere intermediary for
executing payments but also functions as a service verifier.
To evaluate the performance of the framework, an Ethereum-
based network is employed to deploy the smart contract.
Although interactions within the contract are discussed, the
deployment process is not illustrated in this work.

c: PROPRIETARY ALGORITHM
In order to operate as a verifier, the smart contract must be
linked to a specific service. In this context, we can define
a service as the task undertaken by a company for a client
based on a black box algorithm, which is developed by the
same company and whose internal implementation cannot be
disclosed or made public. To achieve this connection between
the smart contract and the proprietary algorithm without
disclosing sensitive information about it, ZKML is employed.
Mathematically, fθ (XUc) → y represent the proprietary
algorithm, where θ denotes the internal parameters, XUc the
user input data, and y the outputs.

Although this study primarily focuses on verifying
results produced by undisclosed proprietary algorithms, the
proposed framework undergoes testing and analysis using
machine learning models. Specifically, different instances of
Convolutional Neural Networks (CNNs) serve as examples
of such algorithms. These CNNs are based on models
implemented using the Keras [28] library, trained, and
evaluated using the MNIST dataset [29] —a widely-used
collection of handwritten digit images. Consequently, the
outputs produced by these CNNs must align with the model
contracted by the client, thus requiring the verification
process by the smart contract through zero-knowledge proofs
associated with the inferences and CNNs provided by the
service provider.

For this research, the following CNNs have been imple-
mented:
• Custom CNN 1: Neural network designed to process
images with dimensions of 28 × 28 pixels and a
single channel as input. It applies a convolutional layer
with one filter and a kernel size of 3 × 3 to extract
features from the images. Then, it applies a rectified
linear unit activation function to introduce non-linearity.

117976 VOLUME 12, 2024

A. Ballesteros-Rodríguez et al.: Enhancing Privacy and Integrity in Computing Services Provisioning

FIGURE 2. Framework processes and workflow. The processes of hiring a service, sending data, receiving results, and other potential
procedures related to the service provision itself are omitted in this diagram. Numbers represent the sequence in which processes and
actions must be executed.

The output is then flattened into a one-dimensional
vector and passed through a fully connected layer
with 10 neurons and no activation function. Finally,
a softmax layer is applied to generate probability scores
for classification. This CNN is trained and evaluated
using the MNIST dataset.

• Custom CNN 2: Neural network created for analyzing
28 × 28 pixel images with a single channel as input.
It first normalizes the input values, then applies a series
of convolutional layers to extract features from the
images. After each convolutional layer, it performs a
non-linear transformation on the output. The network
also includes average pooling layers to reduce the
dimensions of the feature maps. Finally, it flattens the
output and passes it through a fully connected layer
with 10 neurons and no activation function, followed
by a softmax layer to generate probability scores for
classification. Although this neural network is complex
in terms of structure, it has fewer parameters due to the
presence of multiple convolutional and dimensionality
reduction layers. This CNN is trained and evaluated
using the MNIST dataset.

• Custom CNN 3: Neural network designed to take a
dataset with three features as input, process it through
a hidden layer with two neurons using an activation
function, and then generate a single output. This CNN
does not involve image processing and instead relies on
a dataset with three randomly generated features for its
input. Compared to the previous ones, this CNN is the
simplest of all evaluated in this research.

d: ALGORITHM VERIFICATION
The role of the verifier, as explained, is embedded in the
smart contract deployed on the blockchain. The verification

process occurs via blockchain, ensuring both transparency
and accountability. The use of zero-knowledge proofs (π),
generated for the statement that fθ (XUc) → y, for verifying
proprietary algorithms ensures that critical components of
the model (θ) or sensitive information about it remain
undisclosed. Simultaneously, it enables verification that the
computations have originated from a specific algorithm (fθ).
The smart contract SC is linked to fθ such that fZKPverify(π).
Moreover, this guarantees that no client information is
disclosed by the service provider. Taking into account
the properties described above, zk-SNARKs are used for
algorithm verification.

Thus, the idea is to assert that a result was derived from
the model’s execution without revealing the details of the
inference process. This is accomplished due to the fact that
the smart contract is configured to verify computations from a
specific algorithm, such as one of the described custom CNN
models. In the following sections, we will explain how the
contract is developed to be able to process proofs of the CNNs
built for the evaluation of the framework.

e: SCOPE AND DELIMITATIONS
We acknowledge the limitations of our proposal with respect
to the smart contract, such as the smart contract’s capability
to only process zero-knowledge proofs concerning a single
proprietary algorithm. Moreover, the proprietary algorithm
to be verified by the smart contract must be defined in
advance, as there exists a set of procedures associated
with the processing of zero-knowledge proofs that influence
the contract implementation. Using a single algorithm
reduces deployment costs, enables modular implementation,
facilitates external audits of the proprietary algorithm and
zk-SNARK scheme used, and, in case of an error, only one
contract would need to be redeployed.

VOLUME 12, 2024 117977

A. Ballesteros-Rodríguez et al.: Enhancing Privacy and Integrity in Computing Services Provisioning

Taking into consideration the limitations, our research
aims not only to enhance users’ privacy while conducting
payments through service engagements but also to ensure that
the rendered service corresponds to the contracted one, which
is backed by technical evidence beyond the legal contractual
terms agreed between the client and the trusted vendor.

Furthermore, as shown in Fig. 2, the proposed framework
demands a minimal number of interactions for both the
client and the provider, removing the requirement of direct
interaction between the two parties. It should be noted that
this research focuses on the verification and payment aspects
of specific service provisions, excluding any direct commu-
nication between the client and the provider. Consequently,
this omits the provider’s result communication to the client
and the service contracting process between the two entities.

FIGURE 3. Steps involved in generating the verifier smart contract
associated with a proprietary machine learning algorithm and a
zk-SNARK construction.

Next section covers the essential aspects of the imple-
mentation of the mechanism for verifying the computations
produced by a proprietary algorithm through a smart contract
that validates zero-knowledge proofs associated with a
proprietary model. At first, given that this research is divided
into two clearly delineated processes, in the next section,
we present the approach of each one separately. The first part
is related to the verification of the provided service, whereas
the second focuses on the payment mechanism.

We suggest the deployment of the smarts contracts on a
public blockchain for higher transparency and accountability,
although the framework also supports the implementation of
private blockchains. Furthermore, the interactions within the
smart contract will be described, along with the logic behind
them and the responsible parties for their execution on each
step.

B. ALGORITHM VERIFICATION MECHANISM
This section covers all aspects related to the generation of a
verifier smart contract for a proprietary algorithm. The visual
representation of the sequential steps to be carried out by
the service provider, outlining the complete procedure in a
general context, can be observed in Fig. 3.

First, and as the foundation of the entire solution, the
algorithm that requires verification of the results generated
by the service provider must be selected. We do not delve
into the criteria for selecting one algorithm over another; it
must simply be understood that, once chosen, it cannot be
modified or updated, as the verification process will be tied
to the model. In this research, the previously defined custom
CNN models are opted for.

As the starting point of the proving system, to set up
the initial security parameters of the zk-SNARK scheme,
a collaborative protocol known as the Ceremony Process
is conducted. This process enhances the reliability and
security of the scheme by preventing any single entity from
controlling all the essential information required for its
operation, including the generation of false proofs as valid.
In this proposal, where the responsibility of generating both
the proving system and the proofs lies with the service
provider, to avoid performing the ceremony process, the
vendor also has the option to download a set of random
values and secrets generated previously from a ceremony
process known as Powers of Tau, which is widely employed
in cryptographic protocols [30]. This ceremony process
results in the generation of the global parameters Z from a
security parameter λ, such that fsetup(λ) → Z . These global
parameters Z are described as three bilinear groups G2, G1,
and GT , each of prime order p, along with their respective
generators g1 and g2, as well as an efficiently computable
bilinear pairing G1 ×G2→ GT .
As mentioned in previous sections, the algorithm exe-

cution verification is conducted through zero-knowledge
proofs, specifically employing zk-SNARKs. However, for
zk-SNARKs to effectively demonstrate computational state-
ments or assertions, it is essential to ensure that these
statements are formatted correctly. Particularly, zk-SNARKs
require that the computational problem to be demonstrated
by modeling it through the utilization of an arithmetic circuit.
An arithmetic circuit refers to a mathematical representation
of a series of arithmetic operations used to model and express
a statement that is intended to be demonstrated without
revealing any underlying information. The circuit can be
represented as follows.

C(XUc , θ)→ y =

{
true if y← fθ (XUc)
false if y ↚ fθ ′ (X

′
Uc)

following the notation presented earlier. Due to the
complexity of the custom CNN models and the extent of the
resulting arithmetic circuits, a representation of these is not
provided. However, the code for each model can be consulted
in its respective repository [31].

117978 VOLUME 12, 2024

A. Ballesteros-Rodríguez et al.: Enhancing Privacy and Integrity in Computing Services Provisioning

Once the proprietary algorithm is encoded as an arithmetic
circuit, the specific construction of the zk-SNARK proof to
be employed must be selected. There are several existing
zk-SNARK constructions, nevertheless, as our proposal is
designed for a distributed environment such as blockchain,
efficiency and performance must be prioritized. Furthermore,
the consideration of proof sizes should be taken into account,
as this could also have economic implications for the usage
of the developed framework. The following three zk-SNARK
constructions are considered: Groth16 [32], Plonk [33], and
Fflonk [34]. The selection of these constructions is based
on their positive performance and efficiency on blockchain
architectures [1].

TABLE 1. R1CS circuit information for different Convolutional Neural
Networks created as examples for the evaluation of the framework. Wires
are variables or intermediate elements employed for calculations within
the circuit, whereas constraints are mathematical expressions denoting
relationships between variables in the circuit.

After the arithmetic circuit C is implemented and the
ceremony process has been completed, the generation of
the circuit’s R1CS takes place through circuit compilation.
The Rank-1 Constraint System (R1CS) [35] is an algebraic
approach to systems of equations and constraints used to
describe arithmetic circuits that represent computational
problems. The equations characterizing the circuit C are
referred to as constraints, conceptualized as the conditions
that signals within the circuit must adhere to. Essentially,
ZKP enables the demonstration of circuit satisfiability
C(XUc , θ)→ true; in other words, this implies the ability to
prove knowledge of a group of values θ that fulfill the circuit’s
conditions, effectively demonstrating an understanding of a
solution to the R1CS. This set of values is referred to as the
witness, which is used for the proof construction and will be
discussed subsequently.

Table 1 is intended to clarify the conceptual understanding
of circuit design providing R1CS information for the custom
CNN models simulating proprietary algorithms composed of
multiple layers, which are utilized for subsequent evaluations
of the framework. These circuits present numerous private
inputs that generate a series of outputs through thousands
of wires and constraints. There are no public inputs in these
circuits to prevent the disclosure of any parameters associated
with the proprietary algorithms. Furthermore, as shown in
Table 2, as the number of parameters increases, resulting
in a more complex circuit, there is a corresponding rise in
the count of inputs, wires, and constraints in the circuits of
Table 1.
The next step involves generating a zero-knowledge key

that includes both the proving key and the verification key,

TABLE 2. Layers employed in custom Convolutional Neural Network
models to evaluate the framework. The Layer Type indicates the type of
layer used. Output Shape displays the dimension of the output data after
passing through each layer, helping to understand how the data is
transformed throughout the network. The None dimension means that it
can be any scalar number, allowing this model to be used to infer on an
input of arbitrary length. The Parameter Number specifies the number of
trainable parameters in each layer, providing insights into the network’s
complexity and learning capacity.

ZKk = {Pk ,Vk}. It should be noted that a zero-knowledge
key is tied to a specific arithmetic circuit C , i.e., to a specific
algorithm fθ , as well as to a particular zk-SNARK scheme.
Thus, based on the previously defined global parameters
Z and the arithmetic circuit C corresponding to a specific
custom CNN model and to a zk-SNARK construction,
we have fZKk (C,Z) → ZKk . Anyone who has access to
the proving key Pk has the ability to generate a proof π

using the witness w, a set of secret parameters that the prover
demonstrates knowledge of, such that fproof(Pk ,w) → π .
On the other hand, to perform the verification algorithm,
the proof π , the verification key Vk , and the output y
are used, resulting in r ∈ [0, 1] through the function
fverifyProof(Vk , y, π). The value r serves as an indicator of the
validity of the proof π , where r = 1 denotes a valid proof,
while r = 0 signifies an invalid one. As clarification, the
verification key is embedded in the verifier smart contract
generated at the end of this process.

From this zero-knowledge key, the attached verifier smart
contract for a specific proprietary model and a zk-SNARK
scheme is generated. Also, considering that the employed
zk-SNARK construction may vary, the verifier contract
will therefore have a different implementation for each
construction, but all adhere to the same basic structure. This
structure includes variable declarations that encompass the
verification key, as well as a verifyProof function that accepts
the proof and its corresponding public signals as parameters.
Given the proposed framework, it is important to clarify that
the service provider is responsible for generating the verifier
contract and the proofs. Consequently, both the proving and
verification keys will be held by the service provider.

C. PAYMENT AND PROOF SELECTION MECHANISM
In order to complete the proposed framework, the payment
mechanism’s logic is integrated with the verifier described

VOLUME 12, 2024 117979

A. Ballesteros-Rodríguez et al.: Enhancing Privacy and Integrity in Computing Services Provisioning

FIGURE 4. Steps involved in the payment process. The service provider initiates the payment request, and upon successful verification of the
service, the smart contract releases the funds.

above. Specifically, the function responsible for verifying
zero-knowledge proofs from the proprietary algorithm is
imported into a new smart contract where all the logic
associated with the payment mechanism is implemented.

Regardless of the payment modality, each computation
result provided to the client should be subject to verification.
However, it may happen that the requested set of inferences
is excessively extensive, making it impractical to verify the
result of all of them, both in terms of effort and time. That
is why a proof selection mechanism is proposed, in which
the client selects a minimum number of zero-knowledge
proofs required to consider the service provided by the vendor
as valid. Based on this quantity, the smart contract uses a
pseudo-random algorithm to select the proofs that must be
verified to validate the rendered service in order to release the
payment. The payment process involves the following steps:

• Initially, the client is required to deposit funds (DUc) into
the smart contract equivalent to the service cost. It falls
upon the service provider to determine the amount that
the client must pay based on the number of proofs
required to verify the supplied service.

• Let P = {π1, π2, . . . , πk} be the set of all proofs
generated by the service provider, where k is the total
number of proofs associated with the provision of the
service. The client selects a minimum number m of
zero-knowledge proofs required to consider the service
as valid. The smart contract uses a pseudo-random
function fselectProofs(P,m) to select a subset S ⊂ P of
size m.

• Once the proofs have been selected, to complete the
payment process, the service provider needs to submit
the proofs required by the smart contract for verification.
Any submitted proof that does not match the required
ones is automatically rejected by the smart contract.
Also, the same proof cannot undergo the verification
process twice. Letπi represent the i-th proof in the subset
S, then:

∀πi ∈ S : fverify(πi) = 1

H⇒ freleasePayment(addrUs ,DUc)

• After all the required proofs are verified by the smart
contract, the service provider is able to request the

release of the deposit from the customer. If all the
requested proofs are verified successfully, then the smart
contract can release the deposit from the client upon
request. Otherwise, the deposit will remain locked in the
smart contract.

This procedure, illustrated in Fig. 4, entails the creation of
a different smart contract as part of the setup phase, which
combines the payment functionality with the verification
mechanism imported from the verifier contract.

1) PROOF SELECTION
To prevent the submission of all proofs P = {π1, π2, . . . , πk}

generated from the service provider’s computations to the
smart contract, a hash from each one h(πi) is submit-
ted instead. Therefore, when the proofs are subsequently
requested, the smart contract verifies not only the match
between the provided proof hash and the stored proof hash,
but also the validity of the proof itself.

The proposed pseudo-randomization process for proof
selection is detailed below. It is important to emphasize that
generating random values in a deterministic environment like
blockchain poses significant security risks without relying
on second-layer applications or oracles, which are off-chain
entities operating independently from the blockchain net-
work, providing external data and functionality to smart
contracts on the blockchain. This is because blockchains
are inherently transparent, making it possible for malicious
actors to predict or manipulate random number generation,
thus compromising the integrity and fairness of processes
reliant on these values. However, we have chosen an on-
chain implementation, which means that the entire process
operates directly within the blockchain network, ensuring
that all transactions are recorded on it. This approach
ensures that the generation of pseudo-random values occurs
within the blockchain without impacting both client deposits
and associated variables within the smart contract, thus
safeguarding the integrity of the information stored in it.

The smart contract’s proof selection algorithm is primarily
based on two parameters supplied by the client: the minimum
required number of proofs (Preq) and a sealed seed (Ss), along
with the number of the blockchain block (blocknumber) in
which the deposit D is made. The sealed seed refers to a

117980 VOLUME 12, 2024

A. Ballesteros-Rodríguez et al.: Enhancing Privacy and Integrity in Computing Services Provisioning

Algorithm 1 Proof Selection Algorithm
Input: bytes32: seed ▷ Input parameter: seed of type bytes32
Require: sha256(msg.sender, seed) == sealedSeed ▷ Function execution condition
1: randomHash← hash(encode(seed, blockHash)) ▷ Serialization and encoding
2: N← proofs.length ▷ N representing the total number of proof hashes
3: pseudoRandomIndex← randomHash % N ▷Modulo operation between randomHash and N
4: for i = 0 ... proofsRequired do ▷ Loop iterating from 0 up to proofsRequired
5: index← (pseudoRandomIndex + i) % N ▷ Array bound checking for circular array iteration
6: evaluableProofs.push(index) ▷ Adding the index to the list of evaluableProofs
7: end for

FIGURE 5. Proof selection algorithm. The indexes of the (3) required proofs, starting with the proof hash corresponding to the
pseudo-random index (8), followed by the hashes corresponding to subsequent indexes which are 9 and 0, circularly, are copied from the
total set of proof hashes to the set of proofs to be verified.

value provided by the user, obtained by off-chain hashing
the combination of their wallet W with a randomly chosen
32-byte value selected by the client, also known as the seed
s. Thus, Ss = h(W , s). The seed parameter is hashed upon
submission to mitigate the risk of malicious behavior by
the service provider, such as potential manipulation of the
random number generation process.

Once the service provider has uploaded all the hashes
Hπ = {h(π1), h(π2), . . . , h(πk)} corresponding to the
generated proofs, the contract becomes aware of the total
number of proofs available from the service provider for a
specific client Uc. From this point on, client interaction is
required to reveal the seed s so that the smart contract can
perform the selection of the zero-knowledge proofs that the
service provider must submit. Therefore, the smart contract
selects from the entire range of stored proof hashes in a
pseudo-random manner. Thus, neither the client nor the
provider can know in advance which specific proofs will
be selected for the verification process, thereby preventing
malicious behavior by the provider.

By providing the seed s, the smart contract confirms that
it corresponds to the sealed seed Ss submitted earlier, such
that h(W , s) ≡ Ss. Then, a pseudo-random index r ∈
{0, 1, . . . , k − 1} is obtained, which indicates from which
index in the array of proof hashes uploaded by the vendor the
smart contract should begin selecting the proofs. Thus, Psel =
{h(πr), h(πr+1), . . . , h(πr+Preq−1)}. The steps involved in the

proof selection mechanism executed by the smart contract are
outlined in Algorithm 1 to ease comprehension.

The process it undergoes is as follows:
• Input: The client passes the seed as a 32-byte type
parameter to the function.

• Require: The function verifies if the stored sealed seed
corresponds to the SHA-256 hash of the serialized
combination of the seed and the client’s wallet.

• Line 1: The blockhash, referring to the hash of the
block where the client made the deposit, is serialized
and encoded together with the seed. Subsequently,
the SHA-256 hash is computed for the serialized and
encoded result. Then, the preceding result is converted
into decimal format, specifically, as a 256-bit unsigned
integer.

• Line 2: The variable N is declared as the length of
the array containing the proof hashes presented by the
service provider.

• Line 3: A modular arithmetic operation is performed
between the previously obtained random hash and the
total count of proof hashes submitted by the service
provider. Then, the result is cast to an 8-bit unsigned
integer. This measure is taken to prevent the ranges of
proofs to be verified from becoming excessively large
and overloading the smart contract.

• Lines 4 - 7: Finally, the function iterates over the number
of proofs required by the user. When the proof hash

VOLUME 12, 2024 117981

A. Ballesteros-Rodríguez et al.: Enhancing Privacy and Integrity in Computing Services Provisioning

stored at the previously obtained pseudo-random index
is found, its index is added to an array of evaluable
proofs. If more than one proof is required, the others will
be those corresponding to the immediately subsequent
indices to the one calculated before, and so on until
reaching the total requested number of proofs.

For a better understanding of the above, Fig. 5 serves as
clarification.

Using this pseudo-random index, which is the result of all
previous operations, and the number of proofs to be verified,
the smart contract determines which zero-knowledge proofs
must be submitted for verification. This is done by counting
from the proof hash corresponding to the pseudo-random
index within the circular array of proof hashes to the
proof hash whose index corresponds to the sum of the
pseudo-random index and the number of proofs required by
the client to be verified.

D. AGENT ACTIONS WITHIN THE FRAMEWORK
This section describes the set of actions executed by the client
and the service provider through the smart contract after its
deployment. Taking into consideration the importance of the
proof generation process within the scope of this research,
it is described in its own section, whereas the remaining
framework interactions are explained in a unified section.

1) PROOF GENERATION
Once the framework is set up, the main task for the service
provider (Us) is to generate the zk-SNARK proofs (π)
concerning the job carried out for a particular clientUc. These
proofs allow determiningwhether outcomes (y) are consistent
with the rendered service, thereby ensuring the integrity and
transparency of the system. Fig. 6 presents a step-by-step
progression detailing the proof generation process, as well as
the required files for its creation.

In order for the proposal to cover a general procedure that
can be adopted by different schemes, it is worth noting that
the processes outlined for both verifier generation and proof
construction, as illustrated in Fig. 3 and Fig. 6, respectively,
are agnostic to the specific zk-SNARK scheme. For the
analysis of results and their accurate evaluation, as mentioned
earlier, the zk-SNARK constructions Groth16, Plonk, and
Fflonk are employed.

Similar to other components within the established frame-
work, zk-SNARK proofs are also generated by the service
provider. It is essential to point out that, as the algorithms are
proprietary, only the vendor is aware of their implementation.
This is why the provider, who acts as the prover, should
always know all the inputs of the circuit, which are {XUc , θ}.
The generation of proofs is based on the knowledge of
the circuit inputs that serve as a solution to the proposed
computational problem.

Keeping the above in mind, the process of generating
a zk-SNARK proof associated with a proprietary machine
learning model, not only requires understanding the circuit

FIGURE 6. Steps involved in generating the zk-SNARK proof to be
evaluated by the escrow and proprietary algorithm zero-knowledge
verifier.

inputs to be processed, but also the weights and biases,
which are considered critical parameters of such algorithms.
This does not necessarily imply that these elements are
always essential. There may be layers within a CNN model
that only require inputs without biases or weights, such as
normalization, pooling, or flatten layers, as shown in Table 2.
Following the identification of these elements, it should be
emphasized that, as part of the circuit input set, both public
inputs and private inputs may exist. Although the former can
be disclosed, the latter are designed to remain undisclosed
and not deduced from the R1CS. In this scenario, given
that the inputs represent values pertinent to the model’s
implementation, it is imperative to keep them private to avoid
public disclosure.

From these inputs, calculations are performed for both
intermediate and output signals, effectively fulfilling the
required signals that satisfy the arithmetic circuit. This
process is equivalent to acknowledging a solution to the
R1CS. The set of all signals that satisfy the constraints of
the circuit is known as the witness, which is w = {XUc , θ}.
Zk-SNARK proofs enable computations on circuits without
disclosing any information about the involved signals, except
for the public inputs and outputs. Consequently, it is
possible to demonstrate knowledge of private inputs without
disclosing their values, ensuring that the circuit’s conditions
are met, such that C(XUc , θ) → True. A valid witness
must match all the circuit constraints without disclosing any
inputs other than those publicly known. On the contrary,
an invalid witness fails to meet the circuit’s constraints, where
C(X ′Uc , θ

′)→ False.
To calculate the proofπ , both thewitnessw and the specific

proving key Pk , generated during the verifier setup, are

117982 VOLUME 12, 2024

A. Ballesteros-Rodríguez et al.: Enhancing Privacy and Integrity in Computing Services Provisioning

used. Although the private inputs are not explicitly included
in the proof, their information is indirectly integrated
into the proof parameters, enabling the verification of the
computation performed by the prover without revealing the
underlying values. This procedure results in the creation of
the proof itself, such that π = fproof(Pk , {XUc , θ}). In the
specific context of this research, as depicted in Table 1,
the circuits have a fixed number of outputs and lack any
public inputs. Consequently, the outputs y constitute the only
parameters presented alongside the proof π in the verification
process, that is, fverifyProof(Vk , y, π). A valid proof not only
demonstrates the knowledge of a set of signals that fulfill the
circuit constraints but also verifies the consistency between
the public inputs and outputs presented alongside the proof
and those used to generate it.

2) FRAMEWORK INTERACTIONS
Having comprehensively outlined the foundational elements
of the framework and its setup, this section explores the
interactions between the client Uc and the service provider
Us through the developed escrow and verifier smart contract
SC . Additionally, the specific procedures carried out by the
smart contract are detailed below.

Initially, we propose maintaining the conventional
approach where users obtain services from service providers,
accessing them through their respective websites or plat-
forms. However, in this study we do not cover the mech-
anisms governing client-provider interactions for service
delivery; rather, we focus on the payment process and the
subsequent service verification. Thus, the only client-related
information accessible to the vendor is the address addrUc
used by the client to make the deposit DUc . Furthermore, the
submission and presentation of computations stemming from
service provision to clients lie outside the scope of this paper.

For ease of readability, Table 3 presents the notations
used in the proposed framework, i.e., in the smart contract.
Besides, Algorithm 2 displays the state variables used within
the smart contract, including the smart contract incorporating
the logic for verifying proofs associated with a custom CNN
model and a specific zk-SNARK construction. Additionally,
it includes the struct containing information related to the
proofs, the minimum number of proofs the service provider
must submit, and mappings to associate both the proofs and
balances with clients.

Algorithm 3 and Algorithm 4 describe the possible
actions within the smart contract, as well as the required
parameters. For brevity, the getter functions have been
omitted. As previously discussed, the smart contract acts
as an intermediary, serving the dual role of an escrow
mechanism and a proof verifier facilitated by the service
provider regarding the proprietary algorithm. Although the
current implementation of the contract supports multiple
payments linked to a single proprietary algorithm owned by
the supplier, thus enabling several clients to engage with
a specific algorithm, this description focuses only on the
interaction with a single client.

TABLE 3. Notations within the proposed system for the smart contract.

Algorithm 2 Escrow ZKML Verifier State Variables
1: zkSNARKVerifier ▷ zkSNARK Verifier Contract
2: Struct serviceVerification: ▷ Struct
3: sealedSeed; ▷ bytes32
4: storedBlockNumber; ▷ uint256
5: proofs; ▷ array of bytes32
6: evaluableProofs; ▷ array of uint256
7: proofsRequired; ▷ uint256
8: proofExistence; ▷ mapping(bytes32 => bool)
9: proofToEval; ▷ mapping(bytes32 => bool)

10: totalProofs; ▷ uint256
11: clientServices; ▷ mapping(address => proof_data)
12: balanceOf; ▷ mapping(address => uint256)

It is important to highlight that the proposed solution does
not account for adversarial scenarios, such as instances where
the service provider declines to submit proofs or uploads a
quantity of proof hashes below the specified amount. Given
the assumption that the vendor is a trusted entity, the smart
contract lacks mechanisms to address such situations. Also,
to clarify the interactions outlined in the proposed framework,
Fig. 7 displays a timeline of the actions performed among the
main components of the model.

In order to validate the service provided by the vendor and
subsequently release the payment, the proposed framework
requires a set of inputs that must be attached to the smart

VOLUME 12, 2024 117983

A. Ballesteros-Rodríguez et al.: Enhancing Privacy and Integrity in Computing Services Provisioning

FIGURE 7. Agents’ Interactions within the Escrow and Verifier Smart Contract. The diagram excludes the processes of hiring a service and
data sharing for the provision of the service between the client and the service provider, as these are beyond the scope of this study.

Algorithm 3 Escrow ZKML Verifier Functions (Client)
1: function deposit(_sealedSeed, _proofsRequired)
2: require(balanceOf[msg.sender] == 0);
3: require(msg.value > 0);
4: clientServices[msg.sender]← serviceVerification {
5: sealedSeed: _sealedSeed,
6: storedBlockNumber: blocknumber + 1,
7: proofsRequired: _proofsRequired
8: }
9: balanceOf[msg.sender]← msg.value;

10: end function
11:

12: function selectProofs(seed)
13: require(len(proofs[]clientAddr) == totalProofs);
14: require(len(evaluableProofs[]clientAddr) == 0);
15: require(storedBlockNumberclientAddr < blocknumber);
16: proofSelectionAlgorithm(seed); ▷ See Algorithm 1
17: return true;
18: end function

contract during the interactions, leading to the recording of
transactions on the blockchain.

In conjunction with the requirement of depositing an asset
with a predetermined value on the blockchain, the client
must also specify the quantity of proofs (Preq) that the smart
contract must verify for the service to be considered valid.
Additionally, a sealed seed Ss from the client, which will
later be disclosed for the proof selection algorithm, must be
attached. The depositDUc is a sum set by the service provider
and, as outlined in the proposal, represents a specific quantity
of cryptocurrency assets. These assets could be a native token
inherent to the blockchain used or a stablecoin, which is a
type of cryptocurrency designed to maintain a stable value
by pegging it to an external asset such as fiat currency or
commodities. Whereas the former option aligns with our
current proposal, the latter presents a practical alternative for
implementation.

From the provider’s perspective, there exists the possibility
of checking whether a deposit has been made specifically
for the proprietary service associated with the smart contract,
by invoking balanceOf(addrUc). This interaction incurs no
cost, and the only parameter the vendor needs to include
in the blockchain transaction is the client’s address. Prior
knowledge of this client address is beyond the scope
of this manuscript but may result from previous direct
communication between the client and the service provider.

117984 VOLUME 12, 2024

A. Ballesteros-Rodríguez et al.: Enhancing Privacy and Integrity in Computing Services Provisioning

Algorithm 4 Escrow ZKML Verifier Functions (Service
Provider)
1: function constructor(verifier)
2: proofVerifier← zkSNARKVerifier(verifier)
3: end function
4:

5: function addProofs(clientAddr, proofHashes[])
6: require(balanceOf[clientAddr] > 0);
7: for each hash h in proofHashes[] do
8: if proofExistence[h] == false then
9: proofs[].push(h)

10: proofExistence[h]← true
11: end if
12: end for
13: end function
14:

15: function verifyProof(clientAddr, proofHash, proof[],
publicSigals[])

16: require(proofExistence[proofHash] == true);
17: require(proofToEval[proofHash] == true);
18: require(proofsRequiredclientAddr > 0);
19: result← getProofHash(proof[], publicSigals[]);
20: require(result ≡ proofHash);
21: verify← call(
22: proofVerifier.verifyProof(proof[], publicSigals[]
23:);
24: require(verify);
25: proofToEval[proofHash]← false;
26: proofsRequiredclientAddr--;
27: return true
28: end function
29:

30: function withdraw(clientAddr, toAddr)
31: require(len(proofs[]clientAddr) == totalProofs);
32: require(proofsRequiredclientAddr == 0);
33: result← toAddr.transfer(balanceOf[clientAddr]);
34: require(result);
35: end function

It would also be possible to obtain this client address
by monitoring the deposits made on the smart contract.
Moreover, an increased requirement of proofs by the client
correlates with a greater number of blockchain transactions
that the service provider must submit, potentially impacting
the final service cost for the client. Hence, it is important to
consider that the provider may adjust the service price based
on the number of transactions to be recorded.

At this point, for each batch of inferences or results
generated by the vendor regarding the rendered ser-
vice, the proof hashes of all produced proofs Hπ =

{h(π1), h(π2), . . . , h(πk)} for each of the obtained results
must be submitted, along with the corresponding client
address addrUc , to the smart contract as evidence of job com-
pletion, such that addProofs(addrUc ,Hπ []). The set of proof
hashes is structured as an array, with each hash consisting

FIGURE 8. Proof hash generation process from the data of a zk-SNARK
proof. The proof and public signals are serialized, encoded, and then
hashed to produce the result. The process is agnostic to the zk-SNARK
construction used.

of 32 bytes. These hashes are computed by serializing and
encoding both the proof and the public signals, and then
hashing the result using the SHA-256 hash function. Thus,
h(πi) = HSHA256

(
encode(proofπi [], publicSignalsπi [])

)
.

Fig. 8 aims to provide clarity on this process. This
enables the provider to prove possession of proofs that
may be subsequently requested by the smart contract for
verification. Then, when the provider submits the proof,
the contract validates that the submitted proof corresponds
with the previously registered proof hash, verifying h(πi) ≡
checkProof(proofπi [], publicSignalsπi []). It is important to
note that the vendor is unaware of which proofs will be
requested, necessitating the recording of all these attestations
in the contract, even if some proofs may remain unrequested.

In the proposed implementation, the smart contract
includes an internal parameter specifying the minimum
number of proof hashes that the service provider must submit
(totalProofs), according to the service provided to a specific
client. This number, defined by the vendor, is public; hence,
the client must consider it when selecting the quantity of
required proofs Preq to ensure it is never exceeded, such
that Preq ≤ totalProofs. However, it is still possible for
the service provider to include additional proofs beyond the
specified amount of required proofs by the client, although
this scenario is considered unlikely due to the potential
increase in economic costs for the vendor.

Then, the client initiates a second interactionwith the smart
contract. During this interaction, the client discloses the seed
s parameter that enables the smart contract to pseudoran-
domly select the proofs that must be later submitted by the
provider for verification, known as PtoEval. This selection is
based on the mechanism presented in Algorithm 1, which
employs the seed provided by the client along with an

VOLUME 12, 2024 117985

A. Ballesteros-Rodríguez et al.: Enhancing Privacy and Integrity in Computing Services Provisioning

on-chain parameter from the blockchain network. This on-
chain parameter, known as the blockhash, represents the hash
of the blockwhere the deposit occurred, and it is concatenated
with the seed s to generate a new hash. This new hash is
then used to calculate a pseudo-random index that enables
the proof selection.

When proof selection concludes, the smart contract awaits
the submission of the corresponding proofs for verification.
Subsequently, the service provider must query the specific
proofs required for verification by specifying the client’s
address. Similar to the transaction designated to verify if a
specific client has made a deposit, this interaction also incurs
no economic cost to the service provider.

Once the provider identifies the proofs required for
verification, each proof must be submitted individually
for verification. This entails attaching not only the
proof itself but also the corresponding proof hash previ-
ously submitted to the contract, along with the client’s
address and the proof public signals. Thus, invoking
verifyProof(addrUc , h(πi), proofπi [], publicSignalsπi []).
Including the proof hash again serves to assert that
the provided proof matches the expected one, such that(
h(πi) ∈ PtoEval

)
∧

(
h(πi) ≡ checkProof(proofπi [],

publicSignalsπi [])
)
. It is important to note that the format

of the proof and the public signals varies depending on
the zk-SNARK construction used, resulting in different
sizes for the corresponding proof data submitted for
each scheme. Afterwards, the smart contract verifies each
proof as it is submitted by the provider, recording the
corresponding transaction on the blockchain. With each
successful verification, the number of proofs required by the
client diminishes until reaching zero, meaning that no further
proofs need verification and payment release can proceed.

Ultimately, when no further proofs require verification,
the service provider can initiate the payment release process.
This is done through a new interaction where the vendor
specifies the client’s address and the payment recipient.
Usually, the payment recipient will be the owner of the
algorithm, but the provider retains the ability to designate
an address (toAddr) of their choice as the recipient. If all
required proofs are successfully verified, the payment release
process is executed. However, if any proof fail verification,
the payment cannot be released.

∀πi ∈ PtoEval : fverify(πi) = 1

H⇒ freleasePayment(toAddr,DUc)

3) SECURITY CONSIDERATIONS AND LIMITATIONS
In this section, the constraints of the proposed framework are
discussed, covering both functional and security aspects.

To start with, the code of the developed framework is
publicly available. Therefore, all participants have access
to it, though it falls upon the service provider to deploy it
on the blockchain. Conversely, not all methods included in
the source code can be invoked by anyone. Instead, a series

of restrictions, detailed below, are enforced through internal
mechanisms implemented within the smart contract:
Theorem 1: Authorization constraint. Only the client can

invoke the deposit and proof selection methods, and only the
service provider can invoke the methods for adding, verifying
proofs, and withdrawing payments.

Let’s denote:
• Mc: Methods that can only be invoked by the client
(deposit, proof selection).

• Ms: Methods that can only be invoked by the service
provider (add proof, verify proof, withdraw payment).

• Each participant in the system is either a client or a
service provider, i.e., Uc ∩ Us = ∅.

Then, the invocation restriction can be formulated as:

Invoke(u,m) H⇒ (m ∈ Mc∧u ∈ Uc)∨(m ∈ Ms∧u ∈ Us)

Proof: Since the smart contract is public and the invocation
checks are performed within the contract:
• If a user u /∈ Uc attempts to invoke m ∈ Mc, the contract
will reject the invocation.

• Similarly, if u /∈ Us attempts to invoke m ∈ Ms, the
contract will reject the invocation.

The proposed framework establishes a client’s association
with a proprietary algorithm through the smart contract.
Accordingly, the service provider links the zk-SNARK proof,
along with its hash, to a specific client.
Theorem 2: Client-specific proof verification: The veri-

fication of one client’s proof does not affect the proofs of
another client.
Proof: Let Ci represent client i and πij represent the j-th

proof associated with client Ci.
• Proof association: Each proof πij is associated with a
client Ci through the smart contract SC . This is achieved
by linking the proof πij and its hash to Ci:

mapping(Ci, πij) = True

• Independence: For any two clients Ci and Ck (i ̸= k),
their proofs are independent:

mapping(Ck , πij) ∨mapping(Ci, πkl) = False

where πkl represent the l-th proof associated with client
Ck .

Similarly, the required number of proofs for each client
is independent of others. Moreover, the remaining number
of proofs to be verified depends on the situation of each
client. Notably, the minimum number of proofs required by
a client is determined individually, unrelated to the total
number of required proof hashes established by the provider.
The latter remains a constant parameter for all clients of
the proprietary algorithm specified in the smart contract.
In addition, it should be noted that the current implementation
only supports the verification of one proof at a time, rather
than in batches.

Regarding the payment amount for the service, as dis-
cussed earlier, it is only feasible through an asset with

117986 VOLUME 12, 2024

A. Ballesteros-Rodríguez et al.: Enhancing Privacy and Integrity in Computing Services Provisioning

a predetermined value within the blockchain. Therefore,
to implement the proposed framework, the blockchain must
support smart contracts and possess an inherent token for the
deposit. As a result, a native token from another blockchain
network cannot be used. Additionally, traditional payment
methods through fiat currency are not viable in the current
implementation, as they would compromise the privacy
objectives of the proposed framework.

In the current proposal, it is assumed that the service
provider is trusted, which implies a certain level of trust
in the system regarding service provision. This means that
the possibility of the provider deceiving the client about the
version of themodel used is beyond the scope of this research.
Likewise, if the framework were to be implemented in a
trustless environment, a possible implementation could be
through an additional mechanism using publicly available
model metadata. In that approach, the service provider would
register the metadata of the proprietary algorithm and its hash
on the blockchain. When verifying the service employing zk-
SNARKs, the corresponding hash of the model registered on
the blockchain would additionally be included in the proof.

V. RESULTS AND DISCUSSION
To assess the applicability and effectiveness of the proposed
framework, this section exposes the results related to the
implementation cost in terms of resource consumption and
setup time. The computational cost of interactions through the
framework on a general-purpose blockchain, which supports
smart contracts and payments via cryptocurrency assets,
is also examined. All the evaluations conducted are based on
the three zk-SNARK constructions selected for this research.

A. PERFORMANCE EVALUATION
In order to obtain metrics for evaluating the applicability
of the framework, we propose using multiple custom CNN
proprietary algorithms, as depicted in Table 2, which are
based on different layers to configure different scenarios.
From these CNN models we evaluate the framework setup,
the sizes of the zk-SNARK proofs, zero-knowledge keys
and public signals, as well as their corresponding generation
times.

The proposed framework operates on a device featuring an
AMD Ryzen 5 5600G processor with a clock frequency of
3,900MHz and 48GBof RAM, runningUbuntu 22.04.4 LTS.
A local instance of an Ethereum-based blockchain network
is used, with smart contracts compiled and executed in
Ethereum Remix. For representing arithmetic circuits, Cir-
com [36] is used, with circuit designs based on templates
from libraries like CircomLib [37] and Circomlib-ml [38].
The snarkjs [39] library is employed for constructing both the
proving system and the zk-SNARK proofs.

For the purpose of addressing a use case as close to a
real-world environment as possible, the ceremony process
conducted is the Powers of Tau. However, to avoid the
contribution of individual participants in generating the
security parameters of the zk-SNARK construction in this

study, a precomputed ptau file from a former Powers of
Tau ceremony process is used. Although not recommended
for production environments, this practice remains a viable
option within testing scenarios.

Considering that three custom CNN models simulating
proprietary models are used, Table 4 illustrates the input
features required to generate the witness for each one. Only
layers that contain trainable parameters and contribute to the
optimization of the CNN are considered.

Replicating the processes outlined in the Algorithm Ver-
ification Mechanism section, the resulting zero-knowledge
key comprises both the proving key and the verification
key for each circuit and zk-SNARK construction. The
variation in the size of these keys, as seen in Table 5, arises
from specific computation parameters and other structures
within the proving key, fundamental for generating the
proofs. Moreover, while the verification key is employed in
the verifier generation process, the zero-knowledge key is
used to generate the verifier smart contract. This process
results in a smart contract encoded in Solidity, a high-level
programming language used for developing smart contracts.
Hence, considering three distinct CNN models across three
different zk-SNARK constructions, a total of nine smart
contracts need to be computed.

For verification to take place, it is imperative to generate
the corresponding zk-SNARK proofs. With three different
zk-SNARK constructions and three unique custom CNNs
serving as proprietary algorithms, a total of nine different
types of proofs should be generated. These proofs are derived
from both the proving key and thewitness. However, although
the witness is tied to the model, it remains consistent
across all zk-SNARK constructions. This implies that the
format and quantity of parameters composing the proofs
differ uniquely for each zk-SNARK scheme. Additionally,
besides the proofs, the public signals must be provided for
the verification to proceed. As depicted in Table 5, the
components involved in verifying the job executed by the
service provider depend on both the specific proprietary
algorithm and the zk-SNARK construction employed.

Analyzing the findings shown in Table 5, the size of
the witnesses tends to be larger as the model complexity
increases, regardless of the zk-SNARK scheme. This trend is
similar in the case of public signals due to the higher number
of inputs in CNN models with more layers. Notably, there is
a difference of 97% in witness size and 98% in public signals
between themost complex and simplest customCNNmodels.

Regarding the smart contract, no significant differences are
noticed as themodel becomesmore complex. As a case where
the difference is most apparent, for the simplest model, there
is a reduction in contract size of up to 87.6% for verification
using Groth16 instead of Fflonk, while the reduction remains
at 54.4% between Plonk and Fflonk.

In relation to zero-knowledge keys, Groth16 emerges as the
most efficient scheme across all proposed CNNs, suggesting
that efficiency in terms of key size can be achieved regardless
of model complexity. Notably, there is an improvement of

VOLUME 12, 2024 117987

A. Ballesteros-Rodríguez et al.: Enhancing Privacy and Integrity in Computing Services Provisioning

TABLE 4. Input data required for generating the witness for each custom Convolutional Neural Network model used in this manuscript. ‘Input Features’
denotes the number of input characteristics employed by each model. ‘Layer’ provides the layers within the CNN architecture. ‘Weights’ and ‘Bias’ indicate
the respective numbers of trainable parameters in each layer. ‘Input Size’ specifies the dimensions of the input data required for processing by each CNN
model.

TABLE 5. Sizes of the components involved in the verification process determined by specific proprietary CNN models and zk-SNARK constructions.

TABLE 6. Generation times of the components involved in the verification process, all based on particular proprietary custom CNN models and zk-SNARK
constructions.

up to 97.1% using Groth16 instead of Fflonk for the Custom
CNN 1 algorithm. The situation is reversed for the size of the
verification key, which is up to 328.70% larger in Groth16
compared to Fflonk for the same CNN. This implies that the
trend observed in the zero-knowledge key would likely be
mirrored in the proving key, meaning it would be smaller for
Groth16 than for the other schemes.

Upon analyzing the size of the proofs, while the smallest
size is found using the Groth16 construction, it can be
concluded that regardless of the complexity of the algorithm
to be verified, the size of the proofs remains consistent and
is only determined by the specific zk-SNARK construction.
In fact, there is a reduction of approximately 64% between
Groth16 and the other two schemes employed, whereas
differences in proof size between these two models do not
exceed 1%.

Regardless of size variations, concerning on-chain verifi-
cation of the proofs, all sizes are sufficiently suitable for both
the proof and public signal sizes. Thus far, it can be asserted
that Groth16 emerges as the most efficient algorithm in terms
of size of the zero-knowledge keys, smart contract size, and

proof size. Nonetheless, this conclusion is challenged when
examining the results of Table 6.

Similar to the analysis presented in Table 5, an evaluation
is performed for each component involved in the verification
process within the framework to determine the time required
for the service provider to set it up. Across all scenarios,
irrespective of the zk-SNARK construction employed, there
is a relevant increase in framework configuration times as
model complexity escalates.

In this analysis, both the generation times for witnesses and
smart contracts yield closely comparable results, irrespective
of the model or zk-SNARK scheme. Additionally, the times
for circuit compilation remain relatively low across all cases.
However, a substantial reduction of 98.6% can be observed
between the most complex and simplest model.

About the zero-knowledge keys, there is an escalating
trend in the generation times of these keys as the model
complexity increases. Furthermore, for each custom CNN
model, a significant contrast is observed comparing the
Groth16 scheme to Plonk and Fflonk, which have similar
generation times, with Groth16 taking up to 6 times longer

117988 VOLUME 12, 2024

A. Ballesteros-Rodríguez et al.: Enhancing Privacy and Integrity in Computing Services Provisioning

TABLE 7. Gas cost for deploying each contract required to enable both the payment process and the verification of proprietary algorithms based on
custom CNN models.

than Plonk for the third CNN. Nevertheless, this discrepancy
diminishes as the model complexity increases, although
Groth16 still exhibits the highest key generation times. The
opposite is observed for the creation of the proof and the
public signals, which occur during the same process, thus
the generation time covers both components. Significant
differences are noticeable across each CNNwhen contrasting
Groth16 with the other two zk-SNARK constructions,
as Plonk and Fflonk are notably slower in creating both the
proofs and the public signals.

It is important to note that the zero-knowledge keys are
produced once, whereas the witness, proofs, and public
signals need to be computed for each job performed by
the service provider, which could entail a considerable
time commitment as the number of proofs increases. This
becomes even more critical if proofs are not selected for
verification, leading to a loss of resources for the service
provider. Nonetheless, depending on the zk-SNARK scheme
employed, the consumption of computational resources
may be lower in certain cases, and therefore considered
acceptable, given the generation times outlined in Table 6.
Comparing the proposed framework with the work of

Song et al. [40], which presents a traceable and private data
exchange scheme based on NFT and zero-knowledge proofs,
it is observed that, although the ML models and circuit
constraints vary, the proof sizes in our research are slightly
smaller and the proof generation times are longer. Both works
use Plonk as a zk-SNARK scheme. However, the setup time
is not evaluated. Compared to other schemes analyzed in this
work, such as Groth16, the proof generation times are better,
again without considering the setup time. In terms of gas
cost, the deployment of the verifier contract is the same using
Plonk. Other actions are not compared as they fall outside the
same scope.

B. COST ANALYSIS
To complement the results section, we also examined the
computational cost associated with each interaction within
the framework on a general-purpose blockchain. For testing
purposes, a local instance of an Ethereum-based network
is employed, and the computational cost is evaluated using
Gas, which denotes the measure of computational resources
required to execute a transaction on such networks. Table 7
illustrates the Gas costs of the smart contracts deployment,
while Fig. 9 illustrates those associated with all potential
interactions within the framework for each proprietary

algorithm proposed in this study. Alternatively, the graph in
Fig. 9 is provided for easier interpretation, illustrating the
transactions cost in comparison to the average Gas cost per
transaction on the Ethereum main network throughout the
year 2024. Considering the accumulated Gas cost for each
custom CNN model and a total of 30 million Gas units
available per block in the blockchain network, using the
framework represents 0.6% of the total block consumption
for a client. Meanwhile, for the service provider, verifying
five proofs ranges from 9.3% to 20.7% of the total Gas
available per block when using the zk-SNARK constructions
Groth16 and Fflonk for custom CNN model 3 and custom
CNN model 1, respectively.

The metrics obtained from the simulation process will
enable us to evaluate the economic cost implications of
this proposal, especially considering that the number of
proofs could modify such cost. Based on the graph shown
in Fig. 9, it can be observed that certain interactions display
negligible differences among various custom CNN models
or between different zk-SNARK constructions. Nonetheless,
discrepancies are noticeable in contract deployments and
verification-related interactions.

The deployment of the contracts associated with the
framework, comprising the verification contract and the
escrow and proprietary algorithm zero-knowledge verifier
contract, exhibits a noteworthy disparity in the former con-
tract, which integrates the implementation of the verification
function itself. Upon analysis of the results obtained, using
Groth16 represents a significant cost saving compared to
Plonk and Fflonk, which incur the highest deployment
cost. This relationship remains unchanged for custom model
CNN 1 and CNN 2, whereas in the simplest model
the difference becomes more pronounced when employing
Groth16. In contrast, for the escrow and proprietary verifier
contract it can be observed that Groth16 has a slightly higher
cost compared to Plonk and Fflonk, although the difference
is negligible.

To plan the potential cost associated with the usage of
the framework for participating agents, Table 8 presents
the accumulated cost in U.S. dollars for each participant,
contingent upon the model and zk-SNARK construction
employed. The costs are calculated bymultiplying the Ether’s
market price by the Gas price. The Ether’s market price
is based on the average price throughout the year 2024,
which is USD 2,959.67. Additionally, the average Gas price
throughout the year 2024 is 37.76 Gwei, a denomination of

VOLUME 12, 2024 117989

A. Ballesteros-Rodríguez et al.: Enhancing Privacy and Integrity in Computing Services Provisioning

FIGURE 9. Gas cost of each interaction within the framework on the Escrow & Verifier contract. Smart contract deployments are excluded
from the graph due to their high values, ensuring clarity in the presentation.

TABLE 8. Accumulated cost in U.S. dollars of all interactions for each agent within the framework using the Escrow & Verifier contract.

the cryptocurrency Ethereum representing a fraction of one
Ether, often used to measure Gas prices on the Ethereum
network. By using these values along with the accumulated
cost of the actions executed by each agent, the economic cost
for each one can be calculated.

As depicted, the cost for a client remains virtually
consistent regardless of the model or zk-SNARK scheme
utilized. Conversely, for the service provider, it is crucial
to scrutinize the cost implications of selecting a specific
zk-SNARK construction, as there is a notable disparity
between them, particularly depending on the number of
proofs requiring verification. The variable number of proofs
depends on the client’s request, which may in turn be linked
to sets of inferences, for instance.

This consideration is paramount, as the cost of verifying
a single proof using one construction may be comparable to
verifying multiple proofs using another zk-SNARK scheme.
This can be observed regarding the accumulated cost, for
instance, in the scenario of verifying five proofs using
Groth16 with a total cost of USD 375.72, and verifying
a single proof using Plonk with an accumulated cost of
USD 344.28, both processes for the custom CNN 1 model.

Therefore, the service provider must determine the construc-
tion to use based on the complexity of the model requiring
verification. In making this decision, it is imperative to con-
sider not only the total cost of the entire process, impacting
the fee charged to the user for the service provided, but also
the generation times of the framework setup and the proofs.

Finally, considering the work of Luong and Park [41],
which introduces a healthcare system based on IoT devices,
blockchain, and zk-SNARK as an authenticator to protect
user privacy and prevent unauthorized access, a comparative
analysis is presented that evaluates gas costs on an Ethereum-
type network. Compared to our proposal, this work has higher
deployment costs for the verifier contract and proof verifica-
tion; however, the zk-SNARK scheme used is different from
those analyzed in our work. Other actions are not compared
as they fall outside the same scope.

C. PRIVACY ANALYSIS
In the context of this research, we adhere to the broad
definition of personal data outlined by the General Data
Protection Regulation (EU GDPR) as any information
related to an identified or identifiable natural person. This

117990 VOLUME 12, 2024

A. Ballesteros-Rodríguez et al.: Enhancing Privacy and Integrity in Computing Services Provisioning

include identifiers such as a name, identification numbers,
location data, an online identifier, or one of several special
characteristics that convey physical, physiological, genetic,
mental, economic, cultural, or social identity. All of these are
considered within the framework of this research as data that
could be used by a service provider.

According to Recital 30 of the GDPR, blockchain identi-
fiers, better known as addresses, that can be linked to a natural
person fall under the scope of the GDPR. Moreover, these
identifiers have the potential to identify an individual user
by analyzing transaction patterns associated with publicly
known addresses. On the contrary, it is worth mentioning
that sending a cryptocurrency asset from A to B is not
considered personal data unless combined with additional
information [42]. Therefore, to protect user privacy within
the proposed framework, the use of one-time addresses is
recommended for those who prefer not to be identified and
linked to their identity.

Also, whereas encrypted and hashed data serve as
pseudonymization techniques, neither inherently anonymizes
personal data. Thus, this proposal advocates for the incorpo-
ration of zk-SNARK proofs for enhanced privacy protection,
as the utilization of such advanced cryptographic techniques
ensures compliance with data protection regulations [43].
Hence, data records containing identifiers or transaction
traces within a DLT, such as in a use case applied to this
proposal, resulting from consented, informed, and voluntary
interactions of natural persons, are considered protected data
when employing zero-knowledge proofs like zk-SNARKs.

Based on the foregoing, it can be affirmed that the
privacy of users is adequately protected within the proposed
framework both during the payment process and when
receiving a service based on information derived from their
personal data. This approach ensures that users can interact
securely and confidentially, decoupling their identity from the
use of the service and the data involved in its provision at all
times.

VI. CONCLUSION AND OUTLOOK
With the expanding availability of services leveraging
advanced algorithms, there is a growing demand for the
utilization of such AI-powered solutions. Chatbots and
content generation platforms currently stand as prominent
examples among the extensively utilized solutions within this
field. These services are often built on proprietary algorithms,
whose implementation remains undisclosed to clients. This
lack of transparency serves a dual purpose: protecting
intellectual property and maintaining a competitive edge
within the industry.

In this research, we have introduced a framework designed
to enhance user privacy and ensure the cryptographic valida-
tion of contracted services. This privacy is achieved through
the inherent properties of blockchain, where, without any
specific additional action, the identity of the client can only be
linked to their corresponding address used for payment. Our
framework demonstrates the feasibility of privately paying

for services built on black box algorithms while verifying
the use of the correct algorithm version. Here, the framework
only releases user payments when the service provider
proves, via zero-knowledge proofs, that the service has been
delivered. By leveraging blockchain and zk-SNARKs, our
proposal offers a promising solution to privacy and security
challenges found in SaaS-based services. The transparency
and security features of blockchain enable anonymous and
secure transactions without relying on centralized interme-
diaries. Moreover, periodic verification of computations by
service providers in decentralized environments, supported
by zk-SNARKs, effectively addresses concerns regarding
uncertainties in rendered services.

Ongoing research and implementation efforts suggest that
zero-knowledge proofs hold the potential to revolutionize
the development of protocols and applications focused on
privacy, even in environments like blockchain. Due to the
intrinsic blockchain features, only the parties involved in
the service provision are aware of the payment process’s
status. However, applying zero-knowledge proofs to verify
proprietary algorithms presents several challenges. First and
foremost, creating a smart contract capable of verifying
specific algorithms is essential. Using smart contracts for
on-chain verification and immediate payment release ensures
a transparent, private, and secure process. Nonetheless,
current size limitations prevent the smart contract from
supporting the simultaneous verification of multiple algo-
rithms. Regarding the verification of the provided service,
metrics indicate that whereas zk-SNARKs proofsmay require
lengthy setup times for some constructions, the size of
these proofs and public signals is suitable for on-chain
verification. Furthermore, although our proposal is founded
on zk-SNARKs, it has the flexibility to incorporate other
zero-knowledge proofs, such as Bulletproofs [44] or zk-
STARKs (zero-knowledge Scalable Transparent Arguments
of Knowledge) [45], both of which demonstrate promising
performance on blockchains, as long as the necessary
resources for implementation are available.

Nevertheless, there are limitations found in the proposed
framework, such as the increased cost it may entail for the
service provider. As shown in the metrics from Table 8,
the deployment of contracts, submission of proofs, and
withdrawal of payment entail significant costs for the vendor,
which can directly impact the client’s charge. Even so, the
smart contract’s capability to verify a single proprietary
algorithm formultiple clients simplifies the service provider’s
recovery of expenses associated with contract deployment as
the client base grows. Another possibility is to implement
the system on other blockchain networks with lower or even
nonexistent fees. That is why this limitation is considered
acceptable since it depends on the specific implementation
used and may not always be the case. Also, concerning
proof verification, the process is restricted to one proof
at a time, rather than handling multiple proofs in batches.
Alternatively, the framework’s implementation is limited to
blockchain networks supporting advanced smart contracts

VOLUME 12, 2024 117991

A. Ballesteros-Rodríguez et al.: Enhancing Privacy and Integrity in Computing Services Provisioning

capable of enabling arbitrary coding for verification and
payment mechanisms. Additionally, payment is currently
restricted to native tokens or stablecoins developed on the
underlying blockchain network, excluding other types of
assets that may contribute to the privacy of the model.

Within the blockchain context, taking into account the
total Gas consumed by all interactions of the framework,
widespread adoption could lead to scalability issues. Specifi-
cally, when verifying complex models, the entire process rep-
resents an important consumption of the total Gas available in
the block. Besides, generating a zk-SNARK proof demands
a considerable computational workload to perform the
required cryptographic operations. These calculations can be
resource-intensive and time-consuming, resulting in substan-
tial computational overhead for the service provider. Further-
more, alongside the computational tasks, the storage require-
ments, which depend on the zk-SNARK construction, must
be taken into account when implementing this framework.

In terms of security, potential risks arise, such as the
potential exposure of a client’s identity linked to their
address. To protect user privacy, it is recommended to employ
one-time addresses within the framework. Also, it is worth
mentioning that the provider is a trusted entity motivated to
deliver the best results to attract a larger user base through
the provision of multiple proprietary models. Therefore, it is
unlikely that the service provider would act maliciously,
as doing so would entail deceiving all their clients by
generating smart contracts for model versions that perform
worse than advertised.

In conclusion, future research efforts should focus on
conducting comprehensive empirical evaluations and case
studies to demonstrate the efficacy and scalability of the pro-
posed framework in real-world settings. Although the CNN
models presented for analysis in this work are theoretical and
do not align with commercial models, the proposed approach
could be suitable for evaluating more complex models.
However, longer setup and proof generation times must be
assumed depending on the zk-SNARK construction. Even
though blockchain is not considered in their approaches, there
are works that implement verification of realistic large ML
models using zk-SNARKs, such as the study by Liu et al. [13]
and the proposal by Chen et al. [46], where the latter leaves
open the possibility of integrating blockchain, and where our
proposed method could be applied. Additionally, integrating
the model with other zero-knowledge proof implementations,
such as zk-STARKs or Bulletproofs, should be explored fur-
ther as zero-knowledge libraries mature. Moreover, exploring
diverse distributed networks that enable the adoption of
this framework in both private and interoperable blockchain
environments stands as an imperative and central endeavor
research objective for future investigations.

REFERENCES
[1] A. M. Pinto, ‘‘An introduction to the use of Zk-SNARKs in blockchains,’’

in Proceedings in Bus. and Economics. Cham, Switzerland: Springer,
1007, pp. 233–249.

[2] N. Andola, V. K. Yadav, S. Venkatesan, and S. Verma, ‘‘Anonymity on
blockchain based e-cash protocols—A survey,’’ Comput. Sci. Rev., vol. 40,
May 2021, Art. no. 100394.

[3] M. Blum, A. De Santis, S. Micali, and G. Persiano, ‘‘Noninteractive zero-
knowledge,’’ SIAM J. Comput., vol. 20, no. 6, pp. 1084–1118, Dec. 1991.

[4] C. Lin, D. He, X. Huang, M. K. Khan, and K. R. Choo, ‘‘DCAP: A
secure and efficient decentralized conditional anonymous payment system
based on blockchain,’’ IEEE Trans. Inf. Forensics Security, vol. 15,
pp. 2440–2452, 2020.

[5] Z. Hatefi, M. Bayat, M. R. Alaghband, N. Hamian, and S. M. Pournaghi,
‘‘A conditional privacy-preserving fair electronic payment scheme based
on blockchain without trusted third party,’’ J. Ambient Intell. Humanized
Comput., vol. 14, no. 8, pp. 10089–10102, Aug. 2023.

[6] E. Boo, J. Kim, and J. Ko, ‘‘LiteZKP: Lightening zero-knowledge proof-
based blockchains for IoT and edge platforms,’’ IEEE Syst. J., vol. 16, no. 1,
pp. 112–123, Mar. 2022.

[7] Y. Guo, H. Liang, L. Zhu, and K. Gai, ‘‘Zk-SNARKs-based anonymous
payment channel in blockchain,’’ Blockchains, vol. 2, no. 1, pp. 20–39,
Feb. 2024.

[8] Y. Hu, A. Manzoor, P. Ekparinya, M. Liyanage, K. Thilakarathna,
G. Jourjon, and A. Seneviratne, ‘‘A delay-tolerant payment
scheme based on the ethereum blockchain,’’ IEEE Access, vol. 7,
pp. 33159–33172, 2019.

[9] L. Xu, L. Chen, Z. Gao, L. Carranco, X. Fan, N. Shah, N. Diallo, and
W. Shi, ‘‘Supporting blockchain-based cryptocurrency mobile payment
with smart devices,’’ IEEE Consum. Electron. Mag., vol. 9, no. 2,
pp. 26–33, Mar. 2020.

[10] X. Deng and T. Gao, ‘‘Electronic payment schemes based on blockchain
in VANETs,’’ IEEE Access, vol. 8, pp. 38296–38303, 2020.

[11] M. Baza, R. Amer, A. Rasheed, G. Srivastava, M. Mahmoud, and
W. Alasmary, ‘‘A blockchain-based energy trading scheme for electric
vehicles,’’ in Proc. IEEE 18th Annu. Consum. Commun. Netw. Conf.
(CCNC), Jan. 2021, pp. 1–7.

[12] S. Lee, H. Ko, J. Kim, and H. Oh, ‘‘VCNN: Verifiable convolutional neural
network based on zk-SNARKs,’’ IEEE Trans. Dependable Secur. Comput.,
vol. 21, no. 4, pp. 4254–4270, Jul. 2024.

[13] T. Liu, X. Xie, and Y. Zhang, ‘‘ZkCNN: Zero knowledge proofs for
convolutional neural network predictions and accuracy,’’ in Proc. ACM
SIGSAC Conf. Comput. Commun. Secur., Nov. 2021, pp. 2968–2985.

[14] K. Simonyan and A. Zisserman, ‘‘Very deep convolutional networks for
large-scale image recognition,’’ 2015, arXiv:1409.1556.

[15] H. Sun and H. Zhang. (2023). ZKDL: Efficient Zero-Knowledge
Proofs of Deep Learning Training. [Online]. Available:
https://eprint.iacr.org/2023/1174

[16] G. Team, ‘‘Gemini: A family of highly capable multimodal models,’’
Tech. Rep., 2023.

[17] T. B. Brown, ‘‘Language models are few-shot learners,’’ in Proc. 34th Int.
Conf. Neural Inf. Process. Syst., 2020, pp. 1–24.

[18] S. Squarepants, ‘‘Bitcoin: A peer-to-peer electronic cash system,’’ SSRN
Electron. J., vol. 1, no. 1, pp. 1–25, 2008.

[19] N. Szabo, ‘‘Smart contracts: Building blocks for digital markets,’’
J. Transhumanist Thought, vol. 18, no. 2, p. 28, 1996.

[20] V. Buterin, ‘‘A next-generation smart contract and decentralized applica-
tion platform,’’White Paper, vol. 3, no. 37, pp. 2–1, 2014.

[21] S. Goldwasser, S. Micali, and C. Rackoff, ‘‘The knowledge complexity
of interactive proof-systems,’’ in Proc. 17th Annu. ACM Symp. Theory
Comput., 1985, pp. 291–304, doi: 10.1145/22145.22178.

[22] S. Goldwasser, S. Micali, and C. Rackoff, ‘‘The knowledge complexity of
interactive proof systems,’’ SIAM J. Comput., vol. 18, no. 1, pp. 186–208,
Feb. 1989, doi: 10.1137/0218012.

[23] M. Blum, P. Feldman, and S.Micali, ‘‘Non-interactive zero-knowledge and
its applications,’’ in Proc. 20th Annu. ACM Symp. Theory Comput., 1988,
pp. 103–112.

[24] N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer, ‘‘From extractable
collision resistance to succinct non-interactive arguments of knowledge,
and back again,’’ in Proc. 3rd Innov. Theor. Comput. Sci. Conf., Jan. 2012,
pp. 326–349, doi: 10.1145/2090236.2090263.

[25] G. Crescenzo and H. Lipmaa, ‘‘Succinct NP proofs from an extractability
assumption,’’ inProc. 4th Conf. Computability Europe, 2008, pp. 175–185.

[26] B. Feng, L. Qin, Z. Zhang, Y. Ding, and S. Chu. (2021). ZEN: An
Optimizing Compiler for Verifiable, Zero-Knowledge Neural Network
Inferences. [Online]. Available: https://eprint.iacr.org/2021/087

117992 VOLUME 12, 2024

http://dx.doi.org/10.1145/22145.22178
http://dx.doi.org/10.1137/0218012
http://dx.doi.org/10.1145/2090236.2090263

A. Ballesteros-Rodríguez et al.: Enhancing Privacy and Integrity in Computing Services Provisioning

[27] D. Kang, T. Hashimoto, I. Stoica, and Y. Sun, ‘‘Scaling up trustless DNN
inference with zero-knowledge proofs,’’ 2022, arXiv:2210.08674.

[28] F. Chollet. (2015). Keras. [Online]. Available: https://keras.io
[29] L. Deng, ‘‘The MNIST database of handwritten digit images for machine

learning research [Best of the Web],’’ IEEE Signal Process. Mag., vol. 29,
no. 6, pp. 141–142, Nov. 2012.

[30] V. Nikolaenko, S. Ragsdale, J. Bonneau, and D. Boneh, ‘‘Powers-of-Tau
to the people: Decentralizing setup ceremonies,’’ in Applied Cryptography
and Network Security. Springer, 2024, pp. 105–134.

[31] ballesterosbr. (2024). ballesterosbr/privacy_integrity_cs_zkSNARks_
blockchain: 1.0.0 (1.0.0). Zenodo, doi: 10.5281/zenodo.10966472.
[Online]. Available: https://docs.github.com/en/repositories/archiving-a-
github-repository/referencing-and-citing-content

[32] J. Groth, ‘‘On the size of pairing-based non-interactive arguments,’’ in
Advances in Cryptology–EUROCRYPT. Berlin, Germany: Springer, 2021,
pp. 305–326.

[33] A. Gabizon, Z. J. Williamson, and O. Ciobotaru. (2019). Permutations
Over Lagrange-bases for Oecumenical Noninteractive Arguments of
Knowledge. [Online]. Available: https://eprint.iacr.org/2019/953.pdf

[34] A. Gabizon and Z. J. Williamson. (2021). FFlonk: A Fast-Fourier
Inspired Verifier Efficient Version of PlonK. [Online]. Available:
https://eprint.iacr.org/2021/1167

[35] E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer, andM. Virza, ‘‘SNARKs
for C: Verifying program executions succinctly and in zero knowledge,’’
in Advances in Cryptology–CRYPTO. Berlin, Germany: Springer, 2013,
pp. 90–108.

[36] M. Bellés-Muñoz, M. Isabel, J. L. Muñoz-Tapia, A. Rubio, and J. Baylina,
‘‘Circom: A circuit description language for building zero-knowledge
applications,’’ IEEE Trans. Dependable Secur. Comput., vol. 1, no. 1,
pp. 1–18, Jun. 2022.

[37] (2022). CircomLib: Library of Basic Circuits for Circom. [Online].
Available: https://github.com/iden3/circomlib

[38] C. So. (2023). Circomlib-ML: Circom Circuits Library for Machine
Learning. [Online]. Available: https://github.com/socathie/circomlib-ml

[39] (2023). Snarkjs: ZkSNARK Implementation in JavaScript & WASM.
[Online]. Available: https://github.com/iden3/snarkjs

[40] R. Song, S. Gao, Y. Song, and B. Xiao, ‘‘: A traceable and privacy-
preserving data exchange scheme based on non-fungible token and
zero-knowledge,’’ in Proc. IEEE 42nd Int. Conf. Distrib. Comput. Syst.
(ICDCS), Jul. 2022, pp. 224–234.

[41] D. A. Luong and J. H. Park, ‘‘Privacy-preserving blockchain-based
healthcare system for IoT devices using zk-SNARK,’’ IEEE Access,
vol. 10, pp. 55739–55752, 2022.

[42] M. Finck, ‘‘Blockchain and the general data protection regulation: Can
distributed ledgers be squared with European data protection law?’’ Eur.
Parliamentary Res. Service (EPRS), Belgium, Europe, Tech. Rep. PE
634.445, 2019. [Online]. Available: https://op.europa.eu/en/publication-
detail/-/publication/9b759744-be40-11e9-9d01-01aa75ed71a1

[43] Blockchain: A Forward-Looking Trade Policy, document 2018/2085(INI),
Committee Int. Trade, 2018.

[44] B. Bunz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell,
‘‘Bulletproofs: Short proofs for confidential transactions and more,’’ in
Proc. IEEE Symp. Secur. Privacy (SP), May 2018, pp. 315–334.

[45] E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev. (2018). Scalable,
Transparent, and Post-quantum Secure Computational Integrity. [Online].
Available: https://eprint.iacr.org/2018/046

[46] B.-J. Chen, S. Waiwitlikhit, I. Stoica, and D. Kang, ‘‘ZKML: An
optimizing system for ML inference in zero-knowledge proofs,’’ in Proc.
19th Eur. Conf. Comput. Syst., Apr. 2024, pp. 560–574.

ALBERTO BALLESTEROS-RODRÍGUEZ (Mem-
ber, IEEE) received the B.S. degree in telecom-
munication technologies and services engineering
from the Polytechnic University of Madrid and
the inter-university M.S. degree in information
and communication technology security from the
Open University of Catalonia, the Autonomous
University of Barcelona, and Rovira i Virgili
University. He is currently pursuing the Ph.D.
degree in information and knowledge engineering

with the University of Alcalá. His main research interests include distributed
ledger technologies, information security, data protection, cryptography, and
decentralized self-sovereign identities.

SALVADOR SÁNCHEZ-ALONSO is currently
a Professor with the Department of Computer
Science and Statistics, Rey Juan Carlos University,
Spain. He has worked and collaborated with
several universities, both in undergraduate and
graduate degrees and as a Software Engineer at a
software solutions company. With a good number
of high-impact factor publications in the last ten
years, his current research interests include social
network analysis applications, web science, and

blockchain technologies.

MIGUEL-ÁNGEL SICILIA-URBÁN received the
degree in computer science from the Pontifical
University of Salamanca and the Ph.D. degree
from the Carlos III University of Madrid. Before
joining academia, he was an E-Commerce Archi-
tect. He is currently a Professor with the Depart-
ment of Computer Science, University of Alcalá,
and the Director of the Postgraduate Program
in Blockchain Technology, University of Alcalá.
He has developed his research activity in artificial

intelligence applied to different areas. He is involved currently in various
blockchain projects bridging analytics and decentralization. He is the Editor-
in-Chief of Data Technologies and Applications (Emerald).

VOLUME 12, 2024 117993

http://dx.doi.org/10.5281/zenodo.10966472

