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ABSTRACT Lanes are different sections of a roadway that are marked or assigned to traffic movement. They
are used to organize and govern the passage of vehicles on roads. A lane is essential for the visual navigation
system of an autonomous vehicle. The concept of a lane represents a traffic sign that has significant meaning.
However, it also exhibits a unique local pattern that requires detailed low-level characteristics to identify
its location accurately. Utilizing various feature levels is crucial for achieving effective lane recognition.
Therefore, this study used a Cross-Layer Refinement Network (CLRNet) to enhance lane recognition by
incorporating high and low-level lane-detecting characteristics. This approach involves identifying lanes
based on high-level semantic properties, and refining them using low-level features. The proposed method
aims to improve the localization accuracy by leveraging additional contextual information and local-specific
lane characteristics. The network architecture combines the elements of LeNet-5 and AlexNet, utilizing the
more profound architecture of AlexNet for complex feature learning and localized pattern recognition from
LeNet-5. A global context is acquired to enhance the lane feature representation. The Line Intersection
over Union (LIoU) loss function, which treats the lane line as a whole unit rather than as individual
segments, is employed to enhance the localization accuracy. The experimental results demonstrate the
superior performance of the proposedmethod compared to existing state-of-the-art lane detection algorithms.

INDEX TERMS AlexNet, IoU, lane detection, LeNet-5, ROI gather.

I. INTRODUCTION
Lanes are designated divisions on roads and highways that
direct and divide traffic movements. Painted lines on the
surface of the road often represent lanes and help organize,
and regulate the vehicle flow. Lane identification is an
essential task for computer vision and autonomous driving
systems. It involves recognition and monitoring of lane
borders on road using visual inputs, often photos or video
frames acquired by cameras placed on a vehicle [1]. Lane
detection is essential in various applications, including lane
departure warning systems, autonomous navigation, and
advanced driver-assistance systems (ADAS). The form and
color of lane marks may vary based on local traffic laws
and standards. Common lane markers are solid white lines,

The associate editor coordinating the review of this manuscript and

approving it for publication was Ivan Wang-Hei Ho .

dashed white lines, double yellow lines, and arrows denoting
unique lane usage or limits.

Many techniques have demonstrated promising perfor-
mance using CNN’s excellent feature representation [2].
However, there are still significant difficulties in determining
the express lanes. Lanes have high-level semantics, basi-
cally the lane geometry (shape and curvature) and the context
of the road, but a distinct local pattern that requires explicit
low-level characteristics (i.e, the edges and color of the
lanes), to effectively localize [1]. The question of how to
successfully use multiple feature levels in a CNN still needs
to be addressed. In Fig. 1(a), the landmark and lane lines
possess distinct meanings but share common characteristics.
Distinguishing between them becomes more accessible by
utilizing high-level semantics and global context.

However, considering the road’s long and thin structure
with a basic local layout, locality also plays a crucial role.
The detection outcome based on high-level characteristics is
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FIGURE 1. Illustrations of challenging scenarios for lane detecting. (a) The detection
result of low-level characteristics. Due to a lack of global context, it misidentifies a
landmark as a roadway. (b) The detection result of high-level characteristics. It forecasts
incorrect lane localization. (c) The circumstance in which the lane is completely taken by
an automobile. (d) When the lane is blurred due to poor illumination.

presented in Fig. 1(b), where the lane is identified but lacks a
precise placement. Thus, successful lane recognition requires
high and low-level information because it is complementary.
Previous detectors [3], [4], [5], [6] demonstrated the impor-
tance of local and global characteristics for lane recognition.
However, they did not exploit high and low-level features,
leading to incorrect detection performance.

Our system introduces a sophisticated approach to
autonomous vehicle lane detection. An imaging unit captures
road images encompassing crowded, dazzling, shadowy,
nighttime, curved, no-line, and arrow-laden conditions. The
subsequent image processing units refine these images by
resizing, normalizing, and augmentation to optimize the
features crucial for lane detection. Its architecture involves
a hybrid deep-learning approaches that incorporates LeNet-5
[7] andAlexNet [8]. This system can be seamlessly integrated
into broader autonomous vehicle systems, contributing to
cross-layer refinement in lane detection and offering a fresh
perspective on training models.

Controlled by a central unit, the system utilizes a
Feature Pyramid Network (FPN) [9] to generate feature
maps and seamlessly integrate high and low-level lane
detection attributes. Global context information is enhanced
by extracting a Region of Interest (ROI), thereby improving
the representation of lane features.

One aspect of the system is the use of Line Intersection
over Union (LIoU) loss computation. It treats lane as
a unified entity and assesses the overlap between the
predicted and ground-truth lanes. The process dynamically
selects and assigns projected lanes as positive samples for
cost representations, ultimately refining lane identification.
System exhibits flexibility by regressing the entire lane and

optimizing the performance based on Intersection over Union
(IoU) as a loss function. The line IoU loss is akin to the
IoU metric for bounding boxes and measures the similarity
between the predicted and ground-truth lanes. In addition,
the system incorporates a cost representation, associating
penalties with various aspects of lane detection performance,
including the position accuracy and spatial smoothness.
The lane detection method follows an architectural process
encompassing image capture, preprocessing, representation,
and refinement, showcasing an advanced and innovative
approach for autonomous vehicle lane detection.

The effectiveness of the proposed approach was demon-
strated using three lane detection benchmarks: CULane,
TuSimple, and LLAMAS. The experimental results reveal
that the proposed technique achieves state-of-the-art accuracy
across all datasets. The main contributions of this study are
summarized as follows:

• This study elucidates the synergistic relationship
between high and low-level characteristics in lane
recognition. It leverages detailed features and a broader
contextual understanding, thereby enhancing lane
detection accuracy.

• We develop a hybrid model, LeAlexNet, by integrat-
ing the architectures of LeNet-5 and AlexNet. This
combined architecture serves as the backbone of our
network, harnessing the strengths of both models to
effectively capture and process lane characteristics from
input data.

• We incorporated the ROIGather module into our net-
work, which is a versatile component that can be
integrated into other networks. It significantly improves
the representation of lane characteristics by focusing on
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the regions of interest and enhancing the model’s ability
to accurately discern and track lane markings.

• We employed the Lane Intersection over Union (LIoU)
loss function, which is specifically optimized for lane
recognition tasks that treat the lane as a holistic unit dur-
ing regression. This leads to significant improvements
in performance by ensuring more precise and consistent
lane predictions.

• We introduced a novel mF1 metric designed to compare
the localization accuracies of different detectors com-
prehensively.

• We extensively tested our architecture under various
challenging conditions that typically complicate lane
detection tasks. These conditions included night driving,
shadows, glare (dazzle), lane arrows, crowded environ-
ments, curved roads, and intersections (cross scenarios).

The rest of this paper is organized as follows. In Section II
related works on lane-detection systems are reviewed.
Section III provides the proposed LeAlexNet model.
Section IV provides the experimental and implementation
details. Section V reports the results and discusses the
experimental data. Finally, Section VI concludes the paper
and discusses future work.

II. RELATED WORKS
Deep Learning has seen significant advancements over
the past few decades, particularly in Car Lane Detec-
tion. Despite these developments, there remains a critical
gap in understanding the robustness and generalization of
lane detection models under diverse road environments.
Addressing this gap is essential for enhancing the safety
and reliability of autonomous driving systems, especially
in real-world scenarios where environmental factors can
significantly affect lane detection accuracy. In this section,
we review the existing literature on Lane Detection in
Deep Learning, focusing on the robustness of models, their
ability to generalize across different environments, and the
integration of multi-modal data for improved accuracy. This
review will highlight the strengths and limitations of current
approaches and set the stage for the contributions of our work.

Abualsaud et al., [6] presented an innovative approach
to tackle the challenge of multi-lane detection in road
environments. They introduced the concept of affinity
fields, which leverage pixel-wise relationships to enhance
the robustness and accuracy of multi-lane detection. The
inference time of the Laneaf model may be relatively
high, which can limit its real-time performance in specific
applications. Zheng et al., [10] leveraged the concept of
cross-layer refinement to enhance lane detection accuracy
and robustness. By integrating multi-scale features from
different layers of a deep neural network, CLRNet captures
high-level and low-level lane information, enabling more
precise and reliable lane detection. Its generalization to
unseen scenarios, such as different road types or unique
traffic conditions, may vary. Further validation and testing
across diverse real-world environments are necessary to

assess their generalization capabilities [9]. Lane marking
variations, such as faded or distorted lane lines, may affect
this. Simultaneously, the model demonstrated robustness in
handling such variations to some extent.

Behrendt and Soussan [11] introduced a novel approach
for unsupervised lane marker detection by leveraging a
map information. The model employs image processing
techniques and deep learning algorithms to accurately refine
and localize lane markers. However, their approach may
encounter challenges when dealing with variability in map
data, such as missing or incomplete lane marker information.
Cai and Vasconcelos [12] presented an in-depth exploration
of the Cascade R-CNN framework that aims to improve the
quality and accuracy of object detection. Each cascade stage
progressively improves the detection quality by carefully
selecting highly confident region proposals and refining their
localization [13]. Its ability to effectively handle challenging
detection scenarios, such as objects with small sizes, heavy
occlusions, and low-resolution images, presents challenges in
detecting fine-grained objects with subtle visual differences
or intricate structures.

Zheng et al. [5] presented a novel approach to lane detec-
tion using a Recurrent Feature-Shift Aggregator (RESA)
model. It uses recurrent neural networks (RNNs) to capture
spatial and temporal dependencies for lane detection. Their
generalizations to new and unseen environments may vary.
The performance of the model under different road types,
weather conditions, or unique traffic scenarios should be
further investigated. Yoo et al. [14] introduced an approach
to lane marker detection using an end-to-end framework
based on row-wise classification. Their method eliminates
the need for explicit lane marker segmentation or localization
by directly classifying each row of pixels in an image as
either a lane marker or a background [15]. By operating on a
row-by-row basis, this method can rapidly process images in
real-time, making it suitable for time-sensitive applications.
However, it is necessary to capture fine-grained details of lane
markers, such as subtle changes in lane widths and complex
lane geometries.

Loshchilov and Hutter [16] uniformly applied a single
weight decay factor to all the model parameters during
training. This approach can inadvertently penalize both
the magnitude and direction of weights, leading to sub-
optimal performance. The regularization impact on the
model performance was optimized [11] to achieve more
flexibility in adjusting the regularization strength for different
parameters. The performance and effectiveness of a Digital
Wide Dynamic Range (DWDR) may vary depending on
the model’s architecture and the specific learning task.
He et al. [17] proposed a residual learning framework that
allows the network to focus on learning the difference
between the input and the desired outputs. The network
can skip over one or more layers and pass the input
directly to the subsequent layers. The network can effectively
learn residual mapping by propagating the original input
through these blocks. The network can efficiently propagate
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gradients and avoid the vanishing gradient problem, leading
to better optimization and higher accuracy. Understanding
the internal representations and decision-making processes of
deep residual networks is challenging.

Tabelini et al. [15] leveraged the power of deep neural
networks to estimate lane boundaries by using polynomial
regression functions. The annotated images were then used to
train the Polylanenet model. In the deep polynomial regres-
sion stage, themodel learns to predict polynomial coefficients
that represent lane boundaries. Errors or inaccuracies in
annotations can affect the ability of the model to accurately
estimate lane boundaries. Huang et al. [18] leveraged deep
learning techniques to regress 3D anchors for lane boundaries
directly from monocular images. The ability to estimate 3D
lane information from a single monocular camera eliminates
the need for additional sensors or stereo-vision setups. It may
be sensitive to noisy or ambiguous input. Poor image quality,
low-resolution cameras, and challenging weather conditions
can affect model performance. Estimating accurate depth
information using a single camera remains a challenging task.

Huang et al. [18] introduced a novel monocular 3D lane
detection method that eliminated the need for bird-eye-
view (BEV) transformations. Defining 3D lane anchors and
extracting features directly from front-view (FV) represen-
tations incorporates structural and contextual information to
improve the prediction accuracy. The method also employs
a global optimization technique to reduce the lateral error in
the predictions. However, this assumes Flat Ground, leading
to inaccuracies in estimating lane positions, particularly in
real-world scenarios where road surfaces may be partially
flat. Lee and Liu [19] proposed a lightweight design using
depth-wise separable convolutions (DSUNet) for end-to-
end learning of lane detection and path prediction (PP) in
autonomous driving scenarios. A novel PP algorithm was
also integrated with convolutional neural networks (CNN)
to create a simulation model (CNN-PP) that facilitates
qualitative, quantitative, and dynamic assessments of CNN
performance in real-time autonomous driving scenarios.
Although the study claimed that DSUNet is superior to UNet
in terms of model size, inference speed, and performance
metrics, it lacks a comprehensive comparative analysis with
other existing methods or architectures for lane detection and
path prediction in autonomous driving.

III. METHODOLOGY
The notations used in the rest of the paper is listed in Table 1.

A. LANE REPRESENTATION
Lanes are narrow and lengthy, with solid form priors;
therefore, a preset lane prior can assist the network in
better localizing lanes. Rectangular boxes often represent
objects in standard object detection [20]. Nonetheless, the
box must be used adequately to describe a long line.
We depict lanes with similarly spaced 2-D points, that is,
P = {(x1, y1) . . . (xN , yN )} where x and y are the coordinates
of the lane. A lane is defined as a set of attributes. Our

TABLE 1. List of notations used.

study employs a Lane Prior representation [20] where the
y-coordinates of points are uniformly sampled vertically
across the image, that is, yi =

H
N−1 ∗ i. This representation

establishes a linkage between the x-coordinate and the
corresponding yi ∈ Y . Our system anticipates each lane
based on four components: 1) probabilities of foreground and
background, 2) the length of the lane before, 3) the starting
point of the lane line and the angle between the x-axis of the
Lane Prior representation (x, y, θ ), and 4) it utilizes N offsets
that represent the horizontal distance between the predicted
lane and its ground truth.

B. CROSS LAYER REFINEMENT
In neural networks, deep high-level features exhibit strong
responses to complete objects and possess higher semantic
interpretations. In contrast, shallow low-level features cap-
ture the local contextual information. Additional valuable
contextual information, such as lane lines or landmarks, can
be extracted by enabling lane objects to access high-level
features. Fine-detail characteristics are crucial for achieving
an excellent localization accuracy in lane detection. For
object detection, a feature pyramid is constructed to leverage
the pyramidal nature of the ConvNet feature hierarchy. This
approach assigns different object sizes to different levels of a
feature pyramid. However, assigning lanes to multiple classes
presents challenges because high and low-level qualities are
crucial for accurate lane detection.
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FIGURE 2. LeNet architecture [21].

FIGURE 3. AlexNet architecture [22].

1) LeNet-5 ARCHITECTURE
LeNet-5, a specific neural network architecture, addresses the
challenge of extracting high-level and low-level features by
assigning lane objects to all levels of the feature pyramid.
It enables the sequential identification of lanes by taking
advantage of high and low-level features. As shown in Fig. 2,
in the initial phase, the convolutional layer was succeeded by
the average pooling layer in the second phase. This pattern
recurs, with a convolutional layer in the third stage and an
average pooling layer in the fourth stage. The subsequent
phase encompasses a flattening convolutional layer, followed
by two fully-connected layers, culminating in a softmax
classifier. In the first phase, the primary convolutional layer
accepts the input as a grayscale image measuring 32 ×

32, containing six feature maps with dimensions 5 × 5.
The stride employed was one, yielding a transformation of
the image dimensions from 32 × 32 × 1 to 28 × 28 ×

6. The average pooling layer uses a filter with dimensions
2 × 2 and a stride of 2. This resulted in the image being
resized to 14 × 14 × 6. It then proceeds to the subsequent
convolutional layer, featuring 16 distinct maps, each sized
5 × 5, with a stride of 1. However, of these 16 maps, only
ten were connected to the six maps of the preceding layer.
This strategy was implemented to effectively manage the
number of connections and introduces network asymmetry.
Consequently, the training parameters were reduced to 1,516
from 2,400, and the connections were decreased to 151,600
from 240,000.

The fourth layer also comprises an average pooling
operation with a stride of two and a 2 × 2 filter. Although
mirrors the second layer, they accommodate 16 feature maps,
resulting in a 5 × 5 × 16 output. Subsequently, the fifth
layer was established with 120 feature maps, each of size 1 ×

1, constituting a fully connected convolutional layer. These
120 features are linked to 400 nodes in the fourth layer. The
sixth layer is comprised of 84 units and operates as a fully
connected layer. Ultimately, the final output layer, which is
also a fully connected layer, produces ten values spanning
from 0 to 9.

2) AlexNet ARCHITECTURE
As shown in Fig. 3, AlexNet [22] comprises eight weight
layers, encompassing five convolutional layers and three
fully-connected layers. The architecture incorporates three
max-pooling layers following the first, second, and fifth
convolutional layers. The initial convolutional layer employs
96, 11 × 11 filters with a stride of 4 pixels and 2-pixel
padding. The subsequent convolutional layers maintain a
stride and padding of one pixel. The second convolutional
layer contained 256 filters, each sized 5 × 5. The third,
fourth, and fifth convolutional layers comprised 384, 384, and
256 filters, respectively, with dimensions 3 × 3.

3) COMBINED ARCHITECTURE OF LeNet-5 AND AlexNet
(LeAlexNet)
In Fig. 4, the initial convolutional layer convolves the 224
× 224 × 3 input image using 96 kernels of size 11 × 11 ×

3, with a stride of four pixels (which represents the spacing
between neighboring receptive field centers). The second
convolutional layer processes the (response-normalized and
pooled) output from the first convolutional layer, utilizing
256 kernels of size 5 × 5 × 48. The third, fourth,
and fifth convolutional layers were sequentially connected
without intervening pooling or normalization layers. The
third convolutional layer involves 384 kernels of size 3× 3×

256, linked to the (normalized, pooled) outputs of the second
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FIGURE 4. An overview of the proposed hybrid network (LeAlexNet). The main idea revolves around using AlexNet for more of a deeper
architecture, and LeNet5 is used to extract features from the images specifically.

convolutional layer. Subsequently, the fourth convolutional
layer employs 384 kernels of size 3 × 3 × 192, whereas the
fifth convolutional layer used 256 kernels of size 3 × 3 ×

192. Each fully connected layer contained 4096 neurons.
The proposed hybrid network (LeAlexNet) maximizes

the multinomial logistic regression objective, which can be
understood as maximizing the mean log probability of the
correct label within the prediction distribution across all
instances in the training dataset. One approach is to utilize
high-level characteristics for initial lane detection, which
helps obtain coarse localization of lanes using smaller neural
networks. Once lanes are identified, they can be enhanced
by incorporating more detailed features. To delve deeper
into neural networks and leverage their capabilities, we can
employ AlexNet architecture. This architecture is known
for its deep design and is well-suited for complex feature
extraction and pattern recognition tasks.

For convolutional layer input X , the convolution process is
defined as:

con = f

∑
i,j∈M

Xij ∗Wm−i,n−j + a

 (1)

where x represents the element in the convolution area M
of the input X , W represents the element in the convolution
kernel, m and n represent the size of the convolution kernel,
a represents the offset, and f (·) represents the activation
function.

For the pooling layer input, the pooling process is defined
as follows:

pool = down(max(yi,j)) i, j ∈ p (2)

In this context, y denotes the element within the pooled region
p in input Y of the pooling layer. The process denoted by
‘down(·)’ indicates downsampling and preserves the highest
values within the pooled region.

In the case of the input Z for the fully connected layer, z
represents an element within this input. w is the weight, b is

the bias term, and f (·) is the activation function applied to
element z.

full = f (w× z+ b) (3)

4) REFINEMENT STRUCTURE
We aimed to utilize the hierarchical arrangement of features
within a ConvNet, which encompasses meanings spanning
from the basic to advanced levels, and construct a feature
pyramid encompassing profound semantic understanding
across all levels. We used the ResNet architecture as the
backbone of our architecture, where we used {L0,L1,L2}
in our Feature Pyramid Network. As shown in Fig.5,
our approach to cross-layer refinement commences at the
topmost level, L0, and progressively approaches L2. We have
used R0,R1,R2 as the corresponding refinements.

Pt = Pt−1 ◦ Rt−1(Lt−1,Pt−1) t = 1, . . .T (4)

where ◦ denotes the combination of two layers and T denotes
the total number of refinements. Our approach initiates
detection from the uppermost layer, thereby providing
significant semantic information. Parameter Pt represents
the lane’s prior attributes, encompassing starting point
coordinates (x, y,θ ). For the initial layer, L0, the parameter
P0 are distributed uniformly across the image plane. The
enhancement process denoted as Rt , employs Pt to obtain
region-of-interest (ROI) lane features, followed by two fully
connected (FC) layers to generate the refined parameter
Pt . Step-by-step improvement of the lane prior and feature
extraction play a pivotal role in ensuring the effectiveness of
the cross-layer refinement technique.

C. ROI GATHER
1) ROI ALIGN
After assigning lane priors to each feature map, we used
ROIAlign [23] to retrieve the lane-prior features. However,
the contextual information provided by these traits needs to
be more comprehensive. The lane instance may be occupied
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FIGURE 5. Overview of CLRNet architecture [10]: (a) The network begins by generating feature maps using the Feature Pyramid Network (FPN)
structure [1]. These feature maps serve as the foundation for lane refinement, starting from high-level features and gradually transitioning to
low-level features. (b) Each lane instance is refined using multiple heads, incorporating additional contextual information to enhance lane
prediction. (c) The network performs both classification and regression of lane priors. (d)The suggested Line Intersection over Union (Line IoU) loss
optimizes the regression performance. This loss function aids in further improving the accuracy of lane regression.

FIGURE 6. Line IoU illustration. Integrating the IoU of the extended segment in terms of sampling xi
location yields LIoU. Here, the horizontal yellow line depicts the union(du

i ), and within this, the orange
line depicts the Intersection(do

i ). The Blue line represents the Ground Truth lane points, and the vertical
yellow line represents the predicted lane points.

or indistinct in rare circumstances due to poor illumination.
As a result, there were no visible indications of lane presence.
Neighboring characteristics must examined to determine
whether a pixel belongs to a lane. We can collect more
relevant contextual information to better understand lane
characteristics. To that goal, previous convolutions were
added along the lanes. In the proposed method, each pixel
within the preceding lane can gather information from
the surrounding pixels. It allows lane representation to be
reinforced in occupied regions based on the knowledge
acquired from the surrounding context [24]. Additionally,
relationships were established between the features of the
preceding lane and the entire feature map. By doing so, the
model can leverage more contextual data and develop more
robust and comprehensive feature representations for lane
detection.

2) ROI GATHER STRUCTURE
The ROIGather component is designed to be lightweight and
simple to integrate. It receives a feature map and lane priors

as input, where each lane prior comprises N points. For every
individual lane prior, we employ the ROIAlign technique
to extract the corresponding ROI feature (represented as
Xp ∈ RC×Np ). In contrast to the ROIAlign method employed
for bounding boxes, we adopted a distinct approach by
uniformly selecting Np points from the lane prior. These
points were used with bilinear interpolation to accurately
determine the input feature values at these positions. For the
ROI features originating from layers L1 and L2, we combined
the ROI features from prior layers to amplify the feature
representations. Convolutions were subsequently conducted
on these extracted ROI features, allowing us to gather
neighboring features for each lane pixel. We leverage a fully
connected operation to extract the lane further prior to the
feature Xp ∈ RC to manage the memory resources. The

feature map was resized to Xf ∈ RC×H×W and flattened to

Xf ∈ RC×HW .
To gather the global context for the features of lane priors,

we first compute the attention matrix W between the ROI
lane prior features (Xp) and the global feature map (Xf ) [25],
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which is written as:

W = ϕ

(
XTp Xf
√
C

)
(5)

where ϕ is the normalized softmax function. The aggregated
features are expressed as follows:

G = WXTf (6)

Result G represents the additional contribution of Xf to Xp,
chosen from all locations within Xf . Eventually, we combine
this output with the original input Xp.

D. LINE INTERSECTION OVER UNION LOSS
As stated previously, the lane prior comprises distinct points
that must be regressed against the ground truth. These
points can be regressed using a frequently used distance
loss, such as smooth-ℓ1. Traditional distance-based loss
functions treat individual points as independent variables,
which oversimplifies the lane regression process and can
result in less accurate predictions. Instead, the IoUmetric [26]
offers a more comprehensive approach. The IoU considers
the lane as a whole unit and evaluates the overlap between
the predicted and ground truth lanes. Using IoU as a loss
function, the model can regress the entire lane and optimize
its performance based on assessment metrics, leading to
improved accuracy in lane regression tasks. For every point
within the projected lane, as depicted in Fig. 6, we start by
elongating it (xpi ) by an extent of e to form a line segment. The
Line Intersection over Union (LIoU) loss function is a metric
used in lane detection tasks, particularly in autonomous
driving systems. It measures the accuracy of the predicted
lane lines by comparing themwith the ground truth lane lines.
Subsequently, IoUs can be computed between the elongated
line segment and its corresponding ground truth, and this
calculation is expressed as follows:

IoU =
doi
dui

=
min(xpi + e, xgi + e) − max(xpi − e, xgi − e)

max(xpi + e, xgi + e) − min(xpi − e, xgi − e)

(7)

where, xpi + e and xpi − e represent the extended boundaries
of xpi , and x

g
i + e and xpi − e signify the related ground truth

points. It is important to note that doi can take on negative
values, enabling optimization to occur even when dealing
with non-overlapping line segments. Subsequently, the LIoU
can be perceived as the amalgamation of an infinite array of
points along a line. To streamline the equation and facilitate
its calculation, it is converted into a discrete formulation.

LIoU =

∑N
i=1 d

o
i∑N

i=1 d
u
i

(8)

The LIoU loss is defined as:

LLIoU = 1 − LIoU . (9)

This loss function is minimized during training to improve
the alignment between the predicted and ground truth lines.

Here, LIoU converges to −1 when the two lines are far apart.
Our research considers a straightforward and efficientmethod
for calculating LIoU loss. The LIoU loss offers two key
advantages:

1) Simplicity and Differentiability: The LIoU loss is
designed to be simple and differentiable, allowing
for efficient parallel calculations during training. This
ensures that the loss can be easily incorporated into
existing optimization frameworks.

2) Treating Lanes asWhole Units: By considering the lane
as a complete unit, the LIoU loss enables the model to
anticipate and optimize the overall performance of lane
detection.

This holistic perspective improves the accuracy and effective-
ness of the lane detection algorithm. Overall, the LIoU loss
function offers a straightforward and practical approach for
optimizing lane detection models, combining simplicity and
the ability to treat lanes as unified entities.

E. TRAINING AND INFERENCE
In the training phase, each ground truth lane dynamically
selects and assigns one or more projected lanes as positive
samples. This selection is determined by assigning cost,
which quantifies the cost or suitability of assigning a
projected lane to a ground truth lane, which is defined as:

Cassign = wsimCsim + wclsCcls (10)

Csim = (CdisCxyCθ )2 (11)

where Ccls is the focal cost of the predictions and labels, and
Csim represents the similarity cost between the projected lanes
and the actual ground truth. Csim comprises three segments:
Cdis denotes the average pixel distance of all valid lane points,
Cxy denotes the distance of the initial point coordinates, and
Cθ indicates the discrepancy in angle θ . These factors were
normalized within the range of [0, 1]. The coefficients wcls
and wsim determine the relative importance of each defined
component. Each ground truth lane is associated with a
dynamic number (determined by the top-k) of the projected
lanes based on the evaluation of Cassign. The details of the
training loss and inference are as follows:

1) TRAINING LOSS
The training loss consists of classification and regression
losses. Regression loss was calculated exclusively for the
assigned samples. The total loss function is given by:

Ltotal = wclsLcls + wxytlLxytl + wLIoULLIoU (12)

where Lcls denotes the focal loss computed between the
predictions and labels. Meanwhile, Lxytl stands for the
smooth ℓ1 loss applied to the starting point coordinate(x, y,θ ),
and lane length regression l. LLIoU corresponds to the
LIoU loss involving the predicted lane and actual ground
truth. Additionally, there is an option to introduce auxiliary
segmentation loss [13]. However, this auxiliary loss was
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solely incorporated during training and did not affect the
inference results.

2) INFERENCE
We employed non-maximum suppression (NMS) [20] to
eliminate high-overlap lanes after setting a threshold with
a classification score to filter the background lanes (low-
scoring lane priors). Our technique can also be NMS-free if
we utilize a one-to-one assignment, that is, set top-k = 1.

IV. EXPERIMENTS
A. DATASETS
We conducted experiments on three benchmark datasets that
are commonly used for lane detection evaluation: CULane,
TuSimple, and LLAMAS.

The CULane dataset [3] is a challenging large-scale dataset
that is specifically designed for lane detection. It comprises
three complex units: crowded scenes, nighttime images,
and intersections categorized as normal, crowded, dazzle,
shadow, no line, arrow, curvy, and night. The dataset contains
100 000 images, divided into training, validation, and test
sets. Each image in the CULane dataset has a resolution of
1640 × 590 pixels.

The TuSimple dataset [27] is a widely used benchmark for
lane detection, which focuses primarily on highway scenes.
It comprises 3,268 training, 358 validation, and 2,782 test
images. All images in the TuSimple dataset have a 1280 ×

720 pixels resolution.
The LLAMASdataset [4] is another large-scale dataset that

is used for lane detection. It comprises over 100 000 images,
and the lane markers in the dataset are accurately annotated
using precise maps. However, the labels of the test set are
not publicly available; therefore, we submitted our detection
results to the LLAMAS benchmark testing website for
evaluation.

These benchmark datasets provide diverse and representa-
tive samples for evaluating the performance of lane detection
algorithms.

B. IMPLEMENTATION
Our experiments used pre-trained LeNet-5 and AlexNet
architectures for our lane detection models. All input images
were resized to dimensions of 320 × 800 pixels to ensure
consistent input sizes. We applied a random affine transfor-
mations and horizontal flips to diversify the training data
for data augmentation. The optimization process employed
the AdamW optimizer [28] with an initial learning rate of
1e−3. We also utilized the cosine decay learning rate method
[29] with a power of 0.9. The training process varied across
the different benchmark datasets. We trained the models on
the CULane dataset for 21 epochs, the TuSimple dataset for
56 epochs, and the LLAMAS dataset for 26 epochs. All
experiments were conducted using a single GPU, utilizing
the PyTorch framework. In our network architecture, we set
the number of lane priors (N ) to 72 and the sampled number

(Np) to 36. For the ROIGather module, the resized height (H )
and width (W ) were set to 10 and 25, respectively, with a
channel size (C) of 64. The expanded radius (e) used in the
Line IoU (LIoU) calculation was set to 15. The coefficients of
assigning cost were set as wcls = 1 and wsim = 3, balancing
the importance of classification and similarity in the loss
function.

C. EVALUATION METRICS
F1 is an assessment metric for TuSimple, CULane, and
LLAMAS. The IoU between forecasts and ground truth was
determined. True positives (TP) are predicted lanes with an
IoU greater than a certain threshold (0.5). F1 is defined as
follows:

F1 =
2 ∗ Precision ∗ Recall
Precision+ Recall

(13)

Building upon the COCO [30] detection metric, we have
used the mF1 metric to better compare the localization
performance of the different methods. The mF1 metric is
defined as follows:

mF1 =
(F1@50 + F1@55 + · · · + F1@95)

10
(14)

where F1@50,F1@55, . . . ,F1@95 are F1 metrics when
IoU thresholds are 0.5, 0.55, . . . , 0.95, respectively. It is a
break from traditional methods, which reward detectors with
better localization results. For the CULane dataset, to evaluate
different conditions, the evaluation formula is:

Accuracy =

∑
clip Cclip∑
clip Sclip

(15)

where Cclip and Sclip represent the counts of valid points and
ground truth points, respectively, within a given image [16].
In lane detection, a projected lane is considered accurate or
proper if more than 85% of the predicted lane points fall
within a 20-pixel distance from the corresponding ground
truth points. The TuSimple dataset also provides false positive
(FP) and false negative (FN ) rates, further contributing to the
evaluation of lane detection performance.

V. RESULTS AND DISCUSSIONS
A. PERFORMANCE ON CULane
We present the results of our proposed technique on the
CULane lane detection benchmark dataset in Fig.7 and
compare them with other commonly used lane detection
algorithms. Our proposed approach achieved a new state-
of-the-art performance on the CULane dataset, achieving
an mF1 measure of 54.59. When considering the LeNet5
and AlexNet versions of our method, we obtained an
F1@50 score of 78.23, which is slightly lower than that
of CondLaneNet (ResNet101), but slightly higher than that
of CondLaneNet (ResNet18). Notably, our method outper-
formed CondLaneNet (ResNet18) by 2.8% in terms of mF1,
indicating that our approach outperformed lane positions
with high localization accuracy. Our results were slightly
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TABLE 2. Comparison of proposed algorithm with other state-of-the art lane detection methods for different scenarios on CULane dataset.

FIGURE 7. Lane detection accuracy performance on the CULane dataset without and with affine transformation applied.

lower than those of CLRNet (ResNet18) andCLRNet(ResNet
101) by approximately 0.8% mF1. Compared with the
line anchor-based approach LaneATT [31], our LeNet5 and
AlexNet versions achieved 7.18% mF1 and 3.45% F1@50
better, respectively. Meanwhile, CLRNet can attain 206 FPS
with an NVIDIA 1080Ti GPU and TensorRT, making it
suitable for real-time lane detection. The graph results for
different conditions on the CULane dataset are shown in
Fig.8.

Segmentation-based approaches, such as RESA, do not
forecast lanes as a whole unit, thus limiting the smoothness of
the lanes. Because the proposal only denotes one lane starting
point, it is simple to overlook several lane instances. In these
complicated settings, our technique can predict continuous
and smooth lanes, demonstrating that it can acquire a global
context and has great capacity to recognize correct lanes.
Our approach is comparable to CLRNet, although it performs
somewhat worse on this dataset.

Our method showed better results than CLRNet(the best
of all architectures considered) under different conditions,
as listed in Table 2. Additionally, we assessed these detectors
and provided evaluations in terms of the mF1 and F1 scores

at a threshold of 50 (F1@50). In the ‘‘Cross’’ category,
only instances of false positives were presented. The metrics
reported for these categories were established based on the
F1 score at threshold of 50 (F1@50). Visualisation of lane
detection results for different scenarios in the CULane dataset
is shown in Fig.9.

B. PERFORMANCE ON LLAMAS
Our technique outperforms PolyLaneNet, LaneATT, and
CLRNet on the test set by 7 F1@50, 2-3 F1@50, and
2.6 F1@50, respectively, as shown in Table 3. Although
LaneAF [6] gets 96.90 F1@50 in the valid dataset,
its inference performance could be better (approximately
20FPS), making deployment difficult. Furthermore, our
technique outperforms LaneAF by approximately 2 mF1,
demonstrating that our method is more accurate in terms of
localization, as shown in Fig.10.

C. PERFORMANCE ON TuSimple
The performance gaps between the different approaches on
this dataset were small, suggesting that the results have
reached a high saturation level. However, our proposed

VOLUME 12, 2024 117659



P. Chaudhari et al.: Enhancing Lane Recognition in Autonomous Vehicles Using CLRNet

FIGURE 8. Accuracy performance of CLRNet(ours) using the combination of LeNet5 and ALexNet architecture on CULane dataset
under different possible conditions that obstruct intelligent driving systems.
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FIGURE 9. Visualisation of lane detection results for different scenarios in CULane dataset.

TABLE 3. Comparison of proposed algorithm with other state-of-the art
lane detection methods on LLAMAS dataset.

strategy still achieves a new state-of-the-art F1 score (see
Fig.11, surpassing the previous performance of CLRNet
(ResNet18) by 0.8% as listed in Table 4.

D. ABLATION STUDY
We ran numerous tests using the CULane dataset to
demonstrate the usefulness of the various components of the
proposed technique.

1) OVERALL ABLATION STUDY
By incorporating the LIoU loss, Cross-Layer Refinement,
and ROIGather into the LeNet-5 and AlexNet baselines,
we observed gradual improvements in performance. Remov-
ing the LIoU loss leads to a modest increase in mF1 from
51.90 to 52.80, indicating improved localization accuracy.
Additionally, the introduction of the Cross-Layer Refinement
further enhanced mF1 to 54.09. These improvements were
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FIGURE 10. Lane detection accuracy performance on the LLAMAS dataset without and with affine transformation applied.

FIGURE 11. Lane detection accuracy performance on the TuSimple dataset without and with affine transformation applied.

TABLE 4. Comparison of proposed algorithm with other state-of-the art
lane detection methods on TuSimple dataset.

consistent across various evaluation metrics, such as mF1,
F1@50, and F1@75, demonstrating the effectiveness of
combining high and low-level semantic characteristics for
accurate lane recognition. The inclusion of ROIGather also
contributes to a 0.5% increase in mF1, highlighting the
positive impact of incorporating a rich global context in
improving lane feature representation.

2) ANALYSIS OF ROI GATHER
In the feature map, the brightness of the color indicates
the magnitude of the weight, with brighter colors indicating
higher weight. The proposed ROIGather mechanism demon-
strates two key capabilities. First, it effectively gathers global
context by incorporating rich semantic information from the
entire feature map. Second, it can capture distinctive features
of foreground lanes even in a scenario where occlusion is
present. This visualization demonstrates the effectiveness of
ROIGather in enhancing the model’s understanding of the
lane context and capturing important lane characteristics.

3) ANALYSIS OF CROSS-LAYER REFINEMENT
The detector was constructed using a single layer to initiate
the refinement process. The results obtained from this initial
setup, denoted as R0,R1,R2, show comparable performance.
R2 achieved a relatively high F1@75 score but a low F1@50
score, indicating that low-level characteristics play a crucial
role in accurately regressing lanes. However, relying solely
on low-level information may result in erroneous detection
owing to the loss of high-level semantic information. We start
with the best-performing configuration, R0, and progres-
sively incorporate additional refinements. The improvement
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observed fromR0 toR1 is minimal, suggesting that alternative
fusion feature strategies, such as combining all features, may
be more effective in this case.

However, the refinement from R0 to R2 yields significant
improvements, indicating that our cross-layer approach can
better leverage the benefits of both high and low-level
characteristics. In contrast, other fusion feature strategies,
including the addition of all features together, show limited
effectiveness. The superior performance of the refinement
from R0 to R2 reaffirms the superiority of our cross-layer
improvement approach, which effectively utilizes high-level
and low-level characteristics to improve lane detection
performance.

4) ANALYSIS OF LINE INTERSECTION OVER UNION LOSS
To determine the optimal weight for the smooth-ℓ1 regression
loss, we conducted experiments by adjusting the loss weight.
Initially, when the regression weight was set to 1.5, the
smooth-ℓ1 regression loss was significantly higher than
that of the classification loss. However, the results showed
improved performance after lowering the weight to 0.5.
On the other hand, the LIoU loss exhibited more consistent
results and led to an overall performance improvement
of approximately 1 point in mF1. This improvement was
particularly notable for measures with a high overlap,
such as F1@80 and F1@90. These experimental findings
demonstrate that our LIoU loss can enhance the model
performance and promote convergence.

E. SCOPE OF THE WORK
Our research introduces a cutting-edge system and methodol-
ogy for autonomously detecting lanes in vehicles, leveraging
a sophisticated hybrid deep learning architecture using
LeNet5 and AlexNet. The featured CLRNet exhibited a
remarkable lane detection accuracy. This method initiates the
lane detection in semantically rich regions, establishing initial
lane localizations. Notably, it predicts the entire lane as a
cohesive entity, thereby enhancing the overall smoothness
of the detected streets. Moreover, the methodology excels at
capturing multiple instances of roads, even in the complex
scenarios. The proposed architecture consistently outper-
formed traditional algorithms across benchmark datasets and
real-world scenarios, underscoring its robustness and efficacy
in autonomous vehicle lane detection.

VI. CONCLUSION
Our research highlighted the crucial balance between
high-level semantics and low-level characteristics when
recognizing lanes, especially express lanes, in autonomous
vehicle navigation systems. Although CNNs offer powerful
feature representation, effectively using multiple feature
levels remains challenging. We found that express lanes
pose unique challenges, requiring a nuanced approach
that blends high-level semantics with detailed low-level
characteristics for accurate localization. By understanding the
interconnected nature of landmarks and lane lines, we stress

the importance of considering global context and high-level
semantics to distinguish between them. At the same time,
we acknowledge the essential role of local characteristics,
especially considering the elongated and slender structure
of roads. Our findings highlight the need to integrate high
and low-level information within CNN architectures for
precise lane recognition. Bridging the gap between theory
and practice in express lane detection is crucial. By adopting
a holistic approach that simultaneously considers local
and global characteristics, researchers can pave the way
for advancements in autonomous vehicle navigation. The
integration of diverse feature levels is vital for creating
safer and more efficient autonomous transportation systems.
Our method, which combines high-level semantic proper-
ties with low-level lane-detecting characteristics through a
CLRNet, has significantly improved localization accuracy.
Our approach outperforms existing lane detection algorithms
by leveraging the strengths of the LeNet-5 and AlexNet
architectures (LeAlexNet), incorporating additional contex-
tual information, and employing the LIoU loss function.
This study contributes to the ongoing development of safer
and more reliable autonomous transportation technologies,
pushing forward the integration of autonomous vehicles into
everyday transportation infrastructure.
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