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ABSTRACT Montgomery exponentiation is widely used for public-key-based cryptography systems. The
current state-of-the-art designs for this algorithm are well-analyzed in terms of hardware overhead but are
not investigated for faults caused by physical attacks. This paper presents a self-checking hardware design
for the Montgomery Multiplier (MM), which can counter multiple faults simultaneously. The proposed
64-bit self-checking MM approach with a distributed fault prognosis mechanism requires only 43.5% area
and 10.9% power overhead as compared to the non-self-checking design. Moreover, a novel self-checking
parity prediction approach is proposed for carry save adder, which can be used in cases where it is used alone
inside a loop.

INDEX TERMS Montgomery exponentiation, fault localization, self-checking adder, parity prediction.

I. INTRODUCTION
Modular exponentiation is widely used in public key
cryptography systems [1], [2], in which a pair of public
and private keys are used for secure communications.
A repeated multiplication operation is required in modular
exponentiation, followed by a division operation to provide
modulus. In terms of hardware design, both multiplication
and division are the most expensive operations because the
product of two binary numbers will have a maximum size
equal to the summation of the sizes of the two numbers.
Suppose a and b are two integers having m and n bits,
respectively, the result of their multiplication will be a
maximum of m+n bits. It is not easy to handle such big
numbers while keeping their partial products during the
multiplications. The problem becomes more challenging if
large exponent values need to be solved, as in the case
of cryptography. Therefore, different algorithms like sliding
window, k-ary methods etc, have been proposed to counter
this problem, including the Montgomery algorithm, which
has become prominent because of its hardware-friendly
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approach [3]. It simplifies and improves the processing
speed of large key values, which is essentially required
for system security [4], [5]. Therefore, it is considered as
the main constituent part for the hardware architecture of
public key cryptography like RSA [6], Diffie-Hellman [5],
and other applications that require modular multiplication or
exponentiation [7], [8], [9]. The resource efficient hardware
architecture for Montgomery remains an active topic in the
literature, with different optimizations at algorithmic and
implementation levels as found in [5], [6], [7], [8]. However,
these optimizations endanger the computational integrity of
hardware design because of the resultant complexity which
is directly related to system reliability.

The increasing complexity of systems on chip design with
low power and heat exchange requirements makes the current
digital system vulnerable to faults [10]. The thermal cycling,
hardware aging, and other environmental conditions further
raise the possibility of internally generated faults [11], [12].
In addition to these architectural concerns, the primary goal
of cryptographic primitives is to ensure the security of the
device. However, the said security can be compromised if
the hardware architecture is designed without considering the
physical attacks [13], [14], [15]. Among physical attacks,
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fault injection-based side channel attacks cause serious
concern for cryptographic devices because the attacker can
potentially uncover the hidden security features (such as
keys) regardless of theoretical and mathematically proven
security of the primitives [16], [17]. The deliberate incursion
of faults will force the crypto-processor to produce incorrect
output, whose pattern can disclose the device’s secrets,
as investigated by [18]. These attacks can easily be achieved
with slight modifications in the device parameters, such as,
depleting the power supply, electromagnetic disturbances,
clock tampering or environmental conditions, etc [19].
Hence, the reliability of crypto-systems cannot be ensured
without achieving resistance against both intentional and
unintentional faults.

Therefore, the need of self-checking hardware design
for crypto-systems emerges with the earliest work reported
in [20]. The challenging factor of self-checking hardware lies
in the area or time overhead required by the fault prognosis
process [11]. Therefore, the self-checking ability in critical
parts will improve the overall reliability of the system [21].
Since theMontgomeryMultiplier (MM) constitutes themajor
computational part of public key cryptography. Moreover, the
repeated operations in the MM algorithm make it more prone
to fault accumulation and propagation problems. A single
erroneous bit at any stage of MM algorithm can entirely
change the final output. Therefore, fault diagnosis in MM
will have a significant impact on the overall reliability of the
crypto-systems. However, to the best of our knowledge, the
self-checking ability of MM hardware architecture has yet to
be investigated.

This paper aims to introduce self-checking hardware
design for the MM algorithm with distributed fault detection
ability. We investigate each block used in constructing the
MMalgorithmwith respect to their self-checking ability. As a
result of our block-wise analysis, the proposed self-checking
MM architecture can detect multiple faults simultaneously
while effectively handling the fault propagation problems.
Moreover, it can easily be adopted in the existing and
emerging hardware architectures of the MM algorithm
because the principle blocks remain the same irrespective of
the optimization approach. The design of the MM algorithm
with and without self-checking is implemented using Verilog
HDL and synthesized using the synopsis design compiler.
The proposed 64-bit self-checking MM architecture with
multiple error-resilient features requires 43.5% area and
10.9% power overhead compared to the standard MM
architecture. Moreover, a self-checking parity prediction
approach for carry save adder (CSA) is proposed, which
can be used primarily when the block is used inside a loop
without carry propagate adder (CPA). In addition to this, the
performance of different self-checking CSA is analyzed to
select the optimal solution for MM.

The remaining parts of this paper are organized as follows.
Sections II and III cover the related work and the MM
algorithm with its standard hardware implementation. The
proposed self-checking MM architecture is described in

Section IV. Performance evaluation is presented in Section V,
followed by a conclusion in Section VI.

II. RELATED WORK
The security of electronic devices is largely dependent on
crypto algorithms, which often provide provably secure
encryption or signature methods, assuming that the algorithm
is well implemented and terminates properly. However,
even the best theoretical algorithms would fail if their
implementation had issues. One possible attack vector is to
introduce faults deliberately to prevent the proper execution
of the algorithm, which would produce incorrect results
at least and might even reveal secrets at worst. Attacking
hardware implementations by injecting faults is an active
research field: a laser-based fault attack for identifying the
vulnerable area in the chip before executing the attack is
demonstrated by [22]. Another laser-based fault injection
approach to skip instruction for disclosing the secret key
is investigated by [23]. In the work of [24], a 128-bit key
has been uncovered with less than seven injected faults
on average. Detailed surveys of possible fault attacks on
cryptosystems are presented in [25], [26], [27]. These works
show different possible impacts of injecting such deliberate
faults on cryptographic devices, hence outlining the need to
come up with countermeasures to such critical attacks.

The most common approach to handle such faults is to
use either the same or duplicated hardware to produce a
copy of output at different or same periods [17]. In the
work of [28], a double modular redundancy approach is
used for fault detection by comparing the duplicated sum
bits using a two-pair-two-rail checker. Besides the fault
localization problem, the reported design requires additional
area overhead for duplicating the summation block along
with other checking circuitry. In order to reduce the hardware
penalty, a parity prediction approach for self-checking carry
select adder design is reported in [29]. The parity of the
final sum bits is estimated using the parity of input operands
and the intermediate carry bits. The fault is detected by
comparing the estimated parity with the actual parity of sum
bits. A similar concept of parity prediction is used by [30] to
protect the sum bits of the carry-lookahead adder. The parity
prediction-based self-checking designs can detect faults in
even or odd number of bits without indicating the exact
location of their occurrence. Furthermore, the absence of
operational diversity raises concerns about common mode
failure.

To mitigate this issue, the code disjoint approach is
introduced, in which separate hardware produces the encoded
output [16], [17]. The comparison result between the actual
and encoded output will determine the fault. A residue code-
based modulo multiplier is reported by [16], with a modified
compressor and modulo generator. The area overhead is
reduced due to interconnected circuitry, however, it comes at
the cost of fault propagation. The reported design offers lim-
ited fault coverage because the fault identification depends
on the check base value. Moreover, the final comparison
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requires output transformation, which causes additional
delay overhead. These approaches can detect faults without
indicating the exact location of their occurrence. However,
fault localization is desirable for reliable hardware design
because it can play a vital role in recovery process [31], [32].

Therefore, an improved code-based fault secure approach
is reported by [17], which can limit the fault propagation
problems. Besides the benefit of partial fault propagation, the
approach suffers from area and performance penalty. In the
work of [33], a hamming code approach is used to protect
the data against faults during the transformation process. The
reported design will increase the data size and can detect
faults in even or odd number of bits, while the key generation,
sharing, and scheduling part are not covered in the proposed
study. In the work of [34], a parity prediction approach is
adopted to secure the S-box. The reported approach is further
improved by [35], where the parity approach is used so that
the S-box is protected regardless of their composition style.
However, the parity-based self-checking approach cannot be
used in MM architecture because of the inter-connectivity
issue, due to which the fault generated in one block can
easily be propagated to other blocks. The fault propagation
phenomenon can cause multiple-bit errors, which the parity
approach cannot handle.

III. MONTGOMERY MULTIPLIER TOPOLOGY
The MM algorithm is frequently used in cryptographic
applications to handle the large exponent value in secret key
generation. Due to the application’s sensitivity, we investigate
the self-checking ability of the MM’s hardware design
without affecting the computational performance.

A. BACKGROUND
In the Montgomery approach for modular multiplication, the
numbers will be transformed in Montgomery form such that
a shifting operation replaces the expensive multiplication and
division operation. The limitation of such an approach lies in
the delay caused by the initial conversion of the number to the
Montgomery form and then converting the result back to the
original state. Therefore, MM is recommended for modular
exponentiation, i.e., ae mod n, because the intermediate
results can be kept in the Montgomery form [36]. Different
hardware approaches concerning the area and time efficiency
for MM have been presented in the literature. In the work
of [37], a scalable architecture for the MM algorithm is
presented, whereas a pipelined architecture for high radix
MM is presented in another work [5]. However, the Radix-
2 architecture remains prominent for MM implementation
due to its low complexity [38]. The main concern of Radix
2 architecture is the clock cycles, due to which the high
radix architecture is shown to be 1.4 times faster than
the Radix 2 approach [39]. Therefore, an energy-efficient
Radix-2 algorithm with reduced clock cycles is presented
by [40]. It also uses the clock gating approach to reduce
further the power of most of the registers used in the design.
In the subsequent work, an improved variant with a modified

semi-carry save-based MM approach is presented by [41],
where a detection circuit has been used with a single-level
CSA for skipping the unnecessary addition operation by
pre-computing the quotient values.

B. MM ALGORITHM
The MM algorithm mainly depends on a constant value R,
whose value is chosen to be the power of 2. The selection of
the power of two values will replace the multiplication and
division process with a simple shift operation.

Suppose we have two numbers a, b, and we need to
compute y = ab mod N , where N is a k-bit number. The
value of R should be selected such that R ≥ 2k , and R is
co-prime to n, i.e., gcd(R,N ) = 1. Let R be equal to 2k , and
N is an odd number because the value of R is always even.
The MM form of a and b with respect to R can be computed
using (1) and (2). Further details of the MM algorithm can be
found in [40].

A = aRmodN (1)

Similarly,

B = bRmodN (2)

C. HARDWARE IMPLEMENTATION
The hardware implementation of the MM algorithm can be
achieved in different ways depending on the area, power, and
time constraints. The most prominent one is the Radix-2 MM
algorithm shown in the algorithm-1 [40], [42]. In contrast
to the actual algorithm, it replaces multiplication or division
operations with a single-bit shift operation. Also, it does not
require the computation of the inverse of R or N value using
an extended Euclidean algorithm. Moreover, the MM form
of a and b for public key cryptography can be pre-computed
because the values of a, b, and N are fixed and globally
available. In contrast, the secret key remains changing during
communication, which appears as an exponent. The central
process needed for implementing the MM algorithm is a
3-operand addition operation, as observed from algorithm 1.

Algorithm 1MMAlgorithm forModular Exponentiation
Using Radix-2 [40]
Data: A,B,N (modulus)
Result: S[k]
S[0]← 0;
for i = 0 to k − 1 do

qi = (S[i]0 + Ai × B0)mod2;
S[i+ 1] = (S[i]+ Ai × B+ qi × N )/2;

end for
if S[k] ≥ N then

S[k] = S[k]− N
end

In algorithm 1, the qi bit inside the For loop is required
to make the value of S[i + 1] perfectly divisible by 2. The
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Algorithm 2 Radix-2 MM Algorithm With 2-Layer of
CSA [41]
Data: A,B,N (modulus)
Result: S[k + 2]
SS[0] = SC[0] = 0;
for i = 0 to k + 1 do

qi = (SS[i]0 + SC[i]0 + Ai × B0)mod2;
(SS[i+ 1], SC[i+ 1] =
(SS[i]+ SC[i]+ Ai × B+ qi × N )/2;

end for
S[k + 2] = SS[k + 2]+ SC[k + 2]

last step of the comparison and subtraction operation causes
additional hardware complexity to retain the residue within
the limits. Walter in [43] resolves the issue by keeping the
values of A, B, and S within the range of 0 to 2N. Moreover,
the number of iterations and the value of R has been changed
to k+2 and 2k+2, respectively [40]. Although the complexity
has been reduced significantly, the propagation delay for
addition operation has increased. Therefore, a layered
structure is used for the 3-operand summation operation
to improve the algorithm’s performance. The top layer is
constructed using the CSA, while the last layer is the CPA.
All the intermediate layers will be constructed using CSA,
which means the CPA will be used as the last step to generate
the final output. The number of CSA layers depends on the
algorithm. The details of the MM algorithm with multiple
layers of CSA are presented in [40], [41]. In all cases, an MM
algorithm is mainly constructed using a combination of CSA
and CPA, along with some logical operations.

In this research, we focus on the hardware architecture of
the MM algorithm, which is constructed using 2-layers of
CSA. The CPA is used outside the loop for computing the
final output, as shown in algorithm 2. The carry propagation
delay has been reduced, which is only required to calculate
the final value of the modular exponentiation, as shown in
Fig. 2.

IV. PROPOSED SELF-CHECKING MM ARCHITECTURE
The hardware implementation of algorithm-2 has shown that
the main blocks for MM design are the CSA, CPA, and
registers, which are used to store the intermediate values.
The authenticity of data retrieved from the registers can be
ensured using the parity bit approach, commonly adopted
in computer architectures. In contrast, the self-checking
approach for adder design varies with the type of adder.
Therefore, each CSA and CPA is considered separately for
selecting the optimized self-checking approach.

A. CARRY SAVE ADDER (CSA)
CSA is the fastest adder design constructed using a chain of
independent full adders to provide the output in sum and carry
format. The output bits generated by CSA will be fed to CPA
to generate the final sum and carry-out bits. The need for CPA
at final output limits the use of CSA for adding more than

FIGURE 1. MM architecture using 2-Layer CSA.

3 bits. However, the prime advantage of CSA in self-checking
is the absence of a carry propagation chain, which creates the
fault propagation problem. In algorithm-2, a dual rail of CSA
is used such that one operand for each of them is obtained
from a group of AND gates, as shown in Fig. 2. The carry
bits generated by the first CSA block are connected to the
second CSA block after a single bit shift operation toward
left because of which the first full adder of the second CSA
block is replaced by half-adder.

Due to the limited scope of the generated fault, it is
feasible to use any self-checking approach for CSA, including
parity prediction, double-modular-redundancy (DMR), etc.
In this research, we examine the hardware redundancy-based
strategies for self-checking CSA. The fault coverage and
performance evaluation for each self-checking approach are
examined by considering the logical AND gates along with a
pair of CSA.

1) SELF-CHECKING FULL ADDER (SFA) APPROACH
A self-checking full adder design with localized fault
detection ability is presented in [31]. The reported design
is based on the general operating principle of an adder, i.e.,
the sum and carry bit generated by the full adder will be
equal if all the input bits are equal and vice versa. Therefore,
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FIGURE 2. Self-checking CSA design using (a) SFA, (b) Parity prediction and (c) DMR.

an equivalence tester (Eqt) bit is required to construct the
SFA, as depicted in Fig. 2 (a). The same Eqt bit concept
can be used for self-checking half adder (SHA), which is
used to compute the least significant bit for the second CSA.
However, in the half adder, the sum and carry bits will
complement each other if any or both input bits are logic-
high. Therefore, the equation for computing the Eqt bit of
SHA (EqtSHA) uses a single NOR operation. Both the SFA
and SHA approaches can only detect the fault that occur in the
internal architecture of the adder. The chain of independent
full adders in CSA design can be replaced by SFA to obtain
fault detection and localization. However, the AND gate
connected to one of the operands of CSA is still prone to
fault.

To overcome this problem, a self-checking AND gate is
designed by using the duplex concept, such that the actual
AND output is used to compute the sum and carry-out
bit, whereas the duplicated output is used to compute the
equivalence tester bit. Hence, the fault in the AND gate will
be reflected in the output of SFA and can easily be identified
using the checker, as shown in Fig. 2(a). The area overhead
can be further reduced by using self-checking AND gate with
dual output, as shown in [31]. Let A, B, and N be the three
operands connected to the input port of CSA. The value of
N is dependent on a select line; if the select line=0, then
N=0 else, N is equal to the actual input operand D, as shown
in Fig. 2(a). The sum and carry out (Cout) bit are generated
using (3) and (4). The second AND gate produces a copy of N
(Nc), which is used for computing the Eqt bit using (5) or (6),
depending on the type of adder. The final error bit for both
SFA and SHA is computed using (7).

Sum = A⊕ B⊕ N (3)

Cout = A(B+ N )+ AN (4)

EqtSFA = ABNc + ABNc (5)

EqtSHA = A+ Nc (6)

Error = Sum⊙ Cout ⊕ Eqt (7)

2) PARITY PREDICTION APPROACH
The second approach utilized the concept of parity prediction
(PP), which can effectively detect even or odd number
of faults at a time. However, it is not recommended in
highly interconnected designs because of fault propagation
problem which can alter more than one bit at a time. In MM
architecture, parity prediction is also advantageous for CSA
because the last layer is connected to registers which are
secured using parity bit. Hence, a parity prediction approach
for CSA can be used to avoid the extra circuitry required to
compute the parity bit for each register.

The standard principle of parity prediction for adders uses
the parity of input and intermediate carry bits to estimate the
parity of the sum bit. However, this principle is invalid for
CSA alone because it produces partial sum and carry bits.
If CPA is connected at the end to compute the final sum
bits, then the standard parity concept can be applied to the
CSA-CPA combination. However, in the case of MM, the
CSA blocks are considered as standalone because they are
used inside the loop such that each iteration uses partial sum
and carry bits, while CPA is used to compute the final return
value, as shown in algorithm-2. It is observed from Table. 1
that the parity of partial sum and carry bits by CSA block
depends on the parity of the equivalence tester bits. If the
parity of the equivalence tester is one, then the output parities
of the CSA will not be equal and vice versa. This is because
the Eqt bit is responsible for indicating the status of all input
bits, and its value will be zero when all inputs are equal.
Similarly, the sum and Cout bit will be equal when all inputs
are the same and vice versa. The logical relationship between
Eqt, the sum, and the Cout bit is shown in (8). It can be
derived from (8) that the parity of Eqt is equal to the logical
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TABLE 1. Partial truth table for CSA along with the input and output parity.

XOR between the parity of sum and Cout bit, as shown
in (9). Hence, a novel parity prediction approach for CSA
is designed, which can be used in cases where CSA is used
repeatedly without a CPA layer, as in the case of the MM
algorithm. Let Ps be the parity of sum bits; Pc be the parity
of carry bits, and Peqt be the parity of equivalence tester bit;
then the error bit is calculated by using (10). The faults in
AND gates are handled using the same approach presented
for SFA, as shown in Fig. 2b.

Eqt = Sum⊕ Cout (8)

P(Eqt ) = P(Sum)⊕ P(Cout ) (9)

Error = Ps ⊕ Pc ⊕ PEqt (10)

3) DOUBLE MODULAR REDUNDANCY (DMR) APPROACH
DMR is the most common self-checking approach in
which duplicated hardware blocks generate the same or
complementary output. The comparison result between these
two independently working functional blocks indicates the
fault. Besides the area overhead issue, this approach also
suffered from fault propagation and common mode failure.
These issues are generally uncommon for CSA because of the
lack of inter-connectivity. Therefore, in this research, we also
examine the DMR for CSA, as shown in Fig. 2(c).

B. CARRY PROPAGATE ADDER (CPA)
The basic architecture of CPA constitutes a chain of
interconnected full adders where the sum of each full
adder depends on the carry of the previous full adder. The
existence of a carry propagation chain is the main issue
for both standard and self-checking CPA designs. In terms
of standard configuration, the carry chain creates the delay
problem, which is why different CPA architectures have
been introduced in the literature. The main aim of these
architectures is to introduce parallelism either in sum or
internal-carry generation. In terms of self-checking, the carry
chain creates the possibility of fault propagation, due towhich
the exact location of the fault cannot be recognized.

In this research, we use the most recent architecture
of CPA, which can perform 3-operand addition utilizing
the concept of prefix adders [44]. The reported design is
constructed using a single layer of CSA followed by a

carry-prefix adder. However, we adopt the carry-prefix part
because the CPA is used only once outside the LOOP
statement. The architecture and block diagram remain the
same as in [44]. The final sum bit is generated after receiving
the carry bit of the previous stage, whereas all the internal
carries are generated in parallel. In the case ofMMdesign, the
sum bits generated by the last CSAwill be shifted right before
connecting to CPA. Therefore, the least significant bit for
CPA is computed using a half-adder block. All the remaining
blocks require three inputs to generate the final sum bit.
Although the design is complex compared to a simple ripple-
carry adder, the basic principle remains the same, which helps
select the self-checking approach.

Unlike the CSA, the parity prediction approach and DMR
cannot be adopted for CPA due to the possibility of fault
propagation. Therefore, we use the equivalence tester bit
concept to design the self-checking CPA with the multi-error
resilient feature. The least significant block is replaced with
SHA. The remaining sum bits and their respective Eqt bits
are computed using the sum and equivalence tester (SE)
block, which uses the output bits of the last CSA block
and the input carry bit (Ci−1) generated by the carry logic
(CLL) block, as shown in Fig. 3(a). The SE block is also
responsible for generating the final fault by comparing the
internally generated sum and Eqt bit with the carry input of
the next SE block (i.e., Ci). In the CLL block, the propagate
and generate signals (i.e., Pi and Gi) are computed once for
each bit position, whereas the computed values are shared
internally for generating the intermediate carry bits using the
internally generated carry (IGC) module in CLL. The logic
diagram of Pi and Gi block is shown in Fig. 3b.

V. RESULTS AND BENCHMARK
This research proposes a self-checking MM architecture
using self-checking CSA and CPA blocks. This section
discusses the proposed self-checkingMM architecture’s area,
power, and delay overhead, including CSA and CPA. The
performance of each self-checking CSA and MM approach
is evaluated by comparing it with the standard non-self-
checking design. The designs are implemented using Verilog
HDL and simulated using ModelSim. The synthesized
results are obtained using the synopsis design compiler
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FIGURE 3. Self-checking parallel prefix (a) adder along with (b) logic gate diagram of internal blocks.

tool. A uniform Verilog-HDL coding style is adopted and
synthesized with constant design constraints.

A. PERFORMANCE EVALUATION OF PROPOSED
SELF-CHECKING CSA APPROACHES
The performance of each self-checking CSA is evaluated to
determine the optimized solution for the final self-checking
MM architecture. The area, power, and delay overhead,
as compared to the standard CSA design, are shown in Table.
2. It should be noted that the discussion of comparison
results for all standard and self-checking designs will only
consider the 64-bit CSA architecture. In terms of area
overhead, an SFA-based CSA requires 102.8% area overhead
as compared to standard CSA design. However, the hardware
penalty of parity andDMR-based CSA is 136.7% and 148.5%
compared to standard CSA.

Unlike the area overhead of SFA-CSA, the power con-
sumption is 59.6%more than the standard CSA. For the parity
approach as well, the power consumption is not increased
as much as the area, and the total power consumption in
comparison to standard CSA is increased by 91.9%.However,
in the case of DMR, the power consumption is as high as the
area overhead and reaches 169.2% as compared to standard
CSA. Hence, regarding area and power, SFA and parity-based
CSA require fewer penalties than DMR.

Although the self-checking approaches do not affect the
delay of the final sum and carry out, the delay for computing
error might change depending on the approach. Therefore,
the delay overhead needs to be observed before deciding on
the optimized self-checking approach for CSA. In contrast to
area and power consumption, DMR required the least delay
overhead of 15.83%, which is 3.8% and 30.4% less than SFA
and parity-based CSA. The area-delay product (ADP) and
power-delay product (PDP) of each approach are shown in
Fig. 4 (a) and (b). It is concluded that the SFA-based approach
provides the least overhead in terms of area, power, ADP, and
PDP as compared to the other two approaches. It can also be
observed that DMR offers less ADP than the parity approach,
whereas both DMR and parity require similar PDP overhead
as compared to the standard CSA approach.

B. SYNTHESIS RESULTS FOR PROPOSED SELF-CHECKING
MM ALGORITHM
MM architecture’s hardware implementation mainly depends
on CSA and CPA blocks. We analyze both these blocks
independently to determine their respective optimized self-
checking designs. The SFA-based self-checking approach
is adopted for CSA because it requires optimal overhead
compared to other methods. Similarly, an equivalence-tester-
based self-checking approach is adopted for CPA because
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TABLE 2. Area, Delay and Power consumption of standard CSA, SFA-CSA, PP-CSA and DMR-CSA.

it provides fault detection independent of the propagated
carry. The self-checking MM architecture encapsulates these
approaches, and the resultant overhead for 16-, 32-, and
64-bit MM architecture is shown in Table. 3. The larger
bit-width of 128 or 256 can be accommodated using cascaded
32-bit or 64-bit MM architecture, which may introduce an
insignificant delay overhead because the CSA will perform
computation in parallel irrespective of the carry input from
the previous stage. The only overhead that would occur is
due to the cascaded CPA present outside the loop because
it requires the Cout of the last block. The percentage value
of area and power overhead will not change compared to the
standard MM architecture.

The proposed 64-bit self-checking MM architecture
requires 43.5% area overhead compared to the standard MM
architecture. With less than 50% area overhead, the power
consumption of the proposed 64-bit self-checking design is
increased by only 10.9% with a delay overhead of 33.8%.
However, the ADP and PDP for 64-bit self-checking MM
architecture are increased by 92% and 48.4%, respectively,
as shown in Fig. 5(a) and (b).
The self-checking architecture for MM has not been

investigated to the best of our knowledge. In the work of [16],
a residue code-based self-checking modulo multiplier is
presented with an application in cryptography. However, the
reported architecture does not have complete self-checking
and fault localization because fault identification depends
on the check base value. Moreover, the reported scheme
requires additional delay to transform the final output for
comparison. A detailed comparison with respect to area
and fault coverage is presented in Table. 4. It can be
observed that our proposed approach with fault detection
and localization requires 73.6% less area overhead with
18.8%delay efficiency as compared to the residue code-based
modulo multiplier in [16]. To further verify the efficiency of
our proposed solution, we analyzed some recent articles as a

case study. However, the problem is that some of them used
FPGA resources for overhead computation. In order to make
an impartial comparison, we also usedQuartus to compute the
FPGA resources for the 64-bit MM architecture before and
after self-checking. Our proposed solution requires only 4.2%
logic elements overhead, whereas the number of registers
remain the same. In the work of [33], the Hamming code-
based self-checking approach for block cipher requires an
overhead of 16% LUT and 25.5% Slice registers. A detailed
comparison between self-checking techniques for differential
fault analysis has been presented in [45]. It can be observed
from their analysis that most of the self-checking approaches
for securing the cipher require a logic overhead of more than
10%. Moreover, a hybrid self-checking approach is adopted
by [46] for hierarchical multipliers with area overhead
increased by 71.1%. These reported research findings on
self-checking multipliers or crypto-processors verify that our
proposed solution provides minimum overhead.

C. FAULT COVERAGE
The fault injected into the systemmight not necessarily affect
the final output due to the inherent fault-masking ability of the
circuit. For example, if an input at the AND gate is logic
low, the second input generated from faulty circuitry cannot
affect the output. This research covers those faults which are
reflected in the output.

1) SELF-CHECKING CSA
In this research, the self-checking CSA is investigated using
three different approaches: SFA, PP, and DMR. Each of them
has its fault coverage and limitations.

The AND gate connected to one of the CSA’s operands is
constructed using DMR so that each output of DMR engages
in the computation of the rivalry submodules. The fault in
the AND gate causes a mismatch in the output of the rivalry
submodules, which the checker can detect. Therefore, the
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TABLE 3. Area, Delay and Power consumption of standard MM and proposed self-checking MM architecture.

FIGURE 4. (a) ADP and (b) PDP of standard and proposed self-checking
CSA approaches.

scope of the checker in any of the approaches is not limited to
identify the fault within the adder circuitry but to also reflect
the fault occurring at the AND gate associated with one of
the input terminals. The use of a checker to identify the faults
in the AND gate minimizes the need for comparators, which
is required in a duplex system for fault identification. This

TABLE 4. Comparison between self-checking modulo multiplier and our
proposed approach.

approach can detect 50% of faults in AND gates, whereas
it is possible to use a comparator to design a complete
self-checking AND gate.

The SFA-based self-checking CSA can identify any fault
with the condition that each SFA has a single fault at a
time. Moreover, it can localize the fault due to a distributed
self-checking mechanism. In contrast, the fault diagnosis
in the PP approach is limited to either an even or odd
number of erroneous bits and cannot be localized. Both SFA
and PP possess diversity and are protected against common
mode failure. In contrast, DMR can detect the fault without
localization; hence, the scheme fails with common mode
failure due to the absence of diversity. Constructing the DMR
with built-in diversity is possible, but it may cause additional
overhead or performance degradation.

2) SELF-CHECKING MM ARCHITECTURE
The MM architecture is constructed using SFA-based CSA
and self-checking carry prefix adder. Similar to CSA, CPA
can detect all kinds of faults with the condition that a
single SE and IGC (responsible for generating Cin for the
neighboring SE) have a single fault at a time. In the presented
self-checking architecture, the faulty carry bit generated by
the IGCwill be detected in the first place; hence, the fault will
not create a false alarm for other SE-IGC pairs. Therefore,
the CLL architecture is designed using shared logic, which
is not recommended for other self-checking architectures
because of fault propagation. The fault localization ability
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FIGURE 5. (a) ADP and (b) PDP of standard and proposed self-checking
MM approach.

in the proposed architecture can significantly improve the
post-error decision capability of crypto-processors. In case
of an unknown fault location, the system may trash all the
resources for security concerns. With the proposed solution,
it is possible to adopt the most suitable solution based on
the scenario because it can detect the fault and locate the
exact position of its occurrence. For example, the system can
re-execute the instructions to check whether the fault occurs
at the same location; if so, the system may replace the faulty
module to bring back the device’s normal operation.

3) LIMITATIONS
The fault coverage is limited to the faults injected at the
logic level of the MM architecture, which is possible with
active physical attacks. However, it is possible to apply the
proposed solution in existing countermeasures for passive
side-channel and timing attacks like digital serial [47] or
high-radix MM [48]. The corrupted input bits caused by the

faults occurring in the memory unit are not considered in this
research. Each register is assumed to be self-checking with a
check bits approach like parity bit or cycle redundancy code.
Moreover, the fault will be detected with the condition that
each SFA in the CSA and SE-IGC pair in CPA have a single
fault at a time. However, this assumption is valid because the
area of SFA and SE-unit along with the respective carry bit
generator is negligible compared to the overall size of the
multiplier.

VI. CONCLUSION
In this research, we proposed a self-checking hardware
architecture for the MM algorithm, which can handle
multiple faults simultaneously because of the distributed fault
detection mechanism. In addition, a novel parity prediction
approach is proposed, which can be used in cases where
CSA blocks are used repeatedly in a loop without the CPA
layer. The performance of the MM algorithm is mainly
dependent on CSA and CPA blocks. Therefore, we analyzed
each individually to construct an optimized self-checking
approach for MM.

Due to the absence of a carry propagation chain, we exam-
ined three different fault prognosis approaches for CSA. It is
observed that the SFA-based self-checking CSA approach
provides 18.3% and 14.3% area efficiency as compared to
the DMR and PP approaches. In terms of power, the SFA
approach is 40.71% and 16.8% more efficient than DMR
and PP. As a result of the analysis, the SFA-based self-
checking CSA approach is used for MM architecture because
it provides the optimal area and power overhead of 102.8%
and 59.6% compared to standard CSA design. In contrast
to CSA, the carry chain in CPA limits the self-checking
approach due to fault propagation. Therefore, an equivalence
tester-based self-checking is used for the carry-prefix adder
design. The proposed approach can detect multiple faults
simultaneously, and the checking mechanism is independent
of the corrupted input carry bit.

The proposed self-checking MM architecture is designed
using the SFA-based CSA and equivalence tester-based
CPA blocks. The proposed design can detect multiple faults
simultaneously with an area overhead of 43.5% compared
to the standard MM design. The power consumption of the
proposed self-checking architecture is only 10.9% higher
than the traditional MM architecture. The fault diagnosis
process operated in parallel with the operation of standard
MM architecture and did not affect the latency of the final
output bits. However, the dependency of error computation
on MM output creates a 33.8% delay overhead for generating
the final error output.
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