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ABSTRACT The rapid growth of the Internet of Medical Things (IoMT) has introduced significant
security and privacy challenges in managing and protecting medical data. This paper proposes a secure
federated cloud storage system designed to address these challenges using a hybrid heuristic attribute-based
encryption (ABE) scheme integrated with a permissioned Blockchain. The proposed system enhances data
confidentiality and integrity by first collecting medical information and then encrypting it with ABE using
an optimal key generated by the Hybrid Mexican Axolotl with Energy Valley Optimizer (HMO-EVO). The
encrypted data is securely stored in a permissioned blockchain, ensuring robust access control and protection
against data breaches. For effective healthcare monitoring, the system employs federated learning with a
Multi-scale Bi-Long Short-Term Memory and Gated Recurrent Unit (MBiLSTM-GRU) to predict diseases
accurately. This federated approach allows for decentralized training of deep learning models, preserving
patient data privacy while leveraging collective learning. Experimental results show that the proposed
system outperforms conventional methods in terms of security, efficiency, and predictive accuracy. This
research offers a comprehensive framework for secure medical data management, combining the strengths
of federated learning and blockchain technology to address the critical issues of data ownership, regulatory
compliance, and privacy in IoMT networks.

INDEX TERMS Attribute-based encryption, blockchain technology, federated learning, health monitoring,
IoMT security, optimal key generation.

I. INTRODUCTION
Cloud computing has become a popular framework for data
storage due to its benefits, such as on-demand supply, reduced
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computational effort, low cost, and improved asset manage-
ment, rapidly gaining popularity among users [1]. It offers
service-oriented architectures like Platform-as-a-Service
(PaaS), Software-as-a-Service (SaaS), and Infrastructure-as-
a-Service (IaaS), where end-to-end reliability and quality are
crucial due to fluctuating user dynamics [2]. The quality of
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experience between cloud customers and service providers is
evaluated based on the service level agreement [3], which
measures factors such as repair time, uptime, mean time
between failures, user responsibility, and response time [4].
Federated learning is employed to enhance security by
enabling the training of a common global model on a
centralized server while keeping data within the pertinent
organizations, rather than aggregating data from multiple
sources using conventional techniques. This method allows
different regions to collaborate in training a global system
without directly exchanging information, thereby enhancing
individual privacy [5].

Privacy-related issues are exacerbated by attackers tar-
geting gateway networks and servers, data forgery, record
falsification, unauthorized device penetration, and device
interference. Implementing a blockchain-based framework
and unified cloud computing techniques can address these
problems [6]. Blockchain technology, developed by Satoshi
Nakamoto in 2008, includes a network of independent nodes
that maintain a time-stamped collection of tamper-evident
records [7]. It uses cryptography to secure data, ensur-
ing decentralization, rigidity, and transparency [8]. Machine
learning technology has found applications in various fields,
including autonomous vehicles, smartphones, and embedded
devices, offering a secure method for addressing privacy
issues [9], [10].

Blockchain is also used for data protection in smart
healthcare systems, regulating information dissemination,
access to patient records, and other smart healthcare tech-
nologies [11]. It serves as the foundation for cybersecurity
architecture in intelligent household networks within smart
healthcare models [12]. Despite growing interest, research
on smart healthcare technologies is spread across various
disciplines [13]. This study aims to fill the knowledge gap and
provide insights into blockchain technology and its applica-
tions in intelligent healthcare systems [14].

This paper introduces a trusted recommender system
utilizing cloud techniques from multiple Fibre Channel Pro-
tocol (FCP) sites to the CU. At the middleware layer, the
FCP-based protocol runs a ranking model to choose the best
value for the CU [15]. The quality of experience and CU site
manage payment services. The proposed outcomes showed
high service quality. The file systems address the scalability
limits of storing service offerings in the blockchain. The
blockchain ledger is connected to the IPFS 32-bit hash,
ensuring confidence, homogeneity, and data integrity. Hence,
a secure federated cloud storage system with a disease
detection component is developed to secure medical data in
healthcare systems.

Most secure federated cloud storage systems are costly and
suffer from misconfiguration, unauthorized access, lack of
visibility, cyber-attacks, and insecure interfaces, leading to
insufficient data governance and poor access control. Trans-
actions are sometimes insecure. To resolve these challenges,
various deep learning approaches have been designed for

blockchain-based secure federated cloud storage systems.
The features and challanges of these approaches are listed in
Table 1.
Cloud Service Provisioning [16] improves bandwidth and

decreases servicing latency, offering viable outcomes but
suffering from trust issues and increased security vulnera-
bilities during data transactions. RTS-DELM [17] reduces
computational burdens and implementation costs but maxi-
mizes latency and implementation time. Edge-cloud-AF [18]
enhances data privacy and quality of service, increasing pre-
cision and F1-score, but suffers from malicious cyber attacks
and security issues, lacking support for complex storage
policies. Asynchronous aggregation [19] is less expensive
and faster, reducing computational complexity but struggling
with large data volumes and real-time applications. CNN [20]
reduces security risks and provides better scalability, but is
vulnerable to malicious gradient tampering and poisoning
attacks, leading to unauthorized access. LSTM [21] offers
flexible and manageable outcomes, improving early data
breach detection but lacking early data security measures and
reducing communication efficiency. Multi-tenant SaaS [22]
protects data against internal and external threats, securing
private data aggregation but failing to address severe privacy
violations and data misuse, using low-quality models that
decrease performance. SaaS [23] enhances transaction secu-
rity and keeps records safe frommalicious parties, improving
immutability, transparency, and security, but not reducing
business risk and incurring high monitoring and handling
costs.

These disadvantages motivate the implementation of an
effective blockchain-based secure federated cloud storage
system with deep learning techniques [24]. The developed
secure federated cloud storage system with health monitoring
and disease detection aims to achieve several objectives. It is
designed to effectively secure patient information and accu-
rately predict diseases in hospitals through a secure federated
cloud storage system with integrated health monitoring. The
system utilizes ABE-based encryption with the HMO-EVO
algorithm to optimally generate keys, thereby improving sys-
tem efficiency by reducing memory size and computational
time. Additionally, the HMO-EVO algorithm is employed for
optimal key generation in ABE, ensuring high security and
optimizing parameters such as activation function, number
of epochs, and hidden neuron count in MBiLSTM-GRU to
maximize accuracy, MCC, precision, and NPV in disease
prediction. The performance of the proposed secure federated
cloud storage system with health monitoring is examined
against conventional models and algorithms using various
performance metrics.

The developed secure federated cloud storage system with
health monitoring is detailed in the following sections. Part
II presents the proposed algorithm and dataset explanation.
Part III describes the encryption process and optimal key
generation. Part IV summarizes user authorization, federated
learning, and the prediction approach. Part V provides a

VOLUME 12, 2024 117155



A. B. Kathole et al.: Secure Federated Cloud Storage Protection Strategy

summary of the experimental study of the developed secure
federated cloud storage system. The concluding remarks of
the proposed system are described in Part VI.

TABLE 1. Features and challenges of a secure federated cloud storage
using cryptography.

II. BLOCKCHAIN-BASED CLOUD STORAGE PROTECTION
FRAMEWORK USING FEDERATED LEARNING
A. SECURED HEALTHCARE DATA PROTECTION AND
ANALYSIS SCHEME IN BLOCKCHAIN
Security and privacy are concerned with traditional cloud
storage solutions, which is one of their biggest problems.
They are giving a third-party supplier, who can have different
rules and procedures, to access your data. The speed and
latency of data operations provide another difficulty when
employing cloud storage solutions. Although cloud storage

may appear to be less expensive and simpler than local stor-
age, there are additional expenses and considerations that
are either hidden costs or variable costs. Since the price is
exorbitant. Different cloud service providers could employ
various standards and requirements for storing and access-
ing data, which might not be compatible with your current
systems or applications. Advanced, reliable Cloud storage
technologies and geographically dispersed data centers can
make a provider into a failure and result in a disaster. Hence,
the federated cloud storage system with disease detection
is used to effectively secure the patient’s information and
accurately detect the disease. The blockchain based federated
storage system still hard to handle the data security because
of the data stolen by attackers. Some of the edge devices
are lead to poison in the federated learning process. These
medical data of edge devices are increasing the computing
power of the federated learning storage system. It suffers
from privacy protection key related issues during the data
sharing process. The offered federated cloud storage system
with health monitoring structural representation is depicted
in Fig. 1.

FIGURE 1. Structural representation of designed federated cloud storage
system with health monitoring.

The newly implemented federated cloud storage system
with health monitoring is used to effectively secure medi-
cal data from attackers and hackers and accurately predict
disease. The medical information was gathered from online
sources.Then, the medical data is fed into the encryption
stage. The raw medical data is effectively encrypted and
decrypted using ABE with optimal key and it is stored in
the blockchain. Here, the investigated HMO-EVO strategy is
employed to generate the optimal key for securing the data
in terms of minimized memory size and computation time.
It is effectively stored in the cloud because cloud storage
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provides an additional layer of security against attackers and
hackers. Then, the encrypted data is given to the prediction
section. From the stored data, the health monitoring is effec-
tively demonstrated to predict the disease using hybridized
BiLSTM and GRU networks and it is named MBiLSTM-
GRU. Here, the developed HMO-EVO strategy is utilized to
optimized the values and the values are number of epochs,
hidden neuron and activation function for maximizing the
accuracy, precision, MCC and NPV. Finally, the implemented
federated cloud storage systemwith health monitoring is con-
trasted to traditional approaches and strategies with respect to
experimental analysis in terms of performance measures.

B. MEDICAL DATA COLLECTION
The input data for Dataset-1 (Diabetes) was gathered utilizing
the dataset from [26]. This dataset contains patient details
in 9 columns: glucose, outcome, blood pressure, diabetes
pedigree function, insulin, skin thickness, age, BMI, and
pregnancies. For Dataset-2 (Heart Disease), the information
was collected by utilizing the dataset from [27]. This dataset
contains 76 attributes and 14 columns. The numbers are set
at 0 to 4 integer values, including patient details such as age,
sex, and target. The collected health information inputs are
indicated by FHbd the total amount of data noted as D.

C. IMPLEMENTED HMO-EVO
The developed HMO-EVO algorithm is used to effectively
generate the optimal key for minimizing memory size and
computational time. It is utilized to enhance the data encryp-
tion process. The parameter optimization inMBiLSTM-GRU
is performed using HMO-EVO to enhance the accuracy, pre-
cision, MCC and NPV. The MAO algorithm gives accurate
results. It has a simple structure and a very fast implementa-
tion process. However, it suffers from a large amount of data
implementation. The EVO algorithms advantages are it are
straightforward structure, and effective implementation. Yet,
it showed poor rates for the prediction, and time complexity
during training. The designed HMO-EVO is investigated to
beat the issues. The term PS is the updated position of the
offered HMO-EVO. The term de is the candidate position
obtained from MAO and it is noted by P1. The term ykj is
the current position obtained from EVO and it is represented
by P2. Updated location in the designed HMO-EVO is rep-
resented by PS based on the location of P1 and P2. The new
position PS is estimated using an adaptive concept and it is
measured using Eq. (1).

PS = 0.5 ∗ P1+ 0.5 ∗ P2 (1)

Here, the MAO strategy location is indicated by de and the
WWO strategy location is noted by ykj . The updated location
is represented by PS.

MAO: This algorithm draws its inspiration from axolotl
behaviour [28]. The axolotl’s breeding, birth, aquatic habitat,
and tissue repair are all elements that affect its inspiration
process. The axolotl vectors are represented by J and the
dimension is noted by D. The limit is set at [noe, nye]. The

term Qo = {W1, . . . ,Wot } is the axolotl population size.
Here, the size is represented by ot . These sizes are used
to determine the best solution. The format of the vector is
defined by Wf ∈ Qo, 1 ≤ f ≤ ot . The form of Wf =[
wf 1, . . . ,wfD

]
is equal toWf ∈ Qo, 1 ≤ f ≤ ot .

The four main phases are the passage from the larval state
to adulthood, the damage stage and repair, the preproduction
stage and assortment. Axolotl populations are started at ran-
dom. The male and female populations are divided based on
sex. The most effective person has superior camouflage, and
the others will adjust their coloration in response. The colour
changing behaviour is given in Eq. (2).

bfe← bfe +
(
bctu,e − bfe

)
∗ ϑ (2)

Here, the best male axolotl is noted by bctu and the present
male axolotl is indicated by bf . The female group of axolotl
transforms from larvae into adults. That process is indicated
in Eq. (3).

gfe← gfe +
(
gctu,e − gfe

)
∗ ϑ (3)

Here, the best female axolotl is noted by gctu and the cur-
rent male axolotl is indicated by gf . Some axolotl does not
change their body and their colours. The random values are
represented by random ∈ [0, 1]. The male group of axolotl
optimization is measured using Eq. (4).

qof =
jbf∑
jbf

(4)

Here, the optimization value jbf is used for male axolotl. The
female group of axolotl optimization is calculated by Eq. (5).

qof =
jgf∑
jgf

(5)

Here, the term jgf is the optimization value of female axolotl.
The male axolotl behaviour is given in Eq. (6).

bfe← noe + (nye − noe) ∗ see (6)

The female axolotl behaviour is given in Eq. (7).

gfe← noe + (nye − noe) ∗ see (7)

The axolotl’s damage region is denoted by Eqo. The axolotl is
hurt by accident or moving across the water. This behaviour
is called injury or restoration. The regeneration process of the
axolotl is measured using Eq. (8).

qo′fe← noe + (nye − noe) ∗ see (8)

Here, the random value is noted by see. Hence, the best
global solution is determined in the search phase.

EVO: The term ‘‘physical reaction’’ describes the creation
of new particles by the collision of two particles or foreign
subatomic particles [29]. Based on the particles, which are
thought to increase forever, the vast majority of cosmos parti-
cles are considered unstable. This physics reaction behaviour
is implemented using the EVO algorithm. The individual

VOLUME 12, 2024 117157



A. B. Kathole et al.: Secure Federated Cloud Storage Protection Strategy

candidate operation is indicated by ykj . The EVO initialization
procedure is measured by Eq. (9).

ykj = ykj,min + rnd .
(
ykj,max − y

k
j,min

)
(9)

In the EVO, the dimension is represented by e. The total
particles are noted by o. The initial location is denoted
as ykj . The lower and upper level values are ykj,min and y

k
j,max,

respectively. The random value is noted by rnd . The term FC
indicates the enrichment bound measured by Eq. (10).

FC =

∑o
j=1OFMj

o
(10)

Here, the enrichment bound is determined using the dif-
ferences between neutron poor and neutron rich values. The
particle’s neutron enrichment stage is indicated byOFM . The
objective function of the particle’s stability stage is calculated
by Eq. (11).

TMj =
OFMj − CT
XT − CT

(11)

Here, the term TM is the particle’s stability. The worst
particles are denoted by XT and the best particles are noted
by CT . If OFMj > FC then the particle is set to large
value. The beta, gamma and alpha values are used in the
decay process. The mathematical process of identifying new
particles is given in Eq. (12).

ynew−1j = yj
(
YCT

(
ykj
))

(12)

Here, the stability best value is indicated by YCT . The
present position is indicated by ykj . The nearest particles are
noted by yj. The term E lj is calculated using Eq. (13).

E lj =
√

(y2− y1)2 + (z2− z1)2 (13)

The jth particle to l th nearest particle distance is noted
by E lj . Update the position using another candidate and this
behaviour is calculated using Eq. (14).

ynew−2j = yj
(
YOH

(
ykj
))

(14)

Here, the new particle is indicated by ynew−2j and the
present location is denoted by ykj . This involves performing
the highest level of center of the values as part of a procedure
for updating the location of the particles. These algorithmic
features imitate the values propensity to approach the stability
band, where the majority of values are located and most of
them have greater degrees of stability. The centre value of the
particle is given in Eq. (15).

YDQ =

∑o
j=1 Yj
o

(15)

Here, three position update processes are included in the
algorithm’s main loop. The updated new positions of the
particle are indicated by Y new−1j and it is measured using
Eq. (16).

Y new−1j = Yj +

(
s1 × YCT − s2 × YDQ

)
TMj

(16)

The terms s1 and s2 are random variables. It is used to
identify the movements of the particle. The mathematical
process of updating another particle’s location is given in
Eq. (17).

Y new−2j = Yj +
(
s3 × YCT − s4 × YDQ

)
(17)

Here in the search space, the movement’s values are set
randomly. This mathematical process is given in Eq. (18).

Y newj = Yj + s (18)

Here, the terms Y newj and Yj are updated location of the
particles. The value is taken in the interval of [0, 1].
The tricky aspect of this approach in the exploration phase

may direct the computer to regionally optimal solutions.
The other phase seeks to fine-tune the regionally optimal
candidates. The pseudo-code of implemented HMO-EVO is
shown in Algorithm 1. Finally, the flowchart of implemented
HMO-EVO is depicted in Fig. 2.

Algorithm 1 Investigated HMO-EVO
Load the particle’s position and population
Calculate the fitness function values
Determine the particles ‘s enrichment bound

While (iter < max _Iter)
Determine the optimized male and female axolotl population

For (K = 1 toMaxIter )
For (M = 1 to Npop)
Update the PS position employing the adaptive concept

Update the position using MAO
Evaluate the female axolotl position
Determine the best position
Generate the male axolotl position

If (s ≤ eq )
Update the position using EVO in Eq. (9)
Finds the particle’s stability stage
Calculate the particle’s position
Generate the centre of the particle

Else
Calculate the particle’s best stability

End if
End For

End For
Return stability solution

End

III. MEDICAL DATA DECRYPTION USING OPTIMAL
GENERATED KEYS FOR SECURING CLOUD STORAGE
RECORDS IN PERMISSIONED BLOCKS
A. ATTRIBUTE-BASED ENCRYPTION
The collected data is given to the ABE [30] encryption and it
is noted by FHbd . In Attribute-based Encryption (ABE), users
may encrypt and decode data depending on client attributes.
ABE is a vision of encryption with public key. One pairing
procedure is needed for each decryption in many real-world
ABE systems. The attribute-based encryption achieved
high fine-grained access and flexible over the traditional
models.
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FIGURE 2. A flowchart of implemented HMO-EVO.

Algorithm
Setup (L): The procedure used by the attribute authority to

set up the system chosen the L security value. Primary secret
key is NL and the public key is QL that are the outputs.
Key-Gen (NL, T): The attribute authority’s key generation

method generates the secret attribute keys TL for the signer
using the primary secret key NL and a set of attributes T as
inputs.
Sign (QL, N, Q, and TL): The signing is the process used

by a signer to produce a message’s signature TU using inputs
QL, a message N, an access policy Q, and attribute secret
keys TL.
Verify (QL, N, Q, and TU): The algorithm used for validat-

ing is one that a verifier runs on the inputs QL, N, Q, and TU
for a signature, an access policy, and a message. The result
is true if TU is a legitimate signature from a vocalist whose
qualities fulfil Q. The encrypted data is represented by BCEn

m .
The diagrammatic representation of ABE-based encryption is
depicted in Fig. 3.

FIGURE 3. A basic diagram of ABE-based encryption.

B. OPTIMAL KEY GENERATION FOR DATA ENCRYPTION
The optimal key is used to secure the data very effectively.
The developed HMO-EVO algorithm is used to effectively
generate the optimal key for minimizing the computational
time and memory size to enhance the system’s effectiveness.
The objective function formula is given in Eq. (19).

OJ1 = arg min{
YEKeyABE

} (Time+ M_size) (19)

Here, the term YEKeyABE is the optimal key and it is generated
in binary format and it is chosen in the interval of [0, 1]. The
computational time is given in Eq. (20).

Time = EX ∗
TM

clock_rate
(20)

Here, the unit per execution rate is denoted by EX . The term
clock_rate is the total execution rate. The term TM is the
total execution time. The formula memory size calculation
is measured by Eq. (21).

M_size = 2n ∗
block_size
t arg et_size

+ 1 (21)

Here, the term block_size is the total value of blocks. The
target size is noted by t arg et_size.

C. ENCRYPTED DATA STORAGE IN BLOCKCHAIN
In the blockchain, a procedure is used to split up the files.
To avoid data loss during the data transmission, each data is
assumed to be same value and it takes a copy for all files.
Then, a key encrypts the folders, making nodes to others.
Although blockchain technology was first used to store pub-
lic data, developments have allowed for storing encrypted
private data on the blockchain. Encrypting the files and dis-
tributing them over the decentralized network makes it more
difficult for hackers to access the data, which is a benefit
of using blockchain storage for encrypted data. No central
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authority overseeing file access or holding the keys required
to unlock the data exists. A hash task converts the letters
to numbers that is an encrypted output. It is used to ensure
data contained in the blocks on a blockchain are not altered.
It provides high security to the data.

IV. USER AUTHORIZATION WITH FEDERATED
LEARNING-BASED HEALTHCARE
MONITORING SYSTEM
A. USER AUTHORIZATION
The user authentication is one of the networks that effectively
verifies the client’s verification. It is used to check the per-
sonal identification and verify the access of the individual
person. By preventing unauthorized users from obtaining
access and perhaps causing system damage, information
theft, or other issues, it helps to guarantee that only authorized
users may access a system. The quantity of private authorities
on the system is decreased by authorization lists. It aids in
boosting the system’s security.

B. FEDERATED LEARNING FOR SECURED HEALTHCARE
SYSTEM
Federated learning enables different locations to participate
in the global model’s training. Without explicitly exchang-
ing datasets, federated learning incorporates implementing
the blockchain network model. As a consequence, a central
server host enhances the performance using a deep learn-
ing model. In order to preserve data localization at various
places, the system is implemented by distributing itself over
data centers, which include medical institutions or hospitals.
No participant’s data is shared or exchanged throughout the
training process. As opposed to deep classical learning, which
sends data to a single server, globally shared architecture is
maintained by the server and is available to all universities.
After that, each institute uses the model’s error gradient to
communicate with the server. All participant feedback is
gathered by the central server, which then adjusts the global
model in accordance with predetermined standards. By using
the pre-established criteria, the model can assess the quality
of the answer and only incorporate useful data. The orga-
nizations feedback given subpar or atypical outcomes may
therefore go unnoticed. This technique produces a single
cycle, which is then repeated until the blockchain network
system is learned. The federated learning for the secured
healthcare system diagram is depicted in Fig. 4.

C. MBiLSTM-GRU-BASED HEALTHCARE MONITORING
The developed MBiLSTM-GRU-based network is used to
accurately predict the disease. It is used to reduce the death
rates. The parameters such as activation function, number of
epochs and hidden neuron count are optimized from LSTM
and GRU using developed HMO-EVO algorithm for enhanc-
ing the prediction performance. Parameter optimization is
used to increase the precision, accuracy,MCC andNPV value
in the prediction section. The BiLSTM model effectively

FIGURE 4. A diagrammatic representation of the federated learning
model for the secured healthcare system.

predicts the data with time series. It increases loyalty rates
and customer satisfaction rates. But, it suffers from storage
related problems. The GRUmodel provided fast performance
and less memory during the training and also it easily handled
the large amount of data. But, it gives low prediction rates and
slow convergence rates. The objective function is calculated
using Eq. (22).

OJ2 = arg minPT
hidden
LSTM , JU epoch

LSTM ,LMAct
LSTM

GDhiddenGRU ,RV epoch
GRU ,CHAct

GRU

(
1
A
+

1
pr
+

1
M
+

1
npv

)
(22)

In LSTM, the optimized hidden neuron count is indicated
by PT hiddenLSTM and it is chosen in the interval of [5, 255]. The
number of epoch is optimized and it is represented by JU epoch

LSTM
in the interval of [5, 50]. The optimized activation function is
denoted by LMAct

LSTM and it is chosen in the interval of [1, 5].
In GRU, the optimized hidden neuron count is indicated by
GDhiddenGRU and it is chosen in the interval of [5, 255]. The
number of epoch is optimized and it is represented byRV epoch

GRU
in the interval of [5, 50]. The optimized activation function
is denoted by CHAct

GRU and it is taken in the interval of [1, 5].
The formula of MCC is calculated using Eq. (23).

M=
MIo ×MIk −MIo × TCv√(

MIo+TCj
)
(MIo+TCv) (MIk+MIo) (MIk+TCv)

(23)

The precision formula is calculated using Eq. (24)

pr =
MIk

MIo + TCv
(24)

The NPV value is measured using Eq. (25)

npv =
TCv

TCv +MIo
(25)
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The formula of accuracy is calculated using Eq. (26).

A =
(TCv +MIo)(

TCv +MIo + TCj +MIk
) (26)

Here, the true positive and negative values are represented
by the terms TCv and TCj, respectively. The false neg-
ative and positive values are noted by the terms MIo
and MIk , respectively. The diagrammatic representation of
the MBiLSTM-GRU-based healthcare monitoring system is
depicted in Fig. 5.

D. BiLSTM
The encrypted data is given to the BiLSTM [31] network
and it is denoted by BCEn

m . An important application for
the BiLSTM is natural language processing. By linking the
two hidden layers to the same output layer and processing
time series information in both reverse directions and for-
ward using two distinct hidden layers on the basis of LSTM,
BiLSTM may store both earlier and later information. So,
compared to uni-direction LSTM, theoretical prediction per-
formance is superior. The forward and backward hidden layer
activation outputs are included in BiLSTM’s hidden layer
output. The BiLSTM process is calculated using Eq. (27),
Eq. (28) and Eq. (29), respectively.

−→
i u= = β

(
X
y
−→
i
yu + Xy−→i

−−→
iu−1 + c−→i

)
(27)

←−
i u= = β

(
X
y
←−
i
yu + Xy←−i

←−−
iu−1 + c←−i

)
(28)

Iu= = X
y
−→
i

−→
i + X

y
←−
i

−→
i + cz (29)

Here, the output is determined by upgrading forward and
backward structures. The diagrammatic representation of
LSTM system is depicted in Fig. 6.

FIGURE 5. The diagrammatic representation of the MBiLSTM-GRU-based
healthcare monitoring system.

FIGURE 6. A basic diagram of the BiLSTM model.

FIGURE 7. A basic diagram of the GRU system.

E. GRU
The encrypted data is given to the GRU [32] network and
it is denoted by BCEn

m . Most of the models are used to pre-
dict the associated Sudden Death Syndrome (SDS) from a
single spectral measurement. Multiple images of the same
quadrate taken at various periods may improve the model’s
prediction accuracy. Consequently, a technique is used with
time-series imaging is requirement. The processing of nonlin-
ear time-series data is ideal for RNNs. When working with
time-series information, the RNN might be revealed as the
optimal component. The hidden layers of GRU are measured
by Eq. (30).

yp= = h
(
sp ∗Wiy

)
(30)

The GRU output layers are measured using Eq. (31).

sp = g
(
xp ∗W sx + sp−1 ∗ wss

)
(31)
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FIGURE 8. Effectiveness validation on developed federated cloud storage with health monitoring system among various algorithms with
respect to (a) MAE (b) MASE (c) MD (d) ONE-NORM (e) RMSE and (f) SMAPE.

The gradient vanishing problem is resolved by the RNN
approach, which is simple to implement. The term cp is
measured using Eq. (32).

cp = λ
(
Wc •

[
ip−1, yp

])
(32)

The term rp is calculated using Eq. (33).

rp = λ
(
Wr •

[
ip−1, yp

])
(33)

Here, the term present input is noted by yp. The output
parameter is indicated by ip. The individual hidden layer is
noted by h′p and it is given in Eq. (34).

h′p = tanh
(
W •

[
rp ∗ ip−1, yp

])
(34)

Here, the GRU’s random numbers are represented by cp and
i′p, respectively.

ip =
(
1− cp

)
∗ ip−1 + cp ∗ i′p (35)

The basic of diagram GRU system is depicted in Fig. 7.
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FIGURE 9. Performance evaluation on investigated federated cloud storage with health monitoring system among several approaches with
respect to (a) MAE (b) MASE (c) MD (d) ONE-NORM (e) RMSE and (f) SMAPE.

V. RESULTS AND DISCUSSIONS
A. EXPERIMENTAL SETUP
The investigated federated cloud storage model with health
monitoring was employed for securing the health data and
it was executed by Python. The performance of the sug-
gested federated cloud storage system with health monitoring
was compared with various existing techniques and heuristic

algorithms in terms of performance measures. A population
size of 10, a maximum iteration of 50 and chromosomal
length of 16 were used for the estimation study. The existing
approaches such as Data Encryption Standard (DES) [33],
Advanced Encryption Standard (AES) [34], Elliptic Curve
Cryptography (ECC) [35] and ABS [30] were used. The
algorithms such as Cat Swarm Optimization (CSO) [36],
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FIGURE 10. Performance analysis on offered federated cloud storage with health monitoring system among different algorithms with respect
to (a) CPA attack and (b) KPA attack.

FIGURE 11. Performance validation on designed federated cloud storage with health monitoring model over various approaches with respect
(a) CPA attack and (b) KPA attack.

Monarch butterfly optimization (MBO) [37], EVO [28] and
MAO [29] were used for the experimental analysis.

B. EVALUATION MEASURES
The performance measures utilized for the federated cloud
storage system are given below.

(a) ONE-NORM: It is calculated using Eq. (36).

Norm =
∑
k

|Nk | (36)

(b) RMSE: The RMSE value is calculated by Eq. (37).

M =

√√√√√ k∑
k=1

(cxk2 − hxk1)2

k
(37)

(c) TWO-NORM: It is measured using Eq. (38).

Norm2 =

(
k∑

k=1

N 2
k

)
(38)

(d) MEP: The MEP value is given in Eq. (39).

P =
100%
l

k∑
k=1

cx − hx
cx

(39)

(e) MASE: The MASE parameter is measured by Eq. (40).

S = Mean

 |hx|

1
l=1

l∑
k=1
|cxk − hxl−1|

 (40)
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FIGURE 12. Performance analysis on implemented federated cloud storage with health monitoring model over different algorithms with
respect to (a) Computational time (b) Memory size and (c) Encryption time.

(f) MAE: It is calculated using Eq. (41).

E =

l∑
k=1
|hxk − cxk |

l
(41)

(g) Infinity-Norm: It is measured by Eq. (42).

FI = Max
1≤k≤l

|Nk | (42)

C. PERFORMANCE ANALYSIS OVER FEDERATED CLOUD
STORAGE SYSTEM
The developed federated cloud storage with health moni-
toring model performance was compared to several heuris-
tic strategy is depicted in Fig. 8. Also, the performance
is compared to various techniques and it is shown in
Fig. 9. The HMO-EVO-MBiLSTM-GRU-based federated
cloud storage system with health monitoring given less
MASE value of 41% than CSO, 47% than MBO, 54% than
EVO, and 58% than MAO at the learning percentage of
65 from algorithm comparison. The implemented HMO-
EVO-MBiLSTM-GRU-based federated cloud storage system

with health monitoring to previous models and it is achieved
better outcomes with less MASE.

D. CPA AND KPA EVALUATION OVER FEDERATED CLOUD
STORAGE SYSTEM
The developed HMO-EVO-MBiLSTM-GRU-based feder-
ated cloud storage system with health monitoring perfor-
mance in terms of CPA and KPA analysis over various
heuristic strategies is shown in Fig. 10 and the comparison
among existingmethods is shown in Fig. 11. TheHMO-EVO-
MBiLSTM-GRU-based federated cloud storage with health
monitoring model given less CPA attack value of 1.3% than
CSO, 13.22% than MBO, 5.26% than EVO, and 6.25% than
MAO at a key value of 30. Hence, the developed federated
cloud storage system with a health monitoring system over
the existing models showed greater performance in terms of
CPA attack.

E. TIME ANALYSIS OVER FEDERATED CLOUD STORAGE
SYSTEM
The developed federated cloud storage with health monitor-
ing model performance was compared to several heuristic
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FIGURE 13. Performance analysis on designed federated cloud storage with health monitoring system over various algorithms and methods.

algorithms and it is depicted in Fig. 12 using computational
time, memory size and encryption time analysis. The HMO-
EVO-MBiLSTM-GRU-based federated cloud storage with a
health monitoring system given less memory size of 2.6%
than CSO, 12.9% than MBO, 21.2% than EVO, and 22.9%
than MAO at the block size of 3 from algorithm com-
parison. The developed HMO-EVO-MBiLSTM-GRU-based
federated cloud storage with a health monitoring system com-
pared to traditional systems and it showed better results in
terms of minimized computation time.

F. KEY SENSITIVITY AND KPA ANALYSIS OVER FEDERATED
CLOUD STORAGE SYSTEM
The developed HMO-EVO-MBiLSTM-GR-based federated
cloud storage with health monitoring system key sensitiv-
ity analysis is compared to various heuristic algorithms and
conventional methods and it is shown in Fig. 13. The HMO-
EVO-MBiLSTM-GRU-based federated cloud storage with
health monitoring system given less key sensitivity value of
15% than CSO, 22% than MBO, 27% than EVO, and 33%
than MAO over the percent value of 30 from the algorithm
comparison. Hence, the developed HMO-EVO-MBiLSTM-
GRU-based federated cloud storage with a health monitoring
system over the existing models showed greater performance
in terms of key sensitivity analysis.

G. OVERALL ANALYSIS ON THE DEVELOPED FEDERATED
CLOUD STORAGE WITH THE DISEASE DETECTION SYSTEM
The performance comparison among investigated HMO-
EVO-MBiLSTM-GRU-based federated cloud storage with
healthmonitoring systemwith heuristic algorithms is given in
Table 2 and also comparison among conventional approaches
is given in Table 3. The HMO-EVO-MBiLSTM-GRU-based
federated cloud storage with health monitoring system pro-
vided high MASE of 33% than CSO, 45% than MBO, 52%
than EVO, and 57% than MAO. The implemented HMO-
EVO-MBiLSTM-GRU-based federated cloud storage with

health monitoring system achieved better efficacy than tra-
ditional approaches.

TABLE 2. Performance analysis of the developed Federated Cloud
Storage with health monitoring system over algorithms.

TABLE 3. Performance analysis of the developed Federated Cloud
Storage with health monitoring system over techniques.

VI. CONCLUSION
The newly implemented deep learning-based federated cloud
storage with a health monitoring system was used to
effectively secure the data and accurately predict the disease
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from attackers. The medical data were collected from online
databases. Next, the gathered data was collected from the
internet. The medical data was fed into the ABE-based with
optimal key encryption section. The data was effectively
encrypted and decrypted, and stored in the blockchain. Here,
the designed HMO-EVO strategy was employed to generate
the optimal key for minimizing the memory size and compu-
tation time. Then, the encrypted data was given to the predic-
tion section. Here, the disease was effectively predicted using
BiLSTM and GRU networks, namedMBiLSTM-GRU. Here,
the developed HMO-EVO algorithm was utilized to optimize
the parameters like hidden neuron, activation function, and
the number of epochs for maximizing the accuracy, precision,
MCC, and NPV. The HMO-EVO-MBiLSTM-GRU-based
federated cloud storage with health monitoring system pro-
vided lessMASE of 32% thanDES, 46% thanAES, 52% than
ECC, and 21% than ABS. Finally, the implemented federated
cloud storage with health monitoring system was compared
to conventional approaches and algorithms with some effec-
tiveness measures analysis, and it was given better efficacy
with less MASE value. However, the system’s reliance on
specific datasets and the potential computational overhead
in real-time applications may limit its scalability and appli-
cability in diverse healthcare settings. Future research could
explore integrating more varied datasets and optimizing the
system’s computational efficiency to enhance its adaptability
and performance in broader contexts.
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