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ABSTRACT The upcoming 3GPP global mobile communication standard 6G strives to push the technological
limits of radio frequency (RF) communication even further than its predecessors: Sum data rates beyond
100Gbit/s, RF bandwidths above 1GHz per link, and sub-millisecond latency necessitate very high
performance development tools. We propose a new SDR firmware and software architecture designed
explicitly to meet these challenging requirements. It relies on Ethernet and commercial off-the-shelf network
and server components to maximize flexibility and to reduce costs. We analyze state-of-the-art solutions
(USRP X440 and other RFSoC-based systems), derive architectural design goals, explain resulting design
decision in detail, and exemplify our architecture’s implementation on the XCZU48DR RFSoC. Finally,
we validate its performance via measurements and outline how the architecture surpasses the state of the art
with respect to sustained RF recording, while maintaining high Ethernet bandwidth efficiency. Building a 6G
integrated sensing and communication (ISAC) example, we demonstrate its real-time and rapid application
development capabilities.

INDEX TERMS 6G, integrated sensing and communication (ISAC), rapid prototyping, RFSoC, software-
defined radio (SDR), system architecture, wideband streaming and processing.

I. INTRODUCTION
Working towards the upcoming Release-19, the 3GPP has
introduced integrated sensing and communication (ISAC) into
the work plan for 5GNR [1]. A feasibility study on the chances
and requirements of ISAC has been conducted beforehand [2]
and another one, targeting the relevance of channel modeling
for ISAC, is ongoing [3].

The ITU, contributing research organizations, and leading
hardware vendors do agree, that ISAC will also be part
of the emerging 6G standard [4], [5], [6], [7], [8], [9],
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[10], [11], [12], [13]. Their use case visions define 6G’s
technological cornerstones: Sum data rates in excess of
100Gbit/s, radio frequency (RF) bandwidths in excess of
1GHz, sub-millisecond latency, and possibly full-duplex radio
communication. The increased complexity and scope of 6G
mandates a highly efficient research and development process
to sustainably deliver the required results in time [14], [15],
[16].

In contrast to application-specific monolithic architectures,
the software-defined radio (SDR) concept [17] provides the
flexibility to cover a wide range of requirements, making it
a popular choice in research and development. However, the
ease of use of existing ready-to-run SDRs in ecosystems such
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as GNU Radio or MATLAB is counterbalanced by limitations
in terms of throughput and latency, which would, e.g., require
individual adaptation in low-level system programming with
C/C++ or even field-programmable gate array (FPGA) design.
The performance requirements of 6G, in particular the high
data rates and bandwidths paired with low latency, certainly
necessitate the low-level programming approach. Our own
research endeavors of the last two decades [18], [19], [20],
[21] reinforce our conviction that SDR represents the best
approach to mobile communication research and development.
In this contribution, we propose a novel SDR system

architecture that bridges the gap between support for rapid
application development and sustained high performance,
i.e., high throughput and low latency. To achieve the required
performance, we still have to rely on a highly parallel low-
level FPGA design and heavily optimized C/C++ software
where necessary. We establish zero-overhead interfaces for
real-time signal processing modules. All non-performance-
critical parts, especially application-specific control code,
are implemented as high-level scripting using a concurrent
interface that provides deterministically timed access to the
hardware functions, e.g., RF frontends, sample acquisition,
and waveform generation.
This architecture offers an unparalleled set of features

compared to other state-of-the-art (SotA) solutions [22], [23],
[24], [25], [26], [27], [28]:

• Strong isolation between scripted application logic and
the hardware abstraction layer resolves performance
issues of SotA solutions where high-level scripts inter-
fere with low-level realization. Additionally, realizing
application logic in high-level scripts reduces the initial
hurdle for developers and enables rapid application
development.

• Full exploitation of the hardware’s capabilities. The high-
speed serial link between FPGA and host server is the
system bottleneck. Therefore, the streaming efficiency in
receive (Rx) and transmit (Tx) is optimized towards the
link’s data rate limit. Beyond that, a separate solution
(comparable to an arbitrary waveform generator) for
periodic Tx signals allows simultaneous use of all DACs
at the maximum sample rate.

• Continuous sample recording only limited by the size of
the SSDs. Using hardware comparable to the SotA, the
architecture realizes uninterrupted recording of a 10GB/s
sample stream via a single 100Gbit/s Ethernet link.1

The remainder of the paper is structured as follows: Starting
from the state of the art in Sec. II, we derive the design goals
that are required to establish such an architecture in Sec. III.
Afterwards, we point out our design decisions and the resulting
SDR system architecture in Sec. IV to VIII. Finally, we portray
our implementation on a Xilinx RFSoC and commercial off-
the-shelf (COTS) server hardware in Sec. IX and discuss the

1This corresponds to a real-valued 16 bit sample signal at 5GSa/s or an
equivalent complex 2x16 bit sample baseband signal at 2.5GSa/s. Due to
analog and digital filter roll-off, the modulated bandwidth of either signal is
limited to approximately 2GHz.

achieved performance based on system benchmarks in Sec. X
and an exemplary 6G ISAC measurement in Sec. XI.

II. STATE OF THE ART
Table 1 enumerates a selection of architecture solutions and
their realization. The existing approaches can be split into two
groups, namely dedicated monolithic architectures (1. and 2.)
and classic SDR systems (3. through 5.).

Monolithic solutions are meant to be composed of dedicated
hardware framework components. Architecture approaches
like these usually – due to the fine-tuned component selection
– reach outstanding performance, but lack flexibility due
to hardware dependencies and proprietary data interfaces.
Adapting the system to different applications therefore
requires changing its setup in components and low-level
programming. This results in prolonged development cycles
and increased cost.

On the other hand, classic SDR approaches gain flexibility
by realizing a split architecture design [17]. They define
a protocol layer, which realizes three planes: Control, Rx,
and Tx. The transceiver hardware must be compatible with
the protocol; aside from that, it is interchangeable. Using
an appropriate data link, it is connected to a host personal
computer (PC), where a software driver interacts with the
transceiver hardware to realize generic functionality. The
driver offers a high-level interface to the user. The actual
application-specific code can be built on this interface and
is therefore largely independent of the utilized transceiver
hardware and vice versa. In general, this enables designing
a powerful and hardware independent architecture, which
can utilize popular standard high-speed interfaces and COTS
hardware. As trade-off against the increased flexibility,
many SDR architecture realizations suffer from performance
limitations.
Solutions 3 to 5 utilize the Xilinx RFSoC chipset, which

combines direct RF-sampling data converters with FPGA
hardware. It offers eight analog-to-digital converters (ADCs)
and digital-to-analog converters (DACs) with up to 5GSa/s
each and two 100Gbit/s Ethernet interfaces. Comparing the
realized figures of merit, the impact of architecture design
can easily be seen: Solution 3 utilizes direct RF-sampling, but
also digital down conversion. This allows for a possibly high
channel count, but cuts down the realizable instantaneous
bandwidth. Furthermore, the underlying architecture only
implements receiver operation.
In contrast, solutions 4 and 5 represent the two RFSoC-

based SDRs available as COTS devices from Ettus Research.
Both are ready to run solutions and include the necessary
peripheral components and interconnects. The Ettus open
source software suite USRP Hardware Driver (UHD) can be
utilized for both devices. The UHD is accompanied by the
RF Network on Chip (RFNoC) architecture, which provides
partially run-time reconfigurable hardware acceleration for
signal processing by exploiting the computational capabilities
of the FPGA. Although it simplifies the FPGA design flow
through its modular structure, it increases the overhead in
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TABLE 1. Comparison of the figures of merit of various wideband sampling solutions.

terms of resource usage and data rate. Design decisions
required at compile-time limit the flexibility that can be
achieved. The X410 integrates an analog frontend for
mixing and filtering which limits the bandwidth per channel.
In contrast, the X440 directly connects the balun coupled
chassis inputs to the converters’ pins and therefore supports
enhanced bandwidths. Ettus specifies the reference system
to be only capable of utilizing the available two 100Gbit/s
Ethernet links to up to 61%. The worst case configuration
even reaches only 34% of link utilization [29], which
severely degrades performance. Furthermore, as shown in [30],
although Ettus’ driver allows to specify the execution time
of commands, the architecture does not support parallel
synchronous switching operations. Moreover, the driver’s
interface is not designed for burst Tx streaming, massively
increasing the control overhead for the high-level script in
applications such as multiple input multiple output (MIMO)
channel sounding.
To overcome the existing SDR systems’ data rate

limitations, solution 6 is being developed in [27] and [28].
The RFSoC-based MIMO testbed presented there achieves
outstanding performance, utilizing the links between host and
converter device to over 90%. However, depending on the
application, further optimization is desirable to reduce the
number of samples transferred over these links: In the Rx path,
burst sampling is not supported, and in the Tx path, periodic
signals have to be streamed continuously through the host.
Due to the targeted application, this system is not designed
for continuous streaming and storage on SSDs, but buffers
Rx samples in RAM during the acquisition, which limits the
measurement duration to a maximum of 10 s [28].

III. DESIGN GOALS
In order to design a platform as versatile as possible, the
basic functionality should be isolated from the interchangeable
application logic. Similar to the UHD, we aimed for a
high-level application programming interface which allows
to control all low-level functionalities from a programming
language of the users’s choice, such as Python. The application
logic can thus be modified without recompiling FPGA design
or C++ code, also obviating the need to flash and to reinitialize
the device. This saves from a few minutes up to several hours
per development iteration and is one central reason for the
widespread success of SDRs in research and development.
Beyond this, we aimed to achieve this isolation not only
functionally, but also in terms of performance: Decoupling

of software components prevents blocking of critical tasks
like sample recording by concurrent non-critical processes,
e.g., real-time data analysis. Asynchronous procedure calls
allow commands to be issued without waiting for previous
operations to complete.
We designed our architecture from the ground up for

real-time capability: This allows the application to react to
measurement data with low latency and to precisely control
the timing of all hardware interactions, which is essential in
highly parallel MIMO and multi-node setups. One potential
application is the implementation of an automatic gain control
in software.
As a result, the following design objectives guided the

development of our architecture:
1) Optimize the data rate both over the host-to-device link

and to the SSD storage to enable continuous recording
2) Isolation between application logic and abstracted basic

functionalities
3) Shifting the complexity from the FPGA to the host,

maximizing the use of Python and minimizing the use
of C++

4) Low latency in both control and data planes
5) Deterministic timing of hardware actions independent

of software timing jitter
6) Flexibility in hardware, number of nodes/channels, and

applications.
These goals allow to create one versatile platform that can

be adapted via high-level user scripts to a multitude of research
and development wideband RF use cases, particularly in the
context of 6G design, rapid prototyping, and implementation.
This encompasses applications such as multi-node MIMO
RF propagation measurements, radar target characterization,
ISAC, and real-time algorithm testing, which also incorporates
AI-driven features.

IV. SYSTEM ARCHITECTURE OVERVIEW
Fig. 1 outlines the basic structure of our proposed architecture,
which consists of the PC-based host and the converter device,
with an FPGA at its core, connected via a high-speed Ethernet
link. Due to its generic design, the hardware components as
well as the high-speed data interface can be exchanged to
match individual requirements without incurring changes to
the architecture.2

Ethernet provides the most promising solution to connect
host and converter device, as suitable network interface

2Minor changes to the implementation might be required.
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FIGURE 1. Overview of our system architecture, consisting of the converter device, which is operated by a driver software on the host
computer via one or multiple high-speed Ethernet links. Its generic design allows for adaption and exchange of hardware components and
high-speed data interface. This allows to achieve the individually desired performance parameters without requiring changes to the
architecture. Encapsulation of base features in an abstraction layer on the host allows for interfacing with the system via the high-level
scripting language Python.

controllers (NICs) are widely available for COTS server
hardware. It supports high data rates and allows for a wide
range of connection types: From short direct connections via
copper cable to kilometer-long fiber optic cables and complex
switched networks. Using Ethernet as an interchangeable,
generic, and flexible interface, our architecture overcomes
the limitations of monolithic SotA setups and proprietary
interfaces.

The Ethernet interface is used for both the communication
to control the device (control plane) and the streaming of
samples (data plane). For the latter, there is one data path
per channel, whereby a distinction is made between Rx
(ADC channels, sample flow from device to host) and Tx
(DAC channels, reverse sample flow). The planes’ individual
communication protocols were each designed with the goals of
efficiency and shifting complexity from the FPGA to the host
to simplify implementation. Unlike UHD, our architecture
natively supports burst Tx streaming, eliminating any control
overhead.Moreover, it is optimized for ultra-fast and overhead-
free error recovery in both Rx and Tx streaming operation.
To link the control plane modules within the FPGA,

we employ the de facto standard AMBA advanced eXtensible
interface 4 (AXI4). All modules provide their configuration
via registers, which can be read and written through this
memory-mapped interface. As AXI4 is widely used, a variety
of ready-made infrastructure cores and functional IP cores
with compliant control ports are available. Bridges from
the AXI4 network to other protocols, e.g., serial peripheral
interface (SPI) or inter-integrated circuit (I2C), integrate
peripheral components like analog RF frontends. The AXI
over Ethernet (AXIoE) protocol [31], [32] tunnels register
accesses through Ethernet and enables direct access to all
components via straightforward Python3 programming on the

3Without loss of generality, we utilize Python to implement the application
logic due to its widespread use, readability, and extensive library support.

host. On the FPGA, a timed command infrastructure enables
the precise timing of actions independent of software timing
jitter. Combined, this facilitates rapid prototyping with analog
components, e.g., development of advanced 6G features like
full-duplex RF transceivers.

For all data streams within the FPGA, e.g., ADC and DAC
samples, the unidirectional variant AXI4-Stream is used.
The link to the host is the bottleneck of the architecture

as the combined data rate of the utilized converter channels
may exceed its capacity. In that case, not all streams can
be continuously operated with maximum RF bandwidth and
100% duty cycle.

To realize maximum flexibility, each channel features
an independent data path on the FPGA, which allows
time-based sampling control per channel, supporting both
burst and continuous sampling modes. Samples from
individual channels are independently packed into Ethernet
packets, which are then transmitted on the Ethernet interface in
a round-robin arbitration scheme. All Ethernet packet headers
include virtual local area network (VLAN) tags to distinguish
between channels and to enable building distributed setups
with multiple converter and host nodes connected to a switched
network. To ensure only intact packets are processed, the
FPGA monitors all inbound packets’ cyclic redundancy check
(CRC) and Reed-Solomon forward error correction (RS-FEC)
status. Faulty packets will be discarded.

The host-side software is separated into two components:
1) A driver which encloses the base functionality

in low-level code and the high-level application-
specific scripting. The driver, written in C++, handles
high-rate and latency-critical communication. This
is supported by the Data Plane Development Kit
(DPDK) framework, which is a widely used solution for
performance-optimized networking in the data center
industry [33]. Like the FPGA image, the driver is
developed to be generic and reusable.
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2) A Python program governs the application-specific
operations. This program interacts with the driver via
a shared memory interface, implementing mechanisms
for both asynchronous remote procedure call (RPC) and
sample transfer. This separation allows the application
logic to be modified without recompiling C++ code or
even the FPGA design, also obviating the need to flash
and reinitialize the SDR device.

We realize continuous streaming and recording of a 10GB/s
sample stream via a single 100Gbit/s Ethernet link. Thus,
we overcome the data rate and duty cycle limitations of
UHD [26] and the MIMO testbed presented in [27] and [28].

V. SYNCHRONIZATION AND TIMING
In line with our design goals, we realize synchronous
sampling and deterministically timed command execution
in distributed setups. To allow for synchronous sampling, a
reference clock (REFCLK) is distributed to each converter
device. Absolute synchronizability in time is gained by
additionally introducing a system synchronization reference
signal (SYSREF) and using a simplified synchronization
scheme similar to JESD204 [34]. It is generated and distributed
with a defined timing relation to the REFCLK. All clocks
required internally are derived from the REFCLK on each
individual converter device. Ensuring integer clock relations
yields deterministic synchronizability as well as synchronous
sampling for local and distributed converter device setups.
We plan to publish a more detailed description of the clock
generation, distribution, and synchronization scheme for
single and multi-device setups in a dedicated article.
In order to arrange commands and data in a chronological

sequence, two time bases are employed. Firstly, we define a
sampling-oriented time base: The data converters aggregate
samples into beats resulting in a configuration-dependent
beatclock. From this, we derive the beatcounter which
provides a direct relation between sample beats and time.
It is used for all sampling-related purposes. Secondly, as low
sample rates unavoidably incur insufficient resolution of the
beatcounter, we derive an invariant real time clock (RTC)
from the FPGA’s REFCLK. It is used for all other timing
needs, e.g., interaction with peripheral components.

A. FPGA SYNC AND TIME
The FPGA implements individual counters for both time
bases. Since the RTC is clocked by the REFCLK, it can
be directly synchronized using the external SYSREF signal,
which has a known timing relation to the REFCLK. The
synchronization mechanism is armed via AXIoE and will
subsequently trigger on the SYSREF’s next rising edge.
Based on the previously synchronized RTC, the beatcounter
is initialized via a timed command. The synchronization
algorithm predicts both clocks’ common edges and thereby
ensures deterministic operation for all possible (integer)
REFCLK to beatclock relations no matter which possesses
the highest frequency.

The implementation of these fast counters is a major
challenge. In fact, their adder’s possibly long carry chain
might impair the design’s timing closure and therefore requires
designing ultra-fast and lightweight counter modules. Instead
of implementing a monolithic adder structure, the logic is split
into two synchronized counters as proposed by [35]. While
the first counter increments the lower part of the output word
in every cycle, the second one precalculates the next upper
part and propagates it to the output as soon as the fast counter
overflows. This way, the long carry chain can be split into two
parts. While the first counter’s short chain still has to fulfill the
tight requirements, the second counter’s long chain’s timing
can be eased by applying multicycle path constraints.4

B. HOST-SIDE PACKET PACING
Most FPGAs have very limited internal buffer capabilities,
e.g., in the order of a few megabits. Without incurring further
hardware dependencies like utilization of external memory,
the SDR may only buffer a few microseconds of Tx sample
data. To prevent overflows, the host must not send its samples
to the device too early. Similarly, on the control plane, the host
must adhere to queue size limitations of the FPGA. Therefore,
a flow control mechanism is required.
In the condensed hierarchical datagram for RFNoC

(CHDR) protocol used by the universal software radio
peripherals (USRPs), the device gives clearances to the host
to transmit data up to a given stream position (transmit
window) [36]. As it relies on the host to react in time, the
buffers in the FPGA must be significantly larger than the
worst-case software latency. Therefore, this solution is not
viable here. In the newer USRP X440, Ethernet pause frames
are used for flow control [29]. These are packets that request
the remote device to suspend data transmission for a specified
period of time. However, the disadvantage of this method is
that it is not channel specific and, in particular, slows down
time-critical control communication (head-of-line blocking).
Instead, we take a different approach: For both timed

commands and Tx samples, it is known when the device will
consume them from its buffers. This allows the host to send the
packets accurately timed so that they arrive at the device with
a fixed lead time. To achieve this precisely, we employ the
send on timestamp feature of the NIC hardware, which allows
the software to schedule packets ahead of time [37]. The NIC
puts the packets on the wire at the predetermined transmission
time. Thus, the arrival time at the FPGA is decoupled from the
relatively high software timing jitter, rendering significantly
smaller buffers possible.
To achieve this, the host has to know the relationship

between its local and the device’s remote time bases. In fixed
intervals, it requests the device to read out the current time
stamp counter value. The response then tells the time at which
the request packet arrived at the device. This is used as input to
a clock model to adjust the transmission timestamps of future
packets.

4The generic design allows for compile-time reconfiguration of the
counter’s split.
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FIGURE 2. AXIoE packet processing FPGA design: AXI4-Stream-based
command processing and AXI4 bus manager interface. Separate AXIoE
preprocessing enables fast error recovery.

VI. DEVICE CONTROL
Full-featured remote control of the FPGA’s internal modules
and peripheral components by the host is required to enable an
architecture independent from both hardware and application.
In the FPGA design, we realize all configuration and control
functionality via memory-mapped AXI4. We utilize AXIoE
as generic and reliable access protocol for tunneling the AXI4
accesses from the host to the FPGA over Ethernet. This allows
for easy integration of commercial and custom modules and
peripheral components into the architecture.

A. AXI OVER ETHERNET
For the remote control of the different blocks on the FPGA,
we employ the protocol AXIoE, specified in [32], which allows
to tunnel memory-mapped AXI4 accesses via Ethernet [31].
The protocol realizes an ordered and reliable command

stream, but also allows for independent commands to be
transmitted unreliably and out of sequence. It is specifically
designed for the constraints of the communication between a
host and an FPGA: Its asymmetric design requires the AXIoE
server on the FPGA side to only realize a simple request-
response mechanism. In contrast, the error detection and
recovery process is to be realized by the client running on
the host. This allows for a lightweight FPGA implementation,
shifting complexity to the host software.
The host can send request packets, which may contain

one or multiple transactions. Each transaction consists of one
atomic command, either a read from or write to a specified
memory-mapped address range. Upon packet loss, the host
performs a resynchronization: It either repeats the lost request
packets or asks the FPGA to repeat lost responses.
On the FPGA side, we choose a split implementation

of the server functionality as visualized in Fig. 2. The
preprocessing module checks incoming packets’ AXIoE
headers. Whereas protocol compliant packets are forwarded
into the inbound command first in, first out (FIFO) buffer,
faulty packets are discarded and error tickets – containing the
information required for generating the error response – are
inserted into the FIFO instead.5 The AXIoE state machine
processes the incoming requests from the command FIFO,
executes transactions on the AXI4 interface, and generates

5This prevents faulty packets from entering the FIFO and therefore fully
eliminates the time required to read them out of the command FIFO in error
case.

FIGURE 3. Timed command network: FPGA design topology. AXI4 bus to
AXI4-Stream conversion, AXI4-Stream routing, and timestamp distribution.
Standard interfaces and lightweight design allow for simple and fast
functional extension. Either beatcounter or RTC may be used as timestamp.

response packets. For proper operation it requires utilizing
two additional buffers: The response FIFO stores individual
AXI4 transaction response data until its status header can be
generated. The replay memory is addressable and stores full
response pakets for potential replay requests.

B. FPGA COMMAND TIMING
Fig. 3 depicts the timed command network topology
implemented on the FPGA. The respective time bases’ counter
output is distributed to all related blocks. The timed command
dispatcher module is accessible via the FPGA’s AXI4
network and converts memory-mapped accesses to AXI4-
Stream packets containing the timed commands. It checks
the command time margin, generates the routing information,
and inserts it alongside the actual packet data into the timed
command AXI4-Stream network. Each timed command actor
features its own FIFO buffer. This allows queueing timed
commands independently for each actor and avoids head-of-
line blocking. An actor module loads a command and executes
it as soon as the execution target time is reached. Due to the
timing mechanism’s time base independent design, each actor
module may utilize either the beatcounter or the RTC.
To further relax critical timing paths, the execution target

time check is uncoupled from the actor module’s actual
command logic by setting a start bit and delaying the execution
by one cycle instead of performing the check and the command
in the same clock cycle.

VII. HIGH-RATE ADC STREAMING
When host and SDR are connected via one 100Gbit/s
Ethernet link, theoretically up to 99.623Gbit/s net data rate
can be achieved when using jumbo frames of 9000 bytes
payload. We were able to demonstrate a data rate of
95.885Gbit/s for the maximum standard-compliant packet
size of 1500 bytes. [38]
To allow for any meaningful error recovery, the converter

device would need to buffer the outbound data stream for a
significant amount of time. The internal memory resources
typically found on FPGAs do not suffice to realize this.
Using two or more DDR4 memory banks would provide
the bandwidth required for prolonged buffering, but would
introduce unwanted hardware dependencies on the system
architecture.
The same reason also opposes the use of the RDMA over

converged Ethernet (RoCE) protocol, which is a common
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FIGURE 4. Rx FPGA path: AXI4-Stream-based, beatcounter-timed triggering,
MTU compliant packing, efficient buffering, parallel header generation, and
data unit relation based merging. The design enables burst and continuous
sample streaming.

solution for implementing reliable high-rate data streams:
On the host side, it is directly supported by many NICs,
allowing zero-copy interaction with continuous memory
regions without CPU intervention. However, it demands
significant resources on the FPGA side [39]. Beyond this,
RoCE’s real-time capabilities are limited as the software on
the host does not have control over the timing of individual
packets.
Instead, we designed an ultralight Rx protocol without

retransmission capabilities. Similarly to the control plane
protocol, it is constructed asymmetrically to attain minimal
implementation complexity on the FPGA. Thus, we centered
our design around the sample beats generated by the ADCs:
They form atomic units, which will not be fragmented on the
FPGA and their generation frequency is the basis for their
timestamping (see beatcounter in Sec. V).
In addition to the actual sample data, each Rx packet

contains the following meta information:
• The beatcounter based timestamp of the packet’s first
sample, allowing the host to infer the timestamp of all
samples within the packet

• Packet sequence number, independent per channel
• ADC status bits providing overrange, overvoltage, and
threshold information, allowing the host to detect analog
faults and implement an automatic gain control.

A. FPGA-DESIGN REALIZATION
Fig. 4 illustrates the FPGA side ADC path design. The trigger
module executes beatcounter-timed commands, allowing for
both burst or continuous sampling. This module forwards
an ADC channel’s sample beats as one AXI4-Stream packet
per trigger event. The first beat’s beatcounter value is
attached to the packet. The subsequent module, i.e., the
data packer, fragments the original packet according to the
high-speed interface’s maximum transmission unit (MTU)
size. To maintain the stream’s embedded timing information,
intermediate beatcounter values are calculated internally and
attached to each fragment. The data packer directly feeds the
sample data into the sample FIFO for subsequent merging with
the associated packet headers: In parallel, the header generator
produces one packet header per fragment from the accumulated
metadata. The header merge module combines the sample
fragments with their respective headers and forwards them
to the Ethernet interface.
In burst mode, the resulting data rates can exceed the

capacity of the Ethernet link in the short term. Therefore,
buffering is necessary to cover the occurring backpressure.

Due to the limited resources of the FPGA, an efficient design
is essential. This is achieved by splitting the data path into
multiple, parallel sub-paths, e.g., for sample data and packet
headers. Each individual sub-path handles either data units
of AXI4-Stream packets or single AXI4-Stream beats. This
relation empowers implicit synchronization by AXI4-Stream
flow control and path merging by a lightweight mechanism
based on the data units.
The data relation between the sub-paths enables a

pipelineable, modular, and expandable path design and
individual buffering or processing per path without explicitly
implementing any synchronization mechanism. To preserve
this inter-path data relation, all modules within the paths must
be designed to be fully flow control compliant. A recovery
mechanism handles backpressure conditions impacting the
trigger module6 and prevents the sub-paths from losing
synchronization.
Special considerations are necessary to allow continuous

operation of the ADC paths. Backpressure occurring in paths
with critical load will eventually cause FIFO overflows.
To prevent systematic backpressure, all modules used in paths
with critical load must be implemented with an initiation
interval7 of 1. Stochastic backpressure must not occur either,
since it can never be caught up with. This requires an adequate
path design with respect to data width conversions and clock
domain crossings.

B. HOST-SIDE IMPLEMENTATION
A central use-case of our SDR architecture is recording the
received samples for offline processing, requiring particularly
fast access to large amounts of storage. In order to achieve
the maximum possible write rates, we use multiple SSDs and
combine their individual write speeds using a software RAID0
and the XFS filesystem. The host software interacts with the
storage using io_uring, an asynchronous, high-performance
interface to the Linux kernel [40].

For maximum performance, we use the O_DIRECT access
mode of the Linux kernel. It imposes a fixed block size, in our
case 512 bytes [41]. This is in conflict with the requirements
of the communication protocol, which handles sample beats
as atomic units. Therefore, we decided not to strive for a
zero-copy implementation in the driver, but rather to copy
the samples from the individual packets into a large ring
buffer. This provides maximum flexibility. In fact, samples
can be selected arbitrarily in this step without being bound
to beat limits. If samples are missing in the output stream,
e.g., due to a lost packet, they are zero-padded to ensure that
the subsequent samples are found at the expected position in
the stream. The ring buffer allows for simultaneous online
processing of samples, e.g., to provide a live view of the data
or to implement an automatic gain control, without disrupting
the real-time recording in any way.

6To maintain the timing relation to the continuous stream of ADC samples,
it must not support backpressure.

7The delay between processing of successive input data in units of clock
cycles.
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It would be a desirable feature to be able to configure the
network card not to drop packets with erroneous checksums:
Since there is no retransmission option in our application,
we would rather accept bit errors in the sample stream than
lose entire packets. Unfortunately, DPDK currently does not
provide a way to configure the NIC accordingly.

VIII. ANALOG SIGNAL GENERATION: DAC-PATH
In common SDR solutions, only streaming is supported in
Tx mode, making the Ethernet link the bottleneck of the
system. To overcome this, we have implemented approaches
to efficiently support both static and dynamic Tx sequences:

The first approach operates in a loading-looping manner –
like an arbitrary waveform generator – realizing dynamic
exchangeability of sequences at runtime via AXIoE. Since
a sequence only needs to be transmitted to the converter
device once, this mode of operation does not require high
performance host hardware to setup and control the waveform
generation. It enables the synchronized playback of periodic
sequences on multiple channels, vastly exceeding the Ethernet
interface data rate.

The second approach implements the most flexible solution
realizable for an SDR platform: Real-time Tx sample
streaming. The ability to transmit arbitrary RF signals enables
the platform to implement a full-featured Tx. In this setup, the
host server transmits the DAC samples and their associated
timing information to the converter device, which buffers the
data until the specified playback time. To ensure proper sample
handling, both ends implement mechanisms to compensate
for network jitter. If there are no samples to be played, zero-
samples are automatically passed to the respective DACs
by the FPGA (auto-zero on idle). In contrast to UHD, this
eliminates the need for explicit start and stop commands when
transmitting burst signals.

A particular challenge with streaming Tx is handling errors:
In the CHDR protocol used in the USRPs, this is done by
monitoring the sequence numbers of incoming packets [36].
Errors are reported to the host and Tx operation is only
resumed after explicit acknowledgement. The start and end
of burst must be explicitly marked to allow discrimination
between an intentional interruption and packet loss. Correctly
handling the loss of these delimiter packets is particularly
complex [42]. In our application, due to limited resources
and high data rates, the buffers on the FPGA cannot be
realized large enough to have sufficient slack to allow for
the retransmission of lost packets.
We have therefore opted for a different approach, signifi-

cantly simplifying the protocol design: The header of each
sample packet indicates its desired playback time expressed
as beatcounter value. The FPGA offers multiple statistics
counters, capturing the number of successfully transmitted
packets as well as the number of packets discarded due to late
arrival. The host regularly reads these counters via AXIoE,
whereby the FPGA attaches the timestamp when exactly the
counter values were last changed. Since the software knows
how many sample packets should have been consumed by the

FIGURE 5. Tx loading-looping FPGA path: Conversion of AXI4 writes to
AXI4-Stream packets. Timed command-based loading-looping of
sequences. Lightweight approach allows for playback of periodic signals,
eliminating the bottleneck of the link to the host.

FIGURE 6. Tx streaming FPGA path: Beatcounter-based payback of inbound
sample packets based on AXI4-Stream. Includes protocol-based error
detection and handling by buffer reset. Fire-and-forget protocol design
reduces complexity and resource consumption of the FPGA realization.

DAC at any given time, it can determine whether packets have
been lost.

This solution also keeps the gap in the Tx signal as small as
possible:When a packet is lost, only the samples in the affected
packet are missing and the output auto-zero on idle feature
implicitly handles the error on the FPGA side. Consecutive
packets are played as intended by their beatcounter target.
In addition, there is no delay caused by waiting for explicit
acknowledgments.

A. FPGA-DESIGN REALIZATION
1) LOADING-LOOPING-APPROACH
Fig. 5 visualizes the architecture of the loading-looping DAC
data path: Using AXIoE, the host writes the desired sequence
into the loader module, which passes the sequence as an AXI4-
Stream packet to the load FIFO. After loading is finished, the
host may control the playback of the sequence using timed
commands. The playback module outputs the sequence as
sample stream to the DAC, but also feeds it back to its input
via the loop FIFO for repetitive playback.

2) REAL-TIME TX STREAMING
The Tx streaming path design is shown in Fig. 6. The inbound
module performs a sequence check and inserts samples
and timestamps into individually buffered sub-paths. The
outbound module manages time-controlled playback and
outputs zero-sample words when no sample data are available.
Inbound and outbound module provide timestamped statistics
counters, which can be read out by the host via AXIoE.
The architecture implements a global packet status check,

which ensures packet bit integrity. On protocol level, four
types of errors may occur and are handled appropriately:

1) Packet loss is implicitly handled by the auto-zero on
idle feature.

2) An out-of-order packet is handled by the inbound
module by discarding the late packet.
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3) A sample FIFO underrun occurs when packets arrive too
late. The outbound module recognizes a missed target
time and triggers a reset of both FIFOs. The inbound
module monitors the reset condition.

4) A sample FIFO overflow occurs when too many packets
arrive too early. The inbound module detects and safely
resolves backpressure conditions at both FIFO inputs.
This ensures sub-path synchronization.

After any error condition occurred and has been resolved, the
inbound module discards inbound data until it resyncs its input
interface to the next Ethernet packet. This design guarantees
the shortest possible interruption of the output sample
stream.

B. HOST-SIDE IMPLEMENTATION
The loading-looping approach places no special demands on
the host – the sequence to be played back is loaded into the
device by a driver call from the user application (e.g., a Python
script) using the AXIoE control path.
Tx streaming is more complex: Here, the host driver

ensures that the relatively small buffers in the FPGA neither
overflow nor underflow. As described in Sec. V-B, we use the
NIC’s send on timestamp feature for this purpose. To detect
errors, the host reads the previously described status counters
periodically via AXIoE. Based on the timestamp attached
to the result, the host driver calculates how many sample
packets are expected to have been consumed by the DAC.
From this, the host determines how many errors of which type
have occurred during the readout interval.

IX. IMPLEMENTATION EXAMPLE
The proposed SDR architecture, described in the previous
sections, is not tied to any particular hardware. Starting from
this section, we introduce a specific implementation (based
on the Xilinx RFSoC). This allows us to discuss relevant
implementation details and validate our architecture with real
measurements.

A. XILINX ZYNQ ULRASCALE RFSOC XCZU48DR
Besides the actual FPGA, the Xilinx RFSoC XCZU48DR
monolithically integrates specialized blocks, e.g., 100Gbit/s
Ethernet, ADC, and DAC:
The RF data converter (RFdc) hard-IP offers direct RF-

sampling ADCs and DACs. Table 2 and Table 3 list their
parameters. Both converter types integrate digital signal
processing features like digital down conversion (DDC)
and digital up conversion (DUC). The ADCs and DACs
are organized in tiles. Their power up sequence is neither
synchronized nor timed, which results in an undeterministic
timing relationship between tiles of a single as well as multiple
devices. The converter multi-tile synchronization (MTS)
procedure ensures a consistent and deterministic timing across
all ADC and DAC tiles. This requires specific external clocks
and sync signals, which have to be reconfiguredmultiple times.
All converter features are accessible through a single IP core,
which can be customized for the design and provides data as
well as control ports.

TABLE 2. Xilinx XCZU48DR: ADC characteristics. [43], [44].

TABLE 3. Xilinx XCZU48DR: DAC characteristics. [43].

Xilinx provides a 100Gbit/s Ethernet interface by combin-
ing a CMAC hard IP with a GTY serial transceiver quad. The
RFSoC features two8 of these interfaces.
Beside the FPGA as user-programmable logic (PL), the

RFSoC integrates a central processing unit (CPU) core as
processing system (PS), which in our case runs a Linux
system and initializes the platform by configuring peripheral
clock generation components9 and loading the bitstream
onto the FPGA. AXI4 interfaces between PL and PS allow
communication between both sides. By connecting AXIoE to
the PS-PL interface and utilizing a driver in the PS, the host is
empowered to remotely reconfigure all peripheral components
that are accessible via the PS.

B. HOST
On the host side, enterprise COTS hardware is used.
Particularly noteworthy is the SSD array, which allows
continuous recording of one channel’s data at its full sample
rate of 5GSa/s: It consists of 4x Samsung SSD PM9A3
with 4GB/s write rate each, so that a RAID0 reaches a
sustained write rate of 16GB/s. The 100Gbit/s Ethernet NIC
used to communicate with the FPGA is an Nvidia Mellanox
MCX623106AN-CDAT. It offers the required feature send-on-
timestamp (also called packet pacing), allowing for the exact
timing of packet transmission [37]. Both the SSD array and
the NIC are connected via PCI Express 4.0 directly to the CPU
for maximum transfer rate.

C. DEVICE CLOCKING
As REFCLK, we use a 100MHz square wave instead of the
common 10MHz sine wave to achieve a better phase noise
performance. A 1 PPS reference signal is fed to the converter
device. Based on these, each device derives its clocks and
SYSREF. This enables synchronous sampling and absolute
synchronization in multi-device setups.

D. RFDC-OVER-ETHERNET
In addition to the sample transfer interface, the RFdc IP core
in the FPGA design provides an AXI4 control interface. It is

8Currently, we are limited to a single CMAC due to evaluation board layout
constraints.

9The clock generation network’s communication interface is hardwired to
the PS package pins on the used evaluation board.
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FIGURE 7. The configuration interface of the RF data converters is typically
operated out of the PS, an integrated ARM core. Instead, we connect it to
the host via our AXI over Ethernet infrastructure. There, the driver is linked
to the Python application, allowing it to configure the hardware with
maximum flexibility.

used, e.g., for initialization, calibration, and synchronization.
To access this interface, Xilinx provides a driver which is
intended to run on the PS. This contradicts the goal of our
SDR architecture to have the host control the device as
comprehensively as possible.
Therefore, we decided to give the host direct control

over the RFdc by attaching its configuration interface to the
AXIoE AXI4 network as depicted in Fig. 7. However, the
control registers of the RFdc are not documented publicly,
so the original driver must be utilized to interact with them.
Fortunately, it is published in C source code, so it is possible to
compile it for the host architecture. We adapted the functions
that access the memory-mapped control register in the PS to
trigger AXIoE transactions instead. This is transparent to the
driver, as the underlying AXIoE layer handles any problems
that may occur, such as packet loss.

The only remaining hurdle is that the driver is designed for
synchronous register accesses, as from the PS this is a fast
local access, but the Python application follows the paradigm
of asynchronous programming. The solution here is provided
by the library ucontext, which makes it possible to create a
separate execution context (especially stack) for the driver. Its
execution is suspended for every AXIoE access and continued
after the asynchronous arrival of the result.

The concept of tunneling accesses and commands through
the reliable and ordered AXIoE interface is not limited to the
RFdc and its driver. Instead, it is generically applicable for
most commercial IPs, custom modules, and even hardware
peripherals, which are controlled by software drivers via
register accesses. Beyond that, AXIoE can easily be utilized as
reliable tunnel for non-AXI4 interfaces via wrapper modules
and on top benefits from the timed command functionality
already included in the design.

X. MEASUREMENT RESULTS
After implementing the proposed system architecture, we car-
ried out a multitude of tests to verify its performance.

First, we examined the stability of the synchronization
and command timing: To do this, we power cycled the
device numerous times and performed all synchronization
steps, which include the MTS, repeatedly. In each cycle,
we measured the system latency in an analog loopback. Using
timed commands, we set up theDACpath to produce a periodic
test signal. The generated analog Tx signal was looped back
into the Rx channels, the ADC samples were recorded, and the
delay between transmitted and received signal was determined.
Within each DAC/ADC combination, the measured latency
was constant across multiple reboots. This not only confirms
that the synchronization, both within the FPGA design and
between the data converters, works deterministically, but also
validates proper command timing.

Next, we evaluated our control plane implementation in
high-rate switching scenarios similar to, e.g., MIMO channel
sounding [30, Fig. 2]. The software not only has to produce
packets fast enough, but also pace them precisely so as not
to overload the command queues in the converter device.
We verified that commands were reliably executed even when
sending AXIoE packets with the high pace of 5 µs. This proves
that even fast switching tasks do not have to be implemented
explicitly in the FPGA but can be handled by the host in
software.
To verify the performance of the send-on-timestamp

mechanism, we measured the arrival time jitter. We did this
by regularly inserting AXIoE requests into the data stream,
which command the FPGA to read out the current value of the
time stamp counter. As shown in Fig. 8, the range in which the
real arrival time differs from the planned arrival time (jitter)
spans 3.34µs. This proves the precision of both the hardware
send-on-timestamp feature and clock modeling, confirming
our design decision to keep Tx streaming and control plane
buffers on the device as small as possible.
Next, we evaluated the sustained performance of the Rx

path: Over several hours of continuous sample streaming
at the full rate of 5GSa/s, no packet loss occurred. Also,
continuously storing the incoming data stream of 10GB/s to
the SSD array has been proven to work reliably, only limited
by the storage capacity.
We successfully verified the timing and synchronization

of both Tx path variants. Tx streaming was demonstrated
to work reliably at 5GSa/s, i.e., a net data rate of 10GB/s.
Hereby, 112µs of sample buffer were required on the device,
which is more than we expected. This is not a matter of
the architecture itself, but most likely caused by a problem
with the utilized host hardware, which is currently under
investigation [45]. Nevertheless, at a sample rate of 2.5GSa/s,
this effect disappeared and only 14 µs of samples had to be
buffered on the device for reliable Tx streaming.

Finally, to verify the real-time capabilities of our platform,
we measured the round-trip latency in the following test
scenario: For both Rx and Tx, we set up a single continuous
stream at a rate of 2.5GSa/s. To ensure that each Tx sample
packet arrives in time, the software must enqueue it into the
NIC transmit queue with a fixed lead time. We identified
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FIGURE 8. Histogram of packet arrival time deviation, positive values
indicate late packet arrival. Using hardware send-on-timestamp, the time
at which packets arrive at the device can be planned with a jitter of only
3.34µµµs. This accuracy allows implementing Tx streaming with very small
buffers in the FPGA, conserving device resources.

54µs as the minimum viable value for reliable operation.
Connecting two converters in an analog loop and analyzing
the respective timestamps, we determined a latency of 0.12µs
from the DAC’s digital input to the ADC’s digital output.10

In the Rx path, a sample reaches the software at most 17.3µs
after it was output by the ADC. The individual values add up
to the system’s worst-case round trip latency of 71.4µµµs.
This makes our system ideally suited to meet the

sub-millisecond latency requirements of state-of-the-art 6G
applications [8], [9], [10], [12], [13]. Therefore, it enables
hardware-in-the-loop evaluation of each element of the
communication system in a rapid prototyping environment:
From communication protocol components like scheduling,
channel estimation, and beam steering to novel applications
such as ISAC.

XI. APPLICATION EXAMPLE: 6G-ISAC-RADAR
Integrated sensing and communication (ISAC) is a proposed
feature of the upcoming 6G standard [4], [5], [7], [14],
[15]. Both infrastructure and sidelink-based communication
may integrate radar-like sensing functionality [6], [46]. This
promises great benefits for use cases like assistance systems,
health monitoring, mobility, public safety, and many more [6],
[14], [16].

Owing to its unique features and performance (cf. Table 4),
our SDR architecture is well suited for 6G rapid prototyping,
e.g., for ISAC [7]. The standardization of ISAC is at an
early stage, i.e., comprising a work item [1] and case
studies [2], [3]. Therefore, we opted for a straightforward
application example: A quasi-monostatic, single-input single-
output Doppler radar demonstrator, inspired by the ISAC
features envisioned for 6G [6]. The example realizes arbitrary
waveform generation and continuous sample acquisition

10This latency is primarily caused by the RFdc IP core.

and storage using our SDR architecture. The emitted signal
uses the same orthogonal frequency-division multiplexing
(OFDM) modulation scheme that is used by 5G and
potentially 6G, representing illumination by a base station
or user equipment [4]. The architecture generally supports
common mobile communication features, e.g., MIMO and
beamforming, which can be implemented if appropriate
multi-channel RF frontends are available. The real-time
streaming capabilities with low latency and high bandwidth
even facilitate the future implementation of advanced ISAC
demonstrators that seamlessly integrate into a 6G radio
access network, serving as simultaneously sensing and
communicating 6G network nodes.
Regarding our simplified ISAC application example,

evaluating the Doppler effect over time and range will not
only reveal the speed of a radar target as a whole but
also the movements of its inner parts, the so-called micro-
Doppler. The entirety of a target’s inner movements, e.g., a
pedestrian’s limbs or the individual rotor blades of a UAV,
can be detected as characteristic patterns: Its micro-Doppler
signature. To resolve the target’s inner structure in the range
domain, a radar system with high instantaneous bandwidths
is necessary. With a bandwidth of 2GHz, our setup realizes
a path distance resolution of 15 cm, which corresponds to a
range resolution of 7.5 cm in the monostatic case. In [47],
we discuss the promising chances of joint evaluation of static
and dynamic target reflectivity for detection, localization,
and classification of targets in upcoming ISAC solutions and
therefore, future mobility applications.

Our measurement setup is shown in Fig. 9: As only a single
converter device is used, no multi-device synchronization
is required. It continuously transmits a complex-valued
baseband OFDM sequence with a period length of 2500 sam-
ples and a bandwidth of 2GHz. The baseband signal is
mixed up into an RF signal with a center frequency of
5GHz. One antenna radiates the amplified signal while a
second one receives the target’s reflection. This Rx signal
is amplified and mixed down into the baseband before
being sampled by the converter device and sent to the
host. The resulting stream of 10GB/s is stored on the SSD
array in real-time, while computing delay-Doppler plots in
parallel.

As shown in Fig. 10a, we adapted a typical ISAC mobility
scenario as measurement example: A pedestrian is walking
towards a concentrated radar sensor node, which is realized by
our SDR system and utilizes a quasi-monostatic antenna setup.
Fig. 10b contains a snapshot of the continuously generated
delay-Doppler plots. The target’s micro-Doppler signature
can easily be identified as three characteristic peaks: The
pedestrian’s torso appears with its walking speed as the peak
in the center. Moving relatively to the torso, the swinging
arms appear centered around it as distinct peaks with different
distances and speeds. The signature’s asymmetric shape,
which is shifted towards higher absolute speeds, is caused
by the stepping foot moving toward the antennas in the plotted
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TABLE 4. Comparison of our solution with the state-of-the-art USRP X440. [26], [29].

FIGURE 9. Micro-Doppler radar measurement setup with a center
frequency of fc = 5 GHz, reaching an analog bandwidth of 2 GHz,
corresponding to a range resolution of 7.5 cm in the monostatic case.

time instant. Due to the continuously changing target geometry,
the plot’s subsequent snapshots in time would show the arms’
peaks moving around the torso’s on elliptic curves. This
leads to the target’s actual time-dependent micro-Doppler
signature.
These measurements demonstrate a range resolution

superior to that of state-of-the-art SDR solutions like the Ettus
USRP X440 [29]. In the context of ISAC-related research,
we already used the system to measure micro-Doppler
signatures of different kinds of targets relevant for future
mobility scenarios [47] as well as to validate a target

11Interfaces to other scripting languages and GNU Radio can be easily
developed.

modeling algorithm for generating training data for artificial
intelligence [48].

XII. FUTURE WORK
First, as shown in Sec X, a further latency improvement of the
real-time Tx streaming at 5GSa/s is possible. To accomplish
this, a limitation associated with the specific host hardware
must be overcome. However, this is not a matter of the
architecture itself and does not affect any application in which
a static Tx sequence is used as we successfully demonstrated.
Although already addressed in the architecture, one topic

that we have not yet tested is the synchronization of multiple
devices: The first step is to synchronize multiple devices in a
single node using a distributed clock in a wired setup. Moving
on to distributed multi-node measurement arrangements using
GNSS as a time source is the next challenge.
We are also working on the integration of multiple RF

frontends, which will be used to access a variety of frequency
bands. For practical application in channel sounding, very high
dynamic ranges are necessary, which is why we are working
on an automatic gain control.
With applications demanding bandwidths exceeding the

capability of a single converter channel, a transceiver has
to extend its instantaneous bandwidth beyond the Nyquist
limit of an individual channel. To achieve this, channel
bonding can be used. In a test setup with reduced complexity
based on the RFSoC, we already investigated and realized
multiple approaches [49]. They shall now be implemented
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FIGURE 10. ISAC scenario: A pedestrian is captured by a radar sensor node
implementing the proposed SDR system architecture.

and evaluated with our novel architecture. Channel bonding
requires multiple channels to be streamed from one or
more converter devices to the host server in parallel. This
implies challenges concerning multi-channel and multi-device
synchronization, the high-speed serial interface, and the
host’s real-time processing capabilities, which shall also be
addressed in our future research.
Finally, a more precise evaluation of the RFSoC as a

measurement system is also desirable: The long-term stability
of the RFdc’s internal calibration needs to be investigated
here. Imperfections such as inter-channel imbalances should
also be analyzed for possible correction via pre-distortion or
post-processing.

XIII. CONCLUSION
This contribution proposes a novel generic and hardware inde-
pendent SDR system architecture, which covers functionality
for Rx, Tx, and remote control. It enables synchronized and
distributed multi-node transceiver setups with high channel
counts. Both Rx and Tx implement time-triggered burst
and continuous sample-streaming. To enable periodic signal
generation beyond the limits of host and data interface, the Tx
additionally features runtime loading-looping signal playback.
The control infrastructure realizes remote configuration,
synchronization, and timed command execution. In summary,

the proposed system architecture covers the base functionality
of an SDR allowing for fast and easy high-level adaption of the
realized platform to a variety of applications without requiring
low-level changes to the FPGA design or C++ code. Therefore,
we intrinsically support rapid prototyping. Due to its modular,
generic, and reconfigurable design, our architecture is ready
for future extensions.

In order to validate the functionality of the design, we have
realized our architecture on a Xilinx RFSoC XCZU48DR in
combination with COTS server hardware. Rx streaming and
recording as well as dynamic Tx streaming were successfully
implemented and demonstrated for continuous operation at
the converters’ maximum rate of 5GSa/s. For periodic Tx
signals, the loading-looping design allows multi-channel high-
rate operation exceeding the Ethernet interface data rate limit.
Table 4 compares our solution with the latest Ettus USRP

which is also based on Xilinx RFSoC technology. The
table shows that our solution achieves superior performance,
leveraging on a better utilization of the available link data
rate. To the best of our knowledge, it is the only SDR which
allows to continuously send, receive, and record a signal with
a sample rate of 5GSa/s over a single 100Gbit/s Ethernet link.
At the same time, a latency of less than 80 µs is realized, which,
to this date, no other software-based system achieves, and
paves the way for sub-millisecond latency in 6G development.
Therefore, we bridge the gap between the high performance
requirements of modern mobile communication and rapid
application development. Combining flexibility and perfor-
mance, our SDR system architecture is ideal for research and
applications requiring scalable and distributed RF transceiver
solutions with high instantaneous bandwidths. These include
antenna measurements, radar target characterization, multi-
node MIMO channel sounding, real-time algorithm testing,
also incorporating AI-driven features, and ISAC in 6G.
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