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ABSTRACT Prosthetic hands are of paramount importance in the rehabilitation of upper limbs amputees.
Gesture recognition using surface electromyography (sEMG) data has emerged as a great option for
controlling prosthetic devices, since these data are acquired by non-intrusive sensors. This work presents
a real-time classification system based on artificial neural networks with individualized muscle activity
segmentation and using dynamic timewarping (DTW) based features. For real-time classification, wemodify
the size of the sliding windows so that their length is sufficient to fully capture the muscle activity signal.
For data segmentation, we propose an enhanced muscle activity detection in which validation is used to
fine-tune the thresholds needed to determine the beginning and end of muscle contraction. We used two
validation methods: cross-validation and multi-holdout. Moreover, we propose a post-processing technique
to choose the most representative class when there are multiple classifications for a given data. By combining
all the proposed techniques, the accuracy of the resulting systemwas (97.2 ± 0.3)% in the classification of
6 hand gestures from 10 healthy people, representing an increase of 7.1% in the mean accuracy compared
with the baseline model.

INDEX TERMS Hand gesture classification, muscle-activity detection, signal processing, sEMG, DTW,
neural network.

I. INTRODUCTION
Losing a limb can be traumatic, having an enormous impact
on a person’s body, emotions, relationships, vocation, and
way of life. While some other surgical procedures return
the patient’s health relatively quickly, the recovery period
after a major limb amputation can take a long time [1].
For patients facing an amputation, rehabilitation can lead to
the use of prostheses. Unfortunately, the lack of usability
of upper limb prostheses contributes to its high rejection
rate [2], [3]. Hence, in the last decades, the human-machine
interface field has brought many new applications to motor
rehabilitation, such as the control of myoelectric hand
prostheses, aiming to decrease this rejection rate [4], [5].
Myoelectric devices are controlled by electromyography
(EMG) signals generated by muscle contractions, and the
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approving it for publication was Li Zhang.

problem of hand gesture recognition consists in classifying
these muscle contractions [6].

Currently, non-intrusive myoelectric devices/sensors that
perform surface EMG (sEMG) are commonly used.
An sEMG signal is the EMG reading over the skin surface,
and it captures the spatio-temporal interference pattern of the
electrical activity of the motor neurons [7]. This electrical
pulse, which is the response of the motor neuron to the
brain’s command to make a movement [7], [8], [9], [10],
can be used to drive an external device, like a prosthesis.
In addition to being non-intrusive, a major advantage of
sEMG sensors is their easiness of operation, which allows
the existence of many simple and reliable commercial devices
[11], [12], [13].

Regarding the gesture classification problem, its solution
aims to identify muscle contraction patterns in the sEMG
signal and match them with pre-defined gestures through
supervised learning methods [14]. Advances in machine
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learningmade possible the development of several techniques
in pattern recognition applications. Several research works
have been achieving great results by using classical machine
learning techniques such as the K-Nearest Neighbors
(K-NN) [15], Support Vector Machine (SVM) [16], and
Linear Discriminant Analysis (LDA) [17]. On the other hand,
artificial neural networks (ANNs) reached the state-of-the-
art in many research fields, such as image recognition [18],
speech recognition [19], and natural language process-
ing [20], [21], [22]. Additionally, approaches using ANNs
have been reaching results above 80% in classifying several
hand gestures [23], [24]. For example, in [25], the authors
presented a classifier that recognized 5 hand gestures with
an accuracy of 90.7%, using an ANN with time-domain
features. The authors in [26] used an ANN that obtained 95%
accuracy when classifying 8 hand gestures. The combination
of time-frequency domain features with an ANN having
3 layers achieved an accuracy of 93.25% in [27], classifying
3 hand and wrist movements of four subjects. On a more
general case, the authors in [28] proposed a recognition
system able to classify 10 hand gestures, achieving 94%
mean accuracywith four subjects, using a time-delayedANN.
In [29], the authors reported an average recognition accuracy
of 85.08% using a complex ANN structure to extract features
and classify 5 hand gestures. It is worth highlighting that the
results of these research works are not comparable since they
use different databases. That is, no fair comparison among
these results/works can be made.

The general structure of the classification system adopted
in this work was proposed in [23]. It consists of the
following modules: (i) data reading; (ii) pre-processing;
(iii) feature extraction and selection; (iv) classification;
and (v) post-processing. The first module reads the data
examples from the datasets, being responsible for the system
input in the training and testing stages. In our case, the
data reading module inputs the data signals through a
sliding window method, which alters the dimensionality
and sometimes the form of the signal itself [7]. The pre-
processing module extracts the hand movement data from the
sEMG signal through muscle activity detection. There are
many features that can be extracted from an sEMG signal,
such as time- and frequency-domain features. The feature
extraction/selection module selects a proper set of features.
The classification module is where the ANN operates by
matching selected feature patterns to their respective labels.
Finally, the post-processing module refines the classification
output, which helps to interpret and evaluate the model
results. This is an important step since the sliding window
procedure splits each data example into several observation
windows, thus yielding several results that must be processed
before presenting the final classification result to the
user.

Although we use the same general structure as in [23],
we propose modifications in some modules that compose
the classification system. In addition to that, we present an
extensive study on some peculiarities of the system, which

one needs to be careful when working on it. The main
contributions of this work are summarized as follows:

1) IN DATA READING MODULE
We modify the window length. The reasoning is that by
increasing the window length during the test stage, the data
structure during this stage becomes more similar to the one
of the training stage, thus improving the classification, as it
will be clear in the next sections.

2) IN PRE-PROCESSING MODULE
We propose an enhanced muscle activity detection method-
ology to segment the sEMG signals more accurately. This
methodology consists in applying model validation tech-
niques in order to tune a key hyperparameter for each person,
instead of having a single parameter for all individuals like
in [23]. Hence, in our approach, the system is capable of
automatically adapting itself to each person.

3) IN CLASSIFICATION MODULE
We apply an overcomplete ANN. Overcomplete neural
networks have the potential to capture intricate patterns in the
data [30]. Thus, in the proposed methodology, we increase
the number of neurons in the hidden layer and compare the
different resulting architectures.

4) IN POST-PROCESSING MODULE
We propose a simple voting system, herein called poll,
to select the most representative classification result among
all the results obtained for the different windows belonging
to a given sEMG example.

In summary, in this work, we take the hand gesture
classification (HGC) system proposed in [23] as our starting
point (baseline model) and we propose modifications in
4 out of its 5 modules (see items 1 to 4 above for a
brief description). These modifications are not only tested
using real data but they are also discussed so that their
theoretical rationale is justified. Moreover, each of the
proposed contributions increased the mean accuracy of
the classification system in comparison to the baseline
model, thus corroborating our arguments. Besides, when we
combined all the proposed modifications, we obtained the
best setup for the HGC system, achieving 97.2% in the mean
accuracy, thus surpassing the baselinemodel’s mean accuracy
by 7.1%. Also important is the fact that such an increase in
mean accuracy is obtained without increasing the processing
time during the test stage, aka inference time, meaning that the
resulting HGC system meets real-time requirements just like
the baseline model does [23]. All codes and data necessary to
reproduce our results are publicly available (we provide the
links at the beginning of Section V).
This work is organized as follows. Section II details the

datasets we used. The HGC system is described in Section III.
In Section IV, we introduce the proposed validation method-
ologies for hyperparameter tuning. In Section V, we present
experiments and results. There is a careful discussion of
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results in Section VI. Finally, the conclusion is drawn in
Section VII.

II. DATASETS
In this work, we used the public datasets introduced in [23]
and, for the sake of clarity, we provide a brief description of
them. The datasets are comprised of sEMG signals that were
recorded using the Myo armband, a commercial low-cost
EMG sensor built by Thalmic Labs. By wearing this device
on the forearm, the sensors can return the digital sEMG signal
from the flexor, pronator, and extensor muscles to a computer
via Bluetooth [31]. The Myo armband resulting data is
comprised of the sEMG reading of 8 channels operating
at a sampling rate of 200 Hz. Each channel outputs the
measurement of a sensor that composes the armband. The
sensors are not placed over specific muscles. Instead, they
are distributed aiming to cover the surface of the forearm.

The datasets are comprised of sEMG signals from 6 hand
gestures. There are 5 gestures of interest, namely: fist (fi),
wave-in (wi), wave-out (wo), open (op), and pinch (pi). The
sixth gesture is the rest position, representing the absence
of any muscle activity. Although its classification is not
the focus of our work, we use many of its characteristics
to help distinguish the several sEMG patterns of interest.
Additionally, we use the label no-gesture (no) for all the
gestures our model cannot classify or the ones that are not
of interest, including the rest position. Figure 1 illustrates the
gestures of interest in their final hand positions.

FIGURE 1. Final hand position for the 5 gestures of interest.

There are two datasets, one for training and the other for
testing. They are composed of signals/data acquired from
10 healthy volunteers. Each data example from both datasets
is comprised of an 8-channel sEMG signal consisting of
continuous hand movements in the following sequence: rest
position, gesture of interest, and rest again. Additionally, each
example has a single label corresponding to the gesture of
interest, but the time instants in which the gesture begins
and ends are not provided by the datasets. The knowledge
of the true label of the data examples enables the application
of supervised learning techniques.

Figure 2 depicts one of the channels of an sEMG example.
In this figure, one can observe the temporal patterns that exist
in the recordings. We can divide an sEMG signal into three
main parts. In the first part of the data, labeled as 1 in the left
side of the figure, one observes a low-magnitude sEMG signal
corresponding to the rest position. In the second part, labeled
as 4 in the figure, we have the gesture of interest. In this part,
the sEMG magnitudes increase, as some muscles are active.
In the third portion, labeled as 1 in the right side of the figure,
the magnitudes decrease indicating that the hand has returned

to the rest position. Clearly, the second portion of the data
is the one that matters to recognize the gesture of interest,
and can be considered a random process comprised of two
components: the transient and the steady-state [7], [8], [23],
[32], [33].

FIGURE 2. General structure of a one-channel sEMG example.

1) TRAINING DATASET
Since one of the main ideas proposed in this work is to
design a particular machine learning model for each person,
we can consider the training dataset as 10 individual sets.
The training dataset Dtrain = {(F1,Y1), . . . , (FN ,YN )} of
each user contains a total of N = 30 data examples, where
the matrix Fi ∈ [−1, 1]400×8 corresponds to the ith sEMG
signal measured. Each Fi has a duration of approximately
2 seconds (400 samples). The categorical variable Yi ∈

{1, 2, 3, 4, 5, 6} denotes the label for the signal Fi, with
i = 1, 2, . . . ,N . Table 1 shows the relation between Yi
and the corresponding gestures. Each one of the classes that
compose Yi has 5 examples, totaling all 30 training examples
for each user. As previously described, the volunteers were
asked to perform hand movements to acquire the respective
data for each class. When recording the no-gesture examples,
the users kept their hands in the rest position during the whole
measurement time of 2 seconds.

TABLE 1. Indices and the corresponding hand gestures.

2) TESTING DATASET
The testing dataset Dtest = {(G1, Ŷ1), . . . , (GM , ŶM )}
of each user consists of M = 150 examples recorded
for 5 seconds each. It is worth mentioning that the class
no-gesture was not included in Dtest since our goal is to
classify the 5 gestures of interest. Thus, the testing set
Dtest has 30 examples of each class of Ŷi ∈ {2, 3, 4, 5, 6},
totaling 150 testing examples for each user. In the testing
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FIGURE 3. Framework illustrating the 5 modules of the proposed HGC system.

set, the 8-channel sEMG signal is Gi ∈ [−1, 1]1000×8, with
i = 1, 2, . . . ,M .

III. THE HGC SYSTEM
This section introduces the HGC system used to identify the
gestures described in Section II. As depicted in Figure 3, this
system can be divided into five modules: data acquisition,
pre-processing, feature extraction/selection, classification,
and post-processing. In this section, we discuss each of these
modules, explaining in detail their main tasks and purposes.

1) DATA ACQUISITION
The data acquisition module is responsible for reading the
signals from the datasets. In this module, we define a time
window W = (w1, . . . ,wm), where wi ∈ Z+, with
i = 1, 2, . . . ,m [7], [34], [35], [36], [37], [38]. In this work,
W is a rectangular window [39]. In the training stage, we set
the length mtrain of the window W as mtrain = 400 points,
i.e., a time window that selects all points of each training
example. We chose this approach since the training examples
have only a single label, despite having multiple gestures in
the data (like the rest and gesture of interest, see Figure 2).
In the testing stage, one may choose mtest according to the
computational constraints and processing time. Additionally,
the stride between two consecutive timewindows is 10 points,
ensuring that the data collection process occurs rapidly (in
this case, in 50 ms). Thus, the current module outputs
observations represented by the matrix E = [E1; . . . ;E8] ∈

[−1, 1]m×8, where the column vector Ei = [Ei1, . . . ,Eim]T

corresponds to the ith channel of the observation E, with
i = 1, 2, . . . , 8.

2) PRE-PROCESSING
The main objective of the pre-processing module is to detect
and extract the portion of the sEMG signal containing the
muscle activity. The first step consists in rectifying the signal
E, which results in the new signal R = abs(E) ∈ [0, 1]m×8,
i.e., we take the absolute value of all the entries of E. In the
second step, we apply a Butterworth low-pass filter 8 with a
cutoff frequency of 10 Hz to each channel of R [39], [40],
[41], [42]. This process yields the signal V = 8(R) ∈

[0, 1]m×8, an envelope of R. The third step is responsible

for the reduction of the signal dimension. We accomplish
this by summing along the channel axis of V, resulting in
S = sum(V) ∈ [0, 8]m×1. In the fourth step, we use
the short-time Fourier transform (STFT) to compute the
spectrogram PC = S(S) ∈ C26×p of S by dividing the
frequency interval [0, 100] Hz into 26 points, where p =

floor((m − 10)/15) and m is the length of E, R and V [43].
The fifth step calculates the matrix P ∈ R26×p, in which each
entry is the modulus of PC . In the next step, we reduce the
dimension of matrix P by summing its rows. Thus, we obtain
the vector U = sum(P) ∈ R1×p. In the last step, we start
by finding the indices iu,s and iu,e of U. These indices are
the first two positions in which the difference between two
consecutive entries of U is equal to or greater than a given
threshold τu ∈ R+. Thus, we convert the STFT indices iu,s
and iu,e into the sample indices is and ie, where is and ie
are the first sample indices of the STFT indices iu,s and iu,e,
respectively. Furthermore, we need to check if the number of
points between is and ie is suitable for the application. That is,
if the difference ie − is is less than a given number of points
a ∈ Z+, then the segmentation returns the signal Z = V.
Otherwise, we segment V, obtaining Z = V(is : ie, :). It is
worth highlighting that this segmentation process results in
signals Z that may have different lengths. Next, if is = 1 and
ie = m, we return the label no-gesture and proceed to
the post-processing module directly. Otherwise, we send the
resulting signal Z to the next module.

3) FEATURE EXTRACTION AND SELECTION
The sEMG is a spatio-temporal interference pattern of the
muscular electrical activity near the detection surface. Addi-
tionally, considering that the muscle activity corresponding
to a given gesture can be slow or fast, the related sEMG
signal can be long or short, respectively. Hence, we need a
feature capable of synthesizing a large amount of temporal
and spatial data. Also, we need features that address signals
that may vary in length. Dynamic Time Warping (DTW)
meets these requirements. It is a technique that can ‘‘align’’
two time series by returning the minimal cost to match such
signals, i.e., the DTW outputs the ‘‘distance’’ between two
time series [23], [44]. In this module, we first calculate the
DTW between all the pre-processed training examples that
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have the same labels. This approach generates the DTW
distances between the training examples within the same
class. Next, we choose the pre-processed signal H∗

i ,∀i ∈

{1, . . . , 6}, that is closest to all elements in each class. In other
words, H∗

i is the signal yielding the smaller total DTW
distance to the other data examples within the ith class (i.e.,
it is the most representative example of that class). Finally,
the module outputs the feature vector for the signal Z as
X = (dtw(H∗

1,Z), . . . , dtw(H
∗

6,Z)), where dtw denotes the
DTW distance for multi-channel time series. In summary, the
feature vector X is the DTW between the segmented signal Z
outputted by the pre-processing module and the training class
centers H∗

i .

4) CLASSIFICATION
The classification module is responsible for predicting the
gesture Y for a given feature vector X. One can write the
predictive modeling problem as

ψ(X) = argmax
y∈{1,2,3,4,5,6}

P(Y = y|X) , (1)

subject to the constraint that the conditional probability that
maximizes (1) is equal to or greater than λ. In other words,
the feature vector X must have λ or greater probability to
correspond to Y . Otherwise, X receives the no-gesture label.
There are several methods that can solve the problem in (1).
In this work, we choose a feedforward neural network (FNN).
The FNN is one of the simplest neural networks proposed,
in which the data flows only in the forward direction [45].
We opt for a shallow FNN having only three layers: input,
hidden, and output. It is worth mentioning that the input layer
receives the signal X in its standardized version, calculated
by (Xj −µ)/σ , where µ and σ denote the mean and standard
deviation of X, respectively, with j = 1, 2, . . . , 6.

5) POST-PROCESSING
This last module of the system is responsible for processing
the results before presenting them to the user. By using a
sliding window approach to read the data examples from
the testing dataset, each example is divided into several time
windows. For each window, a label estimate is generated
by the classification module. Since each example has the
relax/rest and gesture of interest hand movements, one
would expect to have only two different classifications for
each data example. However, this is not quite the case.
Some of the windows may be misclassified, ending up with
several different classifications for a given example. The
post-processing module addresses this issue. In this module,
we select one label estimate, among the several estimates
corresponding to the time windows, to represent the data
example, and then we compare it with the true label of this
example in order to evaluate the model’s performance.

IV. VALIDATION METHODOLOGIES
Validation is a method to decrease model overfitting [46].
Similar to the test set, the validation set also consists of

data that the learning process has not seen. However, unlike
the test set, we use the validation set to fine-tune the
several parameters that need to be chosen before the training
stage. These parameters, known as hyperparameters, are
responsible for defining the machine learning model to be
trained. As illustrated in Figure 4, the validation set is usually
a subset of the training dataset Dtrain, which we split into
two new sets, D′

train and Dval, for training and validation,
respectively.

FIGURE 4. Common database split for validation.

1) CROSS-VALIDATION
Usually, we have limited data at our disposal, and in order
to design good models, we would like to use as much data
as possible for the training. However, a small validation set
may lead to an unreliable estimate of the performance due to
the use of only a few data points. One solution to this issue
is the cross-validation method. In this technique, we separate
the dataset Dtrain into K folds, so that K − 1 folds are used
to train the models, and we evaluate the performance in
the remaining fold (known as validation fold). This process
represents one run of the method. We repeat this procedure
for all the choices one can make for the validation fold, and
the final score is computed by averaging the performances
from the K runs. It is worth highlighting that such folds can
have different sizes [47].
The K−fold cross-validation method is great for selecting

suitable hyperparameters. Suppose we have L sets of hyper-
parameters g1, g2, g3, . . . , gL , each one is composed by
different combinations of the values of λ and τu. One may use
cross-validation to compare the performance of the models
for each combination and choose the one with the lowest
cross-validation error. The main drawback of this method is
that the number of training runs increases by K . Additionally,
this can be much worse depending on the number of
hyperparameters that need to be tuned. Combinations of such
hyperparameters may require many training runs that are
exponential in the number of hyperparameters [47].

2) MULTI-HOLDOUT
In our current database, the K−fold cross-validation tech-
nique may not yield a good prediction of the test error.
As previously described, we work with two distinct datasets,
one for training and the other for testing. The main
difference between them is that the record time of the data
examples is two seconds for the former and five seconds
for the latter. Since the training data are different from
the testing ones, we could use testing data examples for
validation in order to reach better performance. However,
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a cross-validation method requires the training and validation
data to have exactly the same dimensions and lengths. One
must remember that the training data in one iteration of
cross-validation is the validation data in another. Hence,
in our case, we must use only the data from the training set in
cross-validation, which may give us an inaccurate prediction
of the test error. An alternative is to use the holdout validation
method.

The holdout technique consists of splitting the data into
two fixed subsets called a training set and a holdout set. Such
a method maintains the concepts of validation, where the
model learns in the training set and is validated in the holdout
set. Usually, this approach yields a pessimistic approximation
of the estimator since only a portion of the data is used
for training [48]. However, in our database, we can use the
complete training dataset to train the model and select a
partition of the test dataset as the holdout set. Thus, validating
the trained models with more representative examples for the
testing data. It is worth mentioning that such an approach
has the disadvantage of evaluating the final model with
fewer testing data examples. Figure 5 illustrates the proposed
division of our database when applying the holdout method.

FIGURE 5. Database split for the proposed holdout method.

The holdout method also gives us the best hyperparameters
that achieve the lowest validation error. As validation can
be used as a good estimation for the prediction error in
generalization, such a technique potentially yields the best
predictive model [46]. However, due to the stochastic nature
of the learning process and random initialization, the network
may converge to local minima, sometimes resulting in poor
performance. Hence, we propose the Multi-holdout method,
where we initiate multiple instances of the holdout method in
parallel. Each instance has the same hyperparameter settings
except for the initialization weights. In other words, each one
starts from a different point. After training and validation in
the holdout set, we select themodel from the instance with the
lowest validation error. This approach reduces the variance of
the holdout technique. The high variance in the prediction is
one of the major disadvantages of this method since, unlike
cross-validation, it does not take the average of multiple runs
to output its results.

V. EXPERIMENTAL RESULTS
The experiments were designed to verify the performance
of the classification system when we: (i) have more similar
training and testing data by increasing the length of the
time window in the testing stage; (ii) apply a new post-
processing method; (iii) train a unique τu for each subject
combined with a validation methodology; and (iv) use an

overcomplete neural network in the classification module.
We also present a comparison of our results with a baseline
model. The datasets used in this work are part of [23] and can
be downloaded at https://drive.google.com/drive/folders/
1ZCsaHNc08MYvOS1lfMC_wchioix6srpB, along with the
Matlab code for the baseline model. The Python code for the
proposed model presented in this study can be downloaded
at https://github.com/gschaves/gesture_rec_NSRE, as well as
the datasets and the parameters setup.

A. BASELINE CONFIGURATION
We used the same configuration presented in [23] as the
baseline model. Thus, for the baseline, we have mtrain =

400 and mtest = 500 with a stride between two consecutive
time windows equal to 10 points. We used a 5th order
Butterworth filter with a cutoff frequency of 10 Hz in the
pre-processing module. Additionally, the frequency range
of the spectrograms is [0, 100] Hz divided into 26 points.
In this calculation, we used Hamming windows of length
equal to 25 points, with a stride of 10 points. We chose
the muscle activity detection threshold as τu = 10 for all
the subjects. We set the minimum length of segmentation as
a = 100 points. In the classification module, the constraint
for the conditional probability wasλ = 0.5, the regularization
weight of the ℓ2-norm was equal to 0.01, and the learning
rate was 0.01. We used the hyperbolic tangent function in
the hidden layer and the softmax activation function for the
output layer. We trained the FNN with the cross-entropy cost
function and the gradient descent optimization method [45],
[47], [49]. The neural network topology was comprised of
6 inputs, 6 neurons in the hidden layer, and 6 outputs.
We computed all the results by averaging the outcome of
100 independent trials.

B. DATA ACQUISITION WINDOW LENGTH
Since we train the system with features considering data
having complete gestures, we must test with data having
this same characteristic. We can achieve this by adjusting
the length of the testing observation windows. Figs. 6 and 7
depict data readings with a time window at the beginning
of the example and another at the end. However, Figure 6
shows a time window of length mtest = 500, whereas
in Figure 7 we have mtest = 700. In Figure 6, we can
notice that the window length is not large enough to read
the complete gesture. Figure 6a presents the first window
reading, and the signal inside it does not have the complete
muscle activity data from the example. The same happens
in Figure 6b, where the beginning of the gesture is missing.
In both cases, classification errors are very likely to occur.
On the other hand, the window length mtest = 700 appears to
be more adequate for this example, as illustrated in Figure 7.
In Figs. 7a and 7b, the complete gesture seems to be inside
each window.

We can not neglect the window length in the classification
system [7], [38]. Hence, we ran an experiment in order to
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FIGURE 6. Windows of length mtest = 500 capturing an incomplete gesture in a test data example:
(a) First time window; (b) Last time window.

FIGURE 7. Windows of length mtest = 700 capturing a complete gesture in a test data example: (a) First
time window; (b) Last time window.

evaluate the impact of increasing the window length mtest
to 700. Table 2 shows that almost all models with mtest =

700 had better mean accuracy than those with mtest = 500.
For instance, by changing only the window length in the
baseline setup, the classifier with mtest = 700 outperformed
the mean accuracy of the baseline model by 1.4%. It is worth
highlighting that the increase in the window length does not
imply more latency to collect the data, as the stride between
consecutive windows is equal to 10 samples for all models.
The only exception occurs during the data buffering for the
first window, where the larger window requires more time to
collect the data; therefore, such delay is irrelevant in the long
run.

C. POST-PROCESSING LABEL SELECTION
As described in Section II, each example has sEMG data
representing the following hand movements: rest, the gesture
of interest, and rest. However, only the label for the gesture
of interest is present in each data example. In other words,
even though the system was designed to work in real-time
by classifying short time windows, we still need to wait
for the full example in order to create the desired metric.
Additionally, we must decide on a method to select the
most representative gesture classified in each window as
the example class. Hence, we can evaluate the models’
performance by comparing the prediction with the true label
from the dataset.

TABLE 2. Mean accuracy and standard deviation results for different
models, where 3fCV represents the τu tuned via 3-fold cross-validation,
m700 indicates that the window length was mtest D 700, poll is the
polling method in the post-processing. All models used a 6 × 6 ×

6 neural network.

There are several methods to decide which prediction to
pick among those classified in the time windows, i.e., the
predicted gesture to be the final classification for a given
data example. Suppose we are analyzing the output of the
classification module, after the system classifies the several
time windows that compose the input data example. The
authors in [23] used a simple approach that can select one
of these predictions as the final classification. The first step
of the method consists of removing the rest classifications
since the focus is on the other gestures. In the second step,
they sort the labels in ascending order, according to Table 1.
Lastly, they choose the first sorted label as the representative
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FIGURE 8. Exemplifications of the post-processing methodology implemented in the reference paper [23]: (a) Correct classification when the
network outputs only one label as the gesture of interest; (b) Correct classification by ‘‘luck’’ when the network outputs two labels as the
gestures of interest; (c) Incorrect classification when the network outputs three labels as the gestures of interest.

FIGURE 9. Exemplifications of the proposed post-processing methodology: (a) Correct classification when the network outputs only one label as the
gesture of interest; (b) Incorrect classification when the network outputs two labels as the gestures of interest and most of the classifications are
different from the true label; (c) Correct classification when the network outputs three labels as the gestures of interest and most of the classifications
correspond to the true label.

for that data example. This technique performs very well
when all the time windows are classified with the same
label, which is likely the correct one. However, a single time
window misclassification can result in choosing the wrong
label for the example.

Figure 8 illustrates several cases using such a post-
processing method. Figure 8a exemplifies a case where
the example data target/true label is 3. The data was
split into 9 time windows, outputting the following vector
of classifications: 1, 1, 3, 3, 3, 3, 1, 1, 1. After filtering and
sorting, this post-processing approach returns the label 3 as
the data example. In this case, the label was classified
correctly, as expected. Since the time windows classifications
output only one gesture of interest and, in this case, the correct
one, such an approach will positively respond. Figure 8b also
depicts an exemplification for a data example with a target
label equal to 3. In this case, the classification sequence
given by the neural network was 1, 1, 1, 4, 3, 4, 4, 4, 1.
Because of the filtering, sorting, and removal of the label 1,
the method outputs labels 3. In this exemplification, this
technique also classifies the data correctly. However, it is
a misleading result. For example, if such a scenario occurs
in the training stage, the neural network is not learning to
classify the label 3. Since most of the classifications point
to the label 4 and the final result is 3, it is most likely that,
after convergence, the network will mistake data that has
the label 3 with those having 4. Figure 8c shows a data
target labeled with 5 that was wrongly classified. Despite the
neural network classifications being 1, 1, 2, 5, 5, 6, 5, 5, 1,
the post-processing method results in the label 2. Such a
case exemplifies that even when the network points to the
correct label (most timewindows have the correct prediction),

a single misclassification (label 2) can influence an incorrect
result.

In this work, we propose a new approach to address the
final classification problem. Unlike the previous method
where the label with a smaller index is selected as the final
classification for the data example, the new post-processing
module (called poll) selects the most frequently predicted
class across all windows. That is, we implement a voting
system in which we output the label corresponding to the
majority of the classifications. This method performs well
when all the time windows have the same label, like the
technique in [23]. In addition, time windows with erroneous
classifications have less impact when determining the
example label, considering the system classifies the correct
one most of the time. Figure 9 depicts the same scenarios
presented in Figure 8. The difference is that in Figure 9,
we applied our proposed post-processing methodology to
select the example label. Figure 9a exemplifies the simplest
case, where the sequence classified by the network has only
one gesture of interest. The true label for this data example
is 3, and the sequence is 1, 1, 3, 3, 3, 3, 1, 1, 1. The first step
is to remove the rest label, resulting in 3, 3, 3, 3. In the
next step, we select the label having the most classifications,
which is the label 3. Thus, the classification is correct.
The second scenario is where the network outputs two
gestures of interest, and the most classified is the incorrect
one, as depicted in Figure 9b. Unlike the post-processing
performed in [23], our method misclassifies the gesture in
this exemplification. The classification sequence of the time
windows is 1, 1, 1, 4, 3, 4, 4, 4, 1. By following the proposed
technique, we have the new sequence 4, 3, 4, 4, 4, and the
final selection is the label 4 since four time windows were
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classified with this label, in comparison to the label 3,
which had only one classification score. In this case, the
true label is 3, hence, an incorrect classification. We have
some advantages when comparing this result with the one we
obtained using the former post-processing method. By taking
the same learning scenario presented previously, when such
a classification occurs in the training stage, our proposed
post-processing will try to learn how to correctly classify
labels 3 since the current path is leading to an erroneous
classification (label 4 instead of 3). Figure 9c shows a
scenario demonstrating the robustness of our method against
certain misclassifications. In this case, the sequence of
classifications is 1, 1, 2, 5, 5, 6, 5, 5, 1, i.e., three gestures of
interest. The neural network classifies most time windows
with the label 5, resulting in the selected label for this
data example. The true label of this exemplification is 5,
representing that the classification is correct. The proposed
post-processing chooses the correct label as the representative
for the data example despite some time windows having
incorrect classifications (there was one with the label 2 and
another with the label 6).

The proposed post-processing module is an easy fix to
classification errors when some windows are misclassified.
We ran an experiment where we changed the baseline
post-processing module into the proposed one and compared
the system’s performance. Table 2 illustrates that the
model using the proposed post-processing method achieved
(92.3 ± 0.5)% of mean accuracy, 2.2% higher than the
baseline model.

D. MUSCLE ACTIVITY DETECTION THRESHOLD
In Section III, one can recall that the signal resulting from
the spectrogram calculation is the vector U. This signal
is an array composed of low- and high-magnitude values.
Ideally, they refer to the rest and other gestures, respectively.
Thus, we can extract the gesture of interest by comparing
these magnitude values to the threshold τu, completing the
segmentation procedure [23]. Since the entries in U are
relative to the sEMG of each person, we expect each person
to have its own threshold value. Indeed, the sEMG carries
individual information about each person, such as the power
and intensity of hand movements. To illustrate this, suppose
a scenario where two people are closing their hands. The
first person closes the hand very slowly and employs little
force to the movement. The second one also performs the
gesture slowly, however employing more force to complete
the movement, intensifying the gesture. Such a difference in
the execution of the movement may produce different sEMG
patterns. In other words, each person will require individual
thresholds τu in order to segment the gesture, even when they
are performing the same hand movement.

We propose two validation methods to choose the best
threshold value τu. The first consists of the 3-fold cross-
validation method. In such an approach, we divide the
training dataset, which is composed of 5 data examples, into
five folds for cross-validation, as depicted in Figure 10. In this

FIGURE 10. Training dataset splitting for the cross-validation procedure.

figure, di for i = 1, . . . , 5 represents the training data
examples. We used folds 1, 2, and 3 as the validation sets
in each iteration of the 3-fold cross-validation method, as one
can see in Figure 11. We also used the base threshold value
of τu = 10 as a hint to create the search space, hence we vary
this hyperparameter from 10 up to 20 in searching for the best
value. Table 3 shows the best values that we found with the 3-
fold cross-validation method. As expected, the best threshold
value changes from subject to subject.

FIGURE 11. Training and validation data for the 3-fold cross-validation
process.

One can notice in Table 2 that the mean accuracy of the
classifier increases by combining the tuning of τu with the
baseline model, as expected. The classifier with the baseline
setup and τu tuning achieved (93.1 ± 0.7)%, representing an
increase of 3% in the mean accuracy compared to the baseline
performance. It is worth mentioning that this combination has
the disadvantage of increasing the training time compared to
the baseline setup due to cross-validation.

TABLE 3. Best threshold values τu for each subject obtained by the
multi-holdout (1st row) and 3-fold cross-validation (2nd row) methods.

The second validation technique is the multi-holdout
method, where we split the test dataset into two new datasets
for each user. We used one dataset in the validation stage
and the other for testing, i.e., a new test dataset. It is worth
highlighting that both datasets have fixed data examples.
In other words, as soon as the test dataset was split into
two new ones, both remained unaltered throughout all the
experiments. Then, we repeat the training and validation
stages (holdout) 10 times for each hyperparameter value.

The experiment consists in splitting the test dataset Dtest
into D′

test and the validation set Dval. Since we want the
best test error estimate, we choose data from the test set to
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make validation. The validation dataset has 6 examples of
each class in Dtest, adding up to 30 data examples for each
person. In other words, Dval is 20% of the original test set
Dtest. It is worth mentioning that the examples we choose
to compose the validation set are fixed, i.e., the same six
data examples from each class in Dtest for each person were
separated to create Dval, which makes the validation dataset
Dval to be the same in all runs. Hence, we performed 10 runs
of the training in Dtrain plus validation in Dval, selected the
model with the lowest validation error, and tested in the new
testing dataset without the validation examples D′

test. In this
experiment, the topology of the FNNwas changed to 6×8×6.
Finally, we computed the results by averaging the outcome of
100 independent trials.

TABLE 4. Mean accuracy and standard deviation results for different
classification models; comparing the (baseline + m700 + 3fCV + poll)
tested in Dtest; the (baseline + m700 + 3fCV + poll) tested in D′

test; and
the (baseline + m700 + Mholdout + poll) tested in D′

test, where
Mholdout indicates the multi-holdout validation method. All models used
a 6 × 8 × 6 neural network.

Table 4 shows the performance of the models that combine
all the proposed modifications in combination with the new
FNN architecture. We compared some overcomplete neural
network architectures by varying the number of neurons
in the hidden layer from 6 to 9. This search yielded the
6×8×6 network as the best topology. Additionally, in order
to compare the results, we designed two other models. The
first model is the best in Table 2, which consists of combining
all the proposed modifications but using a 6 × 8 × 6 neural
network. In the second model, we used D′

test instead of
Dtest for the testing. One may notice that both models
achieved almost the same performance, but the model tested
in Dtest reached slightly better mean accuracy and standard
deviation. However, the model using the multi-holdout
validation method attained the best performance. It achieved
a mean accuracy of 97.2% and a standard deviation of
0.3%. Although performing the best, this technique has the
drawback of decreasing the test dataset, which can often
be unfeasible since we have limited data. In a real-world
application, such as the prosthetic arm problem, one may
argue this represents the calibration stage, where we require
the user to perform some gestures to fine-tune the hand
response.

VI. DISCUSSION
The experiments presented in Section V consisted of modify-
ing the baselinemodel by incremental changes in its structure,
studying and comparing the impact of each modification
in the classification system. The changes proposed were
(i) training a unique τu for each subject to enhance the

muscle activity detection; (ii) increasing the length of the time
window during the testing stage; (iii) a new post-processing
voting system (poll); (iv) a validation methodology; and (v)
an overcomplete neural network topology.

In Table 2, we presented the results of our experiments.
In those experiments, we combined some of the proposed
modifications and tested them in all the 1500 testing
examples. Hence, we can fairly compare the performance
of each configuration with the baseline. One can notice that
all the proposed models performed better than the baseline
classifier, meaning that each of the proposed modifications
was effective both when applied alone or when combined
with other modifications. It is worth mentioning that the
model combining all the proposedmodifications achieved the
highest mean accuracy and smallest standard deviation. Such
a model reached results of (96.5 ± 0.4)%, outperforming the
baseline model by a mean accuracy of 6.4%.

TABLE 5. Mean accuracy and standard deviation results per subject for
the best model (baseline + m700 + Mholdout + poll + 6 × 8 × 6 ANN).

In the last experiment, we evaluated the impact of the
proposed multi-holdout validation method and the use of an
overcomplete ANN with 8 neurons in the hidden layer. The
only difference between the setup in the last row of Table 2
and the one in the first row of Table 4 is in the ANN.While the
former uses 6 neurons in the hidden layer, the latter utilizes 8,
improving the mean accuracy in 0.5%. It is worth mentioning
that we also tried other values for the number of neurons
in the hidden layer, but values greater than 8 yielded no
significant gain in accuracy. Comparing the results presented
in Table 4, one can notice that the setupwith themulti-holdout
validation method was superior, achieving mean accuracy
and standard deviation of (97.2 ± 0.3)%, outperforming
the baseline model by 7.1% in the mean accuracy. We can
conclude that validating the model using data examples more
similar to the testing ones contributes to the fine-tuning of
τu. The multi-holdout provided a better solution to train such
a hyperparameter considering our current datasets. By using
this method, we also were able to achieve 100% of mean
accuracy for some subjects, as depicted in Table 5. In Table 5,
we show the mean accuracy and standard deviation for
each subject, using the model with multi-holdout validation
(baseline + m700 +Mholdout+ poll).
In Table 6, we show the mean and standard deviation of

the inference time, the time the system takes to process and

117604 VOLUME 12, 2024



G. S. Chaves et al.: sEMG-Based Gesture Classifier Through DTW

TABLE 6. Mean inference time in milliseconds (ms) considering the
testing time windows from Subject #1, where baseline represents the
baseline model, m700 indicates that the window length was mtest = 700,
and ANN 6 × 8 × 6 refers to the model using an overcomplete
6 × 8 × 6 ANN.

TABLE 7. Mean post-processing time in milliseconds (ms) considering
the testing data from Subject #1, where baseline represents the
standard post-processing used in the baseline model, whereas poll is the
proposed post-processing method.

TABLE 8. Prediction accuracy reported in works that used data coming
from the Myo armband.

classify one time window (i.e., post-processing time is not
included) during the test stage. For this purpose, we have
arbitrarily chosen Subject #1, and we averaged the inference
time over his 150 testing examples for several models. The
inference time remained almost the same in every case.
The inference time was (88.50 ± 37.84) ms when both
modifications were combined. It is worth highlighting that
for every window, the inference time of the proposed models
was less than 300 ms, thus fulfilling the requirement of real-
time processing [23], [32]. Additionally, [23] reported that
the inference time of the baseline model in their hardware
setup was only 11 ms, about 8 times lower than the mean
processing time we obtained (approximately 88 ms), which
indicates that there is room for processing time optimization
in our codes. As for the post-processing techniques, both
the baseline post-processing and the proposed poll achieved
similar processing times, as reported in Table 7. All the results
were generated using an Intel®Xeon® 2.20 GHz processor
and 13 GB of RAM (no GPU was used).

Finally, in Table 8, we summarize the results that have
been reported in recent works using sEMG data coming
from the Myo armband which also classified some basic
gestures, where (*) refers to works classifying the fist, wave
in, wave out, open, and pinch gestures (i.e., the same gestures
considered in this work). In addition to the reported accuracy,

we also included the number of subjects and number of
gestures considered in each work. One may notice that the
prediction accuracy reported in our work (our best model)
was the best one among those works.

VII. CONCLUSION
This article proposed an HGC system based on ANN that
uses DTW-based features and enhanced muscle activity
detection techniques to classify six gestures from ten healthy
volunteers. The features were extracted from sEMG signals
acquired via the Myo armband, which is a device that
is widely used in the HGC field making it easier to
compare results and techniques. Our pre-processing and
feature extraction modules are a good approach to tackle
the HGC problem since the combination of both methods
results in a feature vector robust to the sensor’s position
and drift when compared to time or frequency-domain
features, which most of the time require the sensors to be
carefully placed over specific points (muscles). Validation
was incorporated into the segmentation process in order to
detect muscle contraction more accurately. Compared to the
baseline model, our proposed system uses slightly larger
testing windows so the testing examples are more similar
to those in the training stage, uses an overcomplete ANN
so the neural network can capture some complex patterns
providing a richer representation of the data, and uses the
poll method to enhance the post-processing. In summary, our
paper proposes modifications in 4 out of the 5 modules of
the baseline model. Detailed experiments with real data were
presented comparing different classification models and the
impact of each modification. The results showed that each
of the proposed modifications in the baseline model was
effective, increasing the mean accuracy while maintaining
low inference time. Indeed, the model with all the proposed
techniques achieved the best mean accuracy result (97.2%),
surpassing the baseline model significantly.

Regarding future works, wewill study the viability of using
other feature sets as well as other methods to calculate the
DTW. For instance, there is a promising implementation of
the DTWdistance which, in our preliminary results, led to the
same accuracy while reducing the processing time by about
10 times, in comparison to the implementation we used in this
work.
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