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ABSTRACT Ovarian cancer is a dangerous gynaecological malignancy, and the presence of many subtypes
causes significant diagnostic difficulties. In general, the high accuracy of classification results in adequate
prognosis and effectiveness of treatment. This work aims at the development of a Deep Learning (DL)
approach for subtypes of ovarian cancer multiclassification, which tries to solve the problem of the creation
of precise and reliable diagnostic methods. In the work, we have used and explored various DL models
such as MobileNetV2, VGG19, ResNet18, ResNeXt, Xception, EfficientNet, and InceptionV3 to perform
the classification task. Further, we used the state-of-the-art eXplainable Artificial Intelligence methods,
including integrated gradient, saliency map, Grad-CAM, and DeepLift, to improve model interpretability.
From our experiments, we inferred that the highest accuracy was achieved by InceptionV3, with a value
of 97.96%. XAl techniques incorporated provide transparent insights into the model’s operations during
the decision-making process, thus increasing the level of trust and clinical usability. The proposed DL
approach, by leveraging InceptionV3 as its top performer, has convincingly demonstrated the potential of Al
to revolutionize the diagnosis of ovarian cancer through a high level of accuracy in subtype classification.
XAI techniques integrated allow transparency support for the model and further enable its clinical adoption.
All of these developments have significant potential for improved patient outcomes within the scope of
personalized medicine in ovarian cancer treatment.

INDEX TERMS Deep learning, digital pathology, multiclassification, ovarian cancer, XAl

I. INTRODUCTION

As a carcinoma that ranks sixth in women diagnosed globally,
ovarian cancer is a severe health concern. It is a signifi-
cant contributor that affect women’s reproductive system,
accounting for around 4% of all occurrences of female cancer.
Additionally, ovarian cancer stands as one of the most promi-
nent gynaecologic carcinomas, trailing only uterine corpus
cancer, yet surpasses all other female reproductive system
cancers in annual mortality rate [1]. In 2020 alone, there were
almost 0.3 million cases reported worldwide, leading to about
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0.2 million deaths. Despite these concerning statistics, there is
some grounds for optimism because over 0.8 million women
live longer than five years following their diagnosis [2].
This survival rate is consistent with the disease’s preliminary
forecast.

It is anticipated that by 2040, there will be 0.4 million
more newly diagnosed cases annually, and correspondingly
mortality rates are expected to increase [2]. This is still a
concern projected for the upcoming years. The barrier to the
initial stages of ovarian cancer screening is because of its
asymptomatic behaviour. To mitigate the global impact of
ovarian cancer, this emphasizes the critical need for efficient
prevention, early detection, and treatment techniques.
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The heterogeneous behaviour of ovarian cancer, in which
malignant tumours can grow from a range of diverse kinds of
cells, such as epithelial cells, stromal or germ cells, accounts
for its complexity [3]. The histotype of epithelial ovarian
cancer, which is something of significant attention in epi-
demiological research, includes serous, endometrioid, clear
cell, and mucinous subtypes. Figure 1 shows the categori-
sation of different types of epithelial ovarian cancer: 3%
Mucinous type, 10% for Clear cell and Endometroid each and
the highest class among all is Serous 70% to 80% [3], [4].
Furthermore, the management and classification of diseases
are made more difficult by the existence of low-malignant
potential or borderline tumours within these categories.

Mucinous

FIGURE 1. Ovarian cancer classification.

Early detection of ovarian cancer remains challenging due
to the absence of known pre-malignant lesions and standard-
ized screening tools, compounded by unresolved etiology
compared to other cancers. This underscores the importance
of ongoing research to elucidate risk factors and mechanisms
of disease progression [5]. Pathological assessment of sur-
gical resection specimens significantly impacts clinical care
for endometrial cancer patients, yet inconsistencies persist
at both macroscopic and microscopic levels, highlighting
diagnostic and classification challenges [6]. Furthermore, the
lack of a standard screening procedure makes the problem
worse, increasing the likelihood of late-stage diagnosis and,
eventually, worse patient outcomes. Improving the clinical
management and prognosis of people with endometrial can-
cer requires addressing these issues.

The traditional approach for diagnosing ovarian cancer
is transvaginal ultrasound (TVU), either alone or combined
with CA-125. CA-125 (a serum tumour marker) is a protein
that can be elevated in the blood of patients with ovarian
cancer and other conditions. However, TVU and CA-125 do
not provide the accuracy and precision needed for reliable
early detection or timely assessment [7]. MRI is preferred
for identifying ovarian cancer recurrence in the pelvic cavity
and challenging-to-evaluate areas like the bladder and vagina,
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surpassing ultrasound, and CT scans [8]. But these imaging
techniques themselves will not suffice the need for timely
detection and assessment or effective management of recur-
rence of this disease in patients.

A. ADVANCES IN DEEP LEARNING ARCHITECTURES FOR
MEDICAL IMAGING

The medical imaging profession has advanced significantly
in the past few years, especially with the introduction of
large-scale data and Al [9]. DL, a subset of Al, has trans-
formed the analysis of medical images by enabling automated
feature extraction ensuring rapid decision making for med-
ical professionals [9]. It learns patterns and features from
data through iterative training, adjusting connections between
neurons to improve accuracy based on labelled data [10].
DL models analyse medical images from various modalities
like X-rays, CT scans, MRI, and histopathological slides, aid-
ing in the detection of abnormalities, disease classification,
and organ or lesion segmentation. Specifically, Al appli-
cations in ovarian carcinoma imaging offer potential for
improved tumour characterization and early diagnosis.

The widespread adoption of convolutional neural net-
works (CNNs), a type of DL model, has transformed various
fields, including natural language processing (NLP), com-
puter vision, and medical imaging. CNNs excel in analysing
visual data by autonomously learning nested structures
directly from raw input data. In medical imaging, CNNs
have found extensive use in tasks like anomaly detection,
identifying anatomical structures, and predicting patient out-
comes. For instance, in radiology, CNNs assist radiologists
by pinpointing areas of interest, detecting subtle irregular-
ities, and providing quantitative assessments from imaging
studies [11], [12]. Furthermore, in pathology, CNNs excel at
identifying cancerous cells and classifying tissue types, aided
by large, labelled datasets and computational advancements,
enabling seamless adaptation to new tasks.

Specialized architectures like ResNets [13], inception net-
works, and attention mechanisms have enhanced CNNs’
ability to handle complex visual data. ResNets, for example,
introduce shortcut connections to address training complex-
ity, mitigating issues like the vanishing gradient. VGG19
[13], developed by the Visual Geometry Group, employs
small convolutional filters and max-pooling layers, proving
effective in image classification tasks and serving as a bench-
mark model in DL evaluations. MobileNetV2 [14], designed
for embedded and mobile devices, utilizes depth-wise sep-
arable convolutions to maintain accuracy while minimizing
computational costs. This architecture achieves impressive
results in tasks such as object recognition and image cate-
gorization, making it suitable for resource-constrained envi-
ronments. Part of the Inception family, InceptionV3 [15]
has an efficient feature extraction capability at many scales
attributable to its multi-branch design and inception modules.
Its ability to capture diverse features across different spa-
tial resolutions makes it particularly well-suited for complex
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visual recognition tasks. Xception [16], short for “Extreme
Inception,” is also a CNN architecture. It is inspired by
the Inception architecture but replaces standard convolutions
with depth wise separable convolutions. This modification
aims to capture both spatial and channel-wise dependencies
more efficiently. Xception achieves competitive performance
with significantly fewer parameters compared to traditional
CNNs, making it suitable for resource-constrained envi-
ronments. Cardinality is introduced by ResNeXt50 [17],
an expansion of the ResNet architecture, which aggregates
feature maps from multiple paths to expand model capac-
ity and improve performance. By leveraging the cardinality
mechanism, ResNeXt50 achieves better utilization of model
parameters and enhanced representation learning capabili-
ties. Another CNN architecture, EfficientNet [18] utilizes
compound scaling to optimize model size, resolution, and
depth concurrently, resulting in improved performance across
different computational budgets. This approach ensures a
balanced trade-off between computational cost and accuracy,
rendering EfficientNet suitable for real-world applications.

B. ENHANCING DEEP LEARNING MODELS FOR MEDICAL
IMAGING WITH EXPLAINABLE Al (XAl)

After exploring DL models, the importance of XAI [19]
becomes apparent. XAl techniques [19] help unravel the
reasoning behind complex model predictions, enhancing trust
and facilitating their effective use, particularly in healthcare.
By unravelling the DL models’ ‘“‘black box” feature, XAI
not only enhances their interpretability but also facilitates
the identification of potential biases or errors, thus fostering
greater trust and acceptance in Al systems [20]. Figure 2
explains how XAI unravels the black box, providing inter-
pretation and explanation to the end user.
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FIGURE 2. Transparency through XAl

In medical imaging, XAI plays a crucial role in ensur-
ing transparency and accountability of DL models, aiding
in precise diagnoses. Techniques like saliency maps and
gradient-based methods visualize key image regions, provid-
ing valuable insights to clinicians. Integrating XAl into DL
models is essential for advancing transparency and trustwor-
thiness in Al systems, ensuring they are not only accurate but
also comprehensible and accountable.
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There are very few state-of-the-art studies in Subtype
Prediction (STEP) for ovarian cancer that perform compre-
hensive evaluations on model relevance and performance.
The existing literature is heavily dominated by single-model
investigations, and no analysis comparing different DL struc-
tures has been done. In addition, most works do not use
explainable AI techniques to explain the models’ inter-
pretability and reliability, which is important for clinical
acceptance.

This study addresses three primary research questions:
First, as the traditional approach do not provide a reliable
early detection, can DL models accurately classify sub-
types of ovarian cancer using medical imaging data with
greater accuracy and precision? Second, can experiment-
ing on different DL model achieve the highest accuracy in
multiclassification of ovarian cancer subtypes? Third, can
one use XAl techniques to enhance the interpretability and
trustworthiness of DL models in ovarian cancer diagno-
sis? The proposed method combines advanced DL models
and XAl techniques to enhance ovarian cancer diagnosis.
A detailed comparison with the existing studies is included
in the discussion section.

Our study introduces several novel contributions to the
field of ovarian cancer diagnosis using DL. This research
aims to revolutionize ovarian cancer diagnosis, potentially
leading to personalized treatment strategies and improved
patient outcomes. This paper is organized into five sec-
tions, each aimed at making a specific contribution to the
presentation of the research findings. Section II contains a
comprehensive literature review detailing what is currently
known and past research on classification of ovarian cancer
using DL and also on the recent studies on XAI technique.
Section III describes the proposed methodologies: the novel
approaches applied in addressing the research questions. The
section has focused on the exploration of seven DL models
for a comparative analysis. The fourth section describes the
experimental procedures and demonstrates results for crucial
evaluation of the models using different metrics, then optimal
DL model is selected for further interpretation using XAlI.
Discussion on the findings, arrival at the conclusions from
our research, and a direction of how to carry future research
will be suggested in Section V and VI

Il. RELATED WORK

Histopathology and medical imaging are crucial for diag-
nosing ovarian cancer, yet late-stage detection persists due
to subtle symptoms and limited screening methods [21] for
the disease in the general population. Late-stage ovarian
cancer presents challenges including increased metastasis,
aggressive tumour growth, and reduced treatment efficacy,
underscoring the urgency for early detection and interven-
tion [22]. Early ovarian cancer detection is crucial for better
outcomes. Al and molecular profiling show promise in
improving diagnostic accuracy and efficiency [23]. These
developments have caused interest in using DL models to
optimize ovarian carcinoma examination, especially with the
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growing availability of large-scale datasets and computa-
tional resources.

Recent studies underscore the transformative potential of
DL models in diagnosing and categorizing ovarian cancer,
offering a paradigm shift in medical imaging interpreta-
tion. These models excel in deciphering complex patterns
from extensive datasets, streamlining diagnostic imaging
processes in resource-constrained healthcare settings [24].
Previous DL research in medical imaging has shown sub-
stantial advancements, particularly with convolutional neural
networks (CNNs), effectively interpreting medical images
and assisting clinicians in decision-making. Gao et al. [25],
detected ovarian carcinoma using ultrasound images of
pelvic, using a DCNN model which surpassed radiologists
in detection, achieving an average accuracy rate of 0.876.
However, the DCNN model is limited by its retrospective
nature, unbalanced image distribution, inconsistent empiri-
cal validations due to dataset limitations. Another research
where CNN model was trained and tested on MRI images,
including T2WI, DWI, ADC map, and CE-T1WI, for diag-
nosing both ovarian cancer and borderline tumours. With
sensitivity ranging from 0.77 to 0.85, specificity from 0.77 to
0.92, accuracy from 0.81 to 0.87, and AUC from 0.83 to
0.89, CNNs exhibited diagnostic performance comparable
to experienced radiologists, with the highest performance
observed on the ADC map. The study’s limitations include
individual sequence evaluation rather than comprehensive
multi-sequence diagnosis, and the need for more training
images and integration of clinical data for improved model
performance [26]. A radiomic and machine learning model
was developed and evaluated by Chiappa et al. [27], using
ultrasound images to predict ovarian mass malignancy risk.
Three homogeneous groups (solid, cystic, motley) were
analysed, achieving accuracies of 80%, 87%, and 81%, sen-
sitivities of 78%, 75%, and 81%, specificities of 83%, 90%,
and 81%, and AUCs of 87%, 88%, and 89%, respectively.
The study’s main weakness is its retrospective, single centre
design and limited sample size for certain lesions. In the
study [28], author utilized multimodal MRI and a technique
for multiple instances learning to distinguish between the
borderline and malignant epithelial ovarian tumours. MAC-
Net achieved superior performance with an AUC of 0.878,
forming a valuable measurement for medical differentiation.

A DL algorithm using convolutional neural networks was
developed using routine MR imaging to distinguish between
cancerous and benign ovarian tumours in [29]. The entire
ensemble model, incorporating clinical factors and magnetic
resonance imaging, exhibited increased precision (0.87 ver-
sus 0.64) and specificity (0.92 vs 0.64) compared to junior
radiologists, with similar sensitivity between 0.75 and 0.63.
The ensemble model utilized EfficientNet due to its superior
speed and performance over ResNet. The study has limita-
tions including selection bias, reliance on original pathology
reports, recall concerns, limited data size. Christiansen et al.
in [30] aimed to develop and assess a DNN-based ultrasound
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image processing system to distinguish benign from can-
cerous ovarian tumours, utilizing ResNet50, MobileNet, and
VGG16 with transfer learning and ensemble modelling. The
ensemble of DNNs estimated malignancy probability and
classified tumours either as malignant/benign (Ovry-Dxl
model) or inconclusive/benign/cancerous (Ovry-Dx2 model).
It achieved a sensitivity of 96.0%, comparable specificity
to subjective assessment (86.7%), and, notably, Ovry-Dx2
exhibited a 93.7% specificity and 97.1% sensitivity, though
with some lesions deemed inconclusive. The image quality
homogeneity is one of the limitations of the study.
Employing demographic traits, serum markers, colour
Doppler imaging in addition to morphological factors,
Lu et al. [31] developed and analysed logistic regression and
Multilayer Perceptron (MLP) algorithm which achieved an
AUC of 0.954 in predicting ovarian tumour malignancy. The
study employed 425 images (291 benign, 134 malignant)
with a training set of 365 and a test set of 60, employing
7-fold cross-validation. Combining the white-box model to
the existing methodology can make the model more promis-
ing. The study in [32] approached an accurate distinguish
between images containing cancer cells and those with-
out tumours, achieving AUCs exceeding 0.95 for AlexNet,
GoogLeNet, and VGGNet are 0.955 £ 0.010, 0.974 +£ 0.004,
and 0.975 £ 0.001, respectively. Grad-CAMs verified that
tumour cell clusters were given greater weights to distinguish
cancerous cells from nearby benign tissue. They inspected
587 patients with recurrent serous ovarian adenocarcino-
mas; the approach combined proteomics, RNA-Seq, and
whole-slide histopathology results. CNNs accurately deter-
mined carcinogenic areas (AUCs > 0.95) and categorized
tumour grade with AUC greater than 0.80. Furthermore,
the author demonstrated quantitative histopathology analy-
sis, which effectively stratified patients based on how they
responded to chemotherapy by employing platinum (P =
0.003). The limitation of the study lies in the dataset, the
author mostly focused on the serous type of ovarian car-
cinoma, there is a need for extension in their approach in
other types of epithelial ovarian carcinoma. Shin et al. in [33]
made use of a large public image dataset from TCIA (The
Cancer Image Archive) for 142 ovarian cancer patients to
fine-tune Inception V3. External validation on 32 patients’
pathology images was performed, enhancing classifier per-
formance. Without style transfer, the corresponding AUROC
and AUPRC values were 0.737 and 0.710, while after style
transfer, they improved to 0.916 and 0.898. There is room
for improvement in the performance and interpretability of
the DL model using advanced method. 444 patients with
high-grade serous ovarian cancer are included in a multivari-
ate dataset, featuring pathology images stained with H&E and
contrast-enhanced computed tomography scans is utilized,
Boehm et al. [34] applied a CNN model (ResNet18) with an
accuracy of 88%. The dataset included pathology images with
four classes: tumour, stroma, fat, and necrosis. Integration
of machine learning models for histology, radiology, and
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clinicogenomic revealed complementary prognostic infor-
mation, the researchers offered a promising approach for
enhanced stratification of risks in carcinoma patients.
Farahani et al. [35] proposed four DL networks were assessed
for histotype classification of ovarian cancer through whole
slide images stained with haematoxylin and eosin. Models
included one-stage (VGG-19) and two-stage transfer learn-
ing algorithms, DeepMIL, and VarMIL. Performance was
assessed on a training set of 948 slides and an independent
test set of 60 patients. VGG-19 outperformed the other mod-
els, with an AUC of 0.959. The study in [36] demonstrated
that NoisyEnsembles improved diagnostic accuracy on low-
quality datasets, achieving 96.2% accuracy on high-quality
tissue and 82.2% on low-quality tissue. There are few
advancements in the adaption of XAI techniques as men-
tioned in the study [37] were they utilized GradCAM,
GradCAM++, and Layerwise Relevance Propagation (LRP)
as XAI techniques to interpret the decisions of a CNN
model for cervical cell image classification. While GradCAM
and GradCAM+-+ highlighted both nuclei and cytoplasm
regions, LRP focused solely on the nuclei, considered the
most relevant feature. In another research work, a com-
putational model presents the classification of melanoma
skin cancer images using CNNs and Vision Transform-
ers (ViT). Both works utilized mask-guided techniques and
specially designed segmentation modules in U2-Net to get
the masks. An evaluation of this research is shown, with
the use of Grad-CAM and Grad-CAM++ to provide the
heatmaps for interpreting the model [38]. In study [39] a deep
learning model is developed for the diagnosis of glaucoma
using fundus images; its main components included seg-
mentation by U-Net and ResNet50, while classification was
further elaborated with a modified Inception V3. Heatmaps
were generated using Grad-CAM and Grad-CAM++ for
interpretability of the developed model. Another research
work [40] showed that EnsembleCAM had the potential
to improve interpretability in cervical cancer classification
using pap smear images. In that manner, EnsembleCAM
provided unified visual explanations through an ensemble
of multiple Class Activation Maps with both GradCAM and
Score-CAM. The utility on the model based on XceptionNet
gained 89% accuracy while supporting effective localization
of the nucleus, which was a key feature of malignancy in
cervical cancer. In our proposed research work, we intro-
duce a DL method for multiclassification of ovarian cancer
subtypes, leveraging dataset augmentation and incorporating
XALI techniques for enhanced accuracy and interpretability.

lIl. MATERIALS AND METHODS

A. DESCRIPTION OF DATASET

The dataset comprised 500 histopathological images (1430 x
550 PNG format), with approximately 100 images labelled
for each subtype: Serous, mucinous, endometroid, non-
cancerous and clear cell. Initially obtained from the National
Cancer Institute’s Genomic Data Commons (TCGA-OV
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FIGURE 3. Image data augmentation.

repository), the GDC portal offered a comprehensive resource
of high-quality images. It included more images, of the
Serous subtype which contained 175 histopathological
images, other subtypes are rare, with minimal available data.
The dataset was chosen due to its extensive annotations by
expert pathologists, ensuring relevance to ovarian cancer sub-
types and no redundancy in the data. The dataset was used for
training, analysis, and research as referenced in [41]. A vali-
dation dataset, constituting 10% of the complete dataset, was
extracted and published on Mendeley Data by the authors. All
images were meticulously categorized and labelled based on
subtypes, ensuring dataset integrity.

B. DATA AUGMENTATION

For data preprocessing, image augmentation was performed
which included rotation, shear, zoom, horizontal flip, and
vertical flip. Each subtype’s image directory was processed
separately, generating augmented images to increase dataset
diversity. The original dataset consisted of 500 histopatho-
logical images with 100 for clear cell, 100 for endometroid,
100 for mucinous, 100 for non-cancerous and 100 for serous.
After augmentation it was 1,470 images across all five sub-
types, with 295 images for clear cell, 286 for endometroid,
295 for mucinous, 297 for non-cancerous, and 297 for serous
subtypes. The image dataset was resized, normalized, and
converted to tensor according to each model requirement.
The dataset was split into 70% and 30 % for training and
validation set each respectively. This augmentation process
enhances the dataset for robust model training and improves
classification performance. Figure 3 depicts the different aug-
mentation techniques used to increase the dataset for training.
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C. METHODOLOGY
Our methodology embarks on the utilization of a com-
prehensive dataset comprising histopathological images of
ovarian cancer subtypes. To address potential data scarcity
and enhance model robustness, we employed data augmen-
tation techniques such as image rotation, flipping, zooming,
and shearing. Subsequently, we explore a range of DL mod-
els, including MobileNetV2, VGG19, ResNet18, ResNeXt,
Xception, EfficientNet, and InceptionV3, to determine their
efficacy in classifying ovarian cancer subtypes. Among these
models, InceptionV3 emerges as the top performer, demon-
strating superior accuracy and generalization capabilities.
To ensure the interpretability and transparency of our
Al-driven diagnostic tool, we integrate innovative XAI meth-
ods into our framework. These XAI techniques, including
integrated gradient, saliency map, grad-cam, and DeepLift,
provide insights into the decision-making process of the
DL models. By making the reasoning behind the model
predictions comprehensible to clinicians, our methodology
aims to foster trust and acceptance of Al technologies in
clinical settings. Figure 4 provides (a) an overview of the
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proposed methodology where it also describes the general
workflow for the proposed work, the data collected from the
source is augmented to increase the diversity then provided
as input to the seven DL models. The optimal model is
selected on the basis of different result and evaluation metrics
and finally transparency and interpretability of the optimal
model is experimented using different XAl techniques (b)
an explanation of how CNN model is used to perform
multi-classification task is explained with an architectural
diagram of the model with the combination of convolutional,
pooling, flatten and connected layer.

D. CLASSIFICATION MODELS

DL [42] has revolutionized machine learning with its ability
to surpass human capabilities, particularly in CNNs, a DL
subset, excel in image processing via convolutional layers,
driving superior performance in classification tasks. Their
versatility in healthcare spans disease detection, predictive
analysis, and drug discovery, revolutionizing hospital work-
flows [43]. CNN methodologies evolved to handle diverse,
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multi-class problems through refined processing units, opti-
mized parameters, and redesigned layer patterns [44].

1) RESNEXT50

The first model used for training and classifying the ovarian
carcinoma dataset was ResNeXt50 [45]. The OvarianCancer-
Dataset class efficiently loaded images from a specified
directory, assigning labels based on subdirectory names
and enabling seamless iteration through the dataset. Data
transformation, including resizing images to 224 x 224, con-
version to tensors, and normalization, was applied using the
defined transformation pipeline. Subsequently, the dataset
was divided into 70% for training and rest for validation,
followed by the initialization of DatalL.oader objects for both
sets. These loaders facilitate efficient batched data loading
during training, ensuring the smooth progression of model
training and validation processes. The model’s architecture
was established, leveraging a pre-trained ResNeXt-50 back-
bone which includes 50 layers and a cardinality of 32 (number
of groups), and a widening factor of 4, facilitating gradient
flow and feature extraction. A fully connected layer serves as
the classifier. The training loop iterates over epochs, updating
gradients, applying regularization, and monitoring training
and validation metrics. Upon completion, model evaluation
assesses performance on unseen data, visualized through
accuracy and loss curves. The flow chart of ResNeXt50
model architecture is given in Figure 5.

FIGURE 5. ResNeXt50 model architecture.

2) VGG19

The data loading, data transformation pipeline and initializa-
tion of Datal.oader was similar for all the models. VGG19
[46], a widely recognized convolutional neural network
(CNN) architecture is well known for being convenient to
use and efficient for applications involving image classifi-
cation. The model consists of several convolutional layers
with a rectified linear unit (ReLU) activation function placed
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after each layer, designed to capture intricate patterns and
features within input images. These convolutional layers are
organized into distinct blocks, with each block comprising
multiple convolutional layers and max-pooling layers, which
function to decrease the feature maps’ spatial dimensionality
while preserving essential features. Following the convo-
lutional layers, the model includes fully connected layers
responsible for transforming the extracted high-level features
into a vector of logits, representing the raw class scores for
each class in the classification task. To prevent overfitting,
the model incorporates weight decay regularization, which
penalizes large weights during training to enhance generaliza-
tion performance. Visualization tools plot accuracy and loss
curves to monitor training progress. Finally, the performance
of the model is assessed on the validation dataset, collect-
ing predictions, true labels, and losses for further analysis.
Figure 6 illustrates the model architecture of VGG19.
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FIGURE 6. VGG19 model architecture.

3) MOBILENETV2

MobileNetV2 [47], a miniature convolutional neural network
(CNN) intended for embedded and smartphone usage. For
each input channel, Depthwise Convolution applies a single
filter, capturing spatial correlations within channels, followed
by Pointwise Convolution combines features across channels
by using a 1 x 1 filter. Together, they form the Bottleneck
layer in the model, reducing parameters and computational
cost while maintaining expressive power. This configuration
enhances the model’s capacity by capturing both spatial and
cross-channel correlations. After the bottleneck layer typi-
cally ReLU activation and batch normalization comes next.
For the research work, the MobileNetV2 model is pretrained
on the ImageNet dataset, allowing for transfer learning to
adapt it to multiclassification task. The model classifier part
is modified to accommodate the target dataset’s class count,
ensuring compatibility. Table 1 explains the architecture of
MobileNetV2.

During training, the model undergoes an iterative optimiza-
tion process using the Adam optimizer, aiming to reduce the
loss of cross-entropy between the true and predicted labels.
A validation dataset is used to assess the model to evaluate its
performance. Accuracy and loss curves are plotted to visual-
ize the training progress and monitor for signs of overfitting.
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TABLE 1. MobileNetV2 architecture summary.

Layer Type Output Size Depth SizKe(;g:il de Activation
Input 224x224x3 - - -
Convolution | 2 P 21 x5 3x3 ReLU
Batch 112x 112 x 1 ) )
Normalization 32
Bottleneck | |1 ’;61 12x 16 1x1, 3x3 ReLU
Botteneck | 1 5 i 12x 24 1x1,3x3 ReLU
Bottleneck 56 x 56 x 24 24 1x1, 3x3 ReLU
Bottleneck 56 x 56 x 32 32 1x1, 3x3 ReLU
Bottleneck 28 x28x32 32 1x1, 3x3 ReLU
Bottleneck 28 x 28 x 64 64 1x1, 3x3 ReLU
Bottleneck 14x 14 x 64 64 1x1, 3x3 ReLU
Bottleneck 14 x 14 x 96 96 1x1, 3x3 ReLU
Bottleneck 14x 14 x 96 96 1x1, 3x3 ReLU
Bottleneck 7x7x 160 160 1x1, 3x3 ReLU
Bottleneck 7x7x 160 160 1x1, 3x3 ReLU
Bottleneck 7x7x320 320 1x1, 3x3 ReLU
Convolution 7x7x1280 1280 1x1 ReLU
Gl"'}izlof‘vg 1x1x 1280 - Global -
Coiﬁzzted nur:rljc:a)s(ses ) . SoftMax

4) RESNET18

Images are resized to 224 x 224 pixels and normalized to load
and input to the ResNet18 model [48]. The model consists
of a series of convolutional layers organized into residual
blocks. To mitigate the vanishing gradient problem, each
residual block has several layers of convolution in addition
to identity shortcuts, or skip connections, that facilitate the
gradient’s flow during training. This architecture enables the
training of deeper networks while maintaining computational
efficiency. The number of cancer classifications to be pre-
dicted determines the total volume of outputs in the fully
connected linear layer. Weight decay regularization is applied
to the optimizer to prevent overfitting during training. The
forward method takes an input tensor x representing the input
image and passes it through the ResNetl8 backbone. The
output of the backbone, which is a feature tensor, is then
passed through the linear classifier to produce the final output
logits, which represent the predicted probabilities of the input
image belonging to each cancer class. Metrics like precision,
recall, and accuracy are calculated to assess the model’s per-
formance on unseen data. Figure 7 illustrates the ResNet18
model architecture in a flow chart.
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5) XCEPTION

The Xception [49] architecture’s capabilities for feature
extraction and classification, augmented with weight decay
regularization, is used to improve generalization perfor-
mance. Depth-wise separable convolutions, which split the
standard convolution into depth-wise and point-wise con-
volutions, are used by Xception to reduce computational
complexity without compromising representational capabil-
ity. During the forward pass, input images are passed through
the Xception backbone, which extracts hierarchical features
from the images. Then it is fed into the fully connected
layer, which produces logits representing the class scores for
each input image. The final output is obtained by applying
a SoftMax function to the logits, producing the predicted
probabilities for each class.

Input Image

| Convl (7x7, 64 filter) |

:

| Batch Normalization |

.

| RelLU |

|

| MaxPooling (3x3) |

!

| Conv block 1 (3x3, 64 filters) |

|

I MaxPooling (2x2) |

|

| Conv block 2 (3x3, 128 filters) |

!

| Conv block 3 (3x3, 256 filters) |

:

| Conv block 4 (3x3, 512 filters) |

!

| Global Average Pooling |

:

| Linear (Fully Connected Layer) |

I Output Logits (Class scores) |

FIGURE 7. ResNet18 architecture.

The model summary is shown in Table 2. To avoid over-
fitting, early stopping is incorporated into the training loop.
Training is terminated early if the validation loss remains
unchanged after a certain number of epochs (patience). After
training, the model is evaluated on the validation dataset to
assess its performance.
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TABLE 2. Xception architecture summary.

Layer (type) Output Shape Param #
Xception Backbone:

Entry Flow:

Conv2d-1 (16,32, 112, 112) 896
BatchNorm2d-2 (16,32,112,112) 64
ReLU-3 (16,32, 112, 112) 0
Conv2d-4 (16, 64,112, 112) 18,496
BatchNorm2d-5 (16, 64,112, 112) 128
ReLU-6 (16, 64,112, 112) 0
SeparableConv2d-7 (16,128,112, 112) 8,320
BatchNorm2d-8 (16,128,112, 112) 256
ReLU-9 (16,128,112, 112) 0
MaxPool2d-10 (16, 128, 56, 56) 0
Middle Flow (Repeated 8 times):

Repeated modules from the Entry Flow multiple times

Exit Flow:

SeparableConv2d-45 (16, 1024,7,7) 2,082,304
BatchNorm2d-46 (16, 1024,7,7) 2,048
ReLU-47 (16, 1024,7,7) 0
Conv2d-48 (16, 1536,7,7) 1,572,864
BatchNorm2d-49 (16, 1536,7,7) 3,072
ReLU-50 (16, 1536,7,7) 0
Classifier Head:

AdaptiveAvgPool2d-51 (16,1536, 1, 1) 0
Flatten-52 (16, 1536) 0
Linear-53 (16, num_classes) 15,370

Total params: 20,865,530
Trainable params: 20,865,530
Non-trainable params: 0

6) EFFICIENTNET-BO

EfficientNet-BO [50] is known for its efficiency in terms
of model size and computational cost while obtaining high
precision. The pytorch library timm is used to initialize the
model. The model architecture comprises a series of build-
ing blocks, including depthwise separable convolutions and
squeeze-and-excitation (SE) blocks. These blocks efficiently
extract features from input images while minimizing compu-
tational cost. The classifier head is responsible for producing
the final predictions. The training loop iterates over the
dataset for multiple epochs. The model is trained with the
Adam optimizer and the cross-entropy loss function in each
iteration. EfficientNet- B0 architecture is detailly explained
in Figure 8.

7) INCEPTIONV3

The images were resized to meet the minimum size require-
ment of 299 x 299 pixels which is required for Incep-
tionV3 model [51]. The neural network architecture model
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is designed for advanced classification tasks. The forward
method delineates the model’s forward pass, executing the
sequential propagation of input tensors through the layers
of the model. Figure 9 explains the model architecture. The
integration of weight decay regularization into the optimizer
further fortifies the model against overfitting tendencies by
imposing penalties on large parameter values, thereby foster-
ing a more robust and generalized model representation.

Essential components such as the loss function, optimizer,
and scheduler, are initialized facilitating effective training
management. The trained model is evaluated on the validation
dataset, generating predictions to assess performance, while
a confusion matrix aids in comprehensively analysing classi-
fication results.
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FIGURE 8. EfficientNet-BO architecture.

The selection of the seven CNN models - MobileNetV2,
VGG19, ResNetl8, ResNeXt, Xception, EfficientNet, and
InceptionV3 - for the comparative study in the proposed
research work on ovarian cancer subtype classification
is well-justified. This diverse set includes state-of-the-
art models pre-trained on large datasets, enabling transfer
learning capabilities. It covers a range of architectural
approaches (residual connections, depth-wise separable con-
volutions, inception modules) and model complexities (from
lightweight to deep and complex). This variety allows for a
comprehensive evaluation of different architectural choices,
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FIGURE 9. InceptionV3 architecture.

assessing the trade-off between model complexity and perfor-
mance, and identifying the most suitable architecture for the
critical task of accurate ovarian cancer subtype classification,
which has significant implications for personalized medicine
and clinical decision-making.

E. XAl TECHNIQUES

By employing XAl techniques, the research aims to enhance
the interpretability and transparency of the DL models used
for ovarian cancer subtype classification. XAl techniques,
such as integrated gradient, saliency map, grad-cam, and
DeepLift are employed [52].

1) INTEGRATED GRADIENT

Integrated gradient technique is one of the simplest
approaches. It attributes the model’s prediction to the input
features by computing the integral of the gradients along
a straight path from a baseline input to the actual input.
This technique calculates the output of the target neuron at
multiple points along the path, resulting in an importance
score or attribution value for each input pixel. It highlights
the regions of the input image that significantly influence the
model’s output.

2) SALIENCY MAP

Saliency maps visualize the pixels in the input image that
contribute the most to the model’s prediction. The DL model
selects a target neuron from an input image, computes partial
derivatives of its activation, and uses the absolute value to
create a saliency map, highlighting the most significant input
pixels. The saliency map is a heat map overlaid on an input
image, with warmer colours indicating pixels with higher
influence on the model’s target class prediction.
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3) GRAD-CAM

Grad-CAM is a visualization technique that uses gradients
to identify important regions in an input image that signifi-
cantly influence the prediction of a specific class. It computes
gradients of the target class score and importance weights
for each feature map, which are then used to compute a
coarse localization map. Grad-CAM’s unique feature is that
it doesn’t require architectural changes or re-training, making
it widely applicable to any CNN-based model.

4) DEEPLIFT
DeepLIFT is a DL approach that uses a reference input
as a baseline for comparison. It propagates the reference
input through the neural network, computes and stores the
activations of hidden units, and performs a backward pass.
It employs specific rules for attributing relevance scores to
input features, such as the Rescale Rule and RevealCancel
Rule. By computing an attribution score for each input fea-
ture, DeepLIFT helps researchers understand the importance
of different regions in the input tissue sample, building trust in
DL models and facilitating their adoption in clinical settings.
The explanations are visual and measure the importance
of input features, which can help to understand the model
decision making. Such a framework also meets the pressing
demand for interpretability of medical Al applications, which
in turn will help to create trust, and drive the responsible
deployment of these models into the clinic, to assist with the
diagnosis or guide the next treatment options in the personal-
ized care of ovarian cancer.

IV. RESULTS
In the study, several DL models were employed to classify
ovarian cancer histopathology images, each yielding distinct
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TABLE 3. Comparative analysis of ovarian cancer classification models.

MODELS ResNeXt50 VGG19 MobileNetV2 ResNet18 Xception EfficientNet BO InceptionV3
Overall accuracy 92.06% 93.65 95.46% 96.60% 97.05% 97.51% 97.96%
Precision 0.87 0.94 0.90 0.94 0.92 1.00 0.98
CLASS 0
(Clear Cell) Recall 0.96 0.94 0.95 0.98 1.00 0.98 0.97
F1 score 0.91 0.94 0.92 0.96 0.96 0.99 0.97
Precision 0.95 1.00 1.00 1.00 1.00 0.94 0.98
(EnCdLo?nifr;id) Recall 0.99 0.95 1.00 0.99 1.00 0.97 0.99
F1 score 0.97 0.98 1.00 1.00 1.00 0.95 0.98
Precision 091 0.89 0.97 0.99 1.00 0.99 0.99
CLA.SS 2 Recall 0.83 091 0.95 0.92 0.89 0.94 0.97
(Mucinous)
F1 score 0.86 0.90 0.96 0.95 0.94 0.96 0.98
Precision 0.90 091 0.91 091 0.93 0.95 0.99
CLASS 3
(Non- Recall 0.92 0.95 0.97 0.98 0.99 1.00 0.99
cancerous)
F1 score 0.91 0.93 0.93 0.94 0.96 0.98 0.99
Precision 0.99 0.96 1.00 0.99 1.00 1.00 0.97
CLASS 4 Recall 0.90 0.94 091 0.96 0.98 1.00 0.98
(Serous)
F1 score 0.94 0.95 0.95 0.98 0.99 1.00 0.97

accuracies. The ResNeXt50 model achieved an accuracy of
92.06%, followed by VGG19 with 93.65%, MobileNetV2
with 95.46%, ResNet18 with 96.60%, Xception with 97.05%,
EfficientNet_BO with 97.51%, and InceptionV3 with the
highest accuracy of 97.96%, demonstrating its superior per-
formance compared to other models. Table 3 shows a tabular
representation showing the precision, recall, and F1 scores for
each ovarian cancer class across all models, with emphasis on
highlighting InceptionV3’s superior performance.

The reason Regularized Inception Model outperforms the
original one is that it incorporates advanced techniques in
regularization, hyperparameter tuning, and optimization of
training methods. These methods bring better model general-
ization, enhance robustness, and achieve a model of superior
accuracy across diverse datasets.

1) Architectural Improvements: The enhanced Incep-
tion model is embedded with advanced regularization
techniques to check overfitting and improve generaliza-
tion. The inclusion of L2 regularization (weight decay)
directly into the optimizer equips the model to handle
complex datasets and allows more reliable performance

2) Advanced Training Methods (Hyperparameters):
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3)

4)

o Regularization and Optimization: L2 regulariza-
tion (weight decay) adds a penalty to the loss
function; as a result, the algorithm is incentivized
not to assign unnecessarily large values to model
parameters. This addresses issues related to over-
fitting and, therefore, increases robustness.

e Scheduling the learning rate: The implemented
ReduceLROnPlateau scheduler adapts the learning
rates based on validation loss and promotes more
efficient training by adjusting the learning rate at
model plateaus, thus accelerating the convergence
and not allowing for premature saturation.

Enhanced Loss Function: The CrossEntropyLoss
function is supplemented with the regularization term,
aiding in further improving the model performance as
it will include weight decay in the computation of loss.
This helps in accuracy during classification and also
helps attain better convergence at training time.

Improved Training and Validation Accuracy: The
model avoids overfitting and, through early stopping
and validation monitoring, guarantees that it increases
or maintains its best performance all through the
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FIGURE 10. Evaluation of InceptionV3 model performance for ovarian
cancer classification: (a) accuracy and loss curve plot, (b) classification
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baseline model.
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FIGURE 11. Threshold analysis for sensitivity and specificity evaluation.

ResNeXt50 achieves high precision scores in Class 1
(Endometroid) and Class 4 (Serous), indicating its capabil-
ity to correctly identify instances of these ovarian cancer
subtypes, it exhibits lower precision in Class 2 (Mucinous)
and Class 3 (Non-cancerous). The recall scores for Class 2
(Mucinous) and Class 4 (Serous) are lower compared to other
classes. F1 scores reflect a balanced measure of precision and
recall, with lower value for Class 2 (Mucinous) compared to
the other classes. VGG19 highlight impressive performance
across most classes, with particularly high precision scores
in Class 1 (Endometroid) and Class 4 (Serous). F1 scores
are also high, indicating robust overall classification perfor-
mance. While there are minor variations in precision and
recall scores across different classes. MobileNetV2 demon-
strates robust performance across most classes, particularly
excelling in Class 1 (Endometroid) and Class 4 (Serous),
where it achieves perfect precision and high recall values.

The model’s overall precision and recall scores are high,
resulting in robust F1 scores across all classes. However, there
is a slight decrease in recall for Class 0 (Clear Cell). Excel-
lent performance across all classes is achieved by ResNet18,
with high recall, precision, and F1 scores demonstrating
its efficacy in precisely classifying ovarian cancer sub-
types. Notably, it demonstrates flawless precision in Class 1
(Endometroid) and Class 4 (Serous), suggesting minimal mis-
classification within these groups. Displaying high precision,
recall, and F1 scores Xception model reflect its capability in
accurately categorizing ovarian cancer subtypes. It achieves
exceptional recall rates, ensuring comprehensive identifica-
tion of relevant instances across all classes. EfficientNet_BO
model achieves impressive F1 scores across all classes, sig-
nifying a balance between precision and recall. Its robust
performance in classifying cancerous and non-cancerous
samples further highlights its efficacy as a reliable model
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FIGURE 12. Inference Outputs Comparison: Actual vs. Predicted class
labels generated by the model.

for subtype classification in ovarian cancer. InceptionV3
outperforms other models in classifying ovarian cancer sub-
types with its high precision, recall, and F1 scores across all
classes highlight its effectiveness in accurately identifying
and distinguishing between different cancer subtypes. Par-
ticularly noteworthy is its precision and recall in Classes 1
(Endometroid), 2 (Mucinous), and 3 (Non-cancerous), where
it achieves near-perfect scores, indicating minimal misclassi-
fication and comprehensive coverage of relevant instances.
Additionally, a visualization of accuracy and loss curves
to illustrate the training progression of the models is pro-
vided. Furthermore, a comprehensive analysis is presented,
including classification reports and confusion matrices, offer-
ing insights into the models’ classification performance and
potential misclassifications. Figure 10 (a), (b), (c) shows
accuracy and loss curve plots, classification report and con-
fusion matrix, respectively.

The accuracy and loss curve plot explains the model’s
optimal performance, where the validation loss and accuracy
curves draw into a steady converging state. The classifi-
cation report provides a detailed explanation on precision,
recall, specificity, sensitivity and F1 scores of each class. The
accuracy of optimistic projections is reflected in precision,
while recall measures the classifier’s capability to recognize
positive samples accurately. The Fl-score balances preci-
sion and recall, making it suitable for imbalanced datasets.
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FIGURE 13. XAl Integration with InceptionV3 model for Class 0 (Clear Cell)
(a) integrated gradients, (b) saliency maps, (c) Grad-CAM and (d) DeepLift.

Support indicates the number of each class’s instances in the
dataset, providing insights into class distribution and metric
significance. A confusion matrix summarizes a classification
model’s performance by detailing the quantity of accurate and
inaccurate predictions for each class, helping identify errors
and biases. Analysing model performance across various
probability thresholds involving the calculation of sensitivity
(True Positive Rate) and specificity for different thresholds,
sensitivity and specificity curve plot is displayed in Figure 11.
Specificity shows the percentage of true negatives, whereas
sensitivity measures the percentage of true positives. By iter-
atively adjusting the threshold and computing these metrics,
the model’s performance changes can be noted. Sensitiv-
ity and specificity trade-offs can be visualized to know the
threshold selection, which is crucial for optimizing model
performance based on specific task requirements.

Inference outputs are depicted in Figure 12, displaying
the actual class labels alongside the predicted classes gen-
erated by the models, enabling a detailed examination of
the model predictions. Figure 13 interprets the feature of
Class 0 (Clear Cell). Different XAI methods are used to show
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FIGURE 14. XAl Integration with InceptionV3 Model for Class 1
(Endometroid) (a) integrated gradients, (b) saliency maps, (c) Grad-CAM
and (d) DeeplLift.

the transparency of the InceptionV3 model. It includes the
application of (a) Integrated gradients: A heatmap displays a
colourful pattern where warmer colours (reds and yellows)
indicate the areas that have a positive contribution to the
prediction and cooler colours (blues and greens) present neg-
atively contributing areas. From the heatmap we can see that
the model is finding flattened clear cell regions to be highly
significant features in identifying the Clear Cell subtype, (b)
Saliency maps: the saliency map appears as a dark overlay
on the original image, with brighter regions indicating higher
relevance for the prediction. The saliency map highlights sim-
ilar areas as the integrated gradients heatmap, (c) Grad-CAM:
A broader tissue area, containing several flattened clear cells
and the structures around them, is highlighted by heated hues
(yellow and red) in the Grad-CAM heatmap, indicating that
the model is considering the entire tissue pattern and morpho-
logical traits for classification, and (d) DeepLift: Cooler hues
(blues) denote negative contributions, whereas warmer hues
(reds and yellows) signify positive contributions. The original
image has the attribution map superimposed on it for ease
of interpretation. Class 1 (Endometroid)’s model predicted
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FIGURE 15. XAl Integration with InceptionV3 Model for Class 2
(Mucinous) (a) integrated gradients, (b) saliency maps, (c) Grad-CAM and
(d) Deeplift.

feature is shown in Figure 14. XAl methods (a) Integrated
gradients: the heat map is highlighting the endometroid cell
type regions with warmer hues (reds and yellows), and (b)
Saliency maps: using the dark overlay for interpretability of
the highly relevant features of the endometroid carcinoma
class, (c) Grad-CAM: the attribution map is superimposed
on the original image showing high significant feature in
the grandular architecture, and (d) DeepLift: similar to
Grad-CAM heated hues, indicate the explainability and trans-
parency of the model. Integrated gradients, saliency maps,
Grad-CAM, and DeepLift these methods are utilized in the
next Class 2 (Mucinous) in Figure 15, where the model is pre-
dicting the tall columnar cells, with mucin filled cytoplasm
differentiating it from other cell type classes. Figures 16
and 17 explain the XAI techniques used in the respective
classes Class 3 (Non-Cancerous) and Class 4 (Serous). The
XAI methods in the Non-Cancerous class type, has cate-
gorized this class from others by significantly marking the
uniform, round nuclei without much variation in the size. And
finally in Class 4 (Serous), the XAl techniques interprets and
highlights the ciliated, clustered, or papillary projections of
cell forming a solid mass like structure.
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FIGURE 16. XAl Integration with InceptionV3 Model for Class 3
(Non-Cancerous) (a) integrated gradients, (b) saliency maps,
(c) Grad-CAM and (d) Deeplift.

Different histopathological subtypes of epithelial ovarian
cancer are because of their distinct biological features [53],
XAI provides visualization of these attributes which give a
clarity about what exactly the model is learning. Each XAI
technique refers to a method used for reflecting the Incep-
tionV3 model’s predictions.

V. DISCUSSIONS

Comparing other related studies is crucial for contextualizing
the advancements and limitations of our proposed research
work for diagnosing ovarian carcinoma subtypes. Under-
standing how existing approaches tackle similar challenges
provides valuable insights into the efficacy and potential
areas of improvement of our method. By critically evaluating
the strengths and weaknesses of alternative methodologies,
we can refine our approach. While achieving a commendable
average accuracy of 91%, similar challenges provide valuable
insights into the efficacy and potential areas of improve-
ment of our method. By critically evaluating the strengths
and weaknesses of alternative methodologies, we can refine
our approach. While achieving a commendable average
accuracy of 91%, the automatic system for diagnosing ovar-
ian carcinoma subtypes in study [54] faces challenges in
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FIGURE 17. XAl Integration with InceptionV3 Model for Class 4 (Serous)
(a) integrated gradients, (b) saliency maps, (c) Grad-CAM and (d) DeepLift.

scalability and generalizability due to its testing on a lim-
ited dataset of 80 patients. The study also faces potential
difficulty in clinically interpreting the complex features
learned. In [55], BenTaieb et al. achieved a 95.0% multi-
class classification accuracy for ovarian carcinoma subtypes
by mimicking pathologists’ workflow and using machine
learning techniques on a small dataset. However, system
performance may vary due to major reliance on high grade
tumours for model development and validation. This may
limit its generalizability to low grade or early-stage ovarian
cancers, which are more common and often have different
clinical characteristics.

In study 1 and 2, 80 slides from resection sam-
ples were analysed. The dataset is sourced from a prior
trans-Canadian study [56] on ovarian cancer classification.
Achieving 90% accuracy on a dataset of 133 patients,
the histopathology-based approach in study [57] employs
CNN and novel K-Means features with LSVM classification,
demonstrating high accuracy and generality across feature
types. This paper presents a learning algorithm simulat-
ing reasoning, and discriminative region highlighting for
multi-magnification histopathology slide analysis. However,
its robustness across diverse datasets needs further valida-
tion, particularly with additional learning methods. Authors
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TABLE 4. Ovarian carcinoma classification: Methodological comparison.

132 Study Data modality Al model Metrics Benefits Limitations
A . applicability may be limited by the
| 2015 [54] histopathology multi-layer DN (CNN accuracy 91.0% capt;gz?;ntg%aﬁ:tt;zzltlzr]g:t;g;‘ns, challenge of extrapolating results
’ (H&E) features); SVM - classifier y 2Ll yielding . . to larger datasets and difficulty in
ovarian cancer classification . .
interpreting complex features.
the system performance may vary
histopatholo demonstrates promising due to reliance on high-grade
2. 2016 [55] (ﬂ &E) ey SVM - classifier accuracy 95.0% | accuracy (95.0%) in subtype | tumours limits generalizability to
prediction low-grade or early-stage ovarian
cancers.
. . face challenges in interpretability
histopathology features (CNN, novel K- o demonstrates saliency map to g
3. 2017 [57] (H&E) Means); LSVM - classifier accuracy 90% identify the carcinoma and rely on SP?ClﬁC 1mage
resolutions.
DCNN simplifies ovarian cancer| sample diversity and complex
histopathology o classification, bypassing morphology challenge DCNN
4. 2018 [38] (H&E) DCNN based on AlexNet accuracy 78.20% traditional segmentation and accuracy, necessitating data
feature extraction steps. expansion and model refinement.
histopatholo GAN for synthetic image GANs provide synthetic images, [insufficient training data for GANSs|
. eneration an - A ensuring consistent diagnostic [may result in increased artifacts in
5. | 202059 (EI&E) Y | g ion and VGG19 - | AUC 0.9177 ing consistent diagnosti y result in i d artifacts i
classifier system performance synthetic images
histopatholo the DCNN model enhances refinement is needed to address
6. 2021 [60] (a &E) gy DCNN accuracy 83.93%| prediction and classification misclassifications and
accuracy interpretability of model
Mixing colour normalization
histopathology methods and reference images | The methods may complicate the
7. 2022 [61] (H&E) ResNet18 AUC0.97 boosts Al diagnostic model diagnostic process.
robustness
Our work achieves 97.96%
. accuracy, surpassing prior
8. proposed histopathology InceptionV3 accuracy 97.96%| studies, and offers transparent -
work (H&E) .. ;
model predictions using
advanced XAl techniques.

in [58] utilized AlexNet, a Deep Convolutional Neural Net-
work (DCNN), to enhance the classification accuracy of
various ovarian cancer types from cytological images, achiev-
ing a notable improvement from 72.76% to 78.20% with
augmented image data. The study collected 85 specimens
stained with H&E from the First Affiliated Hospital of Xin-
jiang Medical University. The study is limited by the need
for further investigation to address misclassifications, high-
lighting the necessity to increase the sample volume for
refined model training. In study [59] GANSs effectively repli-
cate high-resolution pathology images, but limitations arise
due to limited training data, leading to increased artifacts in
synthetic images, especially in datasets with fewer samples,
impacting image reliability. In the study [60], 500 labelled
histopathological images were sourced from the National
Cancer Institute’s Genomic Data Commons data portal for
training and analysis. The limitation lies in the modest accu-
racy achieved by the DCNN model suggesting the need for
further refinement and optimization to enhance its predictive
performance. Study [61] reviews eight colour normalization
methods for Al-based histopathology slide classification with
H&E staining, showing varied performance boosts in single-
centre datasets. While a combined enhancement technique
enhances diagnosis across external centres, it introduces com-
plexity to diagnostic workflows. Archival tissue samples in
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study 5 and 6 were obtained from the BC Cancer Ovarian
Care Research Program and Vancouver General Hospital
pathology archive, digitized post institutional ethics board
approval.

To address whether DL models can accurately classify sub-
types of ovarian cancer, we implemented and evaluated a suite
of DL models, including MobileNetV2, VGG19, ResNet18,
ResNeXt, Xception, EfficientNet, and InceptionV3 in the
proposed work. There is an absence of a separate test dataset
which means that validation is relied on the 30% training
split, which may affect the comprehensive evaluation of the
model’s performance. However, using dataset augmentation
to enhance robustness, we trained and tested these models on
labelled ovarian cancer imaging data, finding that DL mod-
els are capable of accurate classification, with InceptionV3
achieving the highest accuracy at 97.96% due to its supe-
rior feature extraction capabilities and multi-branch design.
To improve interpretability and trustworthiness, we inte-
grated Explainable AI (XAI) techniques, such as integrated
gradient, saliency map, grad-cam, and DeepLift, providing
visual explanations of the model’s decision-making process
and highlighting key image regions influencing predictions.
This transparency facilitated the identification of potential
biases or errors, enhancing clinician trust and support-
ing effective decision-making in clinical settings. Table 4
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compares various methods for classifying ovarian carcinoma,
highlighting differences in accuracy, methodology, and per-
formance on diverse datasets.

VI. CONCLUSION AND FUTURE WORK

In conclusion, our research on ovarian cancer multiclas-
sification utilizing DL models and XAI techniques has
yielded remarkable results. By integrating dataset augmenta-
tion and exploring DL models like MobileNetV2, VGG19,
ResNet18, ResNeXt, Xception, EfficientNet, and Incep-
tionV3, we achieved a remarkable accuracy of 97.96%.
Additionally, our pioneering use of XAl methods enhances
model interpretability. The exceptional performance could
be attributed to extensive dataset augmentation, meticulous
hyperparameter tuning, and optimization of model architec-
tures. This surpasses the performance of previous studies in
the field, establishing a new benchmark for ovarian cancer
classification accuracy.

Our study introduces a novel aspect by integrating
advanced XAI techniques such as integrated gradient,
saliency map, Grad-CAM, and DeepLift. These techniques
provide transparent and interpretable visualizations of the
model’s predictions, enhancing the overall explainability of
our approach. We promote trust and understanding among
medical professionals and stakeholders by providing insights
into the DL models’ process of decision-making.

Moving forward, our findings hold significant implica-
tions for clinical practice and future research endeavours.
We recommend integrating our high-performing DL models
into clinical settings to aid pathologists in precise ovarian
cancer subtype diagnosis. Various data augmentation tech-
niques such as rotation, flipping, zooming, and shearing
are employed. These augmentations create a more varied
training set, helping the model to generalize better by simulat-
ing different imaging scenarios. The techniques and models
employed are designed to be adaptable to other datasets.
While the primary focus was on ovarian cancer subtype
classification, the same approach can be extended to other
types of medical imaging datasets. While the system is
designed to support additional datasets, it has not yet been
tested beyond those included in this study. Future work
will involve testing and validating our model on additional
datasets to further demonstrate its generalizability. Validating
the model in clinical environments through pilot studies and
real-world trials will be also involved. Collaborating with
healthcare institutions, integrating the model into clinical
workflows, and establishing continuous monitoring will be
essential steps for clinical adoption. By conducting pilot
studies and real-world trials in clinical settings, feedback
will be sought from oncologists and radiologists to ensure
the model’s interpretability and accuracy. Moreover, further
exploration in optimizing classification algorithms and lever-
aging advanced DL techniques could enhance diagnostic
accuracy and robustness. Additionally, future work could
focus on incorporating ensemble methods and expanding
the application of XAI methods for classification tasks by
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using more diverse dataset to gain deeper insights into the
underlying mechanisms of ovarian cancer pathology. These
advancements have the potential to revolutionize ovarian can-
cer diagnosis and treatment through the seamless integration
of DL and XAI technologies.
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