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ABSTRACT Themost popular technique for converting two-class images into binary images is thresholding.
However, thresholding methods tend to perform poorly when dealing with images affected by uneven
lighting. To address this issue, local thresholding techniques are commonly used. While pixel-based local
thresholding methods can achieve high accuracy, they are computationally complex. Window-based local
thresholding presents challenges in selecting the initial window and determining the criterion function
for dividing the image into smaller versions. In this study, a novel technique is proposed to improve
the effectiveness of binarizing images with uneven lighting. The proposed method is based on a low-
complexity functional neural network model (LC-FLANN) to estimate an image’s illumination surface.
The effectiveness of the proposed technique has been evaluated using five widely used uneven lighting
image binarization techniques and various uneven light image variations. The results show that the proposed
approach outperforms other alternatives in both qualitative and quantitative metrics. It achieved an average
F-Measure score of 0.97, a Jaccard Index (JI) score of 0.95, and a Percentage of Misclassification Error
(PME) 1.42%, demonstrating superior overall performance.

INDEX TERMS Image segmentation, adaptive thresholding, functional link artificial neural network,
binarization.

LIST OF SYMBOLS AND ABBREVIATIONS
FLANN Functional Link Artificial Neural Network.
JI Jaccard Index.
ABC Artificial Bee Colony.
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IBAA Image Binarization using Adaptive Averages.
GT Ground Truth.
SVM Support Vector Machine.
TSP Training Sample Points.
Gv Vertical Gradient.
Ts(i, j) Threshold Surface.
LMS Least Mean Square.
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g(max) Maximum Intensity of Input Image.
hi Probability of Occurrence of Gray Level.
σ 2
Bi(t) Between class variance.
k0 Constant.
TP True Positive.
LC Low Complex.
PME Percentage of Misclassification Error.
LIM Lorentz Information Measure.
VO Visual Odometry.
EM Expectation Maximization.
PGA Parallel Genetic Algorithm.
IBAW Image Binarization using Adaptive Window.
Pr Precision.
Is Illumination Surface.
IN Normalization Surface.
I0 Observation Matrix.
IB(x, y) Binarized Image.
σ 2
wi(t) Within Class Variance.
Mh Horizontal Mask.
FP False Positive.
F1 F-measure.
GMM Gaussian Mixture Model.
ML Machine Learning.
EB Edge-Based.
Topt Optimal Threshold.
TST Two-Step Thresholding.
Gh Horizontal Gradient.
Re Recall.
Io Original Image.
ε Error.
δ Learning Rate.
e Entropy.
K Sample Points.
Mv Vertical Mask.
FN False Negative.

I. INTRODUCTION
In any computer vision application, image segmentation
plays a crucial role. The success of image segmentation
determines how well objects can be detected, recognized,
and tracked. Among the various image segmentation tech-
niques, thresholding stands out as a simple and effective
method for real-time applications. This technique involves
dividing the image into two categories—background and
object—making it ideal for two-class image binarization.
The thresholding process can be grouped into global and
local approaches. Otsu’s method [1] is a popular algorithm
for global thresholding in image binarization, aiming to
maximize the variance between classes and minimize within-
class variation. Meanwhile, Cai et al. [2] enhanced the
Otsu approach by iteratively calculating the threshold using
the image’s flat distribution. Additionally, Sha et al. [3]
presented a 2D Otsu thresholding approach based on the
combined histogram of average and median characteristics
to improve the accuracy of global thresholding. However,

in the presence of uneven lighting, the bimodality of the gray
level distribution vanishes, leading to a drastic decrease in the
performance of global thresholding. To address this, Ma and
Gheng [4] developed a quick and enhanced 2DOtsu’s method
based on the integral image and adaptive genetic algorithm to
binarize unequal light and low contrast images. It’s important
to note that this method is effective for low-contrast picture
binarization but may not work as well for other variations
of uneven light image binarization. Consequently, local
thresholding approaches have been developed to tackle the
issue of uneven lighting.

Local thresholding techniques can be categorized into
pixel-based and window-based approaches. Xing et al. [5]
introduced an image partitioning method based on 2D Otsu
for dealing with noisy and unevenly lit images. Niblack
[6] determined a threshold for each window using the
mean and standard deviation, but this method increases
computational complexity with the size of the window and
image. Bradley et al. [7] proposed a local binarization
technique that reduces computational complexity by using an
integral image approach, which is not affected by window
size, but it doubles the memory requirement due to integral
images. Zhao et al. suggested the Gaussian Mixture Model
(GMM), which calculates each pixel’s threshold within its
neighbourhood and binary codes each pixel by comparing it
to the local thresholding of a window-based area. It was noted
that window-based local thresholding has less computational
complexity than pixel-based methods. The primary objective
of thresholding, regardless of being image partition-based or
window-based, is to identify an area with both foreground
and background distributions and minimal lighting effects.
PAN [9] proposed a local image binarization technique using
the ABC algorithm to divide the grayscale image into blood
vessels and background by determining a suitable threshold.

To detect bimodality in each sub-image, Huang et al. [10]
proposed using a criterion function called Lorentz infor-
mation measure (LIM). The pyramid method is employed
to divide the image into smaller sub-images. Next, Otsu’s
thresholding technique is applied to the sub-images that meet
the LIM requirements. All the thresholded sub-images are
then combined to create the final binarized image. The size
of the chosen sub-image determines the effectiveness of this
method for binarizing images with uneven lighting.

To determine the threshold, Bogiazis and Papadopou-
los [11] developed a method for local thresholding based
on fuzzy inclusions and entropy criteria. The window size
required to binarize an image varies depending on the image.
Proper bimodal criteria is crucial for selecting the relevant
sub-image from any given image.

Kanungo et al. [12], [13] have devised a window-based
methodology to enhance accuracy through adaptive window
selection using window merging and window expansion
approaches. The window selection criteria are based on
feature entropy and entropy, and a Parallel Genetic Algorithm
(PGA) is used to binarize each window. Additionally, the
window expansion method has been employed to improve
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precision. However, computational complexity is a signifi-
cant issue with both window merging and window expansion
based on local thresholding, and the accuracy of the window
merger’s determination is important.

To address this, Pattnaik et al. proposed employing the
bimodal criterion of GMM-based [14] and normalized mean
difference-based approach [15] to adaptively select windows
for partitioning pictures and reduce complexity.

Various adaptive methods have been developed to create
a threshold surface for identifying lighting patterns and
binarizing each pixel based on this surface. Yanowitz et al.
[16] utilized edge information and intensities to establish
a threshold surface, but the computational complexity of
this approach is significant. To reduce this complexity,
Blayvas et al. [17] created a threshold surface using a multi-
resolution technique. Meanwhile, Yazid and Arof [18] used
gradients to develop an inverse threshold surface, which is
adjusted for binarizing images with uneven lighting. Cai and
Miklavcic [19] proposed precise background surface esti-
mates by considering global and local edge points to address
intensity in-homogeneities. Recent studies have compared
machine learning techniques for enhancing metamaterial
absorbers in terahertz applications and predicting dielectric
properties of MoS2 nanofiller-reinforced epoxy compos-
ites [20], [21], highlighting their effectiveness in improving
material performance. Sahoo et al. [22] enhanced the VGG-
19 network for precise moving object detection in complex
video scenes. Other works have used machine learning to
predict metamaterial microwave absorption and develop THz
metamaterial absorbers for biomedical applications [23],
[24], [25], showing the potential of these methods in material
science and biomedical sensing. He and Schomaker [26]
proposed a novel method using SVM to binarize uneven-
lighting images. Furthermore, Dehuri et al. [27] developed
a deep learning-based method to enhance non-uniformity in
images by training the network. Some of the applications of
image segmentation techniques in challenging areas include
the following:

Cheng et al. [34] developed a Holistic Prototype Activation
(HPA) network to address issues with incorrect segmentation
borders caused by network architecture or training. The
HPA Network acts as a network without training, featuring
a Cross-Referenced Decoder (CRD) for multilayer feature
aggregation and a Prototype Activation Module (PAM) for
creating activationmodules for featuremapping. This method
is used for video object segmentation, weak-level, and zero-
shot tasks.

Lang et al. [35] introduced Few-shot Segmentation (FSS),
a technique designed to identify objects from annotated
samples, even if they belong to unseen classes. However,
FSS has limitations in dealing with incomplete objects
and ambiguous boundaries. To overcome these challenges,
a new framework called Divide-and-Conquer Proxies (DCP)
has been developed for video object segmentation. This
framework divides the segmentation mask into regions

with different properties and uses effective mask average
pooling.

Lang et al. [36] presented a theoretically simple and easy-
to-implement methodology to address a number of enduring
problems in few-shot segmentation (FSS). The Progressive
Parsing Module and the Commonality Distillation Module,
two novel components introduced into the PCNet archi-
tecture, have greatly improved segmentation performance.
Comprehensive tests using industry-standard benchmarks
showed that PCNet outperforms earlier FSS techniques both
quantitatively and qualitatively. The results demonstrate that
in few-shot segmentation, PCNet sets a new state-of-the-
art. However, the research does not specifically address
the performance of PCNet under non-uniform lighting
circumstances, which remains a challenging aspect without
direct trials and data analysis.

The Base and Meta (BAM) architecture for Few-Shot
Segmentation (FSS) was developed by Lang et al. [37]
to address biases in data or models that are inherent and
challenging to mitigate. They introduced an auxiliary branch
to serve as a base learner to enhance the traditional FSS
framework. The purpose of this auxiliary branch is to
identify items belonging to basic classes and does not require
segmentation. At the same time, the main FSS framework
acts as the meta-learner, focusing on learning to segment
new classes. To achieve accurate segmentation predictions,
the base learner and meta-learner collaborate to produce
coarse segmentation results that are effectively combined.
Adjustment factors are used to measure the differences
between the support (base class) and query (novel class)
image pairings, considering both stylistic and appearance
variations, to enhance the robustness of the meta-learner.
By considering scene differences and improving segmenta-
tion performance, this approach aims to enhance the model’s
ensemble predictions. The paper does not specifically address
the performance of the BAM framework under non-uniform
illumination conditions. Due to its dual-branch approach and
flexibility in handling variations, the novel design of the BAM
framework suggests that it may be somewhat resilient to non-
uniform light conditions. However, its actual performance
in such scenarios needs to be demonstrated through focused
testing. To ensure reliable operation, additional testing and
potential adjustments may be necessary if managing uneven
lighting is a critical requirement.

The main challenges of local thresholding approaches are:
(i) the initial choice of window size, (ii) the partitioning
approach, (iii) computational complexity, and (iv) the use
of an appropriate bimodal criteria function. Similarly, for
machine learning and deep learning, there is a requirement for
very large training image sets. Hence, there is an opportunity
for enhancements in uneven light thresholding methods.
Building upon previous approaches [20], [24], [25], [26],
a new technique has been developed to address uneven
lighting issues. In aiming to achieve thresholding of uneven
light images, this work makes a three-fold contribution:
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1. A method is devised to generate valid training sample
points (TSP) from input images with uneven lighting.
2. An efficient and less complex Functional Link Artificial
Neural Network (LC-FLANN) model is proposed to estimate
the illumination surface. 3. Normalization of uneven light
through inverse modelling is applied to global thresholding.
Therefore, the newly added value to the proposed methods
lies in the extraction of more valid sample points for training
the FLANN model to estimate illumination surfaces, as well
as the normalization of the estimated image for further
binarization.

II. RELATED WORK
A. LIGHT WEIGHT OBJECT DETECTION MODEL BY USING
YOLOv8-LITE
Yang et al. [32] introduced a lightweight object detection
model known as YOLOv8-Lite, which is based on the
YOLOv8 framework. This model has been improved using
the FastDet structure, TFPN pyramid structure, and CBAM
attention mechanism. Traditional object detection models
often face challenges such as large parameter sizes and high
computational resource consumption, limiting their use on
edge devices.

YOLOv8-Lite is designed for efficient object detection
through simplified design and optimized computation. The
framework incorporates the FastDet structure with simplified
network complexity. The TFPN (Top-Down Feature Pyramid
Network) pyramid structure addresses information loss, thus
improving object detection accuracy. The TFPN structure
combines feature maps from different levels to reduce
information loss. The CBAM (Convolution Block Attention
Module) is introduced to further enhance the network. This
mechanism adaptively adjusts attention within feature maps,
enabling the network to more accurately focus on important
target areas. This CBAM can be represented as:

The channel attention map C is calculated as in
Equation (1) the sigmoid activation of the average channel-
wise feature response.

C = σ

 1
H ×W

H∑
i=1

w∑
j=1

ReLU
(
Wc.Xi,j

) (1)

whereC is the channel attention map.H andW are the height
and width of the feature map. xi,j is the feature map at the
position (i, j). Wc represents the weights used for channel-
wise convolution. σ denotes the sigmoid activation function.

The spatial attention map S is computed in Equation (2)
capturing the spatial dependencies across the feature map.

S = σ

(
1
C

C∑
c=1

ReLU (ws.X :, :, c)

)
(2)

where S is the spatial attention map.C is the no of channels in
the feature map. x:,:,c cth channel of the feature map. ws is the
weight used for spatial-wise convolution. The output feature
map Y is obtained by Equation (3) combining the channel

and spatial attention maps with the original feature map X ,
enhancing the model’s ability to focus on relevant regions.

Y = X ⊙ (C + S) (3)

FASTDet structure is designed to improve the accuracy of
object detection. Mathematically it can be represented as in
Equation (4)

Y = WX + b (4)

where Y is the feature map, W is the weight matrix, X is the
input feature map, b is the bias vector.
The FastDet structure is proposed to improve the speed and

accuracy of the object detection model. The FastDet structure
mathematically expressed as in Equation (5)

y = Wx + b (5)

where w is the weight matrix, b is the bias vector, and x is the
input feature map and y is the output feature map expressed
as in Equation (6)

y = Shuffle(x) (6)

the channel shuffling operation denoted as Shuffle(.). Then
dividing the feature map into two by splitting operation
denoted as Equation (7)

y1, y2 = Split(x) (7)

Then the output feature map after convolution in Equation (8)
and polling is expressed as in Equation (9)

y = Conv(x) (8)

y = Poolling(x) (9)

this FastDet structure improve the efficiency and performance
of the model.

B. LIGHTWEIGHT TWO-STAGE DETECTION NETWORK
FOR REAL TIME OBJECT DETECTION
In his work,Wang [33] introduced two detection frameworks:
RPN (Rapid Region Proposal Network) and Refinement
Detection Network (RefinerNet). RPN is responsible for
generating high-quality candidate regions, while RefinerNet
analyzes these regions in detail to enhance detection accuracy.
RPN uses hybrid data to generate high-quality regions,
producing a set of bounding boxes, each with a score
indicating the likelihood of containing an object. This process
can be expressed as. . .

Regions = Softmax(DenseConv(Flatten(V ))) (10)

In Equation (10) V refers to voxelized data This network
utilizes a series of convolution layers. These layers are
process voxelized point cloud data. This voxelization divides
continuous point-to-grids with aggregating information in
each grid based on mean, maximum values, or a combination
of features.

After the candidate regions are obtained RefinerNet
is Refiner detection network is used for the localization
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and classification of targets by deep convolutional neural
network. This process mostly enhanced object edges in target
regions expressed as in Equation (10)

F ′
= ReLU (N (Conv(Regions,F))) (11)

result = PointNet(F ′
j ,F

′) (12)

In Equation (11) F ′ is the collection of features extracted
from the first stage including spatial and depth features to
describe the contents of candidate regions. These features
help refine the detection and classification of objects within
the specified areas with high accuracy.

C. BINARIZATION OF IMAGES WITH CHANGING
LIGHTING
In particular, image binarization with adaptive window
(IBAW) is required for image binarization with adaptive
illumination [28]. and adaptive averages (IBAA). A set of
decision criteria derived from the local properties forms
the basis of both algorithms. The visual Odometry (VO)
approach is used to iteratively generate an effective window
size across each pixel until the decision map remains
unchanged.

The Bradley algorithm [7] is used in IBAA to achieve
the binarization of each pixel throughout the window that is
generated using the fusion image obtained from the selection
criteria. In contrast, the fusion image is not utilized in IBAW
to calculate the window size; rather, the Bradley technique [7]
is used to approximate the binarized image.

Algorithm 1: VO Algorithm for Window size
Computation:

For every pixel, there is a unique windowW (m, n) with an
area of (2W (m, n)+1)2. The maximumwindow sizeW (m, n)
in each pixel is determined by maximizing the window’s
area to ensure that the edges of the decision map, which
provides information about areas that are lighter or darker in
the original image, do not exceed the maximum edge number
T and the maximum value of window size wmax .

The area A(W (m, n)) is located by binary search, and
the integral image of the border matrix (ED) is searched
maximize the function. In Equation (13), the border matrix
is provided.

ED[m, n] =


1 If q(m, n) ̸= q(m− 1, n)

or
q(m, n) ̸= q(m, n− 1)

0 Otherwise

(13)

Using IED, a binary search is carried out for the integral
image IED for each coordinate (m, n) to find the ideal window
size.

Algorithm 2: IBAA for image Binarization:
The Molina algorithm [29] was enhanced with an adaptive

window for every pixel in the IBAA algorithm. The IBAA
method uses the VO algorithm 1 and takes into account
the fused image IF to determine the ideal window size,
W (m, n), for each pixel (m, n). The original image I (m, n)

and the inversely illuminated image IL(m, n) are combined to
generate the fused image IF . The following formula is used
to get the inversely illuminated image:
Step 1: Determine the Image I ’s Luminance L using the

morphological kernel C , or L = I .C .
Step 2: entails computing the reflectance (R) at the pixel

level, which is the ratio of the matching lighting intensity
(L(m, n)) at that pixel to the image intensity (I (m, n)).
Step 3: Determine the Inverse Luminance by deducting

the Luminance value of each pixel from 255, or LI (m, n) =

255 − L(m, n).
Step 4:In order to acquire the image with inverse lighting,

Assign the result to IL(m, n), that is, IL(m, n) = R(m, n) ×

LI (m, n), by multiplying the reflectance image R(m, n) by the
light intensity image LI (m, n). Step 5: The difference image
DI is computed as follows: DI = I − IL .
Step 6: The Integral Image HDI of DI is to be computed.
Step 7: S(HDI ,W (m, n),m, n), is the sum of values

within a square window in which W (m, n) denotes the
window size. Maximizing S(HDI ,W (m, n),m, n) yields the
decision criteria p(it). IF (m, n) = I (m, n)p(it)(m, n) +

IL(m, n)p(it)(m, n) is the fused image that we finally compute.
Step 8: Using the fused image IF and a window size W

via algorithm-1, we use the Bradley method [7] to produce a
binarized image.

By applying the Bradley method [7], the IBAW method-
ology compares a quality function to a threshold value to
produce a binarized image. An adaptive window is used as
the basis for the quality function calculation.

Algorithm 3: IBAW for Image Binarization:
To convert images into binary format, the Bradley [7]

IBAWalgorithm is employed. To do this, apply algorithm 1 to
compute a window over each pixel W (m, n). The Decision
map was derived from the difference of the quality function
DF(m, n) rather than the fused image IF (m, n), in contrast
to IBAA. The quality function, which is stated as follows,
establishes the distance between two modes m1 and m2 from
which pixels are placed.
Step 1: The absolute difference between m1 and I1(m, n)

defines the function F1(m, n).
Step 2: The absolute difference between m2 and I1(m, n)

defines the function F2(m, n).
Step 3: The difference between the quality functions is

calculated as F1[m, n] − F2[m, n] = DF[m, n] to find
DF(m, n).
Step 4: Determine the integral image HDF that is a part of

DF .
Step 5: A square window’s total values can be found

using the formula S(HDF ,W (m, n),m, n), where W (m, n)
indicates the window’s size. The decision criterion is obtained
by adding the integral image of the difference in quality
function S(HDF ,W (m, n),m, n) over the window W (m, n).
The binarized image based on this choice criterion is obtained
using the Bradley technique [7] and the matching window
based on the VO algorithm1.
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D. FUZZY INCLUSION AND ENTROPY BASED IMAGE
BINARIZATION
A method to determine the threshold for every pixel in a
picture was presented by Bogiatzis et al. [11]. By dividing
255 by all the x × y nearby pixel values, they produced a
fuzzy set M . The fuzzy inclusion between the M and the
three images: the gray picture (G), the black image (B), and
the white image (W ). W , B, and G have sizes of m × n. All
of the elements in W are 1, all of the elements in B are 0,
and all of the elements in G are 0.5. It is thought that W is
a universal set. Equation (14) defines S(A,B) as the fuzzy
inclusion function between two sets A and B.

S(A,B) =



∑
wϵW

Iz(mA(w),mB(w))mA(w)

∑
wϵW

mA(w)
if A ̸= φ

1 if A = φ

(14)

where the membership functions are denoted by mA(w)
and mB(w). Fuzzy inclusion indicators s1 = S(W ,M ),
s2 = S(M ,B), s3 = S(G,M ) and s4 = S(M ,G)
provide information. about the brightness, darkness, and the
window’s grayness.

Any set M has an entropy e that is determined by
Equation (15).

e = 2

∑
wϵW

min(1 − mM (w))mM (w)

∑
wϵW

max(1 − mM (w))mM (w)
(15)

Based on the values of s1 and s2, eight criteria are defined.
Using these criteria, the set M can be classified into one of
eight groups. Using linear regression analysis, a function r ,
i.e., r = r(s1, s2), is defined. Equation (16). defines a fuzzy
symmetric triangular number in the end.

T̃ = (r − k, r, r + k),where k =
∣∣s3 − s4

∣∣ (16)

Eq. (17) is used to determine the T1 and T2 given the
parameters e, k , and r .

T1 = k(e− 1) + r and T2 = k(1 − e) + r (17)

if s1 ≤ s2 then the threshold T = T1, else T = T2 for the
p(x, y) pixel.

E. GAUSSIAN MIXTURE MODEL BASED BINARIZATION
Zhao et al. [8] proposed binarization of images with non-
uniform light and noise using a Gaussian Mixture Model
(GMM). By utilizing the image mean as a threshold to
divide pixels into two classes, the method divides the
gray level distribution into two groups, modeling it as
a two-class GMM. The optimal parameter vector 2 =

[w1,w2, µ1, µ2, σ1, σ2] is then estimated using the EM
algorithm. The image is binarized to suppress impulse and

Gaussian noise, using the posterior probability of the pixel,
which is evaluated with spatial neighborhood information hjk
(as in Equation (18)).

hjk = mean

median
 1√

2πσ 2
k

e
−

( x̄j−µk
σk

)2
 (18)

where x̄jϵN (xj) and N (xj) is the set of neighborhood pixels
across a window that is 3 × 3 or 5 × 5, with the center pixel
xj. Using Equation (19), the pixel’s posterior probability xj
corresponding to the k th class is calculated.

q(k | xj, 2̂) =
wkhjk
k∑
i=1

wihji

(19)

where k = 1or2, and the mixture coefficient with constraints
is denoted by wk . With

∑2
k=1 wk = 1, 0 < wk <

1 and 3 × 3 and 5 × 5 is a window of size that contains
spatial neighborhood information hik . Using Equation (20),
the binarized image C(m, n) is produced.

C(m, n) =

{
0 if (q(k = 1 | xj, 2̂) > q(k = 2 | xj, 2̂)
255 Otherwise

(20)

F. GRADIENT-BASED THRESHOLDING SURFACE FOR
IMAGE BINARIZATION
Yazid et al. [18] developed a method for binarizing images
with non-uniform lighting. Every pixel in the image is
subjected to vertical, horizontal, diagonal, and anti-diagonal
Prewitt operators as part of the method’s gradient-based
thresholding surface approach. The edge or border infor-
mation of the picture is determined by the largest absolute
response for each pixel among these four operators.

Strong edge and weak edge pixels are the two categories
for these edge or boundary pixels. The non-border pixels are
those with weak edges. Equation (21) is used to generate the
thresholding surface based on these edge pixels.

Ts(i, j) =

8∑
m=1

Pm(i, j)

8
(21)

In image processing, binarization involves separating an
image into two distinct classes of pixels - black and white.
The thresholding surface Ts(i, j) is used to accomplish this
task. Additionally, there are eight primary surfaces Pm(i, j),
in which m = 1to8 created through eight passes in different
directions: LRTB, TBLR, RLBT , BTRL, RLTB, TBRL, LRBT ,
and BTLR. Here, L, R, T , and B refer to left, right, top, and
bottom, respectively.

A constant value ko is added to or removed from the
threshold surface Ts(i, j) intensities to modify the inverse
threshold surface’s position concerning the original image
Io(i, j) for image binarization. The threshold surface may
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FIGURE 1. Block schematic of the suggested method for thresholding images with nonuniform lighting.

move up or down as a result. Equation (22) is used to find
the value of ko.

ko = arg min
k

 ∑
borderpixel(i,j))

∣∣(Io(i, j) − Ts(i, j)) + k
∣∣ ;

×kϵ
{
−255..255

} (22)

Equation (22) defines the value of k , denoted as ko, which
represents the optimal value of k , which is obtained when
the adjusted thresholding surface Ts(i, j) + k and the pixels
of the original input image Io(i, j) are added together, the
sum of the absolute differences between them is at its
minimum. To distinguish between backgrounds and objects,
the threshold surface assigns a distinct threshold value to each
pixel. Next, we apply Eq. (22) to binarize the original image
Io.

g(i, j) =

{
0 if Io(i, j) > Ts(i, j) + ko
1 if Io(i, j) < Ts(i, j) + ko

(23)

III. MATERIALS AND METHODS
Due to the overlapping of the gray level distributions of object
and background, it is difficult to binarize any uneven light
images using global thresholding. Further, the constraint of
local thresholding approaches are (i)initial choice of window
size, (ii) Computational complexity, (iii) optimal choice
of bimodal criteria function, and (iv) Optimal partitioning
approaches, for any uneven lighting image binarization.
To improve the performance of uneven light image bina-
rization, the FLANNModel-based estimation of illumination

surface neutralizes nonuniformity and increases the global
thresholding’s effectiveness. The proposed approach consists
of three steps, which are outlined below (i) the extraction
of training sample points(TSP) that are valid; (ii) the
Development of a FLANN model for estimation of the
illumination surface and (iii) Illumination normalization for
global thresholding.

Compared to multi-layer neural networks, the Functional
Link Artificial Neural Network (FLANN) has a simpler
design and requires less computing power. FLANN is
suited for real-time applications because of its straight-
forward architecture, making it simpler to develop and
using less processing power. Functional expansions of the
input features, such as polynomials, trigonometric functions,
or other non-linear transformations, are used by FLANN
to increase the representative capability of a single-layer
network. This enhances the network’s capacity to tackle
challenging issues by enabling FLANN to represent non-
linear relationships in the data without additional layers.
For applications that require quick training and adaptation,
FLANN’s speedier training process resulting from the lack
of several hidden layers is a benefit. The utilization of
straightforward algorithms for weight modification and the
reduction of parameters contribute to the efficiency of the
learning process. Functional expansions allow FLANN to
reduce the number of weights needed to achieve improved
generalization, which lowers the possibility of overfitting—
especially on smaller datasets.

The network is better able to identify the underlying
patterns in the data thanks to the functional expansion,
which functions as a type of regularization. FLANN is a
flexible technique that can be used in many domains because
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it can be used for different kinds of data and challenges.
It may readily adjust to various problem specifications by
selecting the relevant functional extensions. Because FLANN
can detect non-linear trends, it is used to predict stock
prices, exchange rates, and other financial time series data.
It uses trend analysis on previous data to forecast atmospheric
conditions and weather patterns. FLANN is used to extract
and categorize relevant features for tasks including object
detection, video analysis, and picture recognition.

FLANN is a superior model than the other network
models due to its lower complexity. Unlike conventional
methods, FLANN can accurately estimate the illumination
surface by expanding features to a higher-dimensional
space, which improves input discrimination. Its single-layer
structure results in reduced weight updating time compared
to convolutional or deep learning network models. The
normalized coordinates of the sample points are used to
train the FLANN model. Based on the discrepancy between
the sample point’s actual and anticipated gray values, the
weights are changed. All of the image’s coordinates’ lighting
is calculated after the FLANN has been trained. The non-
uniform lighting is neutralized once the illumination is
estimated, enabling the use of global thresholding for the
separation of objects from backgrounds. Consequently, the
FLANN model is preferred for estimating the illumination
surface more accurately and efficiently, with less time and
complexity than other models.

In this work, the non-uniform lighting surface of an image
is estimated using the FLANN model. Global thresholding
is further used to neutralize the non-uniform illumination to
binaries the image. On the other hand, either object points
or background points must be extracted to estimate the non-
uniform illumination surface. Extracting valid sample points
from an image with non-uniform lighting, either from the
background or the foreground region, is an extremely difficult
process. To extract the legitimate taring sample points, a two-
stage method i.e. the dual thresholding technique and the
edge-based approach is devised in this study.

The block diagram for the proposed uneven lighting
image thresholding is shown in Fig. 1. To help estimate the
illumination surface, the proposed approach in Fig. 1 extracts
valid training sample points (TSP) using a multi-step process.
These sample points correspond to either the two-class
image’s background or object pixels. In the first stage, a two-
step thresholding is utilized to produce more valid sample
points. The two-stage Otsu’s thresholding method extracts
the object sample points more successfully in non-uniform
lighting situations. One threshold may not be sufficient to
properly partition the image’s object region in scenarios with
different textures or illumination. In the second step, the edge-
based method is employed to extract the legitimate sample
points from the object regions. The object’s boundary edges
are extracted using the edge-based technique. The distribution
of the original edge point pixels is subjected to a global
threshold in order to extract various object sample points
from the object boundary. The dual threshold and edge-based

approaches’ valid sample points work together to aid in the
collection of sample points throughout the object region.

A. EXTRACTION OF APPROPRIATE TSP
To accurately estimate the illumination surface, valid training
sample points (TSP) are required. The images used for
binarization are two-class images. As a result, it is crucial
to choose pixels only either the background area or the
object to serve as the TSP. The proposed FLANN model
uses the object (foreground) region points as the TSP for
training. Considering the quantity of reliable training sample
points, a two-step method has been developed. Two-step
thresholding is used in the first stage, and an edge-based
technique is used in the second stage to extract valid training
sample points.

1) TWO-STEP THRESHOLDING (TST) METHODOLOGY
During the first step of the TST process, binarization of
the uneven light gray image I (x, y) is obtained using Otsu’s
thresholding. This method is based on the assumption that the
image contains a brighter object than the background. The
global threshold value, is represented as T1. Next, every pixel
having a gray value higher than T1 are assembled into a set S.

S = {I (x, y)|I (x, y) ≥ T1} (24)

Once all the elements in S have been taken into account,
a histogram hg is produced, with a gray level range of T1 ≤

g ≤ 255. The threshold T2 is then assessed by applyingOtsu’s
thresholding criterion to hg. The pixels in the image I (x, y)
that have a value greater than T2 are leveled as the first set of
TSP, which is S01 .
Fig. 2(a) represents the original images with uneven

lighting, and Fig. 2(b), is the histogram of Fig. 2(a) with the
evaluated thresholds T1 and T2. Fig. 2(c) shows the binarized
image of Fig. 2(a) with the threshold T1. However, it is
observed that not all white pixels belong to the object only.
Most of the background pixels are also detected as object
pixels.

The binary image with threshold T2 is shown in Fig. 2(d).
Here, all the white pixels belong to only the object class,
which means that this thresholding method has successfully
identified the object in the image.

The valid TSP in the 1st step are considered as set S01 as
follows

S01 = [{x, y, I (x, y)} |I (x, y) ≥ T2] (25)

To reduce the impact of outliers in the training sample
points, a dual threshold is utilized. However, when observing
Figure 2(c), it is evident that the white area (TSP) -
specifically S01 - is mostly concentrated towards the object’s
right side. This can cause the illumination surface to be
estimated incorrectly. An edge-based technique in its second
stage is designed to tackle this problem. This approach is used
to collect extra observation points made just from the object
region’s edge, which results in a more accurate estimation of
the illumination surface.
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FIGURE 2. a)Original non-uniform lighting block image b) Histogram of Block image with thresholds
T1 and T2 (c) Binarize Block image with T1 (d) Binarize Block image with T2.

2) EDGE BASED (EB)APPROACH
The first step in detecting edges of the gray image I is to
extract edge points by applying the gradient-based operator
i.e Sobel edge operator. The Sobel operator calculates an
image’s intensity function’s gradient approximately to detect
edges in an image. Two 3 × 3 masks, Mh and Mv, are
used in Equation (26) to identify the horizontal and vertical
derivative approximations. After convolving these masks
with the input image, two gradient images, Gh and Gv, are
obtained., as shown in Equation (27).

Mh =

−1 0 1
−2 0 2
−1 0 1

 , Mv =

−1 − 2 − 1
0 0 0
1 2 1

 (26)

Gh = Mh ∗ I and Gv = Mv ∗ I (27)

The magnitude of the gradient approximation is calculated

using the formula IF (x, y) =

√
G2
h(x, y) + G2

v(x, y). This
value is used to obtain the edge image IE by identifying those
points where the gradient of the image is greater than a certain
threshold T . In other words, IE is obtained as max(IM ,T ),

where T is considered to be 100 based on the simulation
results.

IE (x, y) =

{
1 (edgepoint) if IM (x, y) ⩾ T
0 (Nonedgepoint) Otherwise

(28)

In Figure 3(a), the Sobel edge detector is used to detect
edges that cross the borders of an object. Since not every edge
point can be considered an accurate sample point, these edge
points indicate the gap between an object and the background.
Every edge pixel in the object region is given a 5×5 window,
It is employed to retrieve just valid sample points. when the
window has more than five non-zero values, or white pixels,
it is considered that the object’s area and the background areas
are almost equal. Therefore, all pixel values in the window at
the same position on the input image are binarized applying
global thresholding by Otsu. Based on the optimal threshold
T0, the pixel values in the window greater than T0 are
regarded as accurate sample points and constitute a part of the
set S02 .

S02 = {x, y, I (x, y)|(I (x, y) ∈ w) ≥ T0} (29)
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FIGURE 3. a) Edge image (b) Edge based observation points (c) The set S0 = S01
∪ S02

both segmented image considering histogram and edge.

The process of generating all the sample points in set S02
involves applying the same procedure to all the edge pixels.
The TSP (Training Sample Point) of S02 are highlighted in
white color in Fig. 3(b). The final TSP set S0 is defined as the
union of S01 and S02 as shown in Fig. 3(c). It can be seen from
Fig. 3(c), that the number of training sample points has grown
dramatically and now encompasses nearly the whole object
region. Fig. 4(a), (b), and (c) present the three-dimensional
plot of the TSP obtained by combining two-step thresholding
and an edge-based approach. As can be seen from Fig. 4(c),
the sample points belong to the object region only and are
well-distributed across the object area in the image. This
means that the estimation of the illumination surface of the
image will be highly accurate.

B. PROPOSED LC-FLANN BASED FRAMEWORK FOR
ILLUMINATION SURFACE ESTIMATION
The proposed FLANN model is shown in Fig. 5. The
objective is to train the FLANN model using the Section A
recognized valid TSP is used to estimate the illumination
surface. FLANN model, increases the dimensionality to get
the space and discriminate the non linear input. Also in
FLANN, due to its single layer, the number of weights and
training time decreases. In the proposed FLANN Model,
the input is expanded by trigonometric expansion, which
produce more compact representation by using the Fourier
basis function. In this expansion, sine and cosine functions
are used to decrease the computation complexity. The inputs
to the FLANNmodel are the coordinates of each sample point
belongs to set S. The input data to FLANN is two dimensional
pattern Si = [xi yi]T , where xi, yi are the normalized value of
coordinate of sample point Si ∈ S. The intensity of the object
point is considered as desired data output ‘d ′

i , which is the
normalized intensity value of the sample point Si ∈ S. The
coordinate xi, and yi and the intensity di of sample points are
normalized values. A simple FLANN model is constructed
with a pattern of two features, considering the ith sample
point, the input vector X (i) is defined as X (i) = [x1(i) x2(i)]T .
This ith input sample is mapped to high dimensional space
by functional expansion like trigonometric expansion as
follows:

φi = [xi, sinπxi, cosπxi, yi, sinπyi, cosπyi, xiyi] (30)

where i, is the ith input vector is functionally expanded.
The sum of weighted components of the expanded input is
represented as ϕ(i, k) = φTi .w where w is the weight vector
w = [w1,w2, ..wM ]. HereM is the total no of expanded term.
ϕ(i, k) is represented as

ϕ(i, k) = w1xi + w2sinπ ∗ xi + w3cosπ ∗ xi + w4yi
+ w5sinπ ∗ yi + w6cosπ ∗ yi + w7xi ∗ yi (31)

This input is passed through a sigmoid activation function
to produce the model output with a probability of 0 and 1.
To improve the linearity, sigmoid activation function is used
at the output of the model as follows.

d̂(i, k) = sig(ϕ(i, k)) =
1

1 + e−ϕ(i,k) (32)

where i is the ith training sample point and k is the k th

iteration. The error term of the model, e(i, k), is defined
as

e(i, k) = di − d̂(i, k) (33)

d̂(i, k) is the estimated intensity value of ith sample points at
the output of the activation function, at the k th epoch.
The weights are updated by LMS algorithm as in (34) after

each epoch in the training phase as follows:

wm(k + 1) = wm(k) + 1wm(k); (34)

where, m = 1, 2, 3, 4, 5, 6, and 7. The change of weight at
k th iteration 1wm(k) is calculated as given in (35)

1wm(k) = 2µφm(i)δ(i, k) (35)

where, φm(i) is the mth expanded value with ith input pattern
and δ(i, k) is the learning rate defined as

δ(i, k) =

[
1−d̂2(i,k)

2

]
e(i, k) (36)

Training the model with all training sample points once
is one iteration. The objective is to train the model with
the same training sample points iteratively to minimize
the error e. Once the error does not change, the model
is trained with optimal weights. After the convergence of
the weights, the illumination intensity of all pixels of the
uneven light image is estimated using the trained LC-FLANN
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FIGURE 4. a) 3D image detected observation points with Edge b) 3D image with dual threshold Edge (c) 3D image of
the combination of edge based and dual threshold based approach.

model. This estimated illumination surface of Fig. 2(a) is
placed in Fig. 6(a). The 3D plot of Fig. 6(a) is shown in
Fig. 6(b)

C. ILLUMINATION NORMALIZATION & THRESHOLDING
The image I with uneven lighting is normalized using the
estimated illumination surface Is in (37).

IN (x, y) =
I (x, y) × gs(max)
Is(x, y) × g(max)

× 255 (37)

In Equation (37), g(max) represents the maximum intensity
value of the input gray image I (x, y), and gs(max) represents
the maximum intensity value of the estimated illumination
surface image Is(x, y). Fig. 7(a) displays the illumination

normalized image IN of I , while Fig. 7(b) shows the 3D
illumination surface of IN . The normalized image IN appears
to have a nearly uniform illumination variation, as shown in
Fig. 7(a) and 7(b).
Binarization is often a critical step in various image

processing tasks, especially when the goal is to distinguish
objects from the background. Depending on the specific
requirements of the task and the characteristics of the images,
other methods might be used as alternatives. However,
in many cases, binarization provides a simple and effective
way to achieve the desired outcome. To convert the image
to a binary format, Otsu’s thresholding method is applied
on IN . Fig. 7(b) displays the result of Otsu’s global
thresholding approach on the binarized image from Fig. 7(a).
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FIGURE 5. Proposed LC-FLANN framework for illumination surface estimation.

In Otsu’s thresholding, the optimal threshold Topt is obtained
by minimizing within-class variance σ 2

wi and maximizing
between-class variance σ 2

Bi. The σ 2
wi and σ 2

Bi at a threshold
t are defined as

σ 2
wi = wB(t)σ 2

B(t) + wF (t)σ 2
F (t) (38)

where, wB(t) and wF (t) represent weight of background and
foreground represented as wB(t) =

∑t
i=1 pi, and wF (t) =∑L

i=t+1 pi, where pi is the probability distribution of gray
level i = [1, 2, . . .L] with, L = 255. Similarly the σ 2

Bi(t)
is represented as

σ 2
Bi(t) = wB(t)wF (t)(µB(t) − µF (t))2 (39)

whereµB(t) andµF (t) are the mean value of background and
foreground pixels based on threshold t represented as
µB =

∑t
i=1 iPi and µF =

∑L
i=t+1 iPi. The variance of

background and foreground pixels are represented as. σB(t) =∑T
i=1(i−µB(t))2×pi and σF (t) =

∑L
i=T+1(i−µF (t))2×pi.

The parameters wB(t) and wF (t), µB(t) and µF (t) are the
function of the threshold t . Therefore the optimal threshold
Topt is evaluated as follows:

Topt = max
t

(
σ 2
Bi
(t)

σ 2
wi
(t)

)
(40)

Finally the binarized image IB(x, y) is obtained as

IB(x, y) =

{
1 if (IN (x, y) > Topt )
0 otherwise

(41)

Some sample uneven light images with their estimated 2D
illumination surface image and corresponding illumination
normalized images generated using the proposed approach
are placed in Fig. 8 to Fig.11. The avg. convergence plot
of the proposed Illumination surface estimation is shown in
Fig. 12. The convergence plot is obtained by considering the
average convergence plot of Mean square error (MSE) for all
sample images, by taking 1000 iterations for each image. It is
observed that this plot is converged near about 600 iterations.

IV. EXPERIMENTS AND EVALUATION
To validate the performance of a suggested method, five
different approaches are used. These include Niblack [6],
Bogiazis et al. [11], Yazid et al. [18], Cai and Miklavcic [19],
and Zhao et al. [8]. These approaches are simulated on
a computer with an Intel Core i5, 4MB L2 cache, 8 GB
RAM, and a 2.4 GHz processor. 21 test images with varying
degrees of uneven lighting are used to confirm each of these
techniques. Ten of the images are sourced from the Berkeley
database [31] and Weizmann [30], while eleven images
are collected from various online sources. The original test
images are presented in Fig. 13 and 14 along with the ground
truth and binarized results. Fig. 13 and 14’s first and second
columns display the original test images and corresponding
ground truth (GT) images. Similarly, the binarized images in
columns three through eight are correspondingly produced
using the suggested method and the landmark methods
mentioned above.
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FIGURE 6. a) Estimated 2D illumination surface image IS b) Estimated 3D
Illumination plane.

In Fig. 13, the objects and background are blended
in images that were processed using the Niblack and
Bogiatzis techniques, leaving only the outer edges visible.
The highlighted areas of the Yazid method’s objects are
improperly segmented, except the L-image and Synth-1
images. However, pics like the coin, Synth1, Crane, Synth-
4, thread, and hand reveal backdrop that is incorrectly
categorized as an object in the Cai technique. According
to the Zhao approach, the majority of the object pixels in
images like rice, and synth-1, are accurately segmented in the
suggested approach.

Both quantitative and qualitative metrics are used to
evaluate the performance. Based on the visual performance,
the qualitative performance was assessed. On the other hand,
Recall(Re), Precision(Pr ), F-measure(F1), Jaccard Index(JI ),
and the percentage of misclassification error (PME) are
taken into consideration while evaluating the quantitative
measures. Images of the ground reality are crucial for
assessing quantitative metrics. The databases contain the

FIGURE 7. a) Illumination normalized image IN b) 3D Intensity balanced
surface c) Binarized Image.

Berkeley and Weizmann ground truths. Nevertheless, the
real-world test images on the internet are created manually.

The Precision measure (Pr ) measure is defined as

(Pr ) =
TP

TP + FP
, (42)

where Tp is the true positive and Fp is the false positive.
The Recall measure Re is defined as

(Re) =
TP

TP + FN
(43)

where, FN is the false Negative.
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FIGURE 8. a) Input Synth-4 image b) Estimated 2D illumination surface image IS (c) Illumination
normalized image IN .

FIGURE 9. a) Input crane image b) Estimated 2D illumination surface image IS (c) Illumination
normalized image IN .

FIGURE 10. a) Input Limage image b) Estimated 2D illumination surface image IS (c) Illumination
normalized image IN .

FIGURE 11. a) Input flower image b) Estimated 2D illumination surface image IS (c) Illumination
normalized image IN .

The combination of the Pr and Re measures is known as
the F-Measure (F1).

F −Measure(F1) = 2 ×
Pr × Re
Pr + Re

(44)

The JI measure is defined as

Jaccard Index(JI ) =
SI
⋂
GT

SI
⋃
GT

(45)
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FIGURE 12. convergence plot of MSE.

TABLE 1. Visual perspective based qualitative measure.

where the corresponding ground truth image is GT , and the
binarized image is SI . The (PME) measure defined as

PME =

[
1 −

(Fs ∩ Fg) ∪ (Bs ∩ Bg)
(Fg + Bg)

]
× 100 (46)

whereFg andBg denote the set of foreground and background
pixels in the ground truth image and Fs and Bs represent
the set of foreground and background pixels in the binarized
image respectively. The qualitative performance is evaluated
as in Table 1, which shows the degree of visual perspective
similarity between the binarized image and the ground truth
test images in Fig. 13 and 14. It is observed from table 1 that
the two methods Niblack et al. [6] and Bogiazis et al. [11]
are satisfactory on one image like a fingerprint. However the

performance of Yazid et al. [18] and Cai and Miklavcic [19]
is satisfactory on 40% of test images in Fig. 13 and 60%
in Fig. 14. The performance of Zhao et al. [8] is 40%
in both the set of test images in Fig. 13 and Fig. 14.
However, the proposed approach outperformed in most of
the test images in Fig. 13 and Fig. 14. As a result, the
suggested strategy is the only one among all of them that
can binarize any variation of uneven light image. Fig. 15
displays the average Pr , Re, F1, and JI score for each
of these five approaches using the suggested FLANN-
based methodology. It is noted that the suggested FLANN
technique performs best out of all the methodologies taken
into consideration for the validation and is consistent in every
measure.
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FIGURE 13. Segmentation results of Internet images: Col 1: Original uneven light images; Col 2: GT images; Col 3: to Col 8: are the binarized
images of Niblack [6], Bogiatzis [11], Yazid [18], Cai and Miklavcic [19], Zhao [8], and Proposed Method respectively.

To further verify the effectiveness of each of these
approaches, quantitative metrics such as Pr , Re, F1, JI , PME ,
and time complexity are employed. The Pr , Re, F1, JI ,
and PME measurements for each of these approaches are

displayed, correspondingly, on all 21 test pictures in Tables 2,
3, 4, 5, and 6. These methods on all 21 test images.

Table 2 shows that for the majority of the images in the
suggested technique with an average, the Pr value is high.
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TABLE 2. Perfermance measure precision (Pr ).

TABLE 3. Performance measure recall (Re).

The value of Pr score of 0.98. The Yazid technique [18]
has the third-highest average Pr , at 0.87, while Cai and

Miklavcic [19] and Zhao [8] have the second-highest average,
at 0.93. The high value of Pr suggests that there are more
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TABLE 4. Performace measure F-Measure (F1).

TABLE 5. Performance measure jaccard index (JI).

true positives and fewer false positives. TheNiblack approach
has the highest average when taking into account the Re

metric of 0.97 as shown in Table 3. The proposed technique
has the second highest 0.96, whereas the Yazid and Cai
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FIGURE 14. Segmentation results of dataset images: Col 1: Original uneven light images; Col 2: GT images; The binarized images of Niblack [6],
Bogiatzis [11], Yazid [18], Cai and Miklavcic [19], Zhao [8], and the Proposed Method are the outputs, corresponding to Cols 3 through Col 8.

method has the highest score of 0.95. Consequently, when
comparing the average Re, the amount of false negatives
in the suggested method is nearly negligible. It has been
noted that the suggested approach has the lowest false
positive and false negative values and the highest true positive
value.

Likewise, Table 4 presents the F1 measure, which is a
combination of Re and Pr . The average for the suggested
method is F1 is 0.97. The average for Cai is F1 is 0.93,

whereas the average for Yazid and Zhao is F1 is 0.88.
The similarity metric between the segmented image and
its ground truth is called the Jaccard Index (JI). Table 5
demonstrates that, when compared to other methods, the
suggested technique has the highest JI measure of 0.95.
Fig. 15 displays the average Pr , Re, F1, and JI score for
each of these five approaches using the suggested FLANN-
based methodology. It is noted that the proposed FLANN
technique performs best out of all the methodologies taken
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TABLE 6. Performance measure (PME).

FIGURE 15. Average performace of Pr , Re, F 1, and JI .

FIGURE 16. AVG percentage of misclassification error PME .

into consideration for the validation and is consistent in every
measure.

TABLE 7. Average performance for different approach.

Comparably, in Table 6 the PMEmeasure shows suggested
approach has the least amount of misclassification (PME),
of 1.42%. However, PME of 4% and 6%, respectively,
are found in the Cai and Zhao et al. approaches. Fig. 16
displays the average PME of the five approaches as well
as the suggested FLANN method. When evaluating both
qualitative and quantitative metrics, the suggested method
performed better than all state-of-the-art techniques on every
variation of example images with non-uniform illumination.
It is observed from Table 7 shows that the proposed method
has the highest average JI measure, of 0.95. The methods
of Cai et al. [19] and Yazid et al. [18] rank second and
third, respectively, with average JI scores of 0.89 and 0.84.
Similarly, average F1-measure for suggested method is of
0.97, and Cai andMiklavcic [19] and Zhao et al. [8] is having
the second and third highest of 0.93 and 0.88. For all types
of uneven images, the proposed approach performs better
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TABLE 8. Computation time in seconds.

TABLE 9. Ablation experiment results on database images and sample images.

than the other approaches when taking into account both
qualitative and quantitative metrics. Table 8 computes the
CPU time in order to assess the methods’ complexity further.
The average calculation time for the suggested approach is
18.8 seconds, the second-lowest average computation time
is 0.37 seconds for the Cai et al. method, and the lowest
average computation time is 0.22 seconds for the Niblack [6]
method. On the other hand, the JI and F1 measures in the
Niblack technique are located in the 5th position. In terms
of F1 and JI metrics, the Cai and Miklavcic [19] is ranked
second. The suggested approach, however, performs best in
terms of averages for Pr , Re, F1, JI , and PME .
In Table 9, a study was conducted to compare the specific

impacts of differentmodules and their combined performance
on various sample images through an ablation experimental
approach. The comparison involved two modules: TST (Two
Stage Thresholding) or dual threshold method, and EB (Edge
Based) method, along with the performance of the combined
Dual threshold and Edge based method. The evaluation

included precision (Pr), recall (Re), F-measure (F1), Jaccard
Index (JI), percentage of misclassification error (PME),
and time complexity for database images such as Berkeley
and Weizmann database images, as well as sample internet
images.

In the table, the performance values for Precision (Pr),
Recall (Re), F-measure (F), and Jaccard Index (JI) are of 0.98,
0.96, 0.97, and 0.95, respectively, for both the database and
sample images. Similarly, the percentage of misclassification
error(PME) of 1.3% for the database images and 1.52% for
the sample internet images. Overall, the combined effect of
the two modules results in an average PME is of 1.42%,
which is better than the individual impacts of the TST and EB
modules. Subsequently, the combined effect of two modules
TST and EB-based method for extraction of valid sample
point generation increases the time complexity compared to
the individual impact. However, with the time complexities,
the percentage of misclassification for those images are in the
range of 1%-2%.

VOLUME 12, 2024 118335



T. Pattnaik et al.: Efficient Low Complex-Functional Link Artificial Neural Network-Based Framework

In some of the failure cases of the proposedmethod like: for
some images such as synth-2, crane, thread, hand, and ninety-
eight, the percentage of misclassification is in the range of
2%-3% as in Table. 6 quantitatively. However, qualitatively
also these images are not accurate w.r.t to ground truth as
discussed in Table 1. Also from the ablation study of the
experiment of database and sample images of Table 9 due
to the combined effect of two modules TST and EB-based
methods, the time complexity for database and sample images
is in the range of 15-20sec.

V. CONCLUSION
In this study, A quick and effective method for images with
variable illumination conditions, local/adaptive thresholding
computes a distinct threshold for each pixel based on its
local vicinity. Nonetheless, the following are the main
difficulties with local/adaptive thresholding methods: (i) It
is important to choose the ideal window or sub-image size.
A window that is too big might not be able to catch
local differences, while a window that is too narrow will
be more susceptible to noise. (ii) Because local/adaptive
thresholding relies on computations based on pixels or
sub-images, it is very sophisticated and memory-intensive.
(iii) The presence of both background and object regions
in every window or sub-image is necessary to prevent
significant misclassification errors during local threshold-
ing. (iv) Compared to global approaches, implementing
local thresholding algorithms might be more complicated,
presenting difficulties for developers and needing more
sophisticated programming abilities. (v)The specific envi-
ronmental characteristics of the image, such as differences
in lighting and texture, can have a significant impact on
how effective local thresholding parameters are. The goal
is to normalize uneven illumination situations in order to
improve the accuracy of global thresholding. By utilizing
the FLANN model to normalize the illumination surface, the
suggested approach lessens complexity and boosts efficiency
in order to overcome these difficulties. Acquiring legiti-
mate training sample points (TSP) is essential for training
models in an efficient manner. Better training and more
accurate segmentation results are guaranteed by the suggested
approach, which improves the extraction process. The sug-
gested approach addresses these issues and enhances image
binarization accuracy and dependability in a range of lighting
scenarios.

The suggested method is found to have the lowest F1 score
of 0.97 and lowest PME on average, 1.42%, average JI score
of 0.95, and an average time for computation of 18.8 seconds.
To shorten the computation time at the sample point creation,
parallel processing and FLANN functional expansion part
parallelization are recommended.
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