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ABSTRACT Surveillance with facial recognition holds immense potential as a technological tool for
combating crime in Latin American countries. However, the limitations of fixed cameras in covering wide
areas and tracking suspects as the evaded recognitions systems pose significant challenges. To address these
limitations, we propose a facial recognition system designed to recognize faces of suspected individuals
with criminal backgrounds and missing persons. Our solution combines facial recognition technology
with a custom-built unmanned aerial vehicle (UAV) for the identification and tracking of targeted persons
listed in a database for crimes. We utilize the inception v2 model to deploy a Siamese network on the
Jetson TX2 platform for facial recognition. Additionally, we introduce a novel tracking algorithm to track
suspected individuals in the event of evasion. During field test experiments, our system demonstrated
strong performance in facial recognition across three different environments: stationary, indoor flight, and
outdoor flight. The accuracy of our system was 94.45% for recognizing along with our tracking algorithms.
An improvement of 1.5% in recognition and better tracking approach for surveillance. This indicates the
versatility and effectiveness of our solution in various operational scenarios, enhancing its potential for crime
prevention and law enforcement efforts in Latin American countries.

INDEX TERMS Unmanned autonomous vehicles (UAV), facial recognition, object tracking, deep learning,
autonomous flight, embedded systems.

I. INTRODUCTION
The last decade, has been marked by the growth and spread
of crime, violence, and the disappearance of people in Latin
America, with an increase of up to 11 percent in these
incidents between 2000 and 2010, which caused more than
1,000,000 deaths [1]. In 2020, Latin America reported more
than 150,000 victims of intentional homicide [2]. Thus, Latin
America is often described as the most violent region in the
world [3]. This situation has become even more challenging,
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as the policies aimed at reducing crime in Latin America often
rely on approaches that have proven to be ineffective. On the
other hand, the promising solutions are linked to the use of
information technologies that are yet to be fully exploited [3].
One of the technologies contributing to solving this

problem is facial recognition, by recognizing the face of a
person we can identify suspected persons whose information
is available in the police database. Currently, this technology
is used with fixed-position cameras but the system can be
improved by using UAVs, to cover more areas and prevent
culprits from invading these fixed-position cameras. Some
other drone companies have achieved facial detection and
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FIGURE 1. System architecture of the drone. 1) Flight Management Unit (FMU). 2) Drivers, bring all the sensors necessary for autonomous drone flight.
3) Computer Vision module for facial recognition. 4) Motion Generator module that generates new setpoints.

tracking the detected faces but they are not capable of
identifying who is the person in front of the drone [3].

The facial recognition system is an advanced method
designed to detect and recognize a person in a digital image
or video source. The facial recognition system continues
to advance each year, to the extent that it can accurately
identify individuals even after they have undergone plastic
surgery. [4], [5]. This achievement is due to the artificial
intelligence algorithms becoming more sophisticated due to
free access to vast amounts of data for training the algorithms.
These artificial intelligence algorithms are expanding their
capabilities to different areas of daily human life [4]. The
current state-of-the-art facial recognition technology has
made substantial advancements in various fields, especially
security. According to recent studies, facial recognition
systems are better at identifying individuals and acquiring
information such as name, age, and nationality [6] and some
airports are using facial recognition instead of using boarding
passes [7].
Facial recognition systems have been developed with

machine learning and deep learning algorithms. Several
methods for developing facial recognition systems exist,

for instance, support vector machine (SVM), local binary
pattern histogram (LBPH), Eigenfaces, and deep neural
networks [8]. One of the prevalent deep convolution models
in use today is VGG16 [9], [10], which evaluates the depth
of the convolutional network and its precision in extracting
features for recognition tasks in large-scale images using very
small convolution filters (3 × 3). Another widely adopted
model is FaceNet [11], which incorporates the ‘triplet loss’
function described in section two.

Several state-of-the-art deep learning models have pro-
duced exciting results with high accuracy in various computer
vision tasks [12]. The accuracy of DNN has been shown
in identifying metastatic breast cancer, where it improves
detection to 98.4% [13]. In the same vein, one of the several
computer vision tasks is facial recognition which uses deep
convolutions neural networks and is being used widely in
the research community however one of the problems is
the quantity of data to train the network. To overcome this
challenge, we choose a Siamese network which was proposed
by Koch et. al [14], the Siamese network is among the state-
of-the-art models for recognizing faces, we need a few images
of each subject to recognize their faces. Due to its popularity
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as an excellent feature extractor, we have chosen the deep
convolutions neural network DCNN as the base network to
build the Siamese facial recognition system.

Facial recognition systems are often integrated into fixed
camera surveillance systems, this leads to a constraint on
the range of view thus making the system inefficient in
monitoring wide areas. With the fixed camera systems, it can
only identify a person located in front of it, this leads to
three main problems, 1. limited tracking ability, 2. limited
coverage area, and 3. lack of adaptability. In this manner,
drones can track a person from a distance using various
algorithms for tracking, this technology addresses the lack
of tracking capabilities of the existing systems. Drones can
cover vast areas, thereby resolving the second main problem
of small coverage areas. Furthermore, drones can easily adapt
to diverse situations and environments by adjusting their
position, changing the camera’s vision angle, and altering
their location. Thus, the use of drones enables us to overcome
the three main problems described earlier.

In recent studies, drones integrated with deep learning
systems have emerged as highly effective tools for solving
problems quickly in diverse fields. Particularly in the context
of rescuing injured individuals, where time sensitivity is
paramount, drones play a pivotal role in the timely detection
of missing persons [15]. Drones are also employed in the field
of security to enable machines to interpret human behavior,
for example, in surveillance, a drone can detect human poses
in motion, in sports, drones can identify human behavior
to obtain information using human pose estimation [16].
Additionally, employing drone-captured images for citizen
safety entails analyzing human behavior patterns, adding a
layer of sophistication to security measures. Our research
is also related to citizen security through the use of deep
learning models to help in solving the problem of identifying
criminal suspects.

Using drones with integrated neural network systems can
contribute to the reduction of humans making contact with
disease-transmitting agents such as birds when observing the
agents [17]. Targeted application of pesticides in large-scale
commercial farms is another exciting use of drones which
contributes to the well-being of plants and protects already
healthy plants [18]. Similarly, in the study of marine species,
aquatic drones can assist in recognizing different fish species
using deep learning models such as googleNet [19] and
AlexNets [20], thereby providing statistical data for marine
life preservation efforts [21]. The interaction between humans
and drones has recently received more attention in the
academic field. Drones can detect a person, and the individual
can send their current position and health status via a
smartwatch. Subsequently, the drone can track the detected
person using its own video feed and smartwatch data,
allowing for the assessment of the physical condition of the
person [22].

Significant progress has been made in UAV tracking
and control recently. Ma et al. introduced an algorithm

based on deep reinforcement learning for controlling vertical
take-off and landing (VTOL) UAVs amidst wind distur-
bances, achieving high accuracy and robustness in tracking
and flight stability [72]. Similarly, Xu et al. proposed
a reinforcement learning-based control method for UAV
formation in GPS-denied environments, which optimizes
control policies and minimizes collision risks to enhance
UAV swarm management [73]. These studies highlight
the efficiency of reinforcement learning in boosting UAV
tracking accuracy and operational performance, which aligns
with our research aims. However, there are substantial
differences between these studies and our approach. Ma et al.
primarily focus on maintaining the position of the UAV
and stability under environmental disturbances [72], while
Xu et al. concentrate on keeping UAV formations intact
in GPS-denied environments [73]. Conversely, our research
centers on the detection, recognition, and tracking of specific
individuals using facial recognition technology. By employ-
ing a Siamese network for facial recognition and a unique
tracking algorithm that maintains the control of the drone
along with the Extended Kalman filter (EKF) algorithm, our
UAV system aims to follow individuals identified from a
criminal database, addressing the specific challenges of crime
prevention and law enforcement in Latin American countries.

In this research, we aim to provide a solution to the
challenges of citizen insecurity affecting several developing
nations. To achieve this, we present a novel integration of
facial recognition technologies using transfer learning and
autonomous UAVs. Our system stands out by incorporating
deep learning algorithms and a custom-built drone platform
to perform real-time detection, recognition, and continuous
tracking of individuals. We use a compact Jetson TX2
computer, the Pixhawk 4 flight controller, and the T265
positioning camera. The system runs on the ROS Melodic
framework, which includes all the necessary nodes to operate
the system in real time.

The focus of this research is not only on face detection
and recognition but also on tracking, some studies have
been oriented toward object tracking using drones, in this
regard, several research studies are addressing this topic,
as mentioned in the work of Mukashev et. al [22], a drone
detection and tracking system is developed using the YoloV3
algorithm and the CSRT algorithm provided in the OpenCV
library to detect and track humans. Tracking multiple objects
using videos captured by a drone is valuable for surveillance
and defense purposes, which is why Kim et. al [23], an inno-
vative algorithm for object detection and tracking has been
developed, enhancing the Joint Detection and Tracking (JDT)
algorithm [24]. Obstacle detection and tracking using drones
constitute a broad field of research [25], with new studies
continually showing promising results. However, in the area
of face detection, recognition, and tracking, there are still
relatively few research efforts. In many countries, crime
and violence are significant concerns, and the police play
a crucial role in crime prevention. However, there is a lack
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of technology that can assist in this regard. Therefore, this
paper develops a system for face detection, recognition, and
tracking using an autonomous drone. The main contribution
of this research is as follows:

• We introduce a simple but novel algorithm, simple
matching real-time tracking (SMRT), designed to match
the ID generated by Simple Online and real-time
tracking (SORT) with the identity generated by the
Siamese network. This algorithm significantly enhances
tracking accuracy and efficiency, providing a major
improvement over existing tracking methods that often
struggle with identity consistency across frames. Details
are elaborated in section two of this study.

• We propose the design and implementation of a novel
autonomous drone capable of recognizing faces within
a database by leveraging deep learning algorithms
for the detection, recognition, and innovative method
for continuous tracking of recognized faces. This
combination provides a unique advantage over existing
systems that typically do not integrate these capabilities
on a single, autonomous platform.

• To integrate the Jetson TX2 and its associated compo-
nents seamlessly, we meticulously designed and assem-
bled the drone using SolidWorks CAD software. The
Intel RealSense T265 camera was strategically chosen
to capture precise positional and orientational data for
the drone with the Extended Kalman Filter algorithm,
enhancing its ability to operate in GPS-denied envi-
ronments. This customized approach was imperative
to fulfill the unique project requirements and is a
significant improvement over conventional systems that
rely heavily on GPS.

This research presents a unique integrated solution that
combines the detection, recognition, and continuous tracking
of individuals through the use of an autonomous drone
system. While current facial recognition and drone tracking
systems have shown advancements separately, our proposal
stands out by merging these capabilities into a single
autonomous platform. This integration not only enhances
tracking accuracy but also significantly extends the coverage
and adaptability of the system, overcoming the limitations
of fixed-camera systems and current drone-based solutions.
This novel approach enables more efficient and effective
tracking of individuals in various situations, providing a clear
advantage over existing methods in the field. This paper is
organized in the following way, In Section Two, we present
six pieces of research that are related to our research in two
main aspects, one is facial recognition used in drones, and the
second is drone applications. In the third section, we present
the system architecture, the drone implementation, and the
robot operating system (ROS) architecture, and then we
present in detail the Siamese network used in this research.
In addition, the fourth section shows the experiment of
the drone running in two different environments, not flying
the drone, indoor flights, and one outdoor test, as well as

discusses the confusionmatrix. In the fifth section, we discuss
the results and the findings we have obtained from the
experiments. Finally, we concluded with a summary of the
research and suggested future works. It is expected to reduce
crime and violence and increase civil security by using this
research as a plan to develop sophisticated drones [26].

II. RELATED WORKS
Surveillance is an important aspect in our communities
to safeguard the integrity of our citizens against crime,
violence, and kidnapping. The Colca Canyon is one of
the deepest canyons in the world and people usually get
lost which causes complicated search and rescue tasks
due to the geography of the place [27], for this reason,
it is necessary to deploy the facial recognition system
in autonomous drones. Facial recognition is a technology
that is used every day in different applications and some
research is using this technology to create more sophisticated
applications for different environments which means real
situations. However, the versatility of using drones raises
concerns regarding potential uses for malicious purposes,
thus, research is underway to develop systems for drone
detection using other drones for defense purposes [28], [29].
In this section, we are sharing related works concerning the
three key aspects we are focusing on in our research: facial
detection, facial recognition, and tracking. Notably, we’ve
integrated these aspects into a drone that we crafted in our
laboratory.

A. DRONE FACE DETECTION
Detecting faces is the first step to beginning the facial
recognition system, however, detecting faces during a flight
has its challenges as the vibration of the camera is caused by
the rotation of the engine which can affect the recognition
of the person in front of the drone. Besides, the distance
between the person and the camera of the drone can affect the
recognition as well. Hsu and Chen et. al [30] experimented
to detect faces at different heights from the ground to the
drone and different distances from the face of the person to
the drone. Fig. 2 illustrates the experiment for taking pictures
with the stick that represents the drone, according to Hsu and
Chen et. al [30], the performance of detecting faces using
deep learning methods such as Face++ [31] and Rekognition
API [32] is better than some other traditional techniques [33].
In the same way, the authors mention that this is an

empirical study to evaluate the different factors that may
affect face detection in drones [33]. Hence, the issue using
a stick is that it does not simulate real drone conditions so
face detection may not be good, and facial recognition is not
performed. Though the results for face detection are quite
good, the inference has not been tested in a drone or onboard
computer so is it not possible to analyze the performance of
the system in a real situation.

B. DRONE FACE RECOGNITION
Facial recognition with drones for tasks such as moni-
toring, and person identification is gaining prominence.
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FIGURE 2. An illustration depicting the data collection experiment made by [29]. Images of faces were taken at different distances and altitudes and
collected to experiment with facial recognition with drones.

Jurevičius et al. [34] in the work showed how a task to
recognize faces using drones as the video source is possible.
To detect and recognize a face they are using the package
Dlib [35] which uses the histogram of oriented gradients
(HOG), and the resnet_v1 model [36] for recognition that
is included in the Dlib package. The database consists of
13233 faces that were kept in the SQL database. The video
frame is captured by the Raspberry Pi camera mounted in
the DJI Mavic Pro drone. The problem of using a small
single-board computer such as the Raspberry Pi to transmit
video usually has many delays and loss of important data
in the transmitted images, in addition, image processing and
facial recognition are carried out on a remote server, which
means that it depends of a continuous Wi-Fi connection.
Our approach is the implementation of the Siamese network
model in the same drone in real-time, this drastically reduces
the time of sending and receiving images and also increases
exponentially the response of the drone to unwanted events.

Surveillance and violence detection are among the exciting
applications of facial recognition when implemented in
drones. Srivastava et. al [37], proposed a new method to
detect violent situations between people and identify the
individuals involved in the violent scene. They are using
seven different Imagenet models VGG16 [10], VGG19 [10],
ResNet101V2 [38], DenseNet201 [39], InceptionV3 [40],
MobileNet [41], and NASNet [42] plus three combinations
of two models to analyze the best architecture to recognize
violence. Besides, they propose a newResNet-28 architecture
to do facial recognition. Hence, both, violence detection and
facial recognition are not trained from scratch, instead, they
use transfer learning techniques to add layers and train the
last layers of the architecture. For violence detection they are
using two databases, one called the hockey dataset [43], and

the other one called the real-life violence situation (RLVS)
dataset [44], but not mention the amount of data stored in
the database for facial recognition. Nevertheless, the entire
system can recognize faces with 99.20% accuracy. The main
issue is that the entire system is not fully or semi-autonomous
since the drone must be controlled from a ground station,
also the drone cannot follow the person. Similarly, video
and violent scene recognition are processed on a computer,
so the real-time accuracy cannot be precisely determined by
the drone itself.

Autonomous drones are being researched since the human
pilot cannot fly the drone every time it is required to do a
task and in search and rescue tasks, it is important to have
several drones working. Hence, a UAV for detecting people
and objects in cluttered indoor environments was developed
by Sandino et. al [45]. The drone uses an onboard computer
UP2 together with a Vision Processing Unit(VPU) to boost
the computations, the research uses the Google MobileNet
SSD [41], which is deployed in the framework Caffe and
tuned with the pre-trained weights from PASCAL VOC2012
dataset [46]. Therefore, they use the Partially Observable
Markov Decision Process(POMDP) to model the navigation
problem and solve it in real-time by using the Augmented
Belief Trees(ABT) algorithm [46], [47]. Since this research
has a good approach to navigating indoor environments with
obstacles, in future work, we can either use this approach or
enhance it. However, this research does not perform people
tracking, which is the main focus of our investigation.

C. DRONE FACE TRACKING
Several research studies have used drones with cameras to
capture video frames and then process them on a personal
computer to detect and recognize faces using different
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methods [48]. Tracking a face is another task that an
autonomous drone must do in real-time. Hence, the DJI Tello
drone can be used for face detection and tracking, the DJI
Tello drone has a software development kit (SDK) where we
can implement a Python script to detect faces and by reading
the values of the sensor inside the drone it is possible to
follow the face in front of the drone [49]. Priambodo et. al
[49] mention that the system uses a haar cascade classifier
to reduce the computational cost, hence, the DJI Tello drone
cannot recognize faces, but it can detect and follow them.

A different research related to autonomous UAVs is a
hunting drone. Wyder et al. [50] is developing a novel
drone to detect, track, and follow another drone by using
a pre-trained Tiny Yolo model. Besides, they implement a
linear regression model to predict the next position of the
target drone. Hence, they used YOLO’s Darknet-53 [51] as
a pre-trained model to train a tiny Yolo model, they collected
a total of 58,647 pictures as a database. Therefore, this drone
is autonomous since they are using the Intel realsense T265
tracking camera to obtain the position and orientation of
the drone and to communicate the flight controller with the
onboard computer using mavlink-ros bridge protocol [52].
The results of this research are promising since it can achieve
its goal with a good performance and 77% accuracy in a
cluttered environment. While this research focuses on drone
tracking, our research centers on the implementation of
autonomous drones that detect and recognize faces. Based on
the position of the face relative to the camera frame, newXYZ
coordinate setpoints are calculated for the drone to move. The
novelty of our research lies in the SMRT algorithm and facial
tracking using the face’s relative position within the camera
frame.

Object or person tracking can also be achieved through
a human-machine system, Zhou and Liu [53] proposes a
comprehensive human-in-the-loop tracking framework with
two main modules. The Local Tracking Module employs
the SiamRPN model, enhanced with a human-attention-
guided approach to improve tracking accuracy around the
human visual focus. The Human Attention Analysis Module
identifies Targets of Human Interest (TOHI) by analyzing
eye movement patterns and accumulated attention time,
enabling effective tracking correction within and outside
the visual focus area. Furthermore, in contrast to the
mentioned research, our research specifically focuses on face
detection, recognition, and tracking. Our goal is to develop
an autonomous drone capable of identifying individuals
independently, without human intervention, representing
a comprehensive approach towards autonomy in person
identification. Therefore, the detection, recognition, and
tracking of objects using drones is an area that has been under
research due to its numerous applications.

III. METHODOLOGY
In this work, we present an autonomous drone that recognizes
faces within a database of faces using a Siamese network,
a deep neural network for comparing the similarity between

features of two given inputs of faces, the recognized faces
are then tracked with our novel tracking algorithm. Given an
image captured by the drone, the Siamese network determines
whether the person belongs to a suspect listed in a database
for a crime or not, the face of the recognized suspect is then
tracked using our proposed SORT and SMRT algorithms,
and the tracking algorithm calculates and outputs specific
coordinates called setpoints (X, Y, Z) in a 3D space based on
the position of the face of the recognized suspect, and then the
generated setpoints are sent to the flight controller, the flight
controller receives the new setpoints and begins to track the
person in front of the drone and if there is no person in front
of the drone, it will start rotating over the z-axis in search of
a new face to detect. An illustrated overview of the proposed
system is shown in Fig. 3. In this research, the subjects have
given their consent to carry out the experiments.

A. SYSTEM ARCHITECTURE
Fig. 1 shows the four modules of the system architecture:
the computer vision module, the motion generation module,
the flight management unit module, and the driver module.
Our drone system comprises a conventional USB camera
connected to the onboard single-board computer, alongside
an array of sensors dedicated to distinct subtasks during
autonomous flight. The computer vision module, integrated
into the onboard single-board computer, employs the Haar
cascade function for face detection and a Siamese network
for face recognition within a pre-established database of
crime suspects. Coordinating with the motion generator, this
module executes algorithms to search for new faces and track
recognized ones within the surroundings. Both the computer
vision module and the motion generator are hosted on the
Jetson TX2 embedded within the drone. The driver module is
responsible for reading the drone’s IMU, magnetometer, and
other sensors to obtain specific data, such as battery voltage
and other controller data. Additionally, it is responsible
for performing Simultaneous Localization and Mapping
(SLAM) to obtain the drone’s position and orientation. On the
other hand, the flight management module is responsible for
collecting all data from the previous modules and, based on
that data, such as the local position, it controls the motor
electronic speed controllers (ESCs) to reach the required final
position. For real-time monitoring and intervention, a remote
desktop station observes the drone’s autonomous activities.
This enables manual intervention should any anomalies arise
during flight operations.

1) UAV HARDWARE DESIGN
As illustrated in Fig. 4, the hardware components of the
drone consist of four platforms. The first platform houses
the main battery, power management board, and electronic
speed controllers (ESCs), the second platform accommodates
the four arms with the engines, the third platform hosts
the flight controller, the Jetson TX2, and the GPS, the last
platform is dedicated to the main camera, secondary battery,
and telemetry radio. The onboard computer responsible
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FIGURE 3. Proposed deep learning-based face recognition tracking drone: 1) Images from the camera mounted on the drone are used as input for the
Siamese network to recognize faces. 2) The proposed face tracking algorithm tracks the face of the person in front of the drone and returns the
setpoints information. 3) Flight control is generated based on the coordinates of the face of the person and using ROS is sent to the flight controller.

for running the computer vision module and sending the
commands to the flight controller is the Jetson TX2. Featuring
GPU architecture with 256 NVIDIA CUDA cores, a dual-
core NVIDIA Denver 2 64-bit CPU, quad-core ARM cortex
A57MPCore, 8GB 128-bit LPDDR4memory, 32 GB storage
eMMC 5.1., the Jetson TX2 is mounted on the Orbitty carrier
board. This board provides connectivity options such as USB
3.0, USB 2.0, HDMI, MicroSD, 3.3v UART, I2C, GPIO, and
GbE port. The selection of the Jetson TX2 was driven by its
power efficiency, and affordability, as not all small computers
can run a Siamese network for facial recognition.

For autonomous flight capability, the Pixhawk4 flight
controller was selected for its compatibility with the onboard
computer and ability to modify position and orientation.
While Pixhawk4 utilizes its GPS and IMU sensors for posi-
tion and orientation data, occasional signal loss is inevitable.
To address this issue, the Intel RealSense T265 camera was
integrated to provide reliable position and orientation values.
Equipped with two fisheye lens sensors, an IMU, and an Intel
Movidius Myriad 2 VPU, the T265 camera enables visual
SLAM processing on the VPU. In a heightened light intensity
environment as well as dark environments, the camera may
not be able to capture the visuals. To mitigate issues related to

intense light or darkness affecting visibility, the T265 camera
is positioned downward towards the landing pad, acting as
the drone’s eyes. Additionally, video frames are captured by
the ELP USB camera mounted on the drone, as presented in
Fig. 4. The final design configuration is shown in Fig. 5.

2) ROS ARCHITECTURE
The software implementation is designed to be as
autonomous as possible based on the system architecture
presented in subsection A. It was necessary to choose a
framework to run multiple algorithms that allow the drone
to be autonomous as much as possible. The robot operating
system (ROS) framework provides the capacity to run each
Python script and interact with each other by publishing
and subscribing to topics, thus, we can run our nodes to
do different tasks at the same time. MAVROS is a bridge
between the MAVlink protocol and the ROS framework,
MAVlink is a messaging protocol that communicates with
drones and between onboard drone components, MAVROS
runs in the ROS framework and converts ROS messages into
MAVlink messages to be sent to the flight controller.

Fig. 6 depicts the 6 nodes and the flow of messages
from one node to another. The facial recognition node is
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FIGURE 4. An image of our UAV built from scratch with its labeled components. (a) Front view of the drone showing: (1) T-motor MN3510 KV630;
(2) Second battery 11.1v 5100mAh; (3) Video camera 1080p; (4) T265 Intel realsense tracking camera. (b) Side view showing: (5) Telemetry radio;
(6) Pixhawk 4 flight controller; (7) Main battery 14.8v 5600 mAh.

FIGURE 5. Autonomous drone implementation for facial recognition and
tracking.

responsible for performing facial recognition and publishing
four topics depending on whether the Siamese model is
loaded, if no face is detected and needs to search, or if a
face is recognized and needs to halt, publishing the Cartesian
coordinates of the recognized face’s bounding box. The
tracking node subscribes to the facial recognition node and
handles person tracking, modifying the drone’s position
and orientation, and publishing the new drone position and
orientation to another node. The searching node subscribes
to the facial recognition node and is only activated when
no face is detected or recognized, publishing the new drone
orientation to rotate on its axis and continue searching for
new faces. The takeoff and landing node is responsible for
taking off and landing the drone if no face is detected for a few
minutes or if it receives a landing instruction via command.
The Distributor node receives all position and orientation
coordinates from the takeoff and landing, searching, and
tracking nodes. After receiving this data, it publishes it to a

single pose-type topic to the main node. The main node is the
primary node of the quadcopter, which receives the position
and orientation it needs to reach and publishes that message
to the flight controller using MAVROS.

B. THE OPERATION OF THE DRONE AND THE SYSTEM
The autonomous flight sequence begins with the initialization
of the ROS architecture. Subsequently, the drone transitions
from manual to offboard mode, autonomously arming the
vehicle and initiating takeoff procedures. Once airborne,
the ROS nodes responsible for facial recognition, tracking,
and search functionalities become active, publishing and
subscribing to topics as required.

Subsequently, the USB camera captures frames, which
are processed by the computer vision module utilizing the
OpenCV library for face detection. This module employs
a Haar cascade algorithm to detect faces, resizes the
frame to match the input size of the Siamese network
(96 × 96), executes the Siamese model, and calculates the
Euclidean distance. Following this, the SORT algorithm
is executed in conjunction with the SMRT algorithm to
enhance recognition and tracking. Upon facial recognition,
the tracking node publishes the coordinates of the face’s
bounding box to initiate face tracking. After completing
the tracking experiment, the drone autonomously initiates
landing procedures.

Upon detecting a face, the Siamese network identifies the
individual and transmits the bounding box coordinates to
the motion generator module. The motion generator then
updates the local position values based on the detected
face’s position relative to the camera and forwards the
new setpoints to the flight controller. Both the computer
vision module and the motion generator operate within the
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ROS framework. An external sensor is integrated into the
drone system to navigate in GPS-denied environments. The
Pixhawk flight controller incorporates various sensors such
as GPS, magnetometer, gyroscope, and air pressure sensors
to determine the drone’s position accurately.

FIGURE 6. An illustration of the ROS proposed architecture for the
autonomous drone showing the various nodes and the published data to
the various interfaces.

C. UAV FLIGHT TIME DURATION
One of the most challenging issues when deploying a UAV in
real-world applications is the limited flight time. Since this
project is in the research phase, several strategies have been
implemented to address this challenge:
• Energy-Efficient Components: The use of the Jetson
TX2 and the Pixhawk 4 flight controller are known for
their low power consumption, which helps optimize the
drone’s energy consumption, leading to increased flight
time.

• Battery Management: The drone has been tested with
two separate batteries, one for the components that
make up the onboard computer, and another battery that
powers the flight controller along with the motors. This
increases the flight time.

• Battery chemical composition: currently, some advanced
batteries include graphene. The inclusion of graphene
in LiPo batteries improves electrical conductivity,
increases energy storage capacity, and accelerates
charging and discharging, thereby improving the overall
performance, duration, and efficiency of the battery.

• The battery status monitoring function is being imple-
mented to be able to send remote orders to the drone to
return to the base station for a battery swap.

• The estimated flight time calculated in this research was
between 6 to 8 minutes using a 14.8v and 6500mah
battery. The estimated flight time using a 14.8v and
10000mah battery was around 15 minutes.

D. GPS-DENIED NAVIGATION
To achieve flight in GPS-denied environments, the technique
of visual-inertial odometry (VIO) is required. VIO is a

computer vision technique for estimating the 3D pose and
velocity of a vehicle in motion relative to its initial local
position. Using VIO, we can determine the position of the
drone in 3D space with an Extended Kalman Filter algorithm.
Implementing VIO requires the use of RGB cameras and
image processing libraries. In our research, we use the Intel
RealSense T265 camera, which supports ROS1 using a wrap-
per. The topics published by the nodes of the ros-T265 pack-
age include odometry. The ROS topic we use for odometry is
/camera/realsense2_camera/camera/odom/sample. The nec-
essary parameters to set to use external position information
with Extend Kalman Filter(EKF2) are described below:

• EKF2_AID_MASK: Configure the fusion of vision
position, vision velocity, vision yaw, and external vision
rotation based on the preferred fusion model.

• EKF2_HGT_MODE: Set to Vision to use visual data as
the main source for altitude measurement.

• EKF2_EV_DELAY:Adjust to account for the difference
between the measurement timestamp and the actual
capture time.

• EKF2_EV_POS_X: Specify the location of the vision
sensor relative to the vehicle’s body frame in the X axis.

• EKF2_EV_POS_Y: Specify the location of the vision
sensor relative to the vehicle’s body frame in the Y axis.

• EKF2_EV_POS_Z: Specify the location of the vision
sensor relative to the vehicle’s body frame in the Z axis.

According to the tests conducted, the determined max-
imum altitude at which the Intel RealSense T265 camera
operates correctly is 50 meters. Above this altitude, the
camera cannot accurately estimate the altitude. Similarly,
in low-light conditions, the camera fails to estimate position
and orientation accurately. To address these challenges,
a system that integrates both GPS and VIO cameras can be
implemented to improve the UAV’s position and orientation
estimation.

E. FACE-TRACKING METHOD
In this section, we introduce our innovative face-tracking
method that extends beyond basic facial recognition and
bounding box assignment. When identified individuals
attempt to evade the system, the drone becomes a crucial tool,
enabling continuous tracking while ensuring a safe distance
is maintained, thereby safeguarding the environment.

To achieve this, we impose constraints on the drone’s
movement trajectories. These constraints are based on the
observation that the size of the detected face changes with
the distance between the drone and the identified person.
Therefore, we use the bounding boxes around recognized
faces to gauge the proximity of the user to the drone.
Algorithm 1 describes the tracking node of our system, which
is implemented in Python and adheres to the specifications
described in this section.

Our tracking algorithm evaluates proximity using three
main criteria on the detected faces:
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1) If the bounding box area of the face exceeds 29,000 px
(size of 227× 128).

2) If the bounding box area of the face is less than 5,000
px (size of 86× 60).

3) If the bounding box area of the face falls within the
range defined by the two previous criteria.

FIGURE 7. Trigonometric circle aligned with the drone coordinates system.

For controlling the drone in an optimal position for
recognizing and tracking faces, we set fixed altitude, and the
rotation of the drone for only yaw rotation while setting the
roll rotation and pitch rotation fixed. The yaw rotation uses
the trigonometric circle presented in Fig. 7 and the drone
located in the central position.

In our test flights, themovement of the drone is restricted to
move backward, forward, and rotate left, and right to follow
the target person. The angles are in radians but before sending
the set-points to the flight controller, the angles are converted
to quaternions.

The frame of the camera is 640 × 480 pixels. To ensure
optimal facial recognition, we considered the third criterion
to be the best and safest condition for tracking the person.
In case the bounding box area of the face covers more than
29000px (size of 227×128), it means that a face is too close to
the drone and the drone must perform a backward movement
not to injure the person in front of the drone. If the bounding
box area is less than 5000px (size of 86×60), the recognition
may not be accurate therefore the drone needs to move closer.

1) BACKWARD MOVEMENT
Given the position of the drone given as P(x, y) at a fixed
altitude, a movement from P to new position O(x, y) will
occur in an instance where the drone is too close to a subject
and move away in the opposite direction. This movement
is considered a backward movement. To move the drone
backward, we consider the yaw angle, θ of the drone in the
2D plane of (x, y), and which quadrant, θ is located, then
we can compute the new position O regarding the quadrant
using either of (1) - (4) to determine the new position of the
drone as is shown in Fig. 8. Where d is the unit distance of
0.02mmoved by the drone in a backward direction repeatedly

FIGURE 8. First quadrant from 0 to π/2 with the equation to move
backward.

FIGURE 9. Fourth quadrant from 3π/2 to 2π with the equation to move
backward.

until an optimal distance between the subject and drone is
attained. In (1), the θ is considered for the first quadrant, (2),
(3), and (4) are considered for the second, third, and fourth
quadrant respectively. An empirical value of 0.09 is used in
the equation initializing and setting a secure distance.

v1backward =

[
X1
backward

Y1
backward

]
=

[
−(d cos(θ )+ 0.09)
−(d sin(θ )+ 0.09)

]
(1)

v2backward =

[
X2
backward

Y2
backward

]
=

[
d sin(θ )+ 0.09
−(d cos(θ )+ 0.09)

]
(2)

v3backward =

[
X3
backward

Y3
backward

]
=

[
d cos(θ)+ 0.09
d sin(θ)+ 0.09

]
(3)

v4backward =

[
X4
backward

Y4
backward

]
=

[
−(d sin(θ )+ 0.09)
d cos(θ)+ 0.09

]
(4)

2) FORWARD MOVEMENT
The forward movement occurs when the bounding box area
is less than 5000px means that a face is too far from the
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FIGURE 10. Conditions to rotate to the right or left. (a) If the center of the
face is near the left edge of the red rectangle the drone will rotate
0.02 rad to the left. (b) If the center of the face is near the right edge of
the red rectangle the drone will rotate 0.02 rad to the right.

drone and the drone must perform the forward movement to
be able to recognize the person in front of the drone. To move
the drone forward we need to identify in which quadrant the
drone is located and it is only necessary to multiply by−1 (1)
to (4), as a result, we have the equations to move forward as
shown from (5) to (8). The variable distance d has an initial
value of 0.1 meters which increases at a rate of 0.02 meters
until the bounding box area is more than 5000px.

v1forward =

[
X1
forward

Y1
forward

]
=

[
d cos(α)+ 0.09
d sin(α)+ 0.09

]
(5)

v2forward =

[
X2
forward

Y2
forward

]
=

[
−(d sin(β)+ 0.09)
d cos(β)+ 0.09

]
) (6)

v3forward =

[
X3
forward

Y3
forward

]
=

[
−(d cos(θ )+ 0.09)
−(d sin(θ )+ 0.09)

]
(7)

v4forward =

[
X4
forward

Y4
forward

]
=

[
d sin(γ )+ 0.09
−(d cos(γ )+ 0.09)

]
(8)

3) HOVERING MOVEMENT
In case the bounding box area is between 5001px to 29000px
means it is a safe distance between the drone and the person.
Then, if the person moves to the right the drone will rotate
to the right, if the person moves to the left the drone moves
to the left. This action is done by modifying the yaw angle
with a rate of 0.02 rad . The frame of the camera is 640 ×
480 pixels, which means the horizontal axis is from 0px to
640px. In case the face is located near the left edge of the
camera frame, which means less than 200px in the horizontal
axis, the drone will rotate to the left, and in case the face is
located near the right edge of the camera frame, which means
more than 400px in the horizontal axis, the drone will rotate
to the right as Fig. 10.

F. FACE DETECTION
To accomplish the facial recognition system, we are using and
combining four topics, the haar cascade classifier, siamese
network model, Inception V2 architecture, and FaceNet
weights. OpenCV provides us with an easy way to detect
faces by using a haar cascade classifier. OpenCV provides a
training method or pre-trained model that can be loaded from
the OpenCV installation folder [54]. This method of facial

Algorithm 1 Real-Time Face Tracking Control with a ROS
1: Import necessary libraries and packages
2: rospy, ast, std_msgs (String, Float64)
3: geometry_msgs (Point, Pose)
4: gazebo_msgs (ModelStates)
5: nav_msgs (Odometry)
6: time (sleep), re
7: tf.transformations (quaternion_from_euler)
8: numpy as np, math
9: Define methods for callbacks:
10: object_detection - Extract bbox and set flag3
11: coordinate_callback - Update c1 and area
12: face_found_callback - Set flag
13: face_match_callback - Set flag2
14: orientation_callback - Update orientation values
15: kill_callback - Set kill_program
16: orientation_t265_callback - Update pose orientation

and position
17: Define movement methods: right, left, hold_position,

backward, forward
18: Define method new_quaternion - Update orientation

values
19: Define class data_processing
20: Define class constructor __init__
21: Initialize constants and flags
22: Initialize pose and orientation values
23: Define ROS subscribers for face recognition and pose

data
24: Define ROS publishers for pose and yaw angle

feedback
25: Define main control loop
26: Check for kill program signal
27: If face detected:
28: If face too close:
29: Log message and update pose to move backward
30: Publish updated pose
31: If face too far:
32: Log message and update pose to move forward
33: Publish updated pose
34: If face within safety area:
35: Log message and hold position.
36: Adjust yaw angle and pose based on the bounding

box center, then move to the right or left.
37: Publish updated pose and yaw angle feedback
38: Define main function
39: Initialize ROS node
40: Create instance of data_processing
41: Keep node running with rospy.spin()

detection can be improved bymodifying some thresholds so it
can detect better a human face instead of some random image.
The whole documentation about how OpenCV works and
how to deploy it can be found on the OpenCV website [55].
Fig. 11 shows face detection running on Ubuntu.
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FIGURE 11. An image showing the implementation of face detection
using OpenCV haar cascade classifier.

G. SIAMESE NETWORK
Convential facial recognition systems work in four main
steps: detection, alignment, representation, and classification.
A thousand face images are trained and then the final model
can classify who the person is. This method works well but it
has problems as if wewant to add a new person to the database
we must train the network again. Fig. 12 shows a Siamese
model representation, it has two inputs that are the images we
want to compare. Each image is passed through a convolution
neural network to determine the 128-dimensional vector of
one input. Thus, we have two 128-dimensional vectors as an
output. Hence, we compute the Euclidean distance between
the two outputs. This method of recognizing faces is one of
the best options since it only requires a few images as inputs.

First, we collect data by taking 95 photos of 5 subjects
which in total is 475 photos as Fig. 13 shows. This database
is going to be one input of the Siamese network. Second,
we implement a Python script to capture video and send the
frame video as a second input of the Siamese network. It is
called the Siamese network because there are two inputs for
the same DNN and has one output which is the Euclidean
distance which determines if the face in front of the drone
matches the faces in the database.

We have collected in total of 475 photos of our classmates,
these photos were taken from the camera installed in the
drone before flying so we can obtain better face recognition
accuracy. Fig. 14 shows us the height of testing and the test
environment.

To adapt the InceptionV2 architecture to our specific
facial recognition needs, we made several key modifications
to the original structure. The following summarizes the
implemented changes:

• Input Size: The original InceptionV2 architecture uses
an input size of (299 × 299 × 3). In our version,

FIGURE 12. Siamese network representation used in this research.
If f(X1) and f(X2) are the encoding vectors of the same person then the
Euclidean distance must be small. If f(X1) and f(X2) are the encoding
vectors of different persons then the Euclidean distance must be large.

FIGURE 13. Database from our classmates to be recognized by the drone.

we reduced the input size to (96 × 96 × 3) to better
match the typical dimensions of facial images.

• Initial Layers: We retained the initial structure
of convolution followed by batch normalization
and ReLU activation. Specifically, we employed a
Conv2D layer with 64 filters, a kernel size of
(7 × 7), stride 2, and ‘same’ padding, followed by a
BatchNormalization layer and a ReLU activation.

• Initial Pooling: Similar to InceptionV2, we used a
MaxPooling2D layer with a pool size of (3 × 3),
stride 2, and ‘same’ padding to reduce the dimension-
ality of the extracted features.

• Inception Blocks: We implemented several Inception
blocks, although with specific configurations tailored to
our task. These blocks include convolutions of different
sizes (e.g., (1× 1), (3× 3), (5× 5)) and pooling layers,
combined in a way that maintains a balance between
spatial feature extraction and computational efficiency.
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FIGURE 14. Height of 1.2 meters from the landing pad. The highest flight
height will be between 1 meter and 1.5 meters high, which makes the
total altitude from the ground to the camera 1.80 meters.

• Reduction Layers: Although the original architecture
uses (1 × 1) convolutions to reduce dimensionality
before applying larger convolutions, our design makes
limited use of this technique due to the smaller input
dimensions and the specificity of the facial recognition
task.

• Final Layers: Unlike InceptionV2, which uses final
dense layers and softmax for classification, our version
employs a dense layer followed by L2 normalization to
produce embeddings. These embeddings are essential
for verification and recognition tasks in a Siamese
network setup.

• Parameters and Complexity: Our version has a total
of 3,743,280 parameters, optimized to work efficiently
with smaller facial images, maintaining an adequate
balance between accuracy and computational efficiency.

These modifications allow the adapted network to retain
the structural advantages of the Inception architecture
while being specifically tailored to the needs of our facial
recognition task in a Siamese network.

FIGURE 15. Triplet Loss representation. Maximizes the distance between
the anchor and the negative and minimizes the distance between the
anchor and the positive [56].

H. FACIAL RECOGNITION
As we mentioned before, we are using a Siamese network
to obtain good accuracy in recognizing people. We are not

training a network from scratch to recognize faces because
it will take a lot of time and computation, instead, we do
transfer-learning using the weights of the FaceNet model [56]
that was trained with thousands of images from the Labeled
Faces in the Wild database [57]. FaceNet weight can be
downloaded from GitHub since it is an open source [58].
To load the FaceNet weights we need to implement a net-

work architecture using TensorFlow-Keras, thus, we imple-
ment the network architecture following the inception model
that has been published and can be found on GitHub. This
network architecture follows the Inception model which was
tested with image classification and detection. The inception
architecture we have used in this research can be found
in [58]. We have implemented an Inception network with
three inputs: anchor, negative, and positive, and a single
output of a 128-dimensional vector. After 100 epochs, a loss
of 0.0017 was achieved on the training data and 0.0388 on
the validation data. Figures 23 and 24 display the loss results
for the training and validation data, respectively. As shown,
the use of weights from a pre-trained network facilitates
faster convergence of the loss, which indicates that the model
achieves superior accuracy in recognizing the faces within
our database. The architecture is implemented using Keras
and TensorFlow. Besides, this implementation has the triplet
loss as a loss function. The Triplet loss equation is shown
in (9), where A is the anchor which means the database, P is
positive which means random images of the same person in
the database, and N is negative which means random images
from different people not included in the database; triplet loss
has these three parameters, anchor, positives, and negatives.
The Anchor and the positives must be the encoding of the
same image person while negatives must be the encoding of
random image faces as Fig. 15 shows.

J =
m∑
i=1

[||f(Ai)− f(Pi)||
2
2︸ ︷︷ ︸− ||f(Ai)− f(Ni)||

2
2︸ ︷︷ ︸+α] (9)

The goal of this research was to detect, recognize, and
track the target person within the database. As a video input
sensor, we use an ELP USB camera connected to the Jetson
TX2, Jetson TX2 is an onboard computer installed in the
drone. Currently, there are various deep learning algorithms
to recognize faces such as vgg19 [10], we have tested vgg19
in an Ubuntu computer and the performance was enough
good with a 94% accuracy but since vgg19 is a heavy model,
Jetson TX2 cannot run a siamese network using vgg19 as
the main architecture, Thus, we have chosen the inception v2
model plus the weights of the FaceNet unified system [56].
To summarize, our customized Inception network has been
modified to include three inputs: anchor, positive, and
negative. We then perform transfer learning using the weights
from FaceNet and our own dataset. After training, we obtain
a model in TensorFlow-Keras format. This model, which now
has updated weights, is used in the Siamese network. The
Siamese network is composed of the base network, which is
our customized Inception network with the trained weights.
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The operation of the Siamese network is explained in the
subsection on the Siamese network.

OpenCV has a haar cascade classifier to detect faces,
we have implemented a Python code to run this classifier
and we have modified the minimum neighbor’s parameter to
obtain better facial detection. The model plus the weights are
loaded beforehand and then we create a database dictionary
where we pass the whole database through the newmodel and
obtain the 128-dimensional vector of each picture within the
database. After that, we capture a photo within the bounding
box generated by the haar cascade classifier, and each photo
taken by the camera is passed through the model to obtain the
128-dimensional vector. Finally, we compute the Euclidean
distance between the database encoding vector and the photo
encoding vector taken by the camera. Then, the Python
script selects the minimum Euclidean distance between the
encoding vector from the photo against the encoding vectors
from the database. Thus, if the minimum distance is less than
0.66 means that the subject in front of the camera matches
someone in the database, in case the minimum distance is
more than 0.66 means the subject in front of the camera is
not in the database; the minimum distance can be changed to
increase the number of subjects recognized. Real-time facial
recognition is running in the ROS framework, in case the
drone detects a face it will stop for a few seconds to catch
the face better, so it can crop and send the face image to the
Siamese network, if the face is not in the database the drone
will rotate a few radians ignoring the face in front of the drone,
otherwise will follow the face.

I. TRAINING DATASET
All the subjects signed a consent form agreeing to the use of
their facial data for this research, but not for it to be made into
a public dataset.

To perform transfer learning, we utilized the pre-trained
weights of the FaceNet model [56]. Our dataset is divided into
three subsets: Anchor, Positive, and Negative. The Anchor
subset contains 5 folders, each corresponding to one of the
5 subjects. Each folder includes 48 images, resulting in a total
of 240 images for the Anchor subset. Similarly, the Positive
subset comprises the same 5 subjects with 48 images per
folder, totaling 240 images. For the Negative subset, we used
the Labeled Faces in the Wild (LFW) dataset [57], which
originally contains 1,473 images. We randomly selected
240 images from the LFW dataset to ensure a balanced
training set.

The images were resized to 96 × 96 pixels to match the
input size required by the Siamese network. The Anchor
and Positive images were captured in controlled indoor
environments to maintain consistent lighting and background
conditions, enhancing the uniformity of the dataset. Each
subject was photographed from various angles and with
different expressions to create a comprehensive and varied
dataset. This meticulous preparation ensures that the model
is robust and can generalize well to new data.

J. SIMPLE MATCHING REAL-TIME TRACKING - SMRT
One of the primary goals of this research was to enable the
drone to follow a specific person in front of it, provided that
the individual is recognized within the database. To achieve
this objective, we implemented the Simple Online and
Realtime Tracking (SORT) algorithm, which is noted for its
ease of use [59]. While this algorithm is capable of tracking
various objects across frames, our application required
tracking individuals by name rather than by ID. For example,
in frame n, the SORT algorithm may track an individual
as ID 2, and the facial recognition system might identify
this person as Juan. However, in the subsequent frame n+1,
the SORT algorithm could continue tracking the same ID 2,
but the facial recognition system might label the person
differently or fail to recognize the individual, even though it
is still Juan. To address this issue, we developed an algorithm
that matches the tracked ID with the facial recognition name,
as detailed in Algorithm 2.
The functioning of the entire facial recognition system,

including Algorithm 2, is described in Algorithm 3. First,
the ‘‘triplet loss’’ function is defined and a custom function
for stacking embeddings is registered. Subsequently, the
pre-trained model ‘‘siamesemodelv2.keras’’ is loaded and
compiled using the Adam optimizer and the ‘‘triplet loss’’
function. A database of facial embeddings is created from
images stored in the specified directory. Next, video capture
is initialized, and video output recording is configured. In a
continuous loop, the system processes each video frame,
detects faces using a Haar classifier, and for each detected
face, performs facial recognition by comparing it with the
database of embeddings. The SMRT algorithm is utilized to
enable the drone to follow a specific person, provided that
the individual is recognized within the database. Finally, the
recognition result is displayed in real-time video and the
processed video is stored until execution is terminated.

If the Euclidean distance between the camera image and
the database is greater than 0.53, then the person is considered
unknown. However, if the person was recognized in the
previous frame, we need to ensure the consistency of the
result. Let’s assume that the person in front of the camera
is not recognized, so the average distance value would be
greater than 0.53. This would cause the value in dictionary
A to be 0. If the person’s ID is 1, since SORT assigns this ID,
then the value of B in the dictionary would be ID 1, and the
key in dictionary B would be ‘Unknown’. In the next frame,
with the same unknown person, if the Euclidean distance is
less than 0.53, then the value of B in the dictionary, which
is 1, is compared with the ID generated by SORT, which
would also be 1 (since we are only detecting one person and
ignoring the others). Thus, the result would be the same as
the previous frame: the value of B in the dictionary would
be ID 1, and the key would be ‘Unknown’. On the other
hand, if the person is recognized and the average distance is
less than 0.53, the value of B in the dictionary, which is 1,
is compared with the new ID generated by SORT, which
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Algorithm 2 Simple Matching Real-Time Tracking
Require: avg - Average Euclidian distance between image

path encoding and the encodings from the database.
Require: A.value,B.value - Dictionaries to store the recog-

nized values for the current and previous frame.
Require: id - tracking ID from SORT algorithm.
Ensure: A.key,B.key - final determined identity keys.
Ensure: A.value,B.value - final determined identity values.
1: if avg > 0.53 then
2: if A.value == id then
3: A.key← Identity
4: A.value← idA
5: else
6: B.key← Unknown
7: B.value← idB
8: end if
9: else

10: if B.value == id then
11: B.key← Unknown
12: B.value← idB
13: else
14: A.key← Identity
15: A.value← idA
16: end if
17: end if

would be 2 (since it is a new person). This would result in the
value of A in the dictionary being 2, and the key in dictionary
A being the identity given by the facial recognition system.
Similarly, in the following frame with the same person, but
when the average distance is greater than 0.53, the value
of A in the dictionary would be 2 and would match the ID
generated by SORT, which is 2. This would result in the value
of A in the dictionary being 2, and the key being the identity
given by the facial recognition system. This ensures that even
though the recognized person moves and the average distance
changes, the drone can follow the known person in front of it.

IV. EXPERIMENTS
In this section, we detail the experiment conducted to
evaluate the recognition and tracking of faces in three
different environments during real flight test mode. These
environments include flying indoors, characterized as a
GPS-denied environment; flying outdoors, distinguished
as a GPS-enabled environment; and no-flying mode. The
following subsection describes the environment setup and the
system setup.

A. ENVIRONMENT SETUP
Three environments are used in this research to analyze the
drone behavior, response time, and accuracy of the facial
recognition system. Fig. 16 shows the first environment, the
drone is located on the desk. This environment is just to obtain
the accuracy of the facial recognition system in the ideal
scenario. The ideal scenario refers to not having vibration

Algorithm 3 Facial Recognition and TrackingUsing Siamese
Model With SMRT Algorithm
Require: avg_val - Average Euclidean distance between

image path encoding and the encodings from the
database.

Require: A_dict,B_dict - Dictionaries to store the recog-
nized values for the current and previous frame.

Require: id_N - Tracking ID from SORT algorithm.
Ensure: A_dict.key,B_dict.key - Final determined identity

keys.
Ensure: A_dict.value,B_dict.value - Final determined

identity values.
1: Initialize video capture and output configuration.
2: Initialize face detector and tracker.
3: Initialize identity tracking variables.
4: while True do
5: Read a frame from the video capture.
6: if frame is read successfully then
7: Detect faces in the grayscale frame using the Haar

classifier.
8: Initialize an empty list for detections.
9: if faces are detected then
10: for each detected face do
11: Extract and resize the region of interest (ROI).
12: Perform facial recognition using the model to

obtain the minimum distance and identity.
13: Save the minimum distance in a CSV file.
14: Round the avg_val.
15: end for
16: Update the tracker with detections.
17: for each box in the updated tracker do
18: Extract coordinates and ID.
19: Call SMRT_Algorithm1(avgval,A.value,

B.value) with the current parameters to update
the tracking state.

20: end for
21: else
22: Display "No faces detected" on the frame.
23: end if
24: if frame is read successfully then
25: Write the frame to the video output.
26: end if
27: Display the frame.
28: end if
29: if exit condition is met (e.g., ’q’ key is pressed) then
30: Break the loop.
31: end if
32: end while
33: Release video capture and output resources.
34: Destroy all windows.

caused by the drone or some other disturbance that can affect
the facial recognition system.
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FIGURE 16. The first environment: the drone is seen in a position with no
disturbance that would affect the face recognition system.

The second environment is set up as shown in Fig. 17.
In this environment, the GPS signal does not work because
it is a closed environment, and we need to rely on visual
odometry from the T265 camera. The searching-tracking
mode is the complete test we have done, in this mode, the
drone rotates searching for faces and then must stop when
a face is in front of the drone and track the face only if
the face is within the database otherwise, it must rotate to
look for other faces, as well as the drone, moves backward
and forward to maintain a safety distance from recognized
faces.

Fig. 18 shows the third test environment, in this experi-
ment, we test the performance of the system in situations
where natural lights can affect the system. In all three
environments set up, the facial recognition system experiment
was performed with 5 participants. During the test in the first
environment, the participants stood in front of the camera of
the drone. In the setups for the second and third environments,
the participants positioned themselves in front of the drone
while it was flying. Subsequently, the drone operator, in this
case the author of this research, gave instructions to the
participant to walk towards the right until reaching point B
(explained in section V-D), and then proceed to point C.
The participant walked while looking directly at the drone
camera. For the third environment, GPS was not used;
instead, we relied solely on the T265 sensor. However, in the
initial experiments, we observed that the sensor struggled
to obtain its position due to the sandy terrain. To address
this, we added markers of various colors and shapes so that
the T265 camera could use the patterns on the markers as
reference points.

B. SYSTEM SETUP
The autonomous drone requires a specific setup before
takeoff. Since we are using an onboard computer, we need
to connect it to the flight controller and modify certain
parameters, as shown in Table 3. Additionally, we must set
the parameter MAV_1_FORWARD to 1 in order to observe

FIGURE 17. The second environment: the drone is seen in a position
before attaining the fixed altitude in a closed area where GPS does not
work.

FIGURE 18. The third environment: the drone is seen in a position before
attaining the fixed altitude in an open area where GPS does work.

the MAVLink messages in the QGroundControl software on
the local PC. Table 1 displays the pin-out of the Jetson TX2
carrier board.

Table 1 shows the pin map of the extension connector,
we are using the UART1 port to connect the carrier boardwith
the pixhawk4. The flight controller Pixhawk is connected to
the jetson TX2 via UART and Table 2 shows the connection
between the pins of the jetson TX2 and the Pixhawk.
A complete guide on how to connect the Pixhawk and the
Jetson TX2 devkit can be found in [60]. The last step before
flying the drone is to modify a few parameters in the Pixhawk
firmware. Table 3 shows the parameters to be modified and
its values. After this setup, the drone is ready to fly in the
onboard mode.

V. EXPERIMENTAL RESULTS
This section presents the findings of our research, organized
into three subsections corresponding to the first, second,
and third experimental environments. Besides, we show
the results of the SMRT algorithm, and without using the
algorithm in each subsection.

A. FIRST ENVIRONMENT
To replicate the ideal conditions for facial recognition without
interference from drone vibrations, we positioned the drone
on a desk and executed the facial recognition system. In this
setup, we assessed the performance of the facial recognition
system.
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TABLE 1. Pinout of the expansion IO connector.

TABLE 2. Pixhawk telemetry to Jetson TX2 UART0 pin mapping.

1) SIAMESE FACIAL RECOGNITION SYSTEM
The drone captured a total of 170 images of each person,
totaling 850 images. The model has been trained with these
images using transfer learning techniques, after running
the model in real-time, it achieves an overall accuracy of
approximately 98.21%, meaning the model can recognize the
person in front of the camera of the drone with a 98.21%
accuracy, This accuracy was calculated as the division
between the total number of correct predictions and the total
number of captured images. Table 4 shows us the results for
each person. The Siamese network model proves to be a good
tool for face recognition, offering acceptable precision, recall,
and F1-Score results.

2) SIAMESE FACIAL RECOGNITION SYSTEM USING SMRT
ALGORITHM
After running the model in real-time with the Siamese
network combined with the SMRT algorithm, the model
can recognize the person in front of the camera attached
to the drone with a 99.62% accuracy. This demonstrates
an improvement over the initial expectations, highlighting
the effectiveness of the SMRT algorithm in enhancing the
recognition of the model capabilities. Table 5 shows us the
results for each person. The combination of the Siamese
network model and the SMRT algorithm proves to be a
powerful tool for face recognition, offering robust precision,
recall, and F1-Score results across different individuals.
The high overall accuracy and the detailed performance
metrics for each individual, underscore the ability of the
model to identify persons in diverse conditions reliably.
From the confusion matrix in Fig. 19, we can estimate the
accuracy, precision, recall, and F1-score of the Siamese facial

FIGURE 19. Confusion matrix. Siamese facial recognition system using
SMRT algorithm in the first environment.

recognition system using the SMRT algorithm and compare
them against the values of the Siamese facial recognition
without using the novel algorithm as shown in Table 6.

B. SECOND ENVIRONMENT
The second environment is designed to evaluate the facial
recognition system while the drone is flying. In this way, the
vibration of the drone and the task of tracking the face of the
person can disrupt the facial recognition system. The drone
is located in a classroom where GPS signal is not available,
and automatic takeoff is initiated followed by the execution
of the facial recognition system.

1) SIAMESE FACIAL RECOGNITION SYSTEM
Similarly to the previous experiment, a total of 200 images
were captured for each person, resulting in 1000 images in
total. The model was trained with these images using transfer
learning techniques. Upon executing the model in real time,
it achieved an overall accuracy of approximately 97.72%.
Table 7 presents the individual results for each person. The
Siamese network model proves to be a valuable tool for
face recognition, delivering acceptable precision, recall, and
F1-Score outcomes.

2) SIAMESE FACIAL RECOGNITION SYSTEM USING SMRT
ALGORITHM
After running the model in real-time with the Siamese
network combined with the SMRT algorithm, it achieves
an overall accuracy of approximately 99.32%. This
demonstrates an improvement over the initial expectations,
highlighting the effectiveness of the SMRT algorithm in
enhancing themodel’s recognition capabilities. Table 8 shows
us the results for each person. The combination of the
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TABLE 3. Mavlink parameter settings.

TABLE 4. Performance metrics for the siamese model.

TABLE 5. Performance metrics for the siamese model + SMRT algorithm.

Siamese networkmodel and the SMRT algorithm proves to be
a powerful tool for face recognition, offering robust precision,
recall, and F1-Score results across different individuals.
The high overall accuracy and the detailed performance
metrics for each individual underscore the ability of the
model to identify persons in diverse conditions reliably.
From the confusion matrix in Fig. 20, we can estimate the
accuracy, precision, recall, and F1-score of the Siamese facial
recognition system using the SMRT algorithm and compare
them against the values of the Siamese facial recognition
without using the novel algorithm as shown in Table 9, in the
siamese facial recognition system, precision is higher than
accuracy, which in turn indicates that the model is good at
identifying positive cases for one or more classes but not as
good at correctly classifying certain specific classes.

C. THIRD ENVIRONMENT
The third environment is located in an open area with natural
lighting. The purpose of this experiment was to evaluate
the performance of the facial recognition system under
natural lighting and real weather conditions. On the day of
the experiment, the sky was partly cloudy with light rain.
We chose to conduct this experiment with only two subjects:
the first subject being the author of this investigation, and the
second subject being the laboratory research assistant. The

TABLE 6. Performance metrics for our siamese model against siamese
model+SMRT algorithm in the first environment.

TABLE 7. Performance metrics for the siamese model.

TABLE 8. Performance metrics for the siamese model + SMRT algorithm.

experiment was limited to two individuals for safety reasons,
as it was conducted in a real-world scenario with winds that
could potentially cause the drone to move towards a person.

1) SIAMESE FACIAL RECOGNITION SYSTEM
The drone captured a total of 130 images of each person,
totaling 260 images. The model has not been trained with
these images, so a low accuracy was expected. After running
the model in real-time, it achieves an overall accuracy of
approximately 90.0%. Table 10 shows us the results for each
person. The Siamese network model proves to be a good
tool for face recognition, offering acceptable precision, recall,
and F1-Score results. However, the variability in performance
among different individuals highlights the need to train the
model with our data.

2) SIAMESE FACIAL RECOGNITION SYSTEM USING SMRT
ALGORITHM
After running the model in real-time with the Siamese
network combined with the SMRT algorithm, the model
does not show the expected results, as it can recognize
the person in front of the drone’s camera with an 81.15%
accuracy. Table 11 shows us the results for each person. The
combination of the Siamese network model and the SMRT
algorithm proves to be a powerful tool for face recognition,

TABLE 9. Performance metrics for our siamese model against siamese
model+SMRT algorithm in the second environment.
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FIGURE 20. Confusion matrix. Siamese facial recognition system using
SMRT algorithm in the second environment.

but this will depend on other factors such as the number of
images obtained by the drone, the quality of the camera, the
light intensity on a cloudy day, etc. From the confusionmatrix
in Fig. 21, we can estimate the accuracy, precision, recall, and
F1-score of the Siamese facial recognition system using the
SMRT algorithm and compare them against the values of the
Siamese facial recognition without using the novel algorithm
as shown in Table 12.

D. STATE OF THE ART IN FACIAL RECOGNITION
In the results presented, we focused more on the first two
testing environments since the number of images, light
intensity, and environment are parameters we can control.
Using the SMRT algorithm enhances facial recognition, espe-
cially during drone tracking. In this subsection, We compare
our method with other state-of-the-art facial recognition
models employing Siamese networks and present our results
from the second environment. Table13 presents several
facial recognition models. Most of these models have been
trained on thousands of data points. In our case, we use
transfer learning, which means we can use the weights
of an already trained network, such as FaceNet [56], and
only train the final layers of the Inception network by
updating their weights. This approach allows us to achieve
our goal of recognizing only the individuals who are in our
database.

E. FACE TRACKING TIME
The drone tracks faces in front of the camera. To display
the tracking results, we conducted an experiment as shown
in Fig. 22, where the person stands in front of the drone at
point A, then moves to point B, returns to point A, and finally
moves to point C. The elapsed time between each point is

TABLE 10. Performance metrics for the siamese model.

TABLE 11. Performance metrics for the siamese model + SMRT algorithm.

FIGURE 21. Confusion matrix. Siamese facial recognition system using
SMRT algorithm in the third environment.

TABLE 12. Performance metrics for our siamese model against siamese
model+SMRT algorithm in the third environment.

calculated. Table 14 shows the response times from one point
to another. It can be observed that for short distances, the time
is long, which may be due to the need for improvement in
the SMRT + SORT algorithms to increase their efficiency.
Additionally, the time from point B to point A is slightly
different because the person’s face is not detected correctly
for a few seconds. The same occurs from point A to point C,
where the drone fails to detect the face, and the person needs
to move slightly to be detected. These errors can be addressed
in future research by training the Siamese network with more
data and improving the tracking algorithm. Furthermore, it is
necessary to analyze whether the processing of the SMRT
algorithm is performed on the CPU or GPU of the Jetson
TX2. Finally, it can be appreciated that the drone is capable
of recognizing a person in a database and tracking their
movement.
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FIGURE 22. Face tracking experiment.

VI. PERFORMANCE EVALUATION
To address the computational cost, inference time, and
running time of our proposed method, we conducted several
evaluations.

FIGURE 23. Comparison of loss results between the pretrained model
and the non-pretrained model.

A. COMPUTATIONAL COST
The computational cost is evaluated in terms of FLOPS
(Floating Point Operations Per Second). Our facial recog-
nition system comprises a Siamese network for training.
For inference, we only use the InceptionV2 model with
the weights from the trained Siamese model. Therefore,
we have measured the FLOPS for each layer of the inference
InceptionV2 network, as shown in Table 15. The total
computational cost of the inference model is approximately
0.48 billion FLOPS, indicating its efficiency and feasibility
for real-time applications on the Jetson TX2 platform.

B. INFERENCE TIME
Inference time refers to the time it takes for the model to
process an input and produce an output. In our experiments,
the inference time is measured by running the model on
the Jetson TX2 and calculating the time taken to process a

FIGURE 24. Comparison of validation loss results between the pretrained
model and the non-pretrained model.

frame. The inference time for our model was approximately
0.12 milliseconds per frame, which is sufficient for real-time
facial recognition applications.

C. RUNNING TIME
The running time encompasses the total time taken for the
entire process, including facial detection, facial recognition,
the use of the SMRT algorithm, and data storage. The tracking
time is presented in Table 14. The average execution time,
excluding tracking, was approximately 0.24 milliseconds,
demonstrating the system’s capability to operate effectively
in real-time scenarios. The tracking time is higher because the
speed of the movement of the subject in front of the camera
is slow, allowing for better control of the UAV in case of an
emergency.

VII. DISCUSSION
The facial recognition system consists of three important
components: facial detection, facial recognition, and face
tracking. Each task is essential for the operation of the system.
For facial detection, we have utilized the Haar Cascade
algorithm from OpenCV. Although this algorithm is not very
effective compared to others using deep learning, it remains
useful for conserving computational resources on the Jetson
TX2.

Three experiments have been conducted where it is
necessary to measure the accuracy of the facial recognition
system and the time it takes to track a person. In the first
environment, the drone was positioned above the desk. This
is because we need to simulate a setting with ideal flight
conditions, free from vibrations or other disturbances that
could affect facial recognition.

During the first experiment, the drone captured 850 images
of the person in front of it. The facial recognition system was
trained using the weights of FaceNet. As a result, the Siamese
network achieved an accuracy of 98.21%. Subsequently,
we incorporated our new algorithm SORT+SMRT, achieving
an accuracy of 99.62%.
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TABLE 13. Performance comparison of different methods.

TABLE 14. Tracking time between specific points.

This improvement suggests that integrating the SMRT
algorithm with the Siamese network significantly enhances
its facial recognition capabilities, potentially eliminating the
need for extensive additional training with new data to
achieve high levels of accuracy. This is because the SMRT
algorithm tracks the name of the person in front of the camera
and, even if the Siamese model predicts a different person
in front of the camera, the SMRT algorithm will continue to
assign the previous name unless the person disappears from
the camera frame.

For the second experiment, the environment is a classroom
where the drone is flown safely. Two parameters are
measured: first, the accuracy of facial recognition while the
drone is flying and tracking a person, and second, the time
elapsed between point A and point C.

A total of 1000 images were captured during the drone’s
flight in the second environment, achieving an accuracy
of 97.72%. The accuracy was lower compared to the first
environment, demonstrating that external factors such as
drone vibration, rotation, light intensity, etc., significantly
affect facial recognition.

Next, we applied the SORT+SMRT algorithm to analyze
how much the accuracy improves. We obtained an accuracy
of 99.32%, showing an improvement of almost 2%. This is
interesting because we were able to increase the accuracy
of the facial recognition system twice more than the first
environment and achieve similar and better results than
other models. The SMRT algorithm can still be improved
by incorporating image processing techniques such as noise

removal and reducing algorithm execution time, as well as
optimizing how the SMRT algorithm is integrated.

For the third experiment, we conducted our research on a
football field. For safety reasons, we chose to conduct this
experiment with only two participants: the research author
and a lab partner. The objective was to analyze the behavior of
the facial recognition system in a real environment and under
real conditions. The day was cloudy, causing significant
variations in light intensity. Additionally, there was light rain,
which could have affected facial recognition. It is important
to note that part of the facial recognition system includes
the drone taking precautions if a person is very close to
it, as explained in Section III-C. The system also features
automatic landing.

During takeoff, there were no strong winds, allowing
the drone to maintain its position. Throughout the flight,
the drone captured 130 images of each person, totaling
260 images. The obtained result was an accuracy level of
approximately 90%. However, compared to the previous two
experiments, the model exhibited decreased accuracy due
to various external factors such as vibrations, changes in
natural light intensity, and light winds that could have shifted
the drone during flight. Simultaneously, the SORT+SMRT
algorithm was executed, achieving an accuracy level of
81.15%, which did not meet our expectations.

This is attributed to the operation of the siamese network,
which has two inputs: a database and images captured by
the camera. Given that the database was created in an
environment with artificial light, the accuracy level is better
indoors than outdoors. The lower accuracy of the SMRT
algorithmmay be due to using two previous images before the
current one to obtain a better reference. If these two previous
images were classified as belonging to a different person, the
SMRT algorithm may maintain this incorrect classification,
even if the siamese network correctly identifies the person
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TABLE 15. Details of the facial recognition model Layers.

again. Subsequently, when the siamese network briefly stops
detecting and then resumes, or when the SORT algorithm
loses track of the face, the SMRT algorithm may reassign the
correct person’s name.

Both the siamese network and the SORT and SMRT algo-
rithms work together for precise tracking and identification
of individuals during drone flights.

The precision level of this latest experiment could be
enhanced by adding more photos of people in natural lighting
environments or applying data augmentation techniques to
obtain a variety of images. Despite this, the achieved preci-
sion level is close to that obtained by other facial recognition
methods, as shown in Table 12. It is important to highlight
that our research presents results from experiments conducted
while the drone was flying and tracking individuals, unlike
other studies that only show images captured by a drone
without considering its behavior during flight.

Next, we present the results of the time it takes for the drone
to travel from point A to point B, from point B back to point A,
and finally from point A to point C.We observed that the time
required to travel from A to B was approximately 20 seconds,
primarily because the person in front of the drone wasmoving
at a similar speed to the drone. If the person moved too
quickly, the drone could not keep up, as seen when the person
moved from B to A in 17.4 seconds, a faster time because the
person was facing the drone while moving. However, when
traveling from point A to point B, the drone momentarily
lost track of the person’s face and could not detect it until
the person slightly moved their head, after which the drone
quickly recognized and resumed tracking. The same occurred
when traveling from point A to point C; the drone lost track
of the person’s face because they were moving faster than the
drone and went out of the camera’s field of view. The person
had to step back for the drone to detect their face again and
resume tracking.

One reason the drone loses sight of faces is due to
using the Haar cascade algorithm from OpenCV for facial
detection, which is only effective with frontal faces and
cannot detect rotated faces. Another reason for prolonged
times is the execution time required for the Siamese network

along with the SORT and SMRT algorithms. In summary,
we have identified two key areas requiring improvement:
first, changing the face detection from Haar cascade to
another deep learning-based algorithm; second, optimizing
the execution time of the siamese network + SORT +
SMRT. Additionally, we plan to train the Siamese neural
network with more diverse data, including different light
intensities and environments, which will also incorporate
deep learning for facial detection, human pose recognition,
tracking control accuracy measurement, and robust tracking
algorithm.

In conclusion, our work demonstrates the potential to
contribute to Latin American society, which faces high crime
rates, through the use of drones capable of detecting, recog-
nizing, and tracking wanted individuals. Our implementation
of the Siamese network + SORT + SMRT contributes
to achieving the system’s ultimate goal. It is important to
mention that this research is conducted to contribute to
society and strictly prohibits its use for purposes that threaten
the lives of living beings.

VIII. CONCLUSION
In this paper, we have developed an autonomous drone
capable of recognizing a person’s face and following them
in GPS-denied environments. The facial recognition system
includes our new algorithm SMRT, which enhances facial
recognition accuracy. Our proposed method achieves an
accuracy of 94.45% using the SMRT algorithm, which
is acceptable compared to other conventional algorithms
given that the Siamese network is untrained. Field test
results indicate that the proposed method performs well in
indoor environments with artificial lighting, although the
dataset lacks diversity. The drone has demonstrated the
ability to perform autonomous flights and autonomous person
tracking. The benefits obtained from this research allow us to
implement a new version of our drone with gait recognition
and human pose estimation for improved tracking capability.
The implementation of the facial recognition system in drones
issues a deeper understanding of the potential use of drones
to reduce crime and violence in the world.
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