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ABSTRACT The paper introduces VATMAN (Video-Audio-Text Multimodal Abstractive summarizatioN),
a novel approach for generating hierarchical multimodal summaries utilizing Trimodal Hierarchical Multi-
head Attention. Unlike existing generative pre-trained language models, VATMAN employs a hierarchical
attention mechanism that hierarchically attends to visual, audio, and text modalities. However, in the
existing literature, there is a lack of cross-modal attention at the block level. In light of this, we propose
a block-level cross-modal attention mechanism, termed Blockwise Cross-modal Multi-head Attention
(BCMA), to enhance the summarization performance. This attention mechanism enables the model to
simultaneously capture context information from visual, audio, and text modalities, providing a more
comprehensive understanding of the input data. In terms of performance, our VATMAN model outperforms
the state-of-the-art trimodal model based on RNN in the How2 dataset. Specifically, it achieves a Rouge-
1 improvement of 7.53% and Rouge-L improvement of 2.19%, demonstrating superior summarization
quality. In addition, compared to uni-modal and di-modal baseline transformer models, VATMAN
exhibits significant improvements in Rouge-L scores by 11.12% and 3.85%, respectively, highlighting
its effectiveness in capturing hierarchical relationships across modalities. Furthermore, we evaluated our
generated abstractive summaries using various metrics, including BLEU, METEOR, CIDEr, ContentF1,
and BERTScore. Our proposed model consistently outperformed others across most metrics, demonstrating
its effective performance in qualitative assessments.

INDEX TERMS Generative AI, natural language generation (NLG), large language model (LLM),
multimodal abstractive summarization, How2, hierarchical crossmodal multi-head attention.

I. INTRODUCTION
Text summarization is a natural language processing task
aimed at providing concise and easily readable summaries
of given corpora, enabling users to quickly grasp important
information. With the exponential growth of textual data,
such as documents, articles, and news, the importance of text
summarization is increasingly recognized [1]. Summariza-
tion tasks are classified into extractive summarization, which
extracts the most important sentences or paragraphs based
on statistical or linguistic features from the original doc-
ument, and abstractive summarization, which semantically
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understands the entire content of the original document and
generates summaries in a new way [2], [3], [4].

Research in abstractive summarization includes methods
based on recurrent neural networks (RNN) and transformer-
based approaches. Previous studies in the RNN-based meth-
ods include ‘‘Abstractive sentence summarization with atten-
tive recurrent neural networks’’ [2], ‘‘Bottom-up attention’’
[5], and ‘‘MAST’’ [6]. More recently, transformer-based [7]
sequence-to-sequence (seq2seq) pre-trained languagemodels
such as BART [8], T5 [9], PEGASUS [10], ProphetNet [11],
GPT-3 [12], and GPT-4 [13] have significantly advanced text
generation research, including abstractive summarization.

Recent textual information on the web is rarely generated
in isolation but often accompanied by images, videos, audio,
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FIGURE 1. How2 dataset.

or other modalities [14], [15], [16], [17]. This has led
to various research efforts in natural language processing
tasks, utilizing not only text but also information from
other modalities to obtain richer information and enhance
performance [6], [18], [19], [20].

However, there is a significant lack of cases applying
giant pre-trained language models to multimodal abstractive
summarization tasks, integrating video, audio, and text
information simultaneously [21]. Therefore, this paper pro-
poses VATMAN (Video-Audio-Text Multimodal Abstractive
Summarization), a generative summarization model that
fuses information from video, audio, and text based on
giant pre-trained language models. The model demon-
strates outstanding performance in generative summarization
through experiments on the How2 dataset. By injecting video
and audio information simultaneously into a pre-trained
giant language model, VATMAN contributes significantly
to the tri-modal generative summarization, outperforming
unimodal and dimodal baseline models by 11.12% and
3.85%, respectively, according to Rouge-L metrics. Fig.1
is a brief overall description of the video(images), audio,
and text in the How2 dataset. The details constituting the
How2 dataset will be discussed in detail in Section IV-A. The
contributions of this study are summarized as follows:

• We introduce a novel approach for summarizing the con-
tent of videos into text using an LLM-based generative
model, which comprehensively understands the content
of the videos.

• We develop a fusion block that integrates features
from video, audio, and text modalities simultaneously,
enabling machines to effectively learn and generate
content.

• We validate the text generation capability of the
proposed method under diverse conditions, we verify it
using theHow2 dataset and demonstrate its effectiveness
through 11 evaluation techniques, including the latest
state-of-the-art method, BERTScore.

The paper is organized as follows. Section II reviews the
relevant literature and Section III describes the proposed solu-
tion in detail. Section IV delves into the experimental results
and provides a detailed discussion. Section V concludes the
paper and discusses the limitations and future work.

II. RELATED WORK
A. UNI-MODAL ABSTRACTIVE SUMMARIZATION
Uni-modal Abstractive Summarization aims to comprehend
the most crucial information from input documents and
generate concise, readable summaries. In this field, where
only one modality, namely text, is involved, significant
advancements have been achieved due to the progress in
sequence-to-sequence models, attention mechanisms, and
the development of deep neural networks. Reference [22]
introduced the coverage mechanism to address issues like
inaccuracies and repetitive word usage in generated sum-
maries. Reference [23] tackled repetitive and inconsistent
structures by introducing a novel neural network model
that processes input and output separately, coupled with
supervised word prediction and reinforcement learning.
Reference [24] proposed a sentence-level semantic similarity
contrastive learning method for abstractive text summariza-
tion, which distinguish salient information from documents
in terms of the semantic similarity.

Recently, research efforts such as BART [8], T5 [9],
PEGASUS [10], ProphetNet [11], GPT-3 [12], and Z-Code++
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FIGURE 2. VATMAN (Framework of proposed method).

[25] have widely employed pre-trained large language
models utilizing massive corpora. These models exhibit
excellent performance in document generation summariza-
tion, showcasing the effectiveness of leveraging massive
pre-training in this domain [26]. Furthermore, they utilize
attention mechanism [27] to allocate importance to various
parts of the input sequence, which proves beneficial for
processing long sentences or documents.

B. MULTI-MODAL ABSTRACTIVE SUMMARIZATION
Multimodal Abstractive Summarization differs from Single-
Modal Abstractive Summarization by involving two or more
modalities in the input. In this context, multimodal abstractive
summarization receives input not only in the form of text
documents but also incorporates various modalities such
as images, videos, and audio. Reference [28] collected
a multimodal news article corpus containing 500 English
news articles with accompanying videos and annotations.
Reference [29] introduced the How2 dataset, consisting of
approximately 2,000 hours of short educational videos, each
summarized in 2-3 sentences. Reference [18] proposed a
multimodal sequence-to-sequence model with hierarchical
attention to integrate diverse modality information into
consistent summaries. Reference [30] presented a multi-stage
fusion network with a fusion forget gate module, capable
of modeling fine-grained interactions between multiple-
source modalities. Reference [6] proposed a sequence-to-

sequence model with trimodal hierarchical attention, based
on recurrent neural networks, to utilize information from text,
video, and audio modalities. [31] introduced a model that
combines video informationwith a pre-trained large language
model through an additional attention layer. Reference [20]
proposed two auxiliary tasks and employ multi-task learning
to guide the model to learn the paragraph-level vision
and language semantic alignment. GPT-4 [13] employs a
large-scale multimodal approach, utilizing the Transformer
architecture to process both image and text inputs to generate
text outputs. This showcases human-level performance
on various benchmarks, including a simulated bar exam,
and leveraging infrastructure and optimization methods for
predictable behavior across scales.

While prior studies have demonstrated excellent perfor-
mance in generative summarization, there has been a lack
of transformer-based abstractive summarization cases that
utilize video, audio, and text information simultaneously.
Therefore, in this study, we aim to build a pre-trained
language model-based abstractive summarization model
that leverages information from both text and video/audio
modalities.

III. PROPOSED METHOD
In this paper, we leverage the exceptional text gener-
ation capabilities of a pre-trained sequence-to-sequence
language model and apply it to multimodal abstractive

119176 VOLUME 12, 2024



D. Baek et al.: VATMAN: Integrating VATMAN via CMA Fusion

summarization. To achieve this, we propose a model named
VATMAN (Video-Audio-Text Multimodal Abstractive Sum-
marizatioN), which utilizes a pre-trained language model-
based trimodal hierarchical multi-head attention technique.
This approach aims to extend the model’s capabilities beyond
text summarization to include various modalities such as
video and audio. VATMAN represents an innovative step
towards effective multimodal summarization, harnessing
the strengths of pre-trained language models and trimodal
attention mechanisms.

A. PRE-TRAINED LANGUAGE MODELS FOR ABSTRACTIVE
SUMMARIZATION
The structure of the Transformer-based sequence-to-
sequence language model in this study is identical to the
one depicted in Fig.2, excluding the proposed Video-Audio-
Text Fusion Block. The input text of the language model
undergoes tokenization, followed by transformation into a
sequence of token embeddings, denoted as Xtext ∈ RN×dt .
Here, N represents the length of the sequence, and dt
represents the dimension of the features. To preserve
positional information within the token embeddings, the
positional embedding Epe ∈ RN×dt ’ is added, resulting in the
value Z enc0 which is then used as the input to the encoder,
as defined in (1).

Z enc0 = Xtext + Epe (1)

The encoder is composed of L encoder layers, where
each encoder layer consists of: Encoder Multi-head
Self-Attention(EMSAtt) and Feed-Forward Network(FF).
EMSAtt is designed to capture relationships and depen-
dencies within the input sequence through multi-head self-
attention. FF processes and transforms the information
captured by the self-attention mechanism using a feed-
forward network. Additionally, after passing through each
sub-layer, the output undergoes a residual connection and is
subjected to layer normalization (LN ). This step, as shown
in (2), involving residual connection and layer normalization
enhances the stability and efficiency of information flow
through the encoder layers.

Z enct = LN (FF(EMSAtt(Z encl−1) + Z encl−1)

+ LN (EMSAtt(Z encl−1) + Z encl−1)) (2)

Similar to the encoder, the decoder is also composed of
L decoder layers. However, there are two key differences.
Firstly, the multi-head self-attention (MSAtt) is masked, pre-
venting it from referencing future words during the prediction
of the next word. Secondly, an additional sub-layer, the multi-
head encoder-decoder attention, is introduced to integrate
information encoded during the decoding process. This
sub-layer utilizes decoder embeddings to combine with the
output embeddings from the encoder. In this study, we employ
the BARTmodel [8] as the backbonemodel, which introduces
a novel pre-training task into the conventional Transformer
architecture.

B. FEATURE EXTRACTION
Video data consists of 16 frames per second, following prior
research [6], [18], [29], [31]. Utilizing the Kinetics dataset
[32], we extract features using a pre-trained 3D ResNeXt-
101 network [33], resulting in 2,048-dimensional features per
frame as illustrated in Fig.3.

For audio data, we employ Kaldi [34] to extract 40-
dimensional filter bank features and 3-dimensional pitch
features. These features are combined, resulting in 43-
dimensional audio features. Additionally, to incorporate
speaker variability per video, we apply Cepstral Mean and
Variance Normalization (CMVN).

The thus-extracted 2,048-dimensional video features and
43-dimensional audio features serve as input for the video-
audio-text fusion methodology.

C. MULTI-MODAL FUSION
As shown in Fig.2, We insert a fusion unit block at the
end of the encoder block. This sub-layer includes a fusion
mechanism for video-audio-text, along with residual connec-
tions and layer normalization. We propose a video-audio-text
fusion mechanism depicted on the right side of Fig.2. Given
the embeddings from each modality text input Ztext ∈ RN×dt ,
video input Zvideo ∈ RM×dt , and audio input Zaudio ∈ RK×da ,
the output of the first fusion (video-text fusion) mechanism
Z ′
t ∈ RN×dt passes through a hidden layer with dimensions

identical to the text input. It encapsulates both the attention
information from text and image modalities.

Next, the output of this hidden layer Zt serves as the query,
while the audio input Zaudio serves as the key and value inputs
for the second fusion (video-audio-text fusion) mechanism.
At this point, the final hidden layer value Z ′′

t ∈ RN×dt is
produced. Since this matches the dimension of the text
input Ztext before passing through the video-audio-text fusion
layer, the dimension remains consistent even when stacking
multiple layers. This method hierarchically attends to video,
audio, and text modalities.

1) CROSS-MODAL MULTI-HEAD ATTENTION(CMA)
Attention mechanism assigns weights to each element of an
input sequence to focus on important information, commonly
used in natural language processing and computer vision for
selective processing of data [7].

Attention(Q,K ,V ) = softmax
(
QKT
√
dk

)
V (3)

Here, Q, K , and V as shown in (3), represent the Query,
Key, and Value matrices respectively, where dk denotes the
dimensionality of the Key vectors.

In the framework of Cross-modal Multi-head Attention
(CMA) [28], we conceptualize the query as text (modality
α) and the key and value as video (modality β), though
other modalities are also feasible. The mechanism computes
weighted sums of values based on the similarity between
modality α and β. We operationalize information fusion from
β to α by embedding the features of α into Query and the
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FIGURE 3. Video features through ResNeXt-101 network.

features of β into Key and Value. This latent adaptation from
β toα is embodied in the CMA(Qα,Kβ ,Vβ ). These quantities
are described in (4).

CMA(Qα,Kβ ,Vβ ) = softmax

(
QαKT

β
√
dk

)
Vβ

= softmax

(
XαWQαX

T
β W

T
Kβ

√
dk

)
XβWVβ

(4)

WQ,WK , andWV are weight matrices for each head, linearly
transforming the features before applying the attention mech-
anism. By leveraging this approach, the model effectively
captures cross-modal interactions between different types
of information, facilitating comprehensive understanding
and learning across modalities. Building upon this CMA
technique, we introduce a method that fuses text and video
from the rear end, followed by fusing the resulting hidden
vector with audio.

2) VIDEO-TEXT CMA FUSION
In the first video-text fusion block, the query (Q) is a
feature vector containing the text information (Ztext ) passed
through the previous layer. This feature vector is linearly
transformed to a common dimension for Cross-modal Multi-
head Attention (CMA) operations as shown in (5). The
keys (K ) and values (V ) are feature vectors obtained by
linearly transforming the last 2,048 dimensions of visual
features from video data to the common dimension as shown
in (6), (7). Subsequently, cross-modal multi-head attention is
applied, fusing the query text features with the key and value
visual features, resulting in the output vector (O) as expressed
in (8). This output vector is then linearly transformed to
the dimension of the original input text features (Ztext )
and concatenated with the initial text features, yielding
the resulting vector Z ′

t . This concatenated feature vector is

expressed in (9).

Q = ZtextWq Q ∈ RN×dc (5)

K = ZvideoWk K ∈ RM×dc (6)

V = ZvideoWv V ∈ RM×dc (7)

O = CMA(Q,K ,V ) O ∈ RN×dc (8)

Z ′
t = Concat(Ztext ,O)Wt (9)

The CMA operation employed here utilizes multiple heads
to learn andmodel relationships between different modalities,
such as text, video, and audio features [35]. Q, K, and V
represent features extracted from different modalities, like
text and video. This technique combines features from diverse
modalities to capture relationships between them.

3) VIDEO-AUDIO-TEXT CMA FUSION
The feature vector (Z ′

t ) passing through the video-text fusion
block undergoes a linear transformation to become the
query (Q′) as shown in (10). The keys (K ′) and values
(V ′) are feature vectors obtained from the audio features,
representing the last 43 dimensions transformed into a
common dimensionality (common dimension) as shwon
in (11), (12). Subsequently, the second cross-modal multi-
head attention is applied, where the query representing the
fusion of text and video features is combined with the keys
and values representing audio features, resulting in the
output vector (O′) as expressed in (13). Finally, the feature
vector (Z ′

t ) passing through the video-text fusion block is
concatenated and linearly transformed to the dimensions
of the original text, yielding the final result vector (Z ′′

t ),
as expressed in (14).

Q′
= Z

′Wq
text Q′

∈ RN×dc (10)

K ′
= ZaudioWk K ′

∈ RM×dc (11)

V ′
= ZvideoWv V ′

∈ RM×dc (12)

O′
= CMA(Q′,K ′,V ′) O′

∈ RN×dc (13)

Z ′′
t = Concat(Z ′

text ,O
′)Wt (14)
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TABLE 1. Training hyperparameter.

The final result vector Z ′′
t retains the dimensions of the

original text features while encompassing both video and
audio features in a single vector. This vector serves as the
input sequence for the multi-head encoder-decoder attention
block in the transformer’s decoder.

IV. EXPERIMENT
A. HOW2 DATASET
The How2 Dataset consists of a total of 79,114 video,
transcripts, summary data, divided into a set of 2,000 hours
with various domains such as cooking, music, indoor, outdoor
activities, and sports. Additionally, there are 13,445 audio,
video, transcripts, summary data, forming a set of 300 hours.
This dataset, as shown in Fig.1, comprises short instructional
videos spanning diverse domains, where transcripts accom-
panying the videos provide textual representation converted
from the speaker’s audio, conveying the overall content of the
visual material. This dataset was compiled by downloading
videos from YouTube, accompanied by various metadata,
including accurate subtitles and summaries in English,
authored by the video creators. The summaries condense
abstracted overviews into 2-3 sentences, demonstrating an
understanding of both video and audio modalities simul-
taneously by humans. During the summarization process,
if access is limited to text only, understanding whether the
term ‘‘green’’ in the subtitles refers to ‘‘green’’ or signifies
the ‘‘the surface of a golf course’’ remains unclear. However,
with additional visual context (video modality) of a flagpole
in green grass or auditory context (audio modality) of outdoor
sounds associatedwith hitting a golf ball, a multimodal model
can accurately interpret the expression as ‘‘the surface of a
golf course’’ [29]. Therefore, the How2 dataset is employed
for experiments that aim to maximize the utilization of visual
and auditory contexts.

B. IMPLEMENTATION DETAILS
1) DATA PREPROCESSING
In this study, performance needs to be evaluated when inject-
ing auditory context (audio) to simultaneously leverage three
modalities. To achieve this, 300 hours of text/video/audio
data are sampled based on the IDs of 300 hours of audio
data. A total of 13,445 data points, consisting of 12,798

training samples, 520 validation samples, and 127 test
samples, are utilized for experimentation. Subtitles are
normalized to lowercase and undergo punctuation filtering.
After tokenization, the subtitles are preprocessed by either
segmenting into 512-token sequences or padding. Video
and audio data have features extracted as described in
Section III-B. Feature Extraction resulting in feature vectors
of dimensions 2048 and 43, respectively.

2) SOFTWARE AND HARDWARE
In this study, we employ the PyTorch deep learning
framework [36] for code implementation and leverage
PyTorch-Lightning for distributed training. Additionally,
the experiments are conducted using four Nvidia GeForce
RTX 3090 GPUs.

3) HYPERPARAMETER SELECTION
Hyperparameters are variables that tune and control machine
learningmodels or deep learning algorithms. These variables,
set by the user before training the model, consist of values
that affect the model’s structure, learning process, and more.
Table 1 presents the final selection of hyperparameters used
in the training. As mentioned in Fig.2, key hyperparameters
include the number of layers (L) in the encoder and decoder,
the backbone architecture, attention type in the fusion block,
the number of heads, common dimensionality used in fusion,
batch size, epochs, learning rate, and optimizer. For models
generating unimodal summaries where the input is text only,
the attention type utilizes Dot-product attention. However,
for the proposed tri-modal model (VATMAN) designed for
generating summaries from three input modalities, with an
updateable parameter count around 220 million, a memory
issue occurs when using a batch size of 32. Consequently, the
batch size is adjusted to 16.

C. EVALUATION METRICS AND MODEL PERFORMANCE
COMPARISON
ROUGE-N [37] measures the ratio of N-grams in the model-
generated summary that overlap with the reference summary.
Specifically, ROUGE-1 represents the unigram overlap,
ROUGE-2 represents the bigram overlap, and ROUGE-L
represents the ratio of the longest common subsequence

VOLUME 12, 2024 119179



D. Baek et al.: VATMAN: Integrating VATMAN via CMA Fusion

TABLE 2. Evaluation results(Rouge, BLEU) of baselines and our proposed model(VATMAN) on test data of How2 300hours.

TABLE 3. Evaluation results(Rouge, BLEU, METEOR, CIDEr, content F1, BERTScore) of T5, BART, and VATMAN on test data of How2 300hours.

between themodel summary and the reference summary. This
can be generalized as in (15).

ROUGE-N =
Number of overlapped n-gram

Total words in reference summary
(15)

BLEU-N [38], similar to ROUGE, is an N-gram count-
based metric used for evaluating natural language processing
performance. It measures how many overlapping words exist
between reference summaries (R) and generated summaries
(S), calculating precision and recall, with results ranging
between 0 and 1, which can be defined as in (16).

BLEU = min
(
1,
S length
R length

)( 4∏
n=1

n-gramprecision

)
(16)

Content F1 Score, which can be defined as in (17), is a
comprehensive evaluation metric calculated as the harmonic
mean of Precision and Recall. It evaluates the semantic
alignment between the given input sentence and the generated
sentence in sentence generation tasks. Recall measures the
ratio of overlapping content words in the summary to the total
number of words in the original summary, while Precision
is an indicator of the proportion of overlapping content in
the machine-generated result or summary compared to the
reference sentence.

Content F1 = 2 ×
Precision × Recall
Precision + Recall

(17)

METEOR [39] complements the limitations of BLEU
and is based on a generalized concept of unigram matching
between machine-generated translation and human-made
reference translation. Fmean is the harmonic mean of
accuracy (precision) and recall. The penalty is calculated
by determining the chunks where the candidate translation
and the reference translation match, and it is smallest when
both translations perfectly match, i.e., when the chunk is 1.
METEOR is the product of these two values as shown in (18).

METEOR = Fmean × (1 − Penalty) (18)

CIDEr [40] is provided as an evaluation metric for
tasks involving the description of images as sentences.
It is a technique used to automatically assess how well
candidate sentences for an image align with the aggregate of
image descriptions. For encoding, it performs TF-IDF(Term
Frequency-Inverse Document Frequency) [41] weighting for
each N-gram.

BERTScore [42] involves passing reference and generated
sentences through the BERT model to extract contextual
embeddings. It then calculates precision and recall based on
the cosine similarity between the contextual embeddings of
the two sentences. Reference [42] also proposed a method
that incorporates IDF values into the similarity calculation.
BERTScore is advantageous due to its precision, recall, and
correlation with qualitative evaluations, thanks to its refined
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TABLE 4. Comparison of generative summary results for gifferent modalities on VATMAN.

embeddings, contextual understanding, syntactic structure
reflection, and low-frequency word weighting.

Table 2 compares the performance of the proposed
multimodal summarizationmodel with prior research [6], [7],
[8], [9] using the same test dataset. Based on the quantitative
experimental results, the proposed method achieved the
best performance, surpassing the existing methods across
all evaluation metrics. Specifically when compared to the
existing trimodal model based on RNN, our model achieves a
Rouge-1 improvement of 7.53% and Rouge-L improvement
of 2.19%, demonstrating superior summarization quality. the
highest ROUGE-1, 2, and L scores reflect our method’s
ability to match human-generated summaries either locally

or globally. Additionally, the highest BLEU score indicates
our machine-generated translations are closer to human
translations.

Table 3 compares the performance of our proposed model,
which utilizes video, audio, and text data, with unimodal and
dimodal giant language models BART and T5. Compared
to the unimodal and dimodal baseline transformer models,
VATMAN shows significant improvements in Rouge-L
scores by 11.12% and 3.85%, respectively, highlighting its
effectiveness in capturing hierarchical relationships across
modalities. This suggests that incorporating information
from video or audio alongside text leads to better per-
formance in abstractive summarization than relying solely
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on text. Furthermore, the most notable improvements are
observed when information from video, audio, and text
is simultaneously integrated. In addition, our experiments
demonstrate that our proposed method outperforms others
not only in quantitative evaluation metrics like ROUGE and
BLEU but also in qualitative evaluation metrics (METEOR,
CIDEr, Content F1, BERTScore). When one more input
modality was added to the T5 model, the BERTScore
increased by 0.16% and 0.39% compared to the single-
modality baseline, respectively. Furthermore, we aim to
confirm the superior performance of our proposed model.
So, we compared its performance with that of previous
models across various input modalities using the latest
performance technique, BERTScore. When our model used
all three modalities as input, the BERTScore improved by
0.56% compared to the T5 single-modality baseline and
by 0.23% compared to the BART single-modality baseline.
Particularly noteworthy is that, unlike previous studies,
we used the state-of-the-art BERTScore technique, and the
highest score we achieved indicates our method’s profi-
ciency in contextual understanding and reflecting syntactic
structure.

D. QUALITATIVE ANALYSIS OF GENERATED ABSTRACTIVE
SUMMARIES
Previous studies [6], [30], [31] have focused on qualitative
human-evaluations between references and generated sum-
maries. Human-evaluation is crucial for the advancement of
Natural Language Generation (NLG) systems, and recently,
various methods have been proposed to fulfill this purpose
[43], [44], [45]. Table 4 compares the generated summaries
from our proposed model, VATMAN. The first generated
summary discusses a cooking video created by a seafood
expert on Christmas Eve. While the text-only summary
includes instructions on crushing potatoes, the summaries
that incorporate audio and text data provide additional details
on preparing holiday dishes during ‘christmas dinner’. It is
evident that the model understands and generates content
related to the need for a ‘video clip’ during holidays when
both video and audio information are utilized. The Second
generated summary relates to methods for viewing lyrics
on an iPod as outlined in the reference. While the uni and
dimodal models lack specific information about the temporal
sequence of the search process, the trimodal model, including
video and audio details, certainly understands and explains
the fine-grained act of using ‘scrubber’. The third generated
summary pertains to the methods of becoming a portrait
photographer, as outlined in the reference. While the uni
and dimodal models lack specific details about both natural
and studio lighting, the trimodal model, when provided
with video and audio information, accurately capture and
explain these lighting conditions and how they interact with
human skin.

From these summaries, it is evident that summaries
generated with the inclusion of video or audio outperform

those using only text data. Moreover, the combination of
video and audio information results in more comprehensive
summaries, surpassing the richness of content in previous
modalities. Additionally, there is a notable enhancement
in the inclusion of specific actions and methods in the
summaries.

V. CONCLUSION
In this paper, we propose the VATMAN model, which
is based on the pretrained language model (BART) and
employs a Trimodal Hierarchical Multi-head Attention
technique. While previous research in multimodal abstractive
summarization tasks featured transformer-based multimodal
models, they primarily focused on using text and video to
generate summarized text, neglecting additional modalities
such as audio. This limitation motivated us to assume
that a multimodal structure capable of utilizing additional
modalities simultaneously could enhance the performance
of the summarization task by incorporating previously
unexplored information. Indeed, in the related work, it has
been confirmed that as additionalmodalities are incorporated,
machines better comprehend and perform generation tasks
more effectively [6], [18], [29], [30], [31]. To address
this, we introduce an additional attention layer that allows
the integration of audio information while maintaining the
overall structure of the existing multimodal framework that
utilizes text and video information concurrently. Moreover,
we conducted a comprehensive evaluation of VATMAN,
our proposed summarization model, leveraging the publicly
available How2 dataset. We employed various evaluation
metrics, including ROUGE, BLEU, Content F1, BERTScore,
METEOR, and CIDEr, to assess performance effectively. The
experimental results consistently demonstrate the superiority
of our proposed model, which utilizes audio information
in addition to text and video, across all evaluation metrics.
Particularly noteworthy is the experimental verification of the
importance of trimodality information through experiments
that combine text, video, and audio information. Furthermore,
we conducted a qualitative evaluation of our proposed
VATMAN model by varying the input modalities, including
Unimodal, Di-modal, and Tri-modal configurations. Through
this evaluation, we confirmed that summaries generated by
combining all trimodal information are richer and contain
more informative content. As future research directions,
we anticipate exploring alternative model structures that
combine audio information or additional modalities. While
our study demonstrates the effective improvement of sum-
marization performance through the hierarchical structure,
additional research is needed to determine the extent of
integration for audio information or additional modalities.
Expanding from the perspective of incorporating additional
modality information, research on model structures consid-
ering integration levels can further enhance summarization
performance. Furthermore, we aim to develop an integrated
model trained on a broader range of data and test it on various
datasets to explore a robust method.
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