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ABSTRACT Differentially private (DP) synthetic data has emerged as a potential solution for sharing
sensitive individual-level biomedical data. DP generative models offer a promising approach for generating
realistic synthetic data that aims to maintain the original data’s central statistical properties while ensuring
privacy by limiting the risk of disclosing sensitive information about individuals. However, the issue
regarding how to assess the expected real-world prediction performance of machine learning models trained
on synthetic data remains an open question. In this study, we experimentally evaluate two different model
evaluation protocols for classifiers trained on synthetic data. The first protocol employs solely synthetic data
for downstream model evaluation, whereas the second protocol assumes limited DP access to a private test
set consisting of real data managed by a data curator. We also propose a metric for assessing how well the
evaluation results of the proposed protocols match the real-world prediction performance of the models.
The assessment measures both the systematic error component indicating how optimistic or pessimistic the
protocol is on average and the random error component indicating the variability of the protocol’s error. The
results of our study suggest that employing the second protocol is advantageous, particularly in biomedical
health studies where the precision of the research is of utmost importance. Our comprehensive empirical
study offers new insights into the practical feasibility and usefulness of different evaluation protocols for
classifiers trained on DP-synthetic data.

INDEX TERMS Biomedical data, classification, differential privacy, generative AI, model evaluation,
synthetic data.

I. INTRODUCTION
Sharingmedical data for research purposes is challenging due
to privacy concerns and strict regulation such as GDPR [1].
This is a major limiting factor when developing machine
learning based medical applications such as diagnostic
classifiers, prognostic models or patient monitoring systems
that require individual-level patient data for training and
validation [2].

Synthetic data generation has been proposed as a method
for enabling medical data sharing without compromising
patient privacy [3]. However, it has been repeatedly shown,

The associate editor coordinating the review of this manuscript and

approving it for publication was Rupak Kharel .

that synthetic data is not inherently private [4], [5]. The
outputs of machine learning models can leak information
about their training data [6], and generative models used to
create synthetic data are no different in this respect. This,
in turn, creates vulnerabilities to attacks such as membership
and attribute inference [4], [7]. The most widely accepted
solution to fix this shortcoming is to combine generative
models with differential privacy (DP). DP is a mathematical
framework proposed by Dwork et al. [8], which allows
quantifying and enforcing privacy for computations done on
sensitive data. It provides a probabilistic guarantee on how
much information could be revealed about any individual
from the result of the computation, that could not be inferred
if the individual was not present in the data. Numerous
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methods have been proposed in the recent years to generate
DP-synthetic tabular data which includes marginal-based
approaches [9], [10] often achieving higher performances in
comparison to the alternative approaches such as generative
adversarial networks and diffusion models [11], [12], [13]
Even though DP is widely regarded as the leading standard

for privacy protection, several challenges remain when
deploying it in real healthcare applications. Achieving a
balance between utility and privacy requires careful selection
of the privacy parameters and other implementation consider-
ations [14]. However, there is limited understanding of what
an appropriate value of the privacy parameter is for a specific
system, purpose, or dataset, and little guidance on how to
determine it. Other issues to consider in DP implementation
are ensuring regulatory compliance like the GDPR [1], and
effectively communicating DP guarantees to build trust.
Addressing these challenges requires collaboration between
researchers, regulators, and industry practitioners to facilitate
broader adoption of DP in practical healthcare applications.
Finally, once the privacy level is agreed on, one should
leverage advanced and well tested DP-algorithm in order to
achieve state-of-the-art utility level.

It is an open question how to evaluate the real-world
prediction performance of machine learning models trained
on DP-synthetic data. For example, DP-synthetic datasets can
introduce or amplify biases in machine learning models [15],
[16]. Enforcing privacy through DP always comes with a
cost, with DP-synthetic data by definition being a distorted
version of the real data that may not yield the same results
as the original would [8], [17], [18], and [19]. Consequently,
even if a classifier trained on synthetic data performs well on
synthetic test data, it might not make as accurate predictions
when applied to real-world data. A common alternative
approach to evaluating the quality of classifiers trained on
synthetic data is to calculate the prediction performance on a
test set consisting of real data [20], [21], [22]. This is a useful
protocol in scientific studies where the goal is to compare the
quality of different data synthesizing methods, constituting
the so-called downstream evaluation approach. However,
these approaches may not be directly implementable in
sensitive real-world applications. The primary justification
for the use of DP-synthetic data arises from the issue that
unrestricted access to private data cannot be granted due to
privacy concerns.

The objective of this study is to address the existing
void in literature on assessing the predictive performance of
classifiers trained using DP-synthetic data through empirical
investigation of two alternative downstream evaluation pro-
tocols. In the first protocol the analyst has access only to
DP-synthetic data to test the model, whereas, in the second
protocol a DP-query is allowed to be performed on the
real held-out data. This data is on the curator’s side and it
is not publicly available, but the analyst is able to submit
the models trained on DP-synthetic data and receive the
DP-wise calculated statistics such as classifier performance.
Furthermore, to asses the performance of each of these

protocols, we have introduced a protocol evaluation criteria
by taking into account both the systematic and random
aspects of the error within each protocol.

This paper extends our previous work [23], where prelimi-
nary results with a more limited evaluation were presented.
In this study, we introduce a novel measure for assessing
the quality of the protocols in evaluating the downstream
classifiers. Further, we conduct a comprehensive empirical
assessment of the two protocols across five medical datasets
and five different DP-synthetic data generation methods.

II. BACKGROUND
A. DIFFERENTIAL PRIVACY
A randomized algorithm A is (ϵ, δ)-differential private if for
all datasets D1 and D2 that differ in at most one record, and
for all measurable sets S of outputs, the following inequality
holds:

Pr[A(D1) ∈ S] ≤ eϵPr[A(D2) ∈ S] + δ. (1)

where ϵ represents the user-defined upper bound on the
privacy loss, which affects the amount of noise added to the
algorithm and δ is a small constant representing a extremely
unlikely event, where the guarantee does not hold [24].
(ϵ)-DP is a special case of (ϵ, δ)-DP where δ = 0. A smaller
value of ϵ provides a stronger guarantee. (ϵ, δ)-differential
privacy guarantees that an outcome of the algorithm is nearly
equally probable on any two datasets that differ in at most
one record, with privacy loss bounded by epsilon ϵ with
probability at least 1-δ.

Generally, in DP methods privacy is protected at a given
level of ϵ if the algorithm’s output does not heavily depend on
the input data of any single individual present in the dataset.
The results should be almost the same whether or not an
individual’s information is included in the dataset. This is
achieved by adding randomization to the algorithm applied
on the data utilizing a noise mechanism calibrated based on
the level of privacy (ϵ) and the algorithm to be privatized.

Although a singular, universally acceptable value for the
privacy budget ϵ cannot be established due to its contextual
dependency, in the literature, values of ϵ ≤ 1 have been
considered to provide strong guarantee [25], [26], and
depending on the type of data and task, values of ϵ ≤ 10 have
been observed to still result in meaningful guarantees [27].

B. DP-SYNTHETIC DATA
The goal of generating DP-synthetic healthcare data is to
create synthetic records that closely resemble the original
data and yield comparable results in analyses, all while
ensuring privacy protection. This often involves optimizing
the level of introduced noise in the generation process by
carefully tuning the privacy budget ϵ and the choice of
privacy mechanisms to achieve the desired privacy-utility
trade-off [18].

For all DP-synthetic data generators (assuming δ = 0 for
the sake of simplicity), the DP-guarantee can be expressed
as follows. If the data corresponding to a single individual
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is added to the original data used to train the synthetic data
generator, the log-probability of a certain set of synthetic
data being generated can change at most ϵ. Therefore, the
existence of any single individual’s data in the curators
database could be determined based on the synthetic data only
with negligible probability.

The state of the art approaches for tabular data generation
are the marginal-based generative methods which are a class
of techniques used in machine learning and data analysis
to generate data that matches the marginal distributions of
variables in a given dataset [28].

Generative adversarial networks (GAN) represent another
mainstream approach to synthetic data generation [29], but
while these methods are well suited to image generation tasks
on large datasets, they have been shown to often fail to surpass
simple baselines when applied to tabular data generation [15],
[22], [30].

Advancements in machine learning and algorithmic deci-
sion support systems have made it possible for predictive
models to enhance or even fully automate human decision-
making across a diverse range of healthcare related scenarios.
When deployed thoughtfully, these technologies hold the
promise of enhancing precision and predictive power. Model
evaluation is a critical component of machine learning,
determining how well a trained model performs on unseen
data. The utility of DP synthetic data can be assessed by
how well a machine learning model, trained on this data,
performs. Typically, the model is trained using the synthetic
data and its accuracy is subsequently evaluated by testing it
with real-world data [20], [21], [22]. However, in real-world
scenarios a researcher utilizing the synthetic data can not
assume unrestricted access to real test data due to privacy
concerns. One possibility is to use synthetic data also for
testing. Protocols commonly used in crowd-sourced machine
learning competitions [31], [32] suggest another possible
approach, where a limited access to a hidden test set is
provided in order to ensure fair and unbiased evaluation of
the developed models’ generalization capabilities.

III. RESEARCH CONTRIBUTION
A. PROPOSED EVALUATION PROTOCOLS
Two distinct evaluation protocols are considered enabling
data analysts to validate a classifier trained on DP-
synthetic data, utilizing either DP-synthetic or sensitive real
test data. In real-world biomedical data sharing scenarios,
the data holder may choose to release only the DP-synthetic
data to the public, without providing any additional access
or services related to the actual data. In this setting, the
analyst is typically restricted to using only the synthetic data
for constructing and assessing a machine learning model.
However, if the data holder were to provide limited access
to a distinct subset of real data for testing purposes, the
analyst would then have the opportunity to submit their model
for evaluation. This evaluation would include applying the
constructed model to the real data subset within a secure and

private environment, which might result in valuable and less
biased evaluation metrics. The first setting is simpler, more
cost-effective, and demands less infrastructure. However, the
second protocol grants access to a real test dataset which may
yield a more realistic evaluation of the model’s performance.

FIGURE 1. Data flow diagram for the proposed evaluation protocols.

Figure 1 illustrates the data flow for protocol A in top
and protocol B in the bottom where for both protocols the
curator side (the private environment, e.g. a hospital server)
is divided by a privacy barrier (vertical line) from the analyst
(non-private environment). The flow of the data is shownwith
the non-dashed line if the data is not privatized. If the data is
differentially private the flow is illustrated with dashed lines.
In the following we present the protocols in detail, where the
steps can be followed by the arrows in the figure.

• Protocol A: Syn-Only. As shown in Figure 1 (top):

1) Trusted data curator creates a training dataset from
the sensitive data.

2) ADP-generativemodel is trainedwith the sensitive
training dataset given the pre-specified privacy
budget ϵ.

3) The curator generates synthetic dataset with
the DP-generative model. The synthetic data is
released to the analyst operating outside the private
environment. The analyst divides the data to train
and test sets.

4) The analyst trains a classifier with the synthetic
training data.

5) The analyst calculates the predictions of the
classifier on the synthetic test set.
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6) The confusion matrix is computed by comparing
true and predicted classes for the synthetic test set.

• Protocol B: Syn-Real. Illustrated in Figure 1 (bottom):

1) Trusted data curator creates disjoint training and
test datasets from the sensitive data

2) ADP-generativemodel is trainedwith the sensitive
training dataset given the pre-specified privacy
budget ϵ.

3) Curator generates synthetic dataset with the DP-
generative model. The synthetic data is released to
the analyst operating outside the private environ-
ment.

4) The analyst trains a classifier with the synthetic
training data.

5) The analyst sends the classifier to the curator.
6) The curator calculates the predictions of the

classifier on the private real test set.
7) The confusion matrix is computed by comparing

true and predicted classes for the real test set.
8) The resulting confusion matrix is released to the

analyst with a DP guarantee using the Laplace
mechanism.

In the outlined approach, the same ϵ value is applicable
to both training and testing due to the disjoint nature of
the datasets, leveraging the parallel composition principle
of differential privacy [33]. This principle allows for the
same privacy budget to be used across separate analyses
without cumulative privacy loss, given the independence
of the training and testing sets. Thus, employing the
same ϵ for both phases does not compromise the overall
privacy guarantees, efficiently maintaining privacy without
additional expenditure.

The protocols provide performance evaluation of themodel
trained on synthetic data. As a concrete example, we consider
the calculation of a confusionmatrix, as it can be used as basis
for calculating multiple different performance measures.
In a binary classification problems, the matrix consists of
counts of true positive, true negative, false positive, and
false negative predictions. In Protocol A, these counts are
calculated from the DP-wise generated synthetic test set.
For Protocol B, where real test data is used to calculate
the confusion matrix, one needs to apply DP to ensure that
privacy of individuals in the test set will not be compromised
when releasing the matrix. Sharing the matrix directly
could violate privacy regulations constituting an information
breach. In some cases, an attacker could use a confusion
matrix to infer information about individuals if the dataset is
small and specific enough or highly unbalanced. For example,
if there’s a small number of individuals with a rare condition
such as a disease, the confusion matrix might provide clues
about whether a particular individual is in that rare group
or not. Therefore, by incorporating DP to the generation of
a confusion matrix, the privacy of individuals’ data can be
protected. The process of generating a DP confusion matrix
involves introducing carefully calibrated noise to the counts

in the confusion matrix. Noise is added to each component of
the confusion matrix using Laplace mechanism [8] with the ϵ

for classifier evaluation. As a result, a DP version of metrics
such as accuracy, sensitivity, specificity, precision, recall,
and F1-score, among others, can be derived from these four
outcomes [34]. Note that we assume that the classifier makes
predictions independently. This bounds the sensitivity of the
classification process so that its DP can be enforced. The
evaluation metric does not need to be limited to the confusion
matrix. Any metric that can be computed in a differentially
private manner, such as the area under the ROC curve (AUC)
or average precision (AP), may be utilized [34].

B. ASSESSING THE PROTOCOLS: MEAN ERROR AND
STANDARD DEVIATION
We propose measuring the goodness of the evaluation
protocols with a series of n repeated experiments by
considering both the systematic and random components of
the error. For the ith repetition, let ri = pi − yi denote
the (signed) evaluation error between the true classification
performance yi and its prediction pi made by the protocol.
Then, let

µ =
1
n

n∑
i=1

ri (2)

denote the mean error (ME) of the protocol over the n
repetitions. Significantly non-zero ME indicates that the
predictions made by the protocol differ systematically from
the true classification performances, that is, the protocol tends
to be either optimistic (positive ME) or pessimistic (negative
ME) in its evaluations. The systematic error can be considered
as the ‘‘bias’’ of the protocol in the sense that it indicates how
much it deviates from zero.

In addition to the above quantified systematic error,
we also assess the random error component via the standard
deviation:

σ =

√√√√ 1
n− 1

n∑
i=1

(ri − µ)2 (3)

Together, the systematic and random components form the

root mean square error (RMSE)
√

µ2 + σ 2 of the protocol.
All these three quantities, ME, STD and RMSE, are intuitive
in the sense that they have the same unit as classification
performance measure under consideration.

IV. EXPERIMENTAL SETUP
A. GENERATION METHODS
Marginal-based methods privately select a set of relevant
marginals from the real data, add noise to them, and
generate synthetic data from these noisy marginals. To ensure
differential privacy, noise is added using well-known mech-
anisms such as the Laplace, Gaussian, and Exponential
mechanisms [10], [35]. All five marginal-based generative
models, selected for this study have demonstrated good
performance with tabular data [10] and are listed as follow:
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• Privbayes: Introduced by Zhang et al. [20], this method
develops a probabilistic representation of the underlying
population from which the initial dataset is drawn.
Initially, it selects a root node at random, allocating
half of the privacy budget to employ the exponential
mechanism for identifying optimal child nodes that
maximize mutual information with their parent nodes.
Once the graph structure is established, the remaining
privacy budget is dedicated to measure the essential
marginals (low-dimensional conditional distributions)
using the Laplace mechanism to adjust the parameters
of the Bayesian network. Finally, Privbayes generates
synthetic data from the constructed network and the
noisy marginals. Privbayes satisfies (ϵ)-DP.

• MST: This generative method unfolds in three primary
phases. Initially, MST chooses a set of high-quality,
low-dimensional marginals from real data, allocating
one-third of the privacy budget to this marginal selection
process. The selection begins by examining all one-way
marginals and identifying pairs of attributes (two-way
marginals) that create a maximum spanning tree within
the correlation graph of the underlying data. In the
next step, the method privately measures the marginals
using a Gaussian noise mechanism, consuming two-
thirds of the privacy budget. Finally, MST employs
a probabilistic graphical model called Private-PGM
(introduced in [12]) to estimate the true data distribution
based on the selected noisy marginals. It’s important to
note that MST ensures (ϵ, δ)-differential privacy.

• MWEM-PGM: MWEM-PGM is a scalable instanti-
ation of the multiplicative weights exponential mech-
anism, as originally introduced by Hardt et al. [36].
In its iterative process, MWEM-PGM employs expo-
nential mechanism to identify a marginal query that
has not been accurately approximated. Following the
selection, the mechanism applies Gaussian noise to
measure the marginal, and then it leverages the PGM
approximation engine [12] to derive a new estima-
tion of the data distribution. This process involves
learning a concise graphical model representation of
the data distribution, effectively capturing the noisy
measurements while adhering to differential privacy
(DP) constraints. The derived distribution serves as
the basis for generating synthetic tabular data. It’s
noteworthy that MWEM-PGM is specifically designed
to ensure (ϵ, δ)-differential privacy.

• AIM: An Adaptive and Iterative Mechanism for Dif-
ferentially Private Synthetic Data [10]. AIM is an
improved mechanism derived from MWEM-PGM and
likewise satisfies (ϵ, δ)-DP. AIM follows the approach
of select-measure-generate framework. It incorporates
several unique features that enable it to iteratively
select the most relevant measurements (Marginals),
considering both their significance to the chosen set
of workloads, given by the user, to be preserved and
their ability to approximate the original data accurately.

In the generation phase, Private-PGM [12] is utilized
to integrate noisy sets of measurements into a unified
generative model.

• PrivMRF: privacy-preserving Markov Random Field
[30], The fundamental concept behind PrivMRF
involves choosing an appropriate set of marginals to
construct a Markov random field (MRF). This MRF
captures the inter-dependencies among the attributes
present in the input data, and subsequently utilizes it
to synthesize new data incorporating DP. PrivMRF is
designed for (ϵ, δ)-DP.

TABLE 1. Datasets, number of records, feature types and fraction of the
positive classes.

B. DATASETS
We consider five datasets from the medical domain with
varying size and dimensionality summarized in Table 1.

• Prostate Cancer Dataset (IMPROD) [37]. The data
originates from two clinical trials, NCT01864135
(IMPROD) and NCT02241122 (MULTI-IMPROD),
with approvals from the Institutional Review Board.
Written informed consent was obtained from all
participants. The dataset comprises information on
500 prostate cancer patients, including clinical variables,
blood biomarkers, MRI features, and a binary label
denoting the patient’s condition. It is divided into two
groups: 242 patients categorized as high-risk and 258 as
benign/low-risk.

• Diabetes Dataset (Diabetes) [38] is a well-known
benchmark dataset, widely used in data analysis tasks,
features a variety of health-related attributes such as
blood pressure, BMI (Body Mass Index), and insulin
levels. It also includes a binary label to represent the
patient’s health status,indicating whether the patient
has diabetes. The dataset is comprised of 268 patients
diagnosed with diabetes and 500 individuals who do not
have diabetes.

• Cardiovascular Disease Dataset (Cardio) is publicly
available at [39]. The dataset encompasses a range
of examination metrics like glucose and cholesterol
levels, alongside subjective factors such as alcohol
consumption and physical activity. It features a binary
label that denotes whether or not an individual has car-
diovascular disease. Within this dataset, 34,979 patients
are identified with cardiovascular disease, whereas
35,021 patients are recorded without the condition.

• Indian Liver Patient Records (Liver) is publicly
available at [40]. The dataset contains various attributes
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or features related to liver health, such as age, gender,
total bilirubin levels, direct bilirubin levels, alkaline
phosphatase levels, alanine aminotransferase levels,
aspartate aminotransferase levels, total proteins, albu-
min, and more. These attributes are measured from the
patients’ medical tests and clinical examinations. The
class label in this dataset indicates whether a patient has
liver disease (416 with liver disease) or not (167 with a
healthy liver).

• Thyroid Disease dataset (Thyroid) is publicly avail-
able at [41]. This dataset is a highly unbalanced dataset
with 291 normal thyroid function and 3481 patients
with thyroid issues (hypothyroid), including various
attributes related to thyroid function, such as hormone
levels (e.g., T3, T4, TSH), patient demographics, and
additional medical indicators.

C. EXPERIMENTS
To empirically compare the classifier evaluation protocols,
a series of experiments were conducted. These experiments
involved generating DP-synthetic data from five real tabular
medical datasets.

In the experiments, we compared the accuracy and
F1-scores provided by the evaluation protocols A or B to
the true classification performance calculated on a held-
out private test set. Note that this true performance would
not be directly accessible to the analyst in either of the
protocols. For the DP privacy level we considered the range
ϵ : [0.01, 0.1, 1, 3, 5, 7, 9, 10, 15, 20, 50] and δ = 1e−5.
The generative models used in this study only accept

categorical features, therefore, all the continuous valued
features in each dataset have been discretized into number
of bins based on literature and the curator’s knowledge.
The open source implementation for Privbayes can be found
from [42]. The implementations of AIM, MWEM-PGM and
MST are those depicted in [43] and PrivMRF [30]. All
parameters of the DP-synthetic data generation methods were
left to their default values. A detailed list of parameters for
each generative method can be found in the implementation
details section of the supplementary materials (Table 1S).

We conducted 100 repetitions of the experiments for each
protocol and generative method, except for PrivMRFwith the
Cardio and Thyroid datasets where the experiments were only
performed 10 times due to PrivMRF being computationally
intensive.

In each repetition the private data was divided randomly
into (new) train (80%), and test (20%) sets. In the subsequent
step, a differentially private (DP) generative model was fitted
to the training set, generating DP-synthetic data. For protocol
A, the size of synthetic data sampled matched the combined
size of the actual training and testing samples, while for
protocol B, the sampled synthetic data equaled the size of
the real training set. Ultimately, a classifier was trained
using the synthetic training set and evaluated based on either
protocol A or B.

To establish an upper bound for accuracy and F1-score
achievable with the given datasets, we also present classi-
fication metrics for a classifier trained using the original
real training data, and tested on the real test data. This
would correspond to the case where no privacy is enforced,
and the analyst has unrestricted access to the real private
dataset.

In the experiments, we tested the evaluation protocols
using both widely used linear and non-linear classification
methods. The scikit-learn library’s implementation of the
Random Forest (RF), linear Support Vector Machine (SVM),
and K-nearest neighbour algorithms were employed [44].
We used the classifier’s default settings, as optimal tuning of
the classifier hyperparameters is not required for evaluating
the protocols. For SVM classifier regularization parameter
was set to C = 1.0, for random forest classifier the number of
estimators was 100 and the number of neighbours for KNN
was k = 5.

V. RESULTS
Figures 2 and 3 illustrate the classifier evaluation results
for protocol A (Syn-Only) and protocol B (Syn-Real), for
synthetic data derived from IMPROD, Diabetes, Thyroid and
Cardio datasets, utilizing the SVM classifier. First column
of each dataset subplot depicts protocol A and second
column presents protocol B. Row (a) represents mean value
of the classification metric (i.e, F1-score or accuracy) for
different epsilon values over 100 repetitions obtained from
the synthetic test dataset in protocol A or from the DP
confusion matrix calculated from real test data in protocol
B. Row (b) represents the mean of the classification metric
for both protocols obtained from the real test set without DP.
As a baseline comparison, we also report the mean metric of
the classifiers trained on the original real training data, and
tested on the real test data presented with dashed line in Row
(b). Finally, Row (c) presents the mean error (ME) between
the estimated and the real test classification metric averaged
over 100 repetitions, as well as the standard deviations for the
mean errors.

The F1-score results of the downstream classifier are
illustrated in Figure 2. For IMPROD dataset, with strict
privacy guarantees (ϵ ≤ 1), mean errors between the
estimated and real test F1-scores in both protocol A and
B exhibit significant deviation from zero as presented in
Figure 2(C). Further looking at the MEs, protocol A has
noticeably higher standard deviation of the errors for most of
the generative methods even for ϵ ≥ 5. For both evaluation
protocols, estimated and real test F1-score values gradually
approach the real data setting (dashed line, Mean F1 = 0.81)
as ϵ increases (see Figure 2 a) and b)). In protocol B, for all
synthesizers, from ϵ ≥ 3 the mean error approaches zero
which indicates that the estimated F1-score are similar to the
real test F1-score. For protocol A, it’s notable that among all
the synthesizers, MST exhibits a consistently high negative
error across nearly all ϵ ≥ 1 whereas, MWEM-PGMhas high
positive error for (ϵ ≤ 1).
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FIGURE 2. F1-score results for SVM classifier on IMPROD, Diabetes, Thyroid and Cardio datasets, with Privbayes, MWEM-PGM, MST, AIM and
PrivMRF as DP-generative models.

Concerning Diabetes dataset, F1-score results show that
protocol A leads to substantially higher deviation of ME
compared to protocol B for all values of epsilon, with a few
exceptions when (ϵ ≤ 1). ME approaches zero in protocol
B where ϵ ≥ 5. Synthesizers AIM and MWEM-PGM have
the best performance with F1-score for Diabetes dataset,
approaching test F1-score for classifiers trained with real data
(dashed line in column b, F1 = 0.62) when ϵ ≥ 7. The
MWEM-PGM synthesizer for protocol A produces overly
optimistic estimates of F1-score values when compared to

the model trained with real data (mean acc = 0.77).
Consequently, this leads to positive bias in MEs.

In the case of the Thyroid dataset, protocol A exhibits
significantly higher errors between estimated and real test F1-
scores across for all values of epsilon. For both evaluation
protocols where epsilon values are small (ϵ ≤ 1) the standard
deviation of the errors are high. Estimated and true test
F1-scores gradually rise by increasing epsilon although the
values do not reach the real data setting F1-score (dashed line,
F1 = 0.94).
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FIGURE 3. Accuracy results for SVM classifier on IMPROD, Diabetes, Thyroid and Cardio datasets, with Privbayes, MWEM-PGM, MST, AIM and PrivMRF
as DP-generative models.

For Cardio, estimated F1-scores for the ϵ ≤ 1 have smaller
standard deviations of the ME for both of the evaluation
protocols compared to the other datasets. Protocol B exhibits
very low level of error and standard deviation of the errors
even for considerably small epsilons (ϵ ≤ 0.1). For protocol
A, there remains a persistent positive or negative bias of the
ME for some methods (i.e, PrivMRF or MST) even for high
values of epsilon. Out of all synthesizer AIM has the best
performance where even for protocol A ME approaches zero
when (ϵ ≤ 0.1).

Looking at the accuracy results in Figure 3, for IMPROD
and cardio datasets the results are akin to the once’s obtained
with the F1-score metric. Looking at the IMPROD results,
with small epsilons (ϵ ≤ 1) estimated accuracies in both
protocols show substantial variations, despite protocol B
having smaller MEs. For Cardio dataset, for all synthesizers
and almost all epsilons MEs and standard deviation of the
errors are quite low with exception for Privbayes method
with ϵ ≤ 0.1 in Protocol A which has slightly higher ME
compared to other synthesizers. In both protocols, Estimated
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FIGURE 4. Mean errors (ME) results for IMPROD, Diabetes, Thyroid and Cardio using KNN and Random forest classifiers.

and real test accuracy values approach the real data setting
(dashed line) with higher values of epsilon.

For Diabetes and Thyroid, mean errors and deviation of
the errors are smaller in comparison to the F1-score metric.
Looking closely at the ME for both protocols it is clear that
protocol B results in lower ME and deviation of the errors.
For Diabetes dataset, we note that for PrivMRF, MST and
Privbayes, even for higher values of ϵ, the mean accuracies
for both protocols do not surpass those of the majority
classifier (acc = 0.65).

Figure 4 present the summary of the mean errors between
estimated and F1-scores for both evaluation protocols utiliz-
ing Random forest and KNN classifiers. For each classifier,
the first and second columns represents MEs for protocol
A and B respectively and each row depicts the datasets.
Error bars indicate the standard deviation of the difference
between estimated and true classification performance in
each evaluation protocol under different epsilon values.
Comparing the MEs and the standard deviation of the errors
between These two classifiers and the SVM classifier it is
evident that the trends in all three classifier are similar given
each dataset and synthesizer. The detailed results for Liver
dataset can be found in the supplementary materials.

VI. DISCUSSION
There is a growing interest in utilizing DP-synthetic health
data for purposes such as training machine learning models
or statistical inference. However, it is crucial to ensure
the validity of conclusions drawn from DP-synthetic data.
We introduced two protocols that enable a data analyst
to evaluate the performance of a classifier trained on DP-
synthetic data. Further, we conducted an empirical inves-
tigation measuring the evaluation error of these protocols.
The same protocols could also be applied to various model
selection tasks such as feature selection, hyperparameter
tuning, or choosing the best classification algorithm among
alternatives. DP model selection is treated in more detail
in [23].

Considering all five medical datasets tested in this study,
at high levels of enforced privacy (ϵ ≤ 1) both evaluation
protocols tend to be quite unreliable with large standard
deviation of the error especially in case of protocol A, where
also the mean error (ME) is often high. Increased privacy
level correlates with a decrease in the quality of the generated
synthetic data, consequently leading to lower F1-score and
accuracy values on both real and DP-synthetic test datasets.
Generally a minimum privacy budget of ϵ = 1 was required
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to ensure reliable performance for both the trained classifier
and the evaluation protocols.

When privacy level is less strict (3 ≤ ϵ ≤ 9) for
protocol B, the F1-scores and accuracies have near zero
MEs, accompanied by low standard deviation of the errors.
Mean errors for protocol A also exhibit a distinct reduction
compared to ϵ ≤ 1, particularly for classification accuracy,
but there are still numerous cases with relatively highME and
standard deviation (e.g. MST with IMPROD and Diabetes
Figure 3).

When ϵ ≥ 15, the synthetic data generated exhibits a
close resemblance to the characteristics of real data. This
is observable in both protocols, where the resulting mean
errors and, specially, the standard deviations approach zero
for classification accuracy. However, for F1-scores the mean
error and standard deviation still remain clearly higher for
protocol A than for protocol B.

Based on the MEs, it is noticeable that with protocol B,
the estimated F1-scores for the balanced datasets such as
IMPROD and Cardio closely align with the actual F1-scores
obtained from the real held-out test set when ϵ ≥ 3. However,
for Diabetes and Thyroid, where the proportion of positive
classes is low, a higher privacy budget is necessary to achieve
scores comparable to the real test results.

A distinct reduction in variability, measured by the
standard deviation of errors, is evident in cases where
the sample size is sufficiently large, as observed in the
Cardio dataset. For both F1-scores and accuracy analysis,
the standard deviations across all epsilon values are notably
smaller in comparison to other four datasets.

Among the synthesizers used in this study, AIM, MWEM-
PGM and privMRF performed better in terms of downstream
classifier, which is in linewith results reported in other studies
based on DP-synthetic tabular data generation [10], [15],
[22]. In many cases with protocol A results forMWEM-PGM
showed substantial overoptimistic bias. It appears that AIM
in comparison to other generative methods is better able to
approximate underlying distribution of the real data whilst
consuming less privacy budget as claimed in [10].

The ME results were quite similar for all the considered
classifiers illustrated in Figures 4 for F1 score and in
supplementary materials Figure 3 for accuracy. Based on our
experimental results, the performance of the two evaluation
protocols is not significantly influenced by the classification
method employed.

VII. CONCLUSION
In summary, protocol B tends to provide more reliable
classifier performance evaluations than protocol A. This
is especially important in medical data analysis, where
for example taking into use a diagnostic classifier based
on severely overoptimistic performance evaluation could
have significant real world consequences. However, these
advantages come with the price of requiring the data curator
to implement this additional protocol that allows testing
trained classifiers on real test data. Further, when multiple

users access the same private data, the privacy budget must
be incrementally increased with each evaluation conducted
using Syn-Real (protocol B). In contrast, Protocol A does not
entail any additional privacy costs once the synthetic data has
been released.

A practical challenge for the curator who produces the
synthetic data to the analyst is the required computational
infrastructure. Especially deep learning based synthetic data
generation methods can require specialize GPU hardware to
be efficient, which may not be readily available in typical
sensitive data storage environments. Further, with protocol B,
the curator needs to validate whether the classifier sent by the
data analyst is trustworthy, so that it can be used behind the
privacy barrier. Obviously, the curator can not accept and run
arbitrary code. Instead, one needs to standardize the types of
models that can be used, such as the coefficients of a linear
model.

Our study has several limitations to be addressed in future
work. One limitation is that all marginal based methods
used in this study require the input data to be discrete
values. How the continuous data is transformed into discrete
values can have significant impact on the quality of the
generated DP-synthetic data [10], [20]. Secondly, we have
fixed the hyperparameters of each DP-synthesization method
to be the default ones. Experimenting with more varied
hyperparameter values could lead to improved performance
for some of the methods, though on the other hand additional
privacy budget would need to be allocated for model selection
for the generator. Furthermore, the impact of the size of the
generated synthetic data has on the downstream classifier
results could be further investigated.
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