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ABSTRACT Sudden cardiac death causes multiple deaths annually, and T-wave alternans are a
reliable predictor of this fatal event. Detecting alternans is crucial for reducing disease incidence, and
electrocardiographic imaging is a promising tool, providing spatial-temporal insights. The absence of
references and segmentation methods specific to these data may complicate progress in the field. Therefore,
this work aimed to develop a reference for evaluating estimation methods. Initially, a novel T-wave
segmentation procedure specific to these data was introduced and compared with a commonly used
method. Subsequently, a reference for assessing alternans estimation methods was created by integrating
alternans into epicardial signals through a spatial-temporal Gaussian function. Finally, a bootstrap-based
classifier for detecting alternans was developed. Results underscored the superiority of the novel T-wave
segmentation procedure, with the lowest 95% confidence interval being [16.57 µV , 18.80 µV ], indicating
significant disparities between the two segmentation methodologies. Furthermore, the generated reference
demonstrated the distinguishability of T-wave alternans with an amplitude of approximately 55 µV from
noise. Additionally, the classifier exhibited consistency with previous findings, demonstrating its ability
to detect alternans with amplitudes around 50 µV . In conclusion, this study provides a spatial-temporal
reference for proper evaluation of estimation methods, contributing to establishing a gold standard.

INDEX TERMS Bootstrap resampling, electrocardiographic imaging, reference, spatial-temporal study,
T-wave alternans, T-wave segmentation.

The associate editor coordinating the review of this manuscript and

approving it for publication was Md. Kafiul Islam .

I. INTRODUCTION
Sudden cardiac death (SCD) is a concerning global issue,
causing the deaths of millions of individuals and being
particularly prevalent in industrialized countries [1], [2],
[3]. Mitigating its incidence demands prioritized attention,
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requiring a thorough examination of preventative measures.
An avenue worth exploring is the identification of patients
at high risk of experiencing SCD, accomplished through
the utilization of SCD risk predictor indices. Several such
indices exist, with heart rate turbulence indices, heart rate
variability indices, and T-wave alternans (TWA) standing
out as the most pertinent ones [3]. This study specifically
addresses TWA, a metric quantifying beat-to-beat variations
in consecutive T-wave amplitude or morphology in a
surface electrocardiogram (ECG) [4]. Extensive evidence
supports its accuracy in predicting malignant ventricular
arrhythmia and SCD [5], [6]. It is an indicator of electrical
cardiac instability, and numerous studies affirm its strong
correlation with specific cardiac pathologies characterized by
ventricular electrical instability, including long QT syndrome
(LQTS) and Ischemic Cardiomyopathy (ICM) [7], [8],
[9]. Nevertheless, TWA finds limited utilization in clinical
practice. The visual identification of TWA is challenging due
to the microvolt-scale variations between successive beats.
Thus, a comprehensive analysis of TWA requires appropriate
signal processing, estimation, and visualization techniques to
attempt an effective strategy for preventing SCD [2].
A precise analysis of TWA depends on the signal

processing methods employed and the availability of accurate
estimation and visualization techniques. However, the lack
of a definitive reference to guide the analysis process stems
from the fact that no single methodology has demonstrated
significant superiority over the others in this context [3].
Concerning the processing stage, two primary issues are
discernible. The initial challenge involves addressing noise
that coincides with the spectral range of physiological
information, encompassing T waves. The removal of this
noise is pivotal for accurate TWA estimation, given that slight
variations in the amplitude or morphology of consecutive
T-waves may share a resemblance with this in-band noise.
However, removing the noise is challenging because doing so
might unintentionally erase important physiological details,
potentially leading to failures in TWA detection [10]. The
second issue associated with the processing stage is related
to the T-wave segmentation step. Inadequate segmentation
of T-waves can result in the misidentification of TWA in
individuals who do not actually exhibit it.

While the visual analysis of alternans is typically unfea-
sible, the amplitude of these alternans shows a direct
correlation with heart rate [11]. As a result, healthcare
professionals commonly assess the presence of TWA during
exercise and ambulatory cardiac rhythm monitoring [12].
We hypothesized that TWA is regionalized in specific areas of
the cardiac muscle, and for the evaluation of this hypothesis,
a spatial examination of alternans is required. To achieve
this, gathering not only temporal information, as conventional
ECG studies do, but also spatial information becomes crucial.
Non-invasive electrocardiographic imaging (ECGI) emerges
as a valuable solution, providing both spatial and temporal
information simultaneously [10], [13], [14]. This imaging

technique involves acquiring hundreds of simultaneous
measurements of potentials at the torso level using a vest
containing 256 leads, in our case. These torso signals are then
merged with patient anatomical data obtained from computed
tomography or magnetic resonance imaging studies. Ulti-
mately, the inverse problem of electrocardiography is solved
to non-invasively estimate epicardial signals from these
measurements [14], [15], [16]. In this manner, ECGI enables
a comprehensive spatial-temporal study of TWA in both the
epicardium and torso. Thus far, TWA has predominantly been
estimated using conventional methods, including temporal
(TM), spectral (SM), and modified moving average (MMA)
techniques [13]. While the TM and MMA methods estimate
TWA using information in the time domain, the SM method
leverages the spectral information of the signals to estimate
alternans. These methods involve processing available ECG
signals one by one to estimate cardiac alternans, requiring
prior T-wave segmentation. These approaches are efficient
when analyzing TWA in conventional ECG studies; however,
due to the high quantity of ECG signals available in ECGI
studies (high spatial resolution), their form of analysis
becomes inefficient and time-consuming.

One of the most relevant issues associated with TWA
estimation lies in the absence of a reference on which
one could focus to determine the areas where TWA is
present. Numerous studies prove the effectiveness of ECGI
in spatially analyzing various cardiac diseases, including
TWA [13], [17]. However, the lack of a definitive reference
poses a challenge in confirming the accurate identification
of TWA. Consequently, a reference standard capable of
validating the presence or absence of TWA would be
greatly beneficial. The development of such a standard
would represent a significant step toward ensuring the
clinical feasibility and reliability of the aforementioned TWA
estimation methods. The objectives of this study were (i) to
include the quantitative performance verification of a novel
T-wave segmentation method first introduced in [18], (ii) to
develop a spatiotemporal standard that allows the evaluation
of TWA estimation methods under controlled conditions,
serving as a reference for TWA analysis in real subjects,
and (iii) to propose a Bootstrap-based binary classifier to
ascertain the presence of TWA and, if detected, to determine
its localization. The generation of the reference allowed us
to perform a comprehensive analysis of available estimation
methods, including their performance under noisy conditions
and their accuracy in localizing cardiac areas with TWA. This
helped determine which methods are more reliable and which
are not. To accomplish these objectives, we used a database
containing ECGI data from control subjects, ICM patients,
and a LQTS patient, recorded at the Cardiac Bioelectricity
and Arrhythmia Center, Yoram Rudy Lab, at Washington
University in St. Louis. Using these data, we first filtered
the ECG signals and segmented the T-waves with both our
novel T-wave segmentation method, specifically developed
for ECGI data, and one of the most commonly used T-wave
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segmentation methods. We then quantitatively compared the
segmentations to determine which method was superior.
Next, we generated a reference by adding synthetic alternans
to healthy ECG signals from a specific area of the epicardium.
This allowed us to identify the exact epicardial region affected
by the alternans, enabling the accurate evaluation of TWA
estimation methods. The estimation methods employed in
this work were the three most commonly used traditional
methods, i.e., TM, SM, and MMA. By knowing the exact
location and specific shape of the alternans, we could
easily evaluate the performance of these methods, facilitating
comparisons among them and with other methods to be
developed. Finally, Bootstrap resampling was employed to
detect and localize TWA. This non-parametric statistical test
was defined as an intrinsic test for each subject.

This paper is organized as follows. Section II analyses
significant prior works in the field. Following that, Section III
presents the mathematical formulation of the problem, a con-
cise introduction to the signal filtering and processing stages,
and specifics about the reference generation process and the
bootstrap resampling procedure. Subsequently, Section IV
outlines the various experiments conducted. In Section V,
discussions and analyses of the results are provided. Lastly,
Section VI outlines the conclusions.

II. RELATED WORK
The topic of TWA has garnered significant attention and
discussion since the latter half of the 20th century when
the scientific community began studying its ability to
predict cardiac fatal events [1]. Nowadays, this subject
continues to capture the interest of numerous researchers,
primarily because of its close association with SCD [19].
In recent years, considerable efforts have been dedicated
to exploring TWA from a spatial-temporal perspective,
exemplified by [20] and [21]. In the former, the authors
presented a model of the Purkinje-ventricular system to
investigate spatial-temporal abnormalities in T-waves. In the
latter, the researchers focused on examining the sudden
evolution of TWA into cardiac arrhythmias, underscoring the
significance of spatial-temporal analysis. Spatial-temporal
analyses play a key role in these instances, and ECGI holds
the advantage of furnishing information in both domains.
Nonetheless, there are limited studies utilizing these data
to investigate TWA, with examples including [13], [22],
and [23]. In [22], our group explored the presence of
TWA and its spatial distribution in specific areas across the
epicardium. Reference [13] exploited the spatial and temporal
information provided by ECGI to examine TWA in both
control subjects and patients with LQTS, yielding promising
results. Meanwhile, [23] demonstrated that ECGI serves as a
noninvasive approach that accurately detects the presence of
TWA.

As one might surmise, accurate T-wave segmentation is
imperative for estimating TWA. Various algorithms exist
for T-wave segmentation, and traditionally, one prevalent
method involves utilizing the position of R-waves, which

are generally the most easily detectable waves in an ECG.
In [24], the Otsu method was employed to detect R-waves,
and subsequently, authors utilized wavelet filters and a local
maxima algorithm to segment ECGwaves, achieving a 100%
detection rate for R-peaks, P-peaks, and T-peaks in the
utilized database. Nowadays, the incorporation of artificial
intelligence (AI) is gaining prominence, with algorithms
leveraging it for ECG waves segmentation. As an example,
in [25], a deep learning-based model was utilized to classify
ECG waves, yielding promising results. However, it was
not until the publication of [18] that dedicated research
elucidating a T-wave segmentation method specifically
tailored for use with ECGI appeared.

Numerous studies feature computer simulations illustrat-
ing alternans, most of them employing heart models to
investigate the mechanisms underlying its formation. In [26],
a computational model of human ventricular cells was used
to investigate the mechanisms of cardiac alternans, ultimately
concluding that intracellular calcium transient alternans are
the primary contributors to cardiac alternans in the human
ventricle. On the other hand, in [27], authors explored
alternans by simulating ECG signals with alternans, yet the
specifics regarding how these simulations were conducted are
not elucidated.

Given the intrinsic characteristics of TWA, defined as
microvolt-sized differences between consecutive T-waves
in ECG studies, its measurement is highly susceptible to
interferences such as baseline noise or white noise. In [28],
a time-space baseline noise cancellation method capable
of minimizing noise impact without compromising the
physiological characteristics of the ECG signal was devised.
Another approach to mitigate various types of noise was
employed in [27], where the authors leveraged AI methods
to cleanse ECG signals automatically.

Lastly, using statistical methods, such as Bootstrap, to vali-
date results or enhance existing methodologies is widespread
across various research domains. In [29], a bootstrap
locally interpretable model-agnostic explanation method was
introduced, aiming to offer more insightful explanations
for cardiac arrhythmia signal data, considering temporal
dependencies between individuals. Conversely, in [30],
researchers applied bootstrapping to decide on the most
important variables for AI models.

After reviewing the literature, several conclusions can
be drawn. Firstly, a spatial-temporal study of alternans is
necessary for a complete understanding of TWA distribution.
Even though ECGI is not yet broadly used, it possesses all the
necessary characteristics for analyzing TWA. Due to its lack
of use, there has not been any T-wave segmentation method
specifically designed for ECGI data; therefore, proposing one
that functions well is worthwhile. Secondly, there are few
studies simulating alternans in highly controlled scenarios,
and those that do often do not give it sufficient importance.
This underscores the need for defining a reference that
enables the identification of alternans with certainty, without
relying on the assistance of a doctor who may not always
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be available. Thirdly, special attention should be given to
the filtering stage. Although a perfect filter does not yet
exist, the use of good filters is essential when investigating
TWA to avoid its confusion with noise. Fourthly, concerning
the bootstrapping technique, its appropriateness for drawing
inferences and serving as an alternative decision-making
process has been demonstrated in the literature.

III. METHODS
In this section, the methodologies employed throughout
the development of this work are detailed. Firstly, the
foundational aspects of ECGI are explained. Secondly, the
filtering stage is explicated. Thirdly, the T-wave segmentation
methods employed in this project, namely, the atomic
segmentation (AS) and single reference segmentation (SRS)
methods, are outlined. Fourthly, the TM, SM, and MMA
are mathematically described. Fifthly, the procedure for
generating the reference is elaborated upon, and finally, the
bootstrap method is explained.

ECGI involves acquiring multiple measurements of
heart potentials from the body surface, facilitating a
spatial-temporal analysis of the cardiac activity. Moreover,
this imaging modality enables the non-invasive estimation of
potentials in the epicardium by solving the inverse problem of
electrocardiography. In essence, potentials are derived from
the body surface, and by applying the corresponding transfer
matrix, epicardial potentials can be estimated based on torso
potentials. With the help of other imaging techniques, two
meshes are derived – one for the epicardium and another
for the torso – each featuring a distinct number of nodes.
In the torso, each node represents a position where a lead
was situated, and thus, potentials were measured. Conversely,
in the epicardium, each node signifies the estimated potential
at that specific point within the heart muscle.

Let S2 be a two-dimensional continuous surface, rep-
resenting either the epicardium or the torso, located in a
three-dimensional space. Let rS2 be the set of points in surface
S2, defined as

rS2 ≡ {r ∈ S2 | S2 ∈ R3
} (1)

where r is the vector position of any point in the three-
dimensional space. The potential fields, which change with
time, are denoted as υS2 = υ(rS2 , t). Continuous surface
S2 can be discretized, generating a geometrical mesh. In this
case, for any node i belonging to the mesh, the discretized
surface is defined as

si = rS2 · δ(r − ri) (2)

where δ(·) is the Dirac Delta function in the spatial domain,
and the discrete set {si, i = 1, 2, . . . ,N } represents the
N points that form the surface. Accordingly, the mesh is
described as follows,

rnS2 = rS2
N∑
i=1

δ(r − ri) (3)

Let8T
= {φTi , i = 1, 2, . . . ,N } be the set of signals acquired

on the body surface and let 8E
= {φEi , i = 1, 2, . . . ,M} be

the set of estimated epicardial signals.H is the transfer matrix
that relates 8T and 8E as follows,

8T
= H · 8E or 8E

= H−1
· 8T (4)

Regarding the filtering stage, the same filtering procedure
was followed in all epicardium and torso signals. Firstly,
baseline wander removal was done using a spline interpolator
to remove low-frequency noise. Secondly, a low-pass filter
with zero-phase distortion was used to eliminate as much
high-frequency noise as possible. Therefore, the new filtered
potentials could be expressed as follows,

υF (rS2 , t) = ϖB(ϖN (υ(rS2 , t))) (5)

where υF represents the filtered potential signals, andϖB and
ϖN are the BW and high-frequency noise removal operators,
respectively.

With respect to the T-wave segmentation methods, both the
AS and SRS methods are compared. The former proceeds
by first detecting R-waves in all the signals separately
and subsequently segments T-waves based on the position
of R-waves. Despite being a common method to segment
T-waves, problems arise when R-waves are not adequately
detected. Since ECGI data consists of hundreds or even
thousands of signals, being attentive to whether all R-waves
in all the signals have been properly detected is inefficient
and time-consuming, making it necessary to investigate other
methods that mitigate this limitation. In [18], we proposed a
novel T-wave segmentation procedure, i.e., the SRS method,
which leverages the synchronous activity over the entire
cardiac muscle. As more detailedly explained in [18], the
SRS consists of properly detecting R-waves at a single spatial
point in the mesh, segmenting T-waves in that signal based
on the location of R-waves, and finally, taking the starting
and ending positions of the T-waves to segment them in the
remaining spatial points. In this way, the SRS yields better
segmentations by considering that the heart muscle functions
synchronously as a unique unit.

Once T-waves are adequately segmented, TWA is esti-
mated. For that purpose, traditional methods such as the TM,
SM and MMA are used. The TM involves measuring beat-
to-beat changes between even and odd T-wave amplitudes or
morphology to estimate the alternan voltage V i

alt as follows,

V i
alt = T iodd − T ieven ∀i = 1, 2, . . . ,N (6)

where T ieven and T
i
odd are the even and odd T-wave templates

at mesh point i, respectively, and T-wave templates were
generated by averaging the corresponding T-waves at each
mesh point. On the other hand, the SM estimates the power
spectral density (PSD) of the temporal alternan voltage
estimation V i

alt as follows,

Pi = PSD(V i
alt ) ∀i = 1, 2, . . . ,N ; (7)

It is obtained using theWelch overlapping segment averaging
estimator and a Kaiser window. Finally, the MMA creates
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T-wave templates for even and odd T-waves using the
modified average instead of the samplemean, as the TMdoes,
as follows

k
j T

i
type =

k
j−1 T

i
type + 1 ∀i = 1, 2, . . . ,N

∀j = 1, 2, . . . ,P; ∀k = 1, 2, . . . ,K (8a)

T iodd =
K
P T iodd ∀i = 1, 2, . . . ,N

T ieven =
K
P T ieven ∀i = 1, 2, . . . ,N (8b)

where P represents half of the total number of T-waves,
type = odd or even, K is the number of samples in each
T-wave, and 1 is an incremental factor defined in [31].
Finally, the alternan signal V i

alt is estimated as follows,

V i
alt = |T iodd − T ieven| ∀i = 1, 2, . . . ,N (9)

This paper introduces a reference for the systematic
evaluation of estimation methods in controlled scenarios.
To achieve this objective, synthetic subjects are generated
by replicating the first beat of each epicardial signal from
three distinct subjects twenty times. This ensures that even
and odd T-waves are identical, thus eliminating the presence
of TWA. For testing TWA estimation methods, alternans
are introduced at specific mesh points in a controlled
manner using a spatial-temporal Gaussian function. In the
spatial domain, the Gaussian is centered at a selected
node, referred to as the target, and expands towards the
remaining nodes based on their distance from the target.
In the time domain, a Gaussian function is applied exclusively
to even T-waves, with the amplitude determined by the
distance of each node from the spatial Gaussian center. These
synthetic subjects can serve as examples where the location
of TWA is precisely known, facilitating the comparison of
different estimation methods under controlled scenarios. This
ensures when they perform adequately and when they do
not. Synthetic alternans were incorporated into epicardial
signals, while torso signals were estimated by solving
the direct problem of cardiology by applying the transfer
matrix.

Finally, bootstrap is employed to statistically assess the
obtained results and make a decision regarding the presence
of TWA. Bootstrapping involves artificially sampling the
available dataset with replacement, generating new repeated
samples. While this approach does not offer new information
about the population, it allows for quantifying the sampling
variability, enabling inferences based on the available data.
To statistically assess the results, bootstrap resampling is
applied patient-wise to facilitate the extraction of inferences.
One of the primary advantages of this technique is its
ability to derive confidence intervals (CIs) without requiring
additional sampled data. In this context, a hypothesis test
is formulated to determine whether the differences between
the AS or SRS segmentations are significant or not. On the
other hand, to decide whether there is TWA in specific points
in the mesh, bootstrap is applied differently. Consecutive
even and odd T-waves are subtracted from each other, and

TABLE 1. ECG signals duration, T-waves duration, and the number of
beats in ECG signals for all subjects in our dataset, including control
subjects (C1 - C3), ICM patients (ICM1 - ICM7), the LQTS patient (LQTS),
and synthetic patients (SS1 - SS3). The units for duration measurements
are in seconds.

in each bootstrap step, the order of T-waves changes—
meaning that T-waves are sampled with replacement. Using
the Bonferroni correction, a CI is then derived for each mesh
node, and original values are checked to determine whether
they lie inside or outside the corresponding CI. If they
are outside, it indicates that the order matters, signifying
that the differences between even and odd T-waves are
significant. Otherwise, it is assumed that the order does not
affect.

IV. EXPERIMENTS
In this section, we present the experiments that have been
carried out during the development of this work. First,
we compare the AS and SRS methods to support the
findings discovered through the visualizations in [18] and to
justify the use of the SRS method moving forward. After
that, we assess the behavior of our reference, and finally,
we propose a statistically based way of determining the
presence of alternans and demonstrate its potential using the
reference. The ECGI database used in this work consists
of recordings from three control subjects, seven patients
with ICM, and one patient with LQTS. All the data were
acquired at the Cardiac Bioelectricity and Arrhythmia Center,
Yoram Rudy Lab at Washington University in St. Louis,
as part of previous studies [32], [33]. Torso measurements
were extracted using body surface potential mapping, and
epicardial potentials were estimated by solving the inverse
problem in cardiology [14]. Transfer matrices for estimating
torso potentials from epicardial signals were available for
two control subjects and one ICM patient. The data do not
contain further information but only include the subjects
ECGI measurements. All subjects signed the corresponding
informed consent, and the protocols were reviewed and
approved by the Human Research Protection Office at
Washington University in St. Louis. The data were acquired
under NIH–NHLBI grant numbers R01-HL033343 and R01-
HL-049054, awarded to Prof. Yoram Rudy. Table 1 shows a
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FIGURE 1. Comparative analysis of T-wave segmentation methods. (a) Differences between epicardial (odd rows) and torso (even rows), with even and
odd T-waves segmented using the AS (left) and SRS (right) methods for a control subject (top two rows) and an ICM patient (bottom two rows).
(b) Histograms depicting the distribution of differences between even and odd T-waves from epicardial (top row) and torso (bottom row) signals, for the
controls group (left) and patients group (right), obtained using the bootstrapping technique.

TABLE 2. Empirical statistics (mean ± standard deviation) and 95% CIs in control subjects (A) and patients with ICM (B). The asterisk denotes
significance. Units of measurement are µV .

FIGURE 2. Even and odd T-wave templates at a mesh point in a synthetic
patient along with the modifying gaussian-shaped curve (left), and an
enlarged view of the added gaussian modulation (right).

summary of the characteristics of the ECG signals used in this
work.

A. COMPARISON OF THE AS AND SRS METHODS
Two T-wave segmentation approaches are compared in this
subsection, i.e., the AS and the SRS methods. For that
purpose, T-waves were segmented using both methodologies
and results were statistically assessed using a bootstrap
resampling scheme applied patient-wise. Control subjects

were analyzed separately from ICM patients, and epicardium
and torso signals were also independently analyzed. In this
scenario, two groups of T-waves were generated, i.e., the one
in which the AS method was used and the group in which
the SRS method was employed. For each group, even and
odd T-waves were subtracted, giving rise to signals Ssmi ∀i =
1, 2, . . . ,R, where R is the number of patients belonging to
the groups and m is the T-wave segmentation procedure. The
standard deviation of each of these signals was calculated, and
afterward, the mean of the standard deviations in each group
was computed as follows,

σm =
1
R

R∑
i

std(Ssmi ) (10)

Finally, the following hypothesis test was addressed:{
H0 : σAS − σ SRS = 0

H1 : σAS − σ SRS > 0
(11)

Figure 1 (a) shows the differences between consecutive
even and odd T-waves segmented with the AS and SRS
methods on the left and right, respectively. Qualitatively,
it is evident that the SRS method provides better-quality
segmentations, reducing the presence of noise, as previously
reported in [18]. Quantitatively, this is also supported by

VOLUME 12, 2024 118515



E. Sánchez-Carballo et al.: Reference for ECGI-Based T-Wave Alternans Estimation

FIGURE 3. Analyses of false positive and false negative rates for increasing baseline and white noise amplitudes in synthetic patients. (a-b) False
positive rates with increasing amplitudes of baseline (a) and white (b) noise for synthetic patients 1 (top), 2 (middle), and 3 (bottom). (c-d) False
negative rates with rising baseline (c) and white (d) noise amplitudes for synthetic patients 1 (top), 2 (middle), and 3 (bottom). (e-f) ECG signals at an
epicardium mesh point affected by baseline (e) and white (f) noise (top), showcasing the filtering process (middle) and the residuals generated by
subtracting the original signal from the filtered one (bottom).

results in Table 2, where the CIs in the last column indicate
the veracity of the alternative hypothesis for both epicardium
and torso signals in control subjects and ICM patients. This
can also be visualized in Figure 1 (b), where the AS and
SRS distributions generated after applying the bootstrapping
technique are included. In all cases, the distributions are
clearly separated from each other, and the SRS distribution is
always closest to zero, being below 5µV in control subjects
and around 20µV in patients, whereas the AS distribution
is above 20µV in control subjects and surpasses 150µV in
patients torsos.

B. ASSESSMENT OF THE REFERENCE
In this subsection, the reference is evaluated through
different experiments. Three synthetic subjects were cre-
ated and used to form the reference. Synthetic signals
were generated using real subjects for whom the transfer
matrices were available, namely, one ICM patient and two
control subjects. Alternans was synthetically incorporated
into epicardial signals as detailed in Section III, with a
maximum amplitude of 30µV in the target even T-waves.
Figure 2 displays the temporal Gaussian-shaped function
in green, along with the odd T-wave template in red and
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FIGURE 4. TWA maps and corresponding TWA signals at various points surrounding a target point, estimated by the TM, SM, and MMA in the
epicardium and torso of a synthetic patient. Rows depict scenarios with no noise (top), baseline noise (middle), and white noise (bottom), while
columns correspond to TM (first and fourth), SM (second and fifth), and MMA (third and sixth) TWA estimations. Mesh colors represent the maximum
absolute value of the estimated TWA signal.

the slightly modified even T-wave template in blue at the
target.

First, the focus was put on the filtering stage. Initially,
baseline noise with different amplitudes was added to
epicardial signals, which were then correspondingly filtered
out. Independently, the same process was repeated with white
noise. After that, TWA was estimated with the TM, SM, and
MMA. For each signal in the mesh, the estimation methods
provided a value corresponding to the maximum TWA, i.e.,
TWAimax ∀i = 1, 2, . . . ,N , where N is the number of nodes
in the mesh, and the threshold to determine the presence of

TWA was set to be th =
TWAjmax

2 , where j is the node in
which TWAmax was themaximum. In this way, a false positive
case was one in which synthetic alternans was not added, but
the estimation methods detected TWA, and a false negative
case was one in which synthetic alternans was added, but the
estimation methods detected that TWA was not present.

Figure 3 (a) and (b) show the percentage of false positive
cases as the baseline and Gaussian noise amplitude increase,
respectively. Figures 3 (c) and (d) show the percentage of

false negative cases as the baseline and Gaussian noise
amplitude increase, respectively. The results consist of an
average of the ten repetitions that have been carried out to
increase their reliability. In general, as the noise amplitude
increases, the false positive rate increases, which is always
true when adding white noise. The behavior in the three
synthetic patients seems to be similar. Regarding the three
estimation methods, it can be observed that the SM (red)
tends to be more stable than the TM (blue) and the MMA
(green), which seems to perform the worst, especially when
white noise is added. It can also be seen that the percentage of
false negatives does not surpass 0.5%, which is significantly
smaller than the false positive rate for the two types of noise.
Figure 3 (e) and (f) display a signal in the epicardium of a
synthetic subject to which 175µV of baseline and 200µV
of white noise amplitude have been added, respectively.
The last row, which shows the subtraction between the
original signal and the filtered signal displayed in the second
row, indicates that any of the filters eliminate physiological
information, but some of the distortions introduced by the
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FIGURE 5. Impact of synthetic alternans amplitude on TWA estimations in real control subjects. False positive (a) and negative (b) rates with varying
amplitudes of synthetic alternans added, illustrating TWA estimation by TM (top), SM (middle), and MMA (bottom).

FIGURE 6. TWA maps (left) and histograms of the distribution of TWA in a control subject epicardium (top) and torso (bottom), with TWA estimated by
the TM (second column), SM (third column), and MMA (right). Red circles denote CI right limits, while green circles represent empirical values for each
mesh point, and mesh color indicates conformity of empirical values with their respective CIs.

noises remain since they have not been properly eliminated.
Note that before applying any filter, the original signal mean
is subtracted to center the signal around zero, thus improving
the performance of subsequent filters.

Figure 4 illustrates the meshes and the TWA signals
at points near the target in one of the synthetic subjects.
Synthetic alternans were added to epicardial signals, while
torso signals were obtained by applying the transfer matrices,
and TWA signals were estimatedwith the TM (first and fourth
columns), SM (second and fifth columns), and MMA (third
and last columns). It should be noted that the results in the
other two synthetic subjects are qualitatively equal, so only
one subject was chosen to be shown. In the first row, no noise
was added to the signals, so it can be observed that the three
estimation methods provide a clean TWA estimation around
the target. The second row shows the results when 175µV
of baseline noise amplitude has been added to the signals
and correspondingly filtered. In this case, we can see that
estimations are clearly noisier, and the MMA torso TWA
estimation has deteriorated. In the last row, the results when
200µV of white noise amplitude has been added to the signals
and correspondingly filtered are displayed. As in the previous

case, noisier estimations are obtained, especially with the
MMAmethod. In general, it seems that SM TWA estimations
are more consistent over the three scenarios, and MMA TWA
estimations are the noisiest and of the worst quality.

After analyzing the estimation of alternans under noisy
conditions in the reference models, an analysis of real
subjects was performed. Synthetic alternans was added to
epicardial signals from control subjects in the same way
that it was added to the reference. Figure 5 displays the
percentage of false positive (a) and negative (b) cases as the
maximum amplitude of the added alternans rises when TWA
has been estimated with the TM (top), SM (middle), and
MMA (bottom). The SM seems to be the most stable and
capable of recognizing the area where alternans was added,
and the percentage in the MMA is the highest, indicating
that it struggles to recognize the area with TWA. Figure 5
suggests that adding 55µV of alternans is enough for the
estimationmethods to characterize the areawith TWA, except
for the MMA, which needs more than 70µV not to produce
false negative cases. Our results regarding the performance
of different TWA estimation methods align with those in the
literature. While the MMA has been demonstrated to be more
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FIGURE 7. Affected epicardium (top) and torso (bottom) surfaces as the amplitude of synthetic alternans increases in control subject 1 (a) and 2 (b).

FIGURE 8. Epicardium (top) and torso (bottom) TWA maps (odd columns) and histograms of the distribution of TWA (even columns) in a real control
subject with 125µV synthetic alternans amplitude added, with TWA estimated by TM (left), SM (middle), and MMA (right). Red circles denote CI right
limits, green circles represent empirical values, and mesh color indicates whether empirical values are inside (blue) or outside (yellow) the CIs.

accurate in analyzing Holter studies, particularly with longer
signals [12], [31], the SM, which assumes the stationarity
of the ECG signal, has been reported as more accurate
in conventional ECG studies and is sometimes considered
the best approach in these contexts [13], [19]. Additionally,
some studies highlight the efficiency of the TM despite its
simplicity [5], [13], [22]. This explains why the SM appears
to outperform the other estimation methods, specifically the
MMA.

C. STATISTICAL METHOD TO ESTIMATE TWA
Even though traditional TWA estimation methods have been
proven to perform well under different scenarios, there
are some cases in which their performance could improve.
In this section, we propose a new statistical TWA estimation
method based on the bootstrapping methodology to boost the
performance of traditional approaches. In this new approach,
TWA is estimated with the TM, SM, or MMA, and the
statistic si is computed as the mean of the standard deviation
of these differences, i.e., ŝji = σeven−odd ∀i = 1, 2, . . . ,N
and ∀j = 1, 2, . . . , b. At every bootstrapping step, the order
of T-waves changes until the process is repeated b times for

the N nodes belonging to the mesh. This process facilitates
the extraction of CIs, which are used to determine whether
TWA exists or not, as follows,{

TWA = 0 if si ∈ CIi ∀i = 1, 2, . . . ,N
TWA = 1 if si /∈ CIi ∀i = 1, 2, . . . ,N

With this newmethod, no TWAwas encountered in control
subjects, and it marked as positive the area where alternans
were added in the reference. Figure 6 illustrates the results
of this method in one of the control subjects. The histograms
represent the times (z-axis) that ŝi equals a specific quantity of
microvolts (x-axis) in all the nodes i = 1, 2, . . . ,N (y-axis)
during the bootstrap procedure, for TM (second column),
SM (third column), and MMA (last column) estimates. Red
circles indicate the right limit of the CI for each node, and
it can be seen that all ŝi, drawn as green circles, are located
to the right of the red circles, indicating that TWA does not
exist. Comparing the three estimation methods through the
histograms in Fig. 6, it can be observed that ŝi is significantly
smaller in the SM than in the other methods, being the highest
in the MMA, but not too far from the TM. This supports the
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FIGURE 9. TWA maps (left) and histograms of the distribution of TWA in an ICM patient epicardium (top) and torso (bottom), with TWA estimated by
the TM (second column), SM (third column), and MMA (right). Red circles denote CI right limits, while green circles represent empirical values for each
mesh point, and mesh color indicates conformity of empirical values with their respective CIs.

FIGURE 10. Epicardium (top) and torso (bottom) TWA maps (odd columns) and histograms of the distribution of TWA (even columns) in a LQTS
patient, with TWA estimated by TM (left), SM (middle), and MMA (right). Red circles denote CI right limits, green circles represent empirical values,
and mesh color indicates whether empirical values are inside (blue) or outside (yellow) the CIs, with a blue-green color if all the empirical values are
inside their corresponding CI.

idea that the SM is more sensitive and generally performs
better.

Analyzing the results provided by the last presented
method, it would be convenient to understand how the
quantity of both epicardial and torso surfaces detected to be
affected by TWA varies as the synthetic alternans amplitude
added increases. Synthetic alternans was added to epicardial
signals, and torso signals were estimated using the transfer
matrix. Since the synthetic alternans was added using a
spatial-temporal Gaussian function, the affected epicardium
area and the synthetic alternans amplitude are directly related,
meaning that as one increases, the other also does. These
results are shown in Fig. 7, where we can see that the SM
is more sensitive than the TM and the MMA; that is, the area
detected as affected is higher in most cases. Additionally, the
MMA needs more synthetic alternans amplitude to detect the
presence of TWA, which is not always achieved, for instance,
in the torso of synthetic subject 1.

Figure 8 illustrates the epicardium and torso of control
subject 2 when 125µV of synthetic alternans amplitude

were added. Even though only results for this patient are
shown, equivalent results are obtained for control subject
1 when 325µV of synthetic alternans amplitude were added.
Regarding the epicardium, the area where the alternans were
added is well recognized when using the three estimation
methods; however, results in the torso are more diffuse.
In general, the detected areas do not coincide with the more
prominent ones when bootstrap was not employed, although
these areas are not free of TWA either. This may be due to
the nature of the direct problem of cardiology, which tends to
diminish the signal amplitude in the torso, complicating the
process of detecting alternans. Nevertheless, it is clear that
when TWA is present in the epicardium, it is observable in
the torso.

Finally, the method was tested on real patients with
illnesses. Figure 9 presents the results for an ICM patient,
while Fig. 10 displays the results for a LQTS patient.
Torso signals were obtained through body surface potential
mapping instead of using the corresponding transfer matrix,
as it was unavailable for the LQTS patient. Results are
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negative for the ICM patient in both the epicardium and
torso using the three estimation methods. However, TWAwas
detected in an area of the LQTS patient’s epicardium when
using the TM and in the torso when using the TM and the SM.
TWA signals were extracted with traditional methodologies,
and results coincided with the area labeled as problematic.

V. DISCUSSION AND ANALYSIS OF RESULTS
The focus of this study was the generation of a reference
that allows the precise evaluation of TWA estimation meth-
ods, incorporating a novel T-wave segmentation technique
specific to ECGI data. Additionally, a statistical approach
that ascertains the presence of TWA by determining the
significance of differences between consecutive T-waves is
presented. Therefore, our main contributions are, first, the
quantitative demonstration of the superiority of a novel
TWA segmentation method tailored to ECGI previously
introduced in [18], second, the creation of the reference
as a high-fidelity means to rigorously test emerging TWA
estimation methods, and third, the introduction of a novel
binary classifier to aid in decisions regarding the presence of
TWA. Despite the emergence of numerous studies on TWA
estimation in recent years, the novelty of our study lies in
generating a reference to facilitate the comparison of different
estimationmethodologies, with a specific focus on ECGI, and
introducing a Bootstrap-based binary classifier to determine
the presence or absence of TWA.

A. SUPERIORITY OF THE SRS OVER THE AS
The comparison of the two T-wave segmentation methods
reveals that SRS segmentations are of better quality than
AS ones, both qualitatively and quantitatively, as depicted
in both Fig. 1 and Tab. 2, supporting the idea that the
heart functions synchronously. Despite its simplicity, the
SRS has proven to be a potential segmentation method for
ECGI data, outperforming other approaches. Qualitatively,
the subtraction of even and odd T-waves provides a decidedly
smoother signal, both in control subjects and patients
(see Fig. 1 (a)), as previously advanced in [18]. These
results are quantitatively supported by statistical analyses,
demonstrating the significantly superior performance of the
SRS over the commonly used ASmethodology (see Fig. 1 (b)
and Tab. 2).

B. ANALYSIS OF THE REFERENCE
Despite the existence of several TWA estimation methods,
a definitive gold standard that significantly outperforms other
approaches had not been established. Among the various
possible reasons for this, the lack of a standardized reference
in the literature for testing, comparing, and accurately
assessing the performance, strengths, and limitations of these
estimation methods stands out. Consequently, we undertook
the development of a reference, as realistic as possible,
to address these previously outlined limitations. Considerable
care was taken in creating the reference and introducing syn-
thetic alternans to maintain a realistic model. The reference

was generated by repeating beats from real subjects rather
than synthetically generating ECG signals from scratch.
Similarly, the addition of alternans followed a realistic
approach since TWA typically presents in cardiac signals with
a very small amplitude on the order of microvolts, making it
challenging to differentiate from noise. To introduce alternans
realistically, a low-amplitude spatial-temporal Gaussian was
employed to subtly modify T-waves, facilitating the study
of the sensitivity of estimation methods. As stated earlier,
alternans are often intertwined with noise, underscoring the
priority of proper noise elimination when attempting to
estimate TWA. Additionally, it is crucial to prevent applied
filters from erasing physiological information; hence, the
careful design of filters assumes paramount importance.
Our noise analysis, presented in Fig. 3 and performed
using the developed reference, highlights the consistency
of our filters. Even when noise levels are relatively high,
specifically at 175µV and 200µV for baseline and white
noise amplitudes, respectively, both filters perform correctly,
generating residuals with amplitudes significantly smaller
than the signal amplitude (Fig. 3 (e) and (f)). Upon examining
TWA estimations using the TM, SM, and MMA methods,
it is evident that these methods correctly identify the area
where synthetic alternans were added when no noise is
introduced, as expected (see Fig. 4, first row). This validates
the correct generation of the reference and demonstrates
the effectiveness of the three evaluated estimation methods,
at least in the simplest scenario. However, challenges arise
when noise is introduced. For instance, with the addition
of 175µV of baseline noise, the TM and SM provide TWA
estimations similar to those without added noise, but MMA
estimations become noisier, especially in the torso, where
the alternan signal becomes indistinguishable from the noise
(see Fig. 4, second row). Regarding white noise, when
200µV of noise amplitude is added and subsequently filtered,
all three methods yield noisier estimations, with MMA
estimates being the noisiest (see Fig. 4, third row). The SM
appears to be the more consistent method, with stable TWA
estimations that remain relatively unchanged even in the
presence of noise. Transitioning from controlled situations
to real scenarios, adding approximately 55µV of synthetic
alternans amplitude to real control subjects is sufficient to
distinguish TWA from noise using the estimation methods
(see Fig. 5). This analysis highlights the stable behavior of
the SM, which behaves similarly in the two control subjects,
unlike the other methods, with MMA proving to be more
affected by noise.

C. BOOTSTRAP APPROACH FOR TWA DETECTION
The application of statistical methods for determining the
presence of a disease instills positivity and confidence in
the diagnostic process. While observing alternan signals
provides insights into the potential presence of TWA, there
lacks a direct method for unequivocally identifying TWA.
In response, we have developed a bootstrap-based method for
identifying areas exhibiting TWA, demonstrating a consistent
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performance. In real control subjects where no TWA has been
added, the method appropriately detects the absence of TWA,
aligning with expectations (see Fig. 6). Upon introducing
synthetic alternans, the method begins detecting TWA in
the epicardium when the alternans amplitude approaches
approximately 50µV (see Fig. 7). This consistency aligns
with previously obtained results, albeit subject-dependent.
Conversely, in the torso, a higher epicardium area needs to
be affected for the method to recognize TWA presence. Upon
introducing sufficient synthetic alternans for TWA detection
in the torso, the method accurately identifies the epicardium
area when employing the TM, SM, and MMA bootstrap
approaches. However, in the torso, a specific area is identified
(see Fig. 8), with the MMA-based result appearing more
uncertain across different patients. According to these results,
one limitation could be that the method may under-recognize
the presence of TWA, especially when the affected area
in the heart is small. Results from patients corroborate
our expectations. Figure 9 illustrates that the ICM patient
does not exhibit TWA, with all methods reaching the same
conclusion. In contrast, the LQT patient in Fig. 10 displays
a sizable area in the epicardium with TWA, particularly
evident when using the TM. In the torso, where signals
are obtained through body surface potential mapping rather
than estimations, specific small areas suggest the potential
presence of alternans. In both the epicardium and torso areas,
alternan signals derived from the estimation methods appear
to indicate the presence of TWA.

D. FINAL REMARKS AND FUTURE DIRECTIONS
Neither ECGI nor TWA estimation are currently incorpo-
rated into clinical practice, and ECGI algorithms are still
being improved to yield clinically relevant results. Whereas
standard ECG studies are unable to precisely identify where
electrical events occur in the heart, ECGI provides infor-
mation in both the temporal and spatial domains, offering
an anatomical view to address this limitation. Although the
distribution of alternans throughout the heart is currently
unknown, ECGI and the anatomical view it provides could
shed light on it and help elucidate their mechanisms. In light
of this, ECGI can improve TWAdetection, justifying the steps
taken in this direction. In previous years, there was a lack of
tools to determine the presence of TWA. The emergence of
tools for hypothesis or decision tests, like the one presented
in this work, solves this problem by taking advantage of
the anatomical map provided by ECGI. Our contribution
here is not only the generation of a binary classifier, but
we have also found that optimal cutoff values for TWA
detection are patient dependent, an important consideration
for our future studies.More work remains, but these statistical
methods could play a relevant role in implementing TWA
estimation methods in clinical practice. It is fundamental
to consolidate TWA estimation methods using ECGI before
including them in clinical practice. This study paves the way
towards adopting a more clinical point of view of ECGI in
TWA and pathological scenarios like LQTS.

VI. CONCLUSION
In this work, the three previously enumerated objectives
have been successfully addressed and achieved. Objective
(i) involved quantitatively demonstrating that the SRS
outperforms commonly used methods in segmenting T-waves
in ECGI data. This was successfully demonstrated due
to the intrinsic nature of the SRS, which is the first
T-wave segmentation procedure specifically tailored to ECGI
data. Objective (ii) involved designing and developing a
reference that can serve as a gold standard for analyzing
the performance of estimation methods, helping to determine
the most accurate TWA estimation method. Finally, objective
(iii) involved the development of a Bootstrap-based TWA
detector, which appears to recognize the areas with TWA.
This demonstrated that a non-parametric test intrinsic to
each subject helps identify the areas of the epicardium and
torso where TWA is more prominent. The positive results
obtained open new doors and necessitate further study. In the
future, we could explore alternative TWA estimation methods
beyond traditional ones and use the presented reference for
comparison purposes. It would also be interesting to refine
and strengthen the presented Bootstrapping technique to
improve its consistency and rigor, making it a potential tool
for clinical use in the future.
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