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ABSTRACT Speed bumps, as a crucial road safety infrastructure, can directly impact the accident rates
on specific road sections if they have defects. Therefore, this study proposes a method for detecting speed
bump multiclass defects using an improved YOLOv5s model. This model modifies the pooling method
in the backbone layer to Spatial Pyramid Pooling Fast (SimSPPF) to enhance the detection speed while
improving the feature extraction capability from images. In the neck layer, firstly, the upsampling method
was changed to Convolutional Transpose (ConvTranspose) to increase the accuracy of small target detection.
Then, the Contextual operation network (CotNet) module was integrated with the original C3 module,
enhancing the model’s ability to recognize different defects by obtaining better global features. Finally,
the convolution module was restructured to a Recursive Gated Convolution (gnconv) module, designed
to maximize the model’s capacity to capture complex multi-scale, multiclass image features. Additionally,
a new data augmentation method (CR) was proposed for data enhancement and balancing of the samples.
Experimental results show that the improved YOLOv5s algorithm achieved an accuracy of 97.7%, a recall
rate of 91.9%, and a mean precision of 96.4% while maintaining a parameter size of only 8.8M. Compared
to other YOLO detection models, the improved model exhibits high accuracy, high confidence, and a low
parameter count.

INDEX TERMS Speed bump defect detection (SBD), YOLOv5s, spatial pyramid pooling fast, convolutional
transpose, recursive gated convolution, data augmentation.

I. INTRODUCTION
As a crucial component of road infrastructure, detecting
defects in speed bumps is crucial for road safety, especially
under complex weather conditions or on challenging road
segments, such as long downhill roads, roads after rain or
snow, and short downhill segments in places like underground
garages. If speed bumps have defects, they may pose serious
safety hazards. However, current research primarily focuses
on the identification of speed bumps. For instance, Al-
Shargabi et al. [1] proposed a method using accelerometer
sensors to detect road bumps. Yun et al. [2] utilized LIDAR
and cameras for speed bump detection in autonomous vehi-
cles. These studies do not specifically address the detection
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of defects in speed bumps. Therefore, this paper proposes an
improved method for studying speed bump defects based on
YOLOv5s, referencing the standards for rubber speed bumps
issued by theMinistry of Transportation of China in 2004 and
2008.

Early defect detection methods commonly included simple
sensor detection and regular manual inspections. While these
methods are convenient and feasible, they have significant
disadvantages in terms of cost and time efficiency. With
advancements in computer vision, traditional machine learn-
ing detection methods and deep learning detection techniques
have gradually gained widespread acceptance.

Traditional machine learning methods for defect detec-
tion research include the Viola-Jones detector [3] (integral
images, Haar-like features, Adaboost classifier, and cascade
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strategy), HOG features [4] (Histogram ofOrientedGradients
that capture texture and shape information), and SURF [5]
(Speeded-Up Robust Features, which build scale-space,
detect interest points, estimate orientation, and compute
descriptors). These methods are highly interpretable, require
less data, and are fast to train. However, their performance
is limited in handling nonlinear relationships and large-scale
data due to their reliance on manually designed features,
which struggle to capture high-level semantic information.
Compared to deep learning approaches, they are limited in
accuracy and generalization.

In the field of target defect detection, deep learning algo-
rithms initially employed Convolutional Neural Networks
(CNN) [6] based on classical models. Today’s commonly
used detection models mainly fall into two categories: Two-
stage and One-stage models. Two-Stage models include
R-CNN [7], Fast R-CNN [8], Faster R-CNN [9], and mod-
els that use ResNet [10] as a backbone. These Two-stage
networks have made significant advancements in the field
of object detection. R-CNN performs excellently in terms
of accuracy but is computationally slow. Fast R-CNN intro-
duced the ROI pooling module to improve speed, and Faster
R-CNN further improved detection speeds by incorporating
a Region Proposal Network (RPN) to automatically generate
candidate regions. ResNet, often used as a feature extractor,
is also widely employed in backbone networks, such as in the
FC-MSCCD algorithm proposed by Alnaasan and Kim [11].
However, they still share some common drawbacks, such
as high computational complexity, the need for extensive
labelled data, and long training times.

One-stage network models such as SSD (Single Shot
MultiBox Detector) [12], RetinaNet [13], EfficientDet [14],
and the YOLO (You Only Look Once) series [15] detect
targets of various sizes through convolution operations on
different feature maps and simultaneously predict the class
and location of each prior box, achieving multi-scale target
detection. These one-stage detection networks generally have
slightly lower accuracy than two-stage networks, particularly
in detecting small targets and complex scenes. However,
their advantages include a simplified process, treating object
detection as an end-to-end regression problem, which elim-
inates the need for generating candidate regions, reduces
network size, and increases detection speed, making them
suitable for applications requiring rapid response.

The YOLO series has two main advantages in defect
detection. First, it uses a single neural network to simul-
taneously predict the categories and locations of multiple
objects, requiring only one forward pass, thus significantly
reducing computational complexity and improving detec-
tion efficiency. Second, it directly outputs class and location
information without the need for additional modules like
Support Vector Machines (SVM) [16] or Bounding Box
Regression (BBR), thus avoiding multi-module coupling
and error accumulation and enhancing detection accuracy.
These features have made YOLO a widely used algorithm
in the field of defect detection. The YOLO series has

been continually improved by researchers, resulting in mul-
tiple versions (YOLOv2, YOLOv3, YOLOv4, YOLOv5,
YOLOv7, YOLOv8) [17], [18], [19], [20], [21], [22], and
has become a mainstream algorithm in the field of computer
vision for defect detection.

The YOLOv5 series algorithms are highly applica-
ble. It includes multiple versions (YOLOv5s, YOLOv5m,
YOLOv5l, YOLOv5x) [20], with YOLOv5s being the small-
est and fastest, while YOLOv5x is the largest but more
accurate. These versions primarily differ in network depth
and width. Moreover, as the model parameters increase,
detection accuracy improves, but detection speed decreases.
YOLOv5s offers higher accuracy, faster speed, and fewer
parameters compared to other models, with advantages in
parameter count and GFLOPs. Therefore, YOLOv5s is cho-
sen as the base network architecture. According to the
standards issued by the Ministry of Transportation of China
regarding speed bumps, the defects are categorized based on
length, width, and height into askew and deformation and
based on appearance, colour, and shape into damage and
missing parts. The improvement approach aims to enhance
the model’s ability to recognize defect types and to better
extract input features under complex weather and varying
brightness conditions. These improvements include modifi-
cations to the SimSPPF, ConvTranspose, CotNet, and gnConv
modules. A new data augmentation method, CR, is used to
address the limitations of the existing dataset. The improved
model can detect defects in speed bumps and can be deployed
on embedded mobile devices, thus providing a measure of
safety for vehicles on the road while identifying defective
speed bumps.

II. RELATED WORK
A. DATASET INTRODUCTION
The dataset used in this experiment is a custom dataset cre-
ated from video clips of problematic speed bumps captured
by DJI drones in various complex scenarios, such as park-
ing lots, construction sites, and traffic-heavy roads. During
the actual filming, it was observed that problematic speed
bumps are less common compared to standard ones, with
most exhibiting only alignment defects. Speed bumps with
severe damage, missing sections, or deformation defects were
even rarer, leading to uneven sample distribution in model
training. This could result in poor fitting effects and limited
generalization capability of the model. Therefore, data aug-
mentation is necessary to balance the sample distribution for
speed bump defects. Additionally, the captured footage was
frame-separated at a rate of 5 frames per second, resulting in
a total of 2121 original images. According to the standards
issued by the Ministry of Transportation of China for rubber
speed bumps, the dataset was categorized into five major
classes: damage, askew, speed bump, lack, and deformation,
as shown in Fig. 1. Finally, CR data augmentationwas applied
to the 2121 original images, and after filtering and removing
unsuitable images, the final dataset comprised 3820 images.
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FIGURE 1. Dataset image example.

Data labeling was performed using LabelImg, with anno-
tations divided into five categories corresponding to the
aforementioned classes: damage, askew, Speedbump, lack,
and deformation. The annotation process employed a two-
step approach, where the presence of a speed bump is first
detected, followed by the identification and classification of
its specific defects. Additionally, the dataset was divided into
training, testing, and validation sets in an 8:1:1 ratio. After
categorization, the annotated dataset of speed bump defects
was named SBD (Speed Bump Defects).

B. CR DATA AUGMENTATION
Traditional data augmentation methods such as Mosaic data
augmentation and Mixup data augmentation have improved
model performance to a certain extent, but they have not
effectively addressed the challenge of uneven distribution of
data samples. Therefore, this paper, based on Mosaic and
Mixup, designs a data augmentation method tailored for the
distribution of speed bump defect data samples, known as CR
(Color space transformation and Random erasing) data aug-
mentation. The CR data augmentation method includes ‘‘C’’
(Color space transformation) and ‘‘R’’ (Random erasing).

Color space transformation involves converting an image
from one color space to another, which helps change the color
representation of the image. Common color spaces include
RGB (Red, Green, Blue) and HSV (Hue, Saturation, Value).
In this experiment, the purpose of designing color space
transformations is to assist the model in better learning the
features of speed bump defects under various lighting and
color conditions, thereby enhancing the diversity of training
data types. This approach addresses the issue of uneven sam-
ple type distribution and improves the model’s generalization

ability under different environmental conditions and color
variations. The comparison of images before and after color
space transformation is shown in Fig. 2, and the formula
for the color space transformation is given in Equation (1),
where the input image is RGB and the output image is HSV;
60 represents the angle size for hue segmentation; H repre-
sents the position on the color wheel, i.e., hue, calculated by
comparing the maximum and minimum RGB components; S
represents the purity or concentration of the color, i.e., satu-
ration, calculated by the ratio of the maximum and minimum
RGB component values; V represents the brightness or value,
directly taken as themaximumvalue of the RGB components.

[HSV ] =



[H ] =



60 [R− G]
V −MIN

(MAX = R)

120 +
60 [G− R]
V −MIN

(MAX = G)

240 +
60 [B− G]
V −MIN

(MAX = B)

undefined (V = 0)

[S] =

 0 (V = 0)
MAX −MIN

MAX
(V ̸= 0)

[V ] = MAX
MAX = MAX (R,G,B) \MIN = MIN (R,G,B)

(1)

Random erasing is performed by randomly deleting a por-
tion of an image and filling the erased area with randomly
generated pixels. Initially, the image is loaded using the PIL
library and converted into a NumPy array, which is then
transformed into a PyTorch tensor. Subsequently, a function
is called to perform the random erasing operation, which

116788 VOLUME 12, 2024



X. Xiang et al.: Research on Detection of Multiple Types of Speed Bump Defects

FIGURE 2. Color space transformation diagram.

includes specifying the erasing probability, size range, aspect
ratio range, and the fill color for the erased area. The pro-
cessed PyTorch tensor is then converted back into a PIL
image and saved to the designated output folder. This random
erasing data augmentation method can expand the dataset for
speed bumps, particularly for categories withmissing or dam-
aged samples, by balancing the data samples and enhancing
the model’s ability to recognize partial absences or changes
in regions of the image. The transformation of images by
random erasing can be seen in Fig. 3, and the formula for
random erasing is shown in Equation (2).
Where, ‘target_width’ and ‘target_height’ respectively

represent the width and height of the random erasing area;
‘start_x’ and ‘start_y’ respectively represent the starting coor-
dinates of the random erasing box; ‘fill_color’ represents the
fill used for the random erasing.

Iout = erase


Iin
start_x, start_y
t arg et_width, t arg et_height
fill_color

(2)

III. BASIC MODEL
A. YOLOv5s
YOLOv5s is a one-stage object detection algorithm that
extracts features through a stack of convolutional layers [23],
processing images in an end-to-end manner via a convolu-
tional neural network to regress the categories and positions
of targets. The framework of the YOLOv5s algorithm mainly
consists of three parts: the Backbone (which serves as the

FIGURE 3. Random erasing demonstration.

main feature extractor), the Neck (which aggregates and
refines features), and the Prediction Head (which outputs the
detections). See Fig. 4 for an illustration.

B. BACKBONE NETWORK
The backbone network employs the core architecture of the
Darknet53 network and consists of key modules, includ-
ing convolutional layers, CBS modules, CSP modules [24],
and SPPF modules. The convolutional layers utilize filters
of varying sizes to capture multi-scale features within the
image. The CBS module (Cross-Stage Backbone Module)
consists of a convolution (Conv), batch normalization (BN),
and SiLU activation function [25], as illustrated in Fig. 4(a).
This module optimizes the flow of information between fea-
ture maps. Its cross-stage connections allow feature maps
from different stages to interact, enhancing the network’s
ability to understand both global and local features of the
image. The CSP module (Cross-Stage Propagation Mod-
ule), depicted in Fig. 4(b) and 4(d), comprises two forward
branches (a main branch and a sub-branch) combined with
a Bottleneck stacking module. It facilitates the multi-level
integration of features from different stages through the
convolutional structure of the main and sub-branches and
residual connections, thereby improving the model’s ability
to understand multi-scale features and semantic information.
The SPPFmodule (Spatial Pyramid Pooling Feature Module)
[26], shown in Fig. 4(c), generates multi-scale feature rep-
resentations through pyramid pooling operations, enhancing
detection performance for targets of various sizes.

C. NECK NETWORK
The neck layer includes the Feature Pyramid Network
(FPN) [27](see Fig. 5(a)), Path Aggregation Network (PAN)

VOLUME 12, 2024 116789



X. Xiang et al.: Research on Detection of Multiple Types of Speed Bump Defects

FIGURE 4. YOLOv5s network architecture diagram.

[28](see Fig. 5(b)), and an upsampling module. The FPN
facilitates top-down propagation and enhances the semantic
information of the image, while the PAN supports bottom-up
propagation and reinforces positional information. Together,
they integrate feature maps of different scales and gener-
ate multi-scale and information-rich feature representations
through the upsampling module. The integrated feature maps
are then fed into the prediction module, which is used for
regression and classification tasks in object detection, thereby
improving the model’s performance in multi-scale target
detection and complex scenarios.

D. OUTPUT HEAD LAYER
The head layer includes three Detect detectors. When the
input image size is 640 × 640, three different scale feature
maps output by the Neck layer are processed by convolution

operations within the Detect module. Prediction boxes appro-
priate for each scale are generated on these feature maps,
corresponding to 20 × 20, 40 × 40, and 80 × 80 feature
maps. Each prediction layer is responsible for predicting
object locations and categories on different scale featuremaps
produced by the feature fusion module. Finally, by applying
Non-Maximum Suppression (NMS) [29], the final object
detection results are filtered out.

IV. IMPROVING THE YOLOv5s MODEL
Based on the shortcomings observed in the YOLOv5s source
code during training and incorporating improvement ideas
from related YOLO algorithms [30], [31], a new improved
algorithm is proposed. The network structure of the improved
algorithm is illustrated in Fig. 5. The specific improvements
are described as follows.

FIGURE 5. Improved YOLOv5s network architecture diagram.
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A. SPATIAL PYRAMID FAST POOLING
To meet the need for higher response speeds and reduced
model computation in practical speed bump defect detection,
the SPPF module in the backbone network has been modified
to the SimSPPF module. The SPPF utilizes different sizes
of pooling kernels (5 × 5, 9 × 9, and 13 × 13) to perform
serial maximum pooling operations (MaxPool) [30] on the
input feature maps, as shown in Fig. 6(a), to capture con-
textual information at various scales. In contrast, SimSPPF
standardizes the use of a 5 × 5 pooling kernel to replace
the original ones and modifies the existing CBS (Conv-
BN-SiLU) structure to CBR (Conv-BN-ReLU). The ReLU
activation function, being a nonlinear activation function,
enables higher computational efficiency while learning com-
plex data distributions. The SimSPPF structure and formula
can be seen in Fig. 6(b) and Equation (3).

F1 = CBR(F)
F2 = Maxpool (F1)
F3 = Maxpool (F2)
F4 = Maxpool (F3)
F5 = CBR(F1;F2;F3;F4)

 (3)

FIGURE 6. SimSPPF structure diagram.

B. CHANGING THE SAMPLING METHOD TO
TRANSPOSED CONVOLUTION
To address the issues of low detection accuracy for small
target defects and resolution loss of feature maps caused by

multiple sampling in speed bump defect detection, the sam-
pling method has been changed to a transposed convolution
module. Transposed convolution serves a similar function to
the original sampling module but differs from sampling with
fixed parameter values. It is essentially the inverse process
of the forward propagation of a regular convolution in a
convolutional neural network, where the positions of the input
and output feature maps are swapped. Thus, the parameters
of a transposed convolution kernel are similar to those of a
regular convolution kernel. However, transposed convolution
can achieve consistency in the resolution of feature maps with
high and low semantic information and concatenate them into
multi-channel feature maps. Then, through multi-channel
convolution, features are extracted to achieve multi-channel
feature fusion. This allows the model to gain more global
information and better detection capabilities for small targets,
effectively mitigating the resolution loss caused by multiple
sampling.

Because the default sampling method in YOLOv5s is near-
est neighbor interpolation, which replaces the gray value
of a source image pixel with the gray value of the nearest
pixel, this method can cause color block stacking during
sampling, leading to loss of feature information and reducing
detection accuracy for small targets. Transposed convolution
effectively solves the problem of color block stacking. Its
principle is illustrated in Fig. 7, where (a) shows a diagram
of a regular convolution operation, with ‘k’ representing the
size of the regular convolution kernel, ‘p’ the padding of
the regular convolution kernel, and the output’s first value
calculated as 0∗0 + 1∗1 + 3∗2 + 4∗3 = 19, with the remain-
ing three values calculated similarly. Transposed convolution
operates by transposing the original convolution kernel and
performing regular convolution with the padded input. There
are two ways to pad the input for transposed convolution:

When the convolutional kernel moves with a stride S
greater than 1 (S = 2) and padding p = 0, as shown in
Fig. 7 (b), padding of k-p-1 = 2 zeros is added around the
image, and the size of the holes between adjacent pixels is
S-1= 1. Based on the regular convolution operation, the first
output value is 0, and the subsequent values follow similarly.
The size of the output feature map is then 4∗4. The formula
for the output feature map is shown in Equation (4), where n
represents the pixel size of the input image.

out = S(i− 1) + k − 2p (4)

When the stride S = 1 and padding p = 0, as shown in
Fig. 7 (c), padding of k-p-1 = 1 zero is added around the
perimeter, and the hole size between adjacent pixels is S-
1 = 0. Based on the standard convolution operation, the
first output value is 0, and the subsequent values are derived
similarly. The resulting size of the output feature map is
3∗3. The formula for the output feature map is shown in
Equation (5), where n represents the pixel size of the input
image.

out = (i− 1) + k − 2p (5)
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FIGURE 7. Transposed Convolution Diagram. (a) Convolution Operation (b) The first padding method (c) The second padding
method (d)Transposed Convolution Flowchart.

C. INTEGRATION OF CONTEXT OPERATION NETWORK
MODULE AND C3 MODULE
In order to further distinguish the types of defects in speed
bumps under complex scene detection, extract key fea-
ture information, and better capture the global features of
the problematic speed bumps, it is necessary to enhance
the model’s visual representation capabilities. Therefore,
this paper adopts the CotNet module, which applies the
self-attention mechanism to two-dimensional feature maps,
enabling it to fully capture and utilize the contextual infor-
mation of the input, similar to a Transformer [31].

The CotNet module enables the network to better under-
stand the surrounding environment in feature maps, thereby
more effectively capturing target information. Additionally,
integrating it with the C3 module allows for the effec-
tive fusion of feature maps from different levels to capture
target information at various scales, achieving multi-scale
feature fusion and reducing the loss of important feature
information. The core idea of the CotNet module is to
compute keys(K ), queries(Q), and values(V ) to generate an
attention matrix with contextual information. In contrast, tra-
ditional self-attention mechanisms compute keys and queries
independently for each query, which, although capable of
capturing the global information of the image, neglect the
extraction of local image details.

The overall workflow of the CotNet module is illustrated
in Fig. 8(a), (b). It starts by obtaining the parameters [b,
c, h, w] of the input feature map N , representing batch,
channel number, width, and height, collectively referred to as
the query(Q). The feature map N is then processed through
a 1∗1 convolution to produce the value(V ), and a k ∗ k
convolution to capture local static context information(K 1),
termed as the key, which can be seen as static modeling
of local information. Subsequently, the query(Q) and the
local context information(K 1) are concatenated to produce
an intermediate output y, which maintains the dimensions
of the input and output but merges the channel counts.
The intermediate output y is further processed through two
consecutive 1 × 1 convolutions (C1C2) to generate an
attention matrix(A). After mean dimension reduction, the
attention matrix is multiplied by the value(V ) to obtain global
dynamic context information (K 2). Finally, local context
information(K 1), and the weighted global dynamic context
information(K 2) are combined to produce the final output(Y ).
The computational formula for the CotNet module is shown
in Equation (6).

A =
[
K 1,Q

]
C1C2

K 2
= A× V

Y = K 1
+ K 2

 (6)
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FIGURE 8. CotNet module flowchart.

D. RECURSIVE GATE CONVOLUTION
In actual detection scenarios, the identification of defects
in speed bumps faces interference from complex factors,
such as obstructions caused by fallen leaves, mud, and
snow tracks. The detection is also affected by complex
weather conditions and lighting environments, including
rain, snow, fog, and nighttime settings. These complex
situations require the model to capture high-order spatial
interactions within images, complex features, and inputs
of varying sizes and scales. To address this, we have
incorporated recursive gate convolution, gnConv, into our
approach.

Due to the use of gated convolution and recursive
design structures, recursive gated convolution enables
arbitrary-order spatial interaction. However, to better present
its efficient high-order spatial interaction capabilities,
we have considered the application sequence of different
interaction methods in spatial modeling operations, as shown
in Fig. 9. By modeling the spatial interactions between
features (the red part) and their adjacent areas (the light
grey part), where the standard convolution operation (a)
usually ignores spatial interactions, which may limit the
model’s performance. Dynamic convolution (b) introduces
dynamic weights to enhance the spatial modeling capacity
of the convolution operation but still has limitations. The
self-attention operation (c) achieves second-order spatial
interactions by performing matrix multiplication (MatMul)
twice, but this comes with computational complexity and
parameter overhead issues. The gnConv (d) adopts gated
convolution and recursive design, achieving arbitrary-order
spatial interactions while also improving the computational
efficiency of the model.

FIGURE 9. Spatial Interaction Representation Diagram. (a)Standard
Convolution (b) Dynamic Convolution (c) Self-Attention Convolution
(d) Recursive Gated Convolution.

The formula for gated convolution is shown in
Equation (7). Let x represent the input features; then, the
output can be expressed as y = gConv(x).[

pHW×C
0 , qHW×C

0

]
= ϕin (x) ∈ RHW×2C

p1 = f (q0) ⊙ pHW×C
0

∈ RHW×C

y = ϕout (p1) ∈ RHW×C

 (7)

where ϕin and ϕout are linear projection operations, namely
layers that perform channel mixing; f represents a depth-
wise separable convolutional gate that enables pHW×C

0 to
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interact once with its neighboring feature qHW×C
0 , achieving

first-order spatial interactions.
By incorporating a recursive structure on top of the gated

convolution, higher-order spatial interactions are achieved.
The formula for this is shown in Equation (8), at the bottom
of the page.

After effectively implementing first-order spatial interac-
tions, the model’s capacity is further enhanced by introducing
higher-order interactions n times. The specific process is as
follows.

Initially, a series of projected features, such as pHW×C
0

and qHW×C0
0 , . . . , qHW×Cn−1

n−1 , are obtained using ϕin. These
projected features are derived by splitting the input features
according to channel numbers. These features are then fed
into a gated convolution, and computations are performed
recursively. During the recursive process, division by the
scaling factor α is used to stabilize training. fk represents a
set of deep convolutional layers, while gk is used to match the
channel numbers during each recursion. Finally, the output
from the last recursive step, qn, is fed into the projection layer
ϕout to obtain the result of gnConv. Throughout this process,
through the interactions of pk+1, the order continuously accu-
mulates, ultimately achieving n order spatial interactions.

V. EXPERIMENTAL RESULTS AND ANALYSIS
A. EXPERIMENTAL SETUP
The hardware platform, configuration parameters, and frame-
work environment used for model training in this experiment
are listed in Table 1.

TABLE 1. Experimental setup table.

B. EVALUATION METRICS
The model utilizes several metrics for evaluating the perfor-
mance of the CRSCCG-YOLOv5s object detection model,
including P/% (Precision) [32], R/% (Recall) [33] Mean
Average Precision mAP/% [34], the number of parameters

(Parameters), and the amount of floating-point operations
(GFLOPs).

Specifically, P/% represents the accuracy of the model,
assessing the correctness of its predictions; R/% represents
the recall, also known as the detection rate, assessing the
completeness of the model’s target detection. The formulas
for these metrics are shown in Equations (9) and (10).

Precision =
TP

TP+ FP
(9)

Recall =
TP

TP+ FN
(10)

TP [35]represents the number of instances correctly iden-
tified as positive by the model, FP [36]represents the number
of instances that are actually negative but were incorrectly
identified as positive by the model, and FN represents the
number of instances that are actually positive but were incor-
rectly identified as negative by the model.

The mean average precision, mAP/%, is obtained by aver-
aging the AP [37]across all categories, where AP is the area
under the curve formed by the precision P/% and recall R/%
curve along with the coordinate axes. The formulas for calcu-
lating AP and mAP/% are shown in Equations (11) and (12).

AP =

∫ 1

0
P (r)dr (11)

mAP =

N∑
i=1

APi

N
(12)

The number of parameters (Parameters) [38] represents
the count of learnable parameters in the model. These learn-
able parameters are the weights and biases within the neural
network. The floating-point operations (GFLOPs) indicate
the model’s computational capacity, measuring the billions
of floating-point operations performed by the model, which
reflects its computational efficiency.

C. ABLATION STUDIES AND COMPARATIVE EXPERIMENTS
To validate the performance of the CRSCCG-YOLOv5s
model in detecting defects on speed bumps, a series of
ablation experiments were designed. These experiments
incrementally combined and compared various improvement
modules, utilizing selected evaluation metrics to assess the
enhancements of the model. Specifically, Group A added the
SimSPPF module to the base YOLOv5s; Group B further
integrated the CotNet module with the C3 module on top of
the SimSPPF addition; Group C added the gnConv module

[
pHW×C0
0 , qHW×C0

0 , . . . , qHW×Cn−1
n−1

]
= ϕin (x) ∈ RHW×(C0+

∑
0≤k≤n−1Ck)

pk+1 = fk (qk) ⊙
gk (pk )

α
, k = 0, 1, . . . , n− 1

gk =

{
Identity k=0
Linear(Ck−1,Ck ) 1≤k≤n−1

Ck =
C

2n−k−1 , 0 ≤ k ≤ n− 1

 (8)
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TABLE 2. Ablation study table.

TABLE 3. Comparative experiment table.

FIGURE 10. mAP% curve comparison chart.

after integrating SimSPPF and CotNet modules; CRSCCG-
YOLOv5s represents the integration of all improve-
ment modules, including SimSPPF, CotNet, gnConv, and
ConvTranspose.

The results from the ablation experiments shown in Table 2
reveal that initially, Group A experienced a 0.5% decrease in
accuracy but a 0.7% increase in recall and a 1.3% increase in
mean average precision after adding the SimSPPF module.
This indicates that the inclusion of this module enhances the
model’s ability to capture multi-scale contextual information.
In Group B, which built upon Group A by integrating the

CotNet module, there was a 1.8% increase in accuracy and
a 1.0% increase in mean average precision, though recall
decreased by 0.9%. This demonstrates that the fusion of this
module improves the model’s accuracy in detecting small
target defects. Group C, which added the gnConv module
on top of Group B, showed a 0.4% increase in accuracy,
a 1.2% increase in recall, but a 0.5% decrease in mean
average precision, indicating that Group C’s improvements
further enhanced themodel’s feature extraction capabilities in
complex environments, improving both accuracy and recall.
Finally, merging all four improvements compared to Group
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C resulted in a 0.5% increase in accuracy, a 0.1% decrease
in recall, and a 1.1% increase in mean average precision.
Overall, compared to the original YOLOv5s code, the final
improvements led to a 1.2% increase in accuracy, a 0.9%
increase in recall, and a 2.9% increase in mean average
precision. In conclusion, the CRSCCG-YOLOv5 algorithm is
highly effective in enhancing model performance in scenar-
ios involving small targets, complex scenes, and multi-scale
image inputs.

To further validate the effectiveness of the CRSCCG-
YOLOv5s algorithm, this study conducted comparisons
using the same dataset, on the same hardware, and within
the same experimental environment, framework, and training
strategy. The evaluations were based on metrics such as accu-
racy (P/%), recall (R/%), mean average precision (mAP/%),
the number of parameters, and floating-point operations,
comparing them with YOLOv3, YOLOv5l, YOLOv5m,
YOLOv5s, YOLOv7, and YOLOv8s. The results from
Table 3 show that the improved YOLOv5s, compared to
YOLOv3, experienced a slight decrease in recall by 0.2 per-
centage points but significantly reduced the number of
parameters and floating-point operations, with an increase
in mean average precision by 2.1 percentage points. Com-
pared to YOLOv5l, although there was a 0.7 percentage point
decrease in recall, there was a substantial reduction in param-
eters and floating-point operations, with an increase in mean

average precision by 2.9 percentage points. Compared to
YOLOv5m, the parameter count was reduced by about half,
and the mean average precision increased by 0.9 percentage
points. Against YOLOv7, there was an approximate increase
of 1 percentage point in both accuracy and mean average
precision, with a more than fourfold reduction in parameter
count. Compared to YOLOv8s, although there was a 2.2 per-
centage point decrease in recall, there were improvements of
1.7 percentage points in accuracy and 1.0 percentage points in
mean average precision, along with advantages in the number
of parameters and floating-point operations. Compared to
the original YOLOv5s model, although there was a slight
increase in parameters and floating-point operations, accu-
racy improved by 2.2 percentage points to 97.7%, recall by
0.9 percentage points to 91.9%, and mean average precision
by 2.9 percentage points to 96.4%.

In summary, compared to YOLOv3 and YOLOv5l, the
CRSCCG-YOLOv5s model boasts smaller size and reduced
computational demands while achieving higher mean aver-
age precision. When compared to YOLOv5m and YOLOv7,
although the accuracy, recall, and mean average precision
are similar, CRSCCG-YOLOv5s has a clear advantage in
terms of model size and computational requirements. When
compared to YOLOv8s, although the improvements in accu-
racy, recall, and mean average precision are not particularly
significant, CRSCCG-YOLOv5s still maintain an advantage

FIGURE 11. Precision-Recall curve comparison chart.

FIGURE 12. Training curve comparison chart.
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FIGURE 13. Validation effect comparison chart.

in model parameters and computational load. Additionally,
as shown in Figure 10, the mAP% curve comparison indi-
cates that around 350 epochs, the blue curve representing
CRSCCG-YOLOv5s is higher than the other curves. There-
fore, under the same experimental conditions, using the
same equipment and dataset, the CRSCCG-YOLOv5s model
stands out among other YOLO series object detection models
with its smaller parameter count, compact size, and higher
accuracy, recall, and mean average precision.

D. TRAINING CURVE COMPARATIVE ANALYSIS
To better demonstrate the effectiveness of the CRSCCG-
YOLOv5s algorithm compared to YOLOv5s, an analysis of
three types of loss curves and three evaluation curves is
presented in Fig. 12.With bothmodels trained for 350 rounds,
the CRSCCG-YOLOv5s shows notably faster convergence
and less fluctuation in both the training and validation obj
loss curves. The precision, recall, and mean average pre-
cision curves (mAP0.5, mAP0.5:0.95) all converge around

VOLUME 12, 2024 116797



X. Xiang et al.: Research on Detection of Multiple Types of Speed Bump Defects

FIGURE 14. Detection effect comparison chart.

200 rounds, which is significantly quicker than YOLOv5s,
and with notably less volatility. This indicates that the addi-
tion of improved modules can lead to faster convergence of
model curves and reduce fluctuation.

Additionally, as shown in the P-R curve comparisons in
Fig. 11, the CRSCCG-YOLOv5 model shows an 8.6 per-
centage point improvement over the YOLOv5s model in
detecting the damaged category, and improvements of 2.7 and
2.6 percentage points in detecting the missing and skewed
categories, respectively. There are also slight improvements
in detecting other defect categories. This demonstrates that
the addition of improved modules not only enhances detec-
tion for specific defect categories such as damage but also
improves the overall detection performance for various defect
categories.

E. VALIDATION IMAGE COMPARATIVE ANALYSIS
To better compare the effects before and after the model
improvement, 16 images were randomly selected from the
validation set of the Speed Bump Defect dataset (SBD)

for validation tests using both CRSCCG-YOLOv5s and
YOLOv5s. The test results are shown in Figure 11.

From Figure 13, images 193, 165, 176, 175, and
335 demonstrate that CRSCCG-YOLOv5s has made a
progress of 0.1 to 0.2 percentage points in the accuracy
of deformation defect recognition compared to YOLOv5s.
Additionally, images 193 and 1120 show a 0.1 percentage
point improvement in the accuracy of missing defect recog-
nition with CRSCCG-YOLOv5s compared to YOLOv5s.
This indicates that the improvements in CRSCCG-YOLOv5s,
specifically the enhancements for capturing small target
defects and multi-scale defect features through the integra-
tion of transposed convolutions and the contextual operation
network CotNet with C3, have indeed been effective. Further-
more, there has also been a 0.1 percentage point improvement
in speed bump recognition, as shown in images 958 and 1136.

F. DETECTION EFFECT COMPARISON ANALYSIS
To better highlight the improvements before and after
modifications, this study visualizes the detection results
of CRSCCG-YOLOv5s compared to YOLOv5s. Defective
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speed bump images featuring damage, skewing, deformation,
and missing parts were selected to validate the enhancements
of the model. These results are compared with the original
YOLOv5s, with specific effects shown in Fig. 14.
Compared to the original YOLOv5s, the CRSCCG-

YOLOv5s algorithm shows improved detection performance
for speed bumps. Specifically, the confidence in deformation
detection increased from 0.67 to 0.85, a rise of 0.18 points;
in damage detection, confidence increased from 0.67 to
0.87, a rise of 0.20 points; in missing detection, confidence
increased from 0.91 to 0.92, a rise of 0.01 points; and in
skewed detection, confidence increased from 0.93 to 0.94,
a rise of 0.01 points. According to these results, it is evident
that the improved module significantly enhances detection
performance in complex scenarios, especially for small target
defects such as damage and deformation. Even for simpler
defects characterized by skewing and missing features, there
is a slight improvement in detection accuracy. Overall, the
enhancements not only improve the identification of speed
bumps but also the detection of various defect types.

VI. CONCLUSION
This study supplements existing research on speed bump
defect detection by proposing the improved CRSCCG-
YOLOv5s model, which builds on the original YOLOv5s.
The model further detects and classifies defects in speed
bumps, such as missing, damaged, deformed, and skewed
features. Improvements were made in pooling structures,
sampling methods, convolutional architectures, data aug-
mentation, and sample balancing. Specifically, enhance-
ments include the addition of Spatial Pyramid Pooling
Fast (SimSPPF), transposed convolutions, Context Opera-
tion Networks, Recursive Gated Convolutions, and CR data
augmentation for sample balancing. These improvements
not only enhance detection speed and accuracy but also
strengthen the capability to extract features from small target
images, addressing issues like uneven distribution of image
sample types.

Experimental results show that CRSCCG-YOLOv5s
achieves an accuracy of 97.7%, a recall rate of 91.9%, and
a mean average precision of 96.4% on the custom Speed
Bump Defects (SBD) dataset, with a model size of 8.8M
parameters. Therefore, compared to other YOLO series mod-
els (YOLOv3, YOLOv5l, m, x, YOLOv7, and the currently
stable YOLOv8), CRSCCG-YOLOv5s excels in precision,
confidence, and parameter efficiency. The model performs
well in scenarios requiring quick response and provides
high-quality detection results, offering an efficient solution
for speed bumps defect detection.

Nevertheless, CRSCCG-YOLOv5s still has limitations
in accurately classifying the specific defect degrees of
speed bumps, such as deformation and damage, and needs
improvement in model lightweight optimization. Future work
will focus on refining defect degree classification, optimiz-
ing model size, enhancing detection speed, and exploring
the potential application in other traffic facility detections.

Additionally, to address the challenges where critical features
may be obscured due to insufficient lighting in dark or low-
light environments, future research will consider integrating
infrared sensing technology or image enhancement methods
to improve detection performance under these conditions.
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