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ABSTRACT We revisit the design of convolutional kernels in lightweight convolutional neural networks,
and inspired by the recent advances in RepLKNet, we design a Variable Kernel Convolutional Network
module VarKNet, which solves the problem of the imbalance between depthwise convolution and pointwise
convolution in the case of depthwise separable convolution when the network width is large, and enriches
the model’s receptive field. The VarKNet module adopts a multi-branch structure during training and is
re-parameterized and fused into a single-path structure during inference to maintain the strong expressive
ability of the model and improve the inference speed. In order to further enhance the information exchange
between channels, VarKNet adds channel shuffling in the fused branches. Built on VarKNet, we designed a
large-scale face recognition network VarKFaceNet. VarKFaceNet achieved A great achievement of 99.5%
accuracy on the LFWdataset with 0.7M parameters and 0.24 GFLOPS. At the same time, themeasured speed
on the NVIDIA Jetson Nano platform is 159 times, 4.2 times, and 2.4 times that of ResNet-50, EfficientNet,
and MobileFaceNet, respectively. VarKFaceNet excels in balancing speed and accuracy and is quite suitable
for embedded devices with limited resources.

INDEX TERMS Face recognition, local features, multi-scale, lightweight network.

I. INTRODUCTION
The methodology of deep learning representation is to use
simple modules to realize highly complex function repre-
sentations [1], and Convolutional Neural Networks (CNNs)
are one of the most effective methods for deep learning
representation. CNNs have achieved significant success
in downstream tasks such as face recognition. However,
implementing large-scale face recognition CNN models for
rapid inference on resource-constrained embedded devices
remains a substantial challenge.

Numerous studies have focused on building efficient
lightweight convolutional neural networks, such as low-rank
matrix factorization [2], which operates on a fully connected
layer to reduce the memory requirements and complexity of
the model. HashNet [3] introduces a method to effectively
quantize network weights. Before the training process begins,
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the network weights are hashed into distinct groups, with
the weights within each group being shared. This approach
means that only the shared weights and hash indexes need
to be stored, resulting in substantial memory savings. Addi-
tionally, weight pruning [4] is employed to retain only the
essential connections, thereby reducing the memory footprint
and computational requirements of the neural network by an
order of magnitude, all while preserving its accuracy. Knowl-
edge Distillation [5] achieves model compression by training
shallow models guided by pre-trained Teacher Models and
using the output probabilities of the pre-trainedmodels as soft
labels for the new shallowmodels. The aforementionedworks
have significantly advanced the application of deep learning
on mobile and embedded devices. However, their outstanding
performance still heavily relies on the inherent capabilities of
the neural network models themselves.

In addition, some researchers have focused on build-
ing more efficient models through the development of
more effective CNN modules, yielding significant results.
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FIGURE 1. Comparison of the proportional computational load of
depthwise convolution for DW Conv3 × 3, VarKNet1, and VarKNet2 across
various channel widths. The x-axis represents the number of output
channels, while the y-axis shows the percentage of total computational
load contributed by depthwise convolution.

SqueezeNet [7] uses Conv1 × 1 to reduce the dimension-
ality of the feature map, thereby reducing the number of
weighting parameters. MobileNet [8] relies on depthwise
convolutional operations and inverse residual structures to
construct efficient modules with competitive performance.
ShuffleNet [9] uses channel shuffling operations, and Vision
Transformer (ViT) [10] applies the Transformer to images
for the first time by segmenting the image and then
feeding it into the Transformer network after position and
content encoding, achieving great success in visual tasks
such as image categorization and representation learning.
RepLKNet [11] achieved comparable or better performance
than Swin [13] with a 31 × 1 kernel convolutional network
and structural re-parameterization [14], while having a
faster inference speed. The above work achieved excellent
performance in both image classification and recognition, but
the optimization problem on embedded systems still exists
with embedded hardware and corresponding compilers [15].
VarGNet [15] proposes a variable group convolution, which
mitigates the imbalance of computational intensity within a
block to some extent. However, this work fails to point out
that network width is the most critical factor influencing the
amount of depthwise separable convolutional computation,
focusing on pointwise convolution, as well as the fact that
multibranching also has a significant impact on latency.
Inspired by RepLKNet and VarGNet, we revisit the strategy
of using large kernel convolution in lightweight networks
and cleverly set up the variable kernel convolution module
VarKNet according to the number of channels to address the
computational imbalance and inefficient feature extraction
caused by small kernel depthwise separable convolution
when the network width is large.

As shown in Figure 1, when the number of output channels
is 384, depthwise convolution accounts for only 2.3% of
the computation, while pointwise convolution consumes
97.7%. This results in a significant imbalance of computation
within a block, leading to inefficiency in feature extraction.

This problem is further exacerbated when neural network
inference is performed on embedded devices.

To address this issue, we propose an efficient module
called VarKNet, which increases the convolution kernel
size based on network width, effectively mitigating the
imbalance. As shown in Figure 1, we employed two different
strategies to configure VarKNet, both of which successfully
alleviate the computational imbalance between depthwise
and pointwise convolutions. To further enhance performance,
VarKNet incorporates shortcut connections. Additionally,
we implemented structural re-parameterization techniques
and channel mixing operations.

To validate the performance of VarKNet, we built a
lightweight face recognition network named VarKFaceNet.
VarKFaceNet was evaluated on several datasets, including
LFW, VGG2, and CPLFW. Using the LFW dataset as an
example, VarKFaceNet achieved an accuracy of 99.5%,
sacrificing only 0.1% accuracy compared to MobileNetV2
[16], while achieving a 4-fold reduction in parameters and a
6-fold reduction in FLOPs. This performance is particularly
impressive considering the use of large kernel convolutions,
such as DW Conv13 × 13.

Our contribution is as follows:
1) A comprehensive analysis of the causes of intra-block

computational imbalance was conducted, leading to the
development of a novel lightweight modular variable kernel
convolution, VarKNet. VarKNet not only addresses the
contradiction of intra-block computational imbalance in
embedded devices but also possesses powerful feature
extraction capability, representing a novel design paradigm
for lightweight convolutional neural networks (CNNs).

2) A dedicated lightweight face recognition network,
VarKFaceNet, was designed based on VarKNet. VarK-
FaceNet achieves a balance between speed and accuracy,
as evidenced by its excellent test results on LFW, VGG, and
other datasets.

3) Structural re-parameterization techniques were
employed to utilize multiple branches during training to
extract features with different receptive fields. During
inference, these branches are converted into a single-path
structure to accelerate inference. Additionally, channel
mixing operations were introduced to enhance inter-channel
communication in depthwise separable convolutions.

II. RELATED WORK
This section provides a concise overview of select key
lightweight convolutional neural network designs and related
work in the field of lightweight face recognition-specific
networks.

A. LIGHTWEIGHT FACE RECOGNITION NETWORKS
Previously, approaches to lightweight models have focused
on the design of simpler network structures, the reduction
of the number of layers or channels, or the compression
of parameters. However, these methods typically lead to a
compromise in model performance. MobileNet represents a
novel approach to convolutional neural networks, proposing
the replacement of conventional convolution with depthwise
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separable convolution. This approach offers the possibility
of significantly reducing the amount of computation while
maintaining model performance. Furthermore, MobileNetV2
incorporates an inverted residual structure and a linear
bottleneck layer, which enhances the model’s structural
fairness and efficiency. MobileNetV3 [17] employs com-
plementary search techniques to combine these modules
into a more efficient model. ShuffleNet employs group
convolution and channel shuffling operations, while Shuf-
fleNetV2 [18] achieves efficient information exchange and
feature learning through appropriate channel rearrangement
and depthwise separable convolutions. GhostNet v2 [19],
based on GhostNet, incorporates decoupled fully connected
attention to enhance its representation capability, thereby
capturing long-range dependencies between different spatial
pixels. It is a novel lightweight convolutional neural net-
work module. Partial Convolution (PConv) [20] enhances
the efficiency of spatial feature extraction by reducing
redundant computations and memory access. Specifically,
it performs convolution only on a subset of channels,
while the remaining channels are left unprocessed and
concatenated with the convolution results to form the output,
rather than being added. DenseNet [12] employs a densely
connected approach to reuse feature information, thereby
achieving enhanced performancewith reduced computational
effort. RepVGG [14] incorporates the residual connection
structure of ResNet, drawing upon the principles of simple
convolutional stacking and channel attention from VGGNet.
It employs a multi-branch network for training and a
VGG-like vertical network for inference, thereby achieving
an optimal balance between speed and accuracy.

B. LIGHTWEIGHT SPECIALIZED NETWORK FOR FACE
RECOGNITION
Despite the excellent results achieved by lightweight models,
the design of dedicated face recognition convolutional
neural networks for resource-constrained embedded devices
remains a problem. MobileFaceNet [21] and Shuffle-
FaceNet [22] are built on theMobileNetV2 and ShuffleNetV2
designs, respectively, and have achieved significant accuracy.
MobileFaceNet introduces a global depthwise convolution
layer that replaces the traditional global average pooling.
This design reduces the number of parameters and compu-
tational cost while maintaining high efficiency, making it
suitable for mobile and embedded devices. MobiFace [23]
extends MobileNetV2 by incorporating an efficient attention
module and feature fusion strategy, which significantly
improves the representational capability and performance of
the model across different poses and ages, while keeping
the computational cost low. These approaches improve
the performance of lightweight face recognition networks
by optimizing the network architecture and incorporating
attention mechanisms. MobileFaceNet focuses on reducing
computational resources, while MobiFace improves the
robustness and adaptability of themodel at low computational
cost. Depthwise separable convolution using small kernels
has become the standard approach for lightweight CNN

design and has yielded satisfactory results. Nevertheless,
the optimization problem for embedded systems is still a
significant challenge. A novel variable convolutional kernel
network module, VarKNet, has been established to address
the computational imbalance within a lightweight model
block due to the use of depthwise separable convolution in
resource-constrained embedded or mobile devices. A further
network, VarKFaceNet, was also based on VarKNet, which is
a modern lightweight face recognition-specific network.

III. PROPOSED METHOD
In this section, we first introduce our novel, efficient
convolutional neural network VarKNet, which has been
designed to fulfill the two criteria for variable kernel
convolution. Secondly, we present the new, specialized
network VarKFaceNet for face recognition, including the
network architecture, activation function, and loss function.

A. VarKNet: VARIABLE KERNEL CONVOLUTION MODULE
1) VarKNet: VARIABLE KERNEL CONVOLUTION MODULE
Convolution methods that adhere to traditional conventions
necessitate the processing of the feature map in a channel-by-
channel fashion. This process is inherently computationally
expensive, with a total computational effort that is illustrated
in (1). Consequently, a substantial body of research has
been conducted with the objective of developing more
efficient convolution methods. One such method is Group
Convolution [24], which divides the input data into g groups
with the number of groups specified by g. Consequently, the
number of input channels per convolution kernel is reduced
to ci/g of the number of input channels. Subsequently, the
results of each convolutional group are spliced together to
form the final output, with the number of output channels
of the convolutional kernel becoming ci+1/g. The complete
calculation process is illustrated in (2). In comparison to
the conventional convolution operation, the computational
complexity of the group convolution is reduced by a factor of
1/g. The concept of Depthwise Separable Convolution was
first introduced by the Google team in MobileNet, where
a convolution kernel is responsible for only one channel.
Subsequently, the width of the network was extended and
inter-channel communication was enhanced by Pointwise
Convolution. The formulas in equations (3) and (4) represent
the calculations for depthwise convolution and pointwise
convolution, respectively. The computational cost of depth-
wise separable convolution is reduced by approximately
1/k2 compared to conventional convolution, as demonstrated
in (5). This reduction greatly facilitates the deployment of
neural networks on embedded devices.

MACsstandard = hi × wi × ci × ci+1 × k × k (1)

MACsgroup =
hi × wi × ci × ci+1 × k × k

g
(2)

MACsdepth = hi × wi × ci × k × k (3)

MACspoint = hi × wi × ci × ci+1 (4)

MACsdepthwise = MACsdepth + MACspoint (5)
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Percentagedepth =
k2

k2 + ci+1
× 100 (6)

k = {k |k2 < cout, k is odd}

(k = 3, 5, 7, . . .) (7)

k = {k | (k + 2)2 < cout, k is odd}

(k =3, 5, 7, . . .) (8)

where:
• hi is the height of the input feature map.
• wi is the width of the input feature map.
• ci is the number of input channels.
• ci+1 is the number of output channels.
• k is the kernel size.
• g is the number of groups.
According to (6), when the size of the input and output

feature maps are kept constant, the difference in the computa-
tional volume between pointwise convolution and depthwise
convolution is mainly affected by the size of the convolution
kernel and the number of output channels. Therefore,
we propose a new dynamic variable kernel convolution,
VarKConv. The variable kernel convolution is demonstrated
in Fig. 2, where we dynamically expand the size of the
convolution kernel as the width of the network is increased in
order to balance the computational effort between depthwise
convolution and pointwise convolution. Depending on the
expansion speed of the convolution kernel size, we propose
two criteria as shown in (7) and (8). The latter criterion puts a
brake on the expansion speed of convolutional kernels and is
more suitable for lightweight networks.We evaluate the share
of depthwise convolution in the total computation for DW
Conv3×3, variable kernel convolution guided byGuideline 1,
and Guideline 2 when the number of output channels is
expanded from 0 to 512. As shown in Fig. 1, the share of
depthwise convolution computation for the traditional small
kernel DWConv3×3 decreases rapidly when the width of the
network is expanded, while the variable kernel convolution
guided by Guideline 1 accounts for approximately 40% to
50% of the total computation, and Guideline 2 accounts for
approximately 35% to 45%. By increasing the convolution
kernel size, we can obtain a larger receptive field, which
greatly improves feature extraction. Therefore, it is not
necessary to increase the number of channels excessively to
achieve good performance, which is one of the reasons why
we increase the convolution kernel size without incurring
unaffordable computational costs.

2) VarKNet: VARIABLE KERNEL CONVOLUTION MODULE
The VarKNet module is mainly designed for lightweight net-
works, which are typically multi-branch networks. It includes
a main branch consisting of variable kernel convolution,
feature extraction branches with different scales, identity
mapping, and a hyperparameter that can control the number
of layers. As shown in Fig. 3(a), when the kernel size of
the main branch convolution is 3, the kernel size of our
feature extraction branch convolution is 1 × 1, which is
mainly used to pre-extract more local information. As shown
in Fig. 3(b), when the kernel size of the main branch

FIGURE 2. Schematic of variable kernel convolution. This diagram
illustrates the flow and interactions of different convolution operations in
a variable kernel setup. Beginning with channel input, the process
involves depthwise convolution, followed by multiple parallel 1 × 1 point
convolutions. As the number of channels increases, the sizes of the
depthwise convolution kernels are dynamically adjusted according to
criteria 1 and criteria 2, culminating in the output of feature maps.

FIGURE 3. Architecture of VarKNet with different kernel sizes.
(a) Demonstrates a configuration where the main convolution branch has
a kernel size of 3, utilizing 1 × 1 convolutions in the feature extraction
branch for local information pre-extraction. (b) Shows a setup where the
main convolution branch uses larger than 3 × 3 kernels, complemented
by 3 × 3 DW convolutions in the feature extraction branch to enhance the
network’s receptive field and overall feature extraction capability.

convolution is larger than 3 × 3, our feature extraction
branch is set to DW Conv3 × 3. This combined receptive
field greatly improves the network’s enhancement. The added
DW Conv3 × 3 feature extraction branch reintroduces the
problem of imbalance between depthwise convolution and
pointwise convolution computation. To address this, we use
the structural re-parameterization technique, as illustrated
in Fig. 4. First, we perform the batch normalization (BN)
operation as shown in (9) and (10), and the convoluted
BN can be considered as a special convolution. Then,
we perform the structural re-parameterization, where the
3 × 3 convolution can be filled into 7 × 7, and the shortcut
can first be equated to the special Conv1 × 1 and then
expanded into Conv7× 7. Finally, according to the additivity
of convolution, wemerge the three branches into a single path
structure, achieving a perfect implementation of multi-scale
large kernel convolutional neural network fast inference. The
biggest difference between DW convolution and ordinary
convolution is the inter-channel information communication,
so we introduce the channel blending operation proposed in
ShuffleNet to further bridge this gap.
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FIGURE 4. Re-Parameterization process of the VarKNet architecture. This figure illustrates the technique of structural re-parameterization
used to address the computational imbalance between deep and pointwise convolutions. Initially, BN operations compress batch
normalization layers into convolutions, followed by structural re-parameterization where 3 × 3 convolutions are expanded into
7 × 7 formats. Shortcut paths are initially equivalent to special 1 × 1 convolutions and then expand to 7 × 7, enabling integration of three
branches into a single streamlined path. This approach facilitates fast inference in a multi-scale large kernel convolutional network.

BN (Conv(x)) = x ·
Wγ

σ
+ β −

γµ

σ
(9)

BN (conv(x)) = Wfused(x) + Bfused (10)

where:
• x: Input data
• W : Convolution kernel weights
• γ : Trainable scale parameter
• β: Trainable shift parameter
• σ : Standard deviation
• µ: Mean
• Wfused: Fused weight after batch normalization and
convolution

• Bfused: Fused bias after batch normalization and
convolution

B. VarKKFaceNet: VARIABLE KERNEL CONVOLUTION
MODULE
VarKFaceNet is a lightweight face recognition model based
on VarKNet. Its network configuration is detailed in Table 3,
and the more intuitive network structure is illustrated
in Figure 5. To evaluate the efficacy of the VarKNet
module, we constructed the network primarily by stacking
VarKFaceNet modules. According to the criteria proposed
by ShuffleNetV2, the input and output channels are kept
as consistent as possible, altering the number of channels
only during downsampling. Furthermore, the size of the
convolution kernel in the backbone branch of the VarKNet
module is dynamically adjusted in response to changes in
the number of channels, as specified by Criterion 1 (7).
In the final stage, the network output is embedded into
a 128-dimensional face vector through a fully connected
layer.

Specifically, the initial layer is a conventional 3 × 3
convolution layer with 16 output channels. The second and
third layers are VarKNet (3×3) modules, used to extract fine
features. The fourth layer is VarKNet (5 × 5) with a stride
set for downsampling, increasing the number of channels to
32. The fifth and sixth layers are VarKNet (5 × 5) modules,

with the output channels remaining at 32. The seventh to
ninth layers follow the same configuration strategy, stacking
VarKNet (7 × 7) modules, resulting in 64 output channels.
The tenth to twelfth layers are VarKNet (11 × 11) modules
with 128 output channels. The thirteenth layer is VarKNet
(13 × 13), where the feature map size has been reduced to
7× 7, with 192 output channels; therefore, the kernel size of
the main branch is not expanded further. Finally, a depthwise
separable convolution is used to expand the input feature map
to 1024 dimensions, followed by a linear Conv1×1 operation
to produce a 128-dimensional feature vector.

Additionally, to avoid excessive computational demands,
the expansion of the convolution kernel can be slowed down.
According to Criterion 2(8), the V2 version, as shown in
Table 3, can be derived.

TABLE 1. The overall framework of VarKFacenet.

C. ACTIVATION AND LOSS FUNCTION
In early neural networks, the sigmoid activation function
was widely used as the activation function for each layer,
and its expression is determined by (11). When the input
data is large or small, the gradient of the sigmoid activation
function tends to approach zero. When the gradients used
to update the neural network weights become very small,
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FIGURE 5. The architecture of VarKFaceNet. The model starts with a 3 × 3 convolution layer followed by multiple VarKNet modules with increasing
kernel sizes, downsampling at specific layers, and ending with a linear 1 × 1 convolution to produce a 128-dimensional feature vector for face
recognition. Different colors of the feature maps represent different operations, indicating the output after each corresponding operation.

the backpropagation algorithm cannot proceed effectively,
thereby preventing the network from learning and updating its
weights. This phenomenon is known as the gradient vanishing
problem. The ReLU function is a take-max function and
is the most commonly used activation function, including
in many face recognition networks. Its mathematical form
is given in (12). Since the ReLU output is zero when the
input is negative, which may result in some neurons never
being activated, the PReLU can adaptively learn to correct the
parameters of the linear units and can improve accuracy with
a negligible increase in additional computational cost [25].
Its expression is shown in (13). The face has more symmetric
and inverse features, and by allowing negative outputs, the
activation function can create larger separation distances in
the feature space, thus improving the performance of the
classifier. Therefore, we use PReLU as the activation function
for VarKFaceNet.

σ (x) =
1

1 + e−x
(11)

ReLU(x) = max(0, x) (12)

PReLU(x) =

{
x if x ≥ 0
αx if x < 0

(13)

The selection of a loss function is of the utmost impor-
tance in the design of lightweight networks. The current
classification of loss functions for face authentication can
be broadly classified into two categories: classification-
based loss functions andmetric learning-based loss functions.
Classification-based loss functions are sensitive to the issue
of mismatch during training and testing, whereas metric
learning-based loss functions are prone to the challenge
of identifying suitable sampling methods [26]. The most
commonly employed cosine Softmax cross-entropy loss
function is shown in (14). Since the Softmax function does
not specify the intra-class variance, and the face recognition
task is not entirely relevant, the ArcFace function reduces
the intra-class distance between the sample and the sample

center in order to increase the additive angular margin in
the loss function, thereby increasing the angular contribution.
This makes the optimization process with the angle smaller,
thus reducing the intra-class distance, increasing the inter-
class spacing, and making it a more suitable function for face
recognition tasks. The expression is shown in (15). When
the ArcFace loss function is employed directly to train the
lightweight convolutional neural network, it is susceptible
to two potential issues. Firstly, the loss value may diverge,
resulting in suboptimal performance. Secondly, the loss value
may fail to converge to a small value, which similarly
affects the model’s efficacy. Consequently, the model is
initially trained with a Softmax loss function, after which
the pre-trained Softmax model is trained with ArcFace loss
to reduce the intra-class variance and expand the inter-class
variance.

LSoftmax = −
1
N

N∑
i=1

log
eW

T
yi
xi+byi∑n

j=1 e
W T
j xi+bj

(14)

LArc = −
1
N

N∑
i=1

log
es cos(θyi+m)

es cos(θyi+m) +
∑n

j=1,j̸=yi e
s cos(θj)

(15)

where:
• N is the number of training samples.
• n is the total number of classes.
• xi is the feature vector of the i-th sample.
• Wyi and Wj are the weight vectors of the correct class
and class j, respectively.

• byi and bj are the bias terms of the correct class and class
j, respectively.

• θyi is the angle between xi andWyi .
• θj is the angle between xi and Wj.
• m is the angular margin added to θyi .
• s is a scaling factor applied to the cosine value.
• yi is the ground-truth class of the i-th sample.
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IV. EXPERIMENT AND DISCUSSION
This section provides details of the experiments, including
the training dataset, test dataset, evaluation dataset, and
experimental parameter settings. Additionally, a comparison
between VarKFaceNet and other prominent models from
recent years is presented. The model performance is then
verified on the IJBB and IJBC datasets and compared with
benchmarks. Finally, we conducted inference speed tests on
the NVIDIA Jetson Nano embedded system.

A. EXPERIMENTAL PARAMETER SETTINGS
1) HARDWARE PLATFORM
The training platform is a Dell high-performance workstation
equipped with an NVIDIA GeForce RTX 3090 (24GB)
graphics card and an Intel(R) Core(TM) i9-10980XE proces-
sor. The specific configurations are shown in Table 2.

TABLE 2. Server hardware configuration.

2) DATASET SETTINGS
We selected a large dataset, MS1MV3 [27], as the training
set, which includes 5.1 million face images and 93,000
labels. The test set consists of five mainstream datasets:
LFW [28], CPLFW, CALFW, CFP [29], and VGGFace2-
FP [30]. The LFW (Labeled Faces in the Wild) dataset is
one of the most widely used benchmarks for face recognition,
serving both as a validation and evaluation set. Despite many
algorithms achieving high accuracy on this dataset, it remains
a crucial benchmark for assessing model performance. The
CALFW (Cross-Age Labeled Faces in the Wild) dataset
evaluates the robustness of face recognition algorithms to
age variations, as it includes cross-age pairs, making it a
more challenging benchmark for age differences. Similarly,
the CPLFW (Cross-Pose Labeled Faces in the Wild) dataset
extends LFW to evaluate performance under varying poses,
containing pairs of images with large pose differences, thus
testing the algorithm’s ability to recognize faces under dif-
ferent orientations. The CFP (Celebrities in Frontal-Profile)
dataset assesses the algorithm’s robustness to pose variations
by containing images of celebrities in frontal and profile
views. The VGGFace2-FP dataset is used for frontal-profile
face verification, challenging the algorithm’s robustness to
extreme pose variations. Performance evaluation tests were
conducted on the IJBB and IJBC datasets [31], which are
widely used benchmarks for large-scale face recognition. The
specific configurations are shown in Table 3.

3) TRAINING STRATEGY
VarKFaceNet is built on the PyTorch implementation and
its output size is a 128-dimensional vector. The batch size

TABLE 3. Dataset information.

is set to 256, the learning rate is determined using the
cosine strategy, the warm-up is set to 0.01 for five batches,
the initial learning rate is set to 0.1, the momentum is set
to 0.9, and the weight decay is set to 5 × 10−4. A total
of 30 epochs were trained. A joint training strategy is
employed for the loss function, whereby the pre-trained
model is initially obtained through Softmax, and then
further optimized through ArcFace to enhance the intra-class
interval.

B. ArcFace LOSS FUNCTION HYPERPARAMETER SETTING
EXPERIMENT
Firstly, VarKFaceNet1 and VarKFaceNet2 were trained using
the Softmax function with a batch size of 128. The total
number of training iterations was 0.6M. The training loss
is illustrated in Fig. 6. The results of the accuracy test on
the LFW dataset are presented in Fig. 7. From the figure,
it can be seen that VarKFaceNet1 and VarKFaceNet2 have
a high degree of model representation and achieve excellent
performance on the LFW test set at an early stage of
the model’s development. VarKFaceNet1 is more readily
convergent than VarKFaceNet2 and demonstrates superior
performance.

Secondly, the impact of ArcFace hyperparameters s
and m on the model based on Softmax pre-training was
investigated. The accuracy of the LFW test set is shown in
Table 4. It was noted that the model performance exhibited
a dependency on the value of s, while the value of m
remained constant. The optimal value for s was considered
to be 16. Consequently, we selected 32 as the optimal value
for s. When m was varied, the model exhibited slightly
enhanced performance at m = 0.15 relative to other cases.
This is due to the fact that for VarKFaceNet, an angular
margin that is excessively large will render the network
training process exceedingly challenging, whereas an angular
margin that is excessively small will result in an increase
in intra-class variability, thereby negatively impacting the
model’s performance. Consequently, the optimal hyperpa-
rameters for ArcFace were identified as s = 32 and
m = 0.15.

C. COMPARISON EXPERIMENT OF LIGHTWEIGHT FACE
RECOGNITION ALGORITHMS
First, we compare the visualized feature maps of VarK-
FaceNet1 with the large-scale EfficientNet and the
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TABLE 4. Accuracy with different s and m values.

FIGURE 6. Training loss comparison of VarKFaceNet1 and VarKFaceNet2.
This graph depicts the loss curves for VarKFaceNet1 and VarKFaceNet2
over 600,000 iterations. Both models exhibit a sharp decline in loss
initially, with VarKFaceNet1 stabilizing at a higher loss value compared to
VarKFaceNet2, suggesting differences in learning dynamics and efficiency
between the two architectures.

lightweight GhostFaceNet [32] in the mid and late stages.
The results are shown in Figure 8. It can be observed that
EfficientNet is able to extract more detailed information, and
the overall feature map is more delicate. In contrast, Ghost-
FaceNet, due to its smaller number of parameters, extracts
more shallow features but preserves the overall features of
the face. The feature extraction results of VarKFaceNet1 are
generally similar to those of GhostFaceNet, but its extracted
features are more abstract and favor contour information.
This is mainly because VarKFaceNet1 introduces partial
convolution of medium-large kernels, resulting in more shape
preference.

Second, we compare the test results of popular con-
volutional neural networks in recent years, including
ResNet50, EfficientNet, MobileNetV2, MobileFaceNet,
MobileFaceNetV1, ShuffleFaceNet, VarGFaceNet, and
Ghostfacenet on various popular datasets. The experimental
results for comparing the performance of the models are
shown in Table 3.

The performance of VarKFaceNet is somewhat degraded
compared to both complex networks and the lightweight
networks that have become popular in recent years, espe-
cially on datasets that include pose variations. Specifically,
VarKFaceNet’s performance on the LFW dataset is essen-
tially the same as that of the best-performing lightweight
model, MobileFaceNet. However, its performance on the
CPLFW, CFP_FF, CFP_FP, VGG2_FP, and CALFWdatasets
decreases by 1.1%, 0.31%, 2.53%, 0.65%, and 0.31%,

FIGURE 7. Accuracy progression on LFW for VarKFaceNet1 and
VarKFaceNet2. The accuracy curves over 600,000 iterations demonstrate
the performance of VarKFaceNet1 and VarKFaceNet2 on the Labeled
Faces in the Wild (LFW) dataset. Both models achieve near-perfect
accuracy, with VarKFaceNet2 showing slightly higher and more stable
accuracy earlier in training, highlighting its effectiveness in handling
real-world variability.

respectively. The performance degradation of VarKFaceNet
is not significant on the CFP_FF and CALFW datasets.
However, in the tests on the CFP_FP dataset, VarKFaceNet’s
performance decreased by 2.53%, likely because CFP_FP
contains a large number of frontal and side images. This
diversity of viewpoints requires face recognition algorithms
to have a stronger ability to express texture details, which is
currently lacking in VarKFaceNet.

Nevertheless, VarKFaceNet has fewer parameters and
requires less computation than the lightweight models
prevalent in recent years. Specifically, its computation is
30% less than that of MobileFaceNet, and the number of
parameters is halved. The inference speed of VarKFaceNet
is even more advantageous because it turns into a single-path
structure during inference. Compared to mainstream models,
VarKFaceNet has more obvious advantages in terms of speed
and efficiency.

FIGURE 8. Comparative feature maps of different networks. (a) Original
input image. (b) GhostFaceNet captures shallow feature layers preserving
essential facial features due to fewer parameters. (c) EfficientNet extracts
detailed and delicate feature maps, reflecting its capacity for deeper and
more complex feature extraction. (d) VarKFaceNet’s feature maps are
more abstract, focusing on contour information, influenced by its use of
medium-large convolutional kernels which enhances shape recognition.
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TABLE 5. Performance comparison of various models.

D. PERFORMANCE TESTING EXPERIMENT ON IJBB/C
DATASETS
The IJB-B dataset contains 11,754 face images, 55,026
video frames, 7,011 videos, and 10,044 non-face images
for 1,845 subjects. The IJB-C dataset contains 21,294 face
images and 10,040 non-face images for 3,531 subjects.
We present the receiver operating characteristic (ROC)
curves of VarKFaceNet1 on the IJB-B and IJB-C evaluation
sets in Figures 9 and 10. When the false positive rate
(FPR) is 1E-5, the true positive rate (TPR) is close to
75% on IJB-B and 0.83 on IJB-C. The area under the
curve (AUC) for VarKFaceNet1 is 99.5233% on IJB-C and
99.4041% on IJB-B, indicating slightly lower performance
on IJB-B. Overall, VarKFaceNet1 demonstrates successful
performance on the IJB-B and IJB-C datasets for large-scale
face recognition.

FIGURE 9. ROC Curve on IJB-C. The ROC curve demonstrates
VarKFaceNet’s performance on the IJB-C dataset, highlighting an AUC of
99.5233%. The curve illustrates the model’s ability to maintain a high true
positive rate (TPR) even at very low false positive rates (FPR), affirming its
robustness in face recognition under challenging scenarios.

We also provide comparative results with the large-scale
model ResNet-50, the best-performing lightweight Mobile-
FaceNet, and the smallest volume GhostFaceNet on the
IJB-B and IJB-C evaluation sets, as shown in Figures 11
and 12. From the figures, we observe that our model lags
behind ResNet-50 and MobileFaceNet. This is due to the
narrower width of our model compared to ResNet-50 and
MobileFaceNet, resulting in fewer texture features being

captured and decreased recognition accuracy in complex
scenes. However, the performance of VarKFaceNet1 is
comparable to GhostFaceNet, which has significantly fewer
parameters. Although GhostFaceNet has fewer parameters,
VarKFaceNet1’s smaller size and single-path inference
structure provide a speed advantage.

FIGURE 10. ROC Curve on IJB-B. This figure presents the ROC curve for
the IJB-B dataset, where VarKFaceNet achieves an AUC of 99.4041%. The
graph underscores the model’s effectiveness in handling diverse and
complex facial recognition environments, albeit slightly lower than its
performance on IJB-C.

TABLE 6. Jetson Nano hardware configuration.

E. HARDWARE SYSTEM TESTING EXPERIMENT
Our test equipment, the NVIDIA Jetson Nano platform,
is configured as shown in Table 6. An inference speed test
and a real-scene recognition effect test were performed.
The experimental results are presented in Table 7. When
we converted the VarKFaceNet model into a model suitable
for the Jetson platform, we did not perform any model
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FIGURE 11. Comparative ROC curves on IJB-B. Showcasing ROC curves for
VarKFaceNet alongside large-volume models like ResNet-50 and
lightweight leaders like MobileFaceNet. VarKFaceNet, with fewer
parameters, closely matches the performance of more resource-intensive
models, demonstrating effective feature extraction capabilities despite its
smaller size.

TABLE 7. Inference performance comparison.

FIGURE 12. Comparative ROC curves on IJB-C. This graph compares
VarKFaceNet’s ROC performance with that of ResNet-50 and
MobileFaceNet on the IJB-C dataset, revealing a competitive edge in
terms of speed due to its streamlined one-way structure, while
maintaining comparable accuracy to GhostFaceNet.

quantization operations, and the model size did not change.
Therefore, the model accuracy performance remained almost
unchanged. Experiments show that the recognition speed
of VarKFaceNet1 is 13ms, which is 159 times, 4.2 times,
2.4 times, 2.2 times, and 1.3 times faster thanResNet-50, Effi-
cientNet, MobileFaceNet, MobileNetV2, and GhostFaceNet,
respectively. Therefore, VarKFaceNet1 outperforms other
lightweight models in embedded devices in terms of speed
and is suitable for deployment in embedded devices with

minimal resource requirements. Meanwhile, its performance
degradation is not significant, thus satisfying the accuracy
requirements of face recognition technology.

V. CONCLUSION
Inspired by RepLKNet and VarGNet, we propose an efficient
and lightweight network structure called VarKNet. VarKNet
is designed with three branches: the backbone branch,
the feature extraction branch, and the shortcut branch.
VarKNet dynamically adjusts the convolution kernel size
of the backbone branch according to the network width,
effectively addressing the imbalance between deep convolu-
tion and pointwise convolution computations in embedded
devices. VarKNet employs convolution kernels of various
scales, providing a combined receptive field. Additionally,
the introduction of medium and large kernel convolutions
enhances both feature extraction capability and efficiency.
Consequently, the need to expand too many channels to
compensate for accuracy loss due to depthwise separable
convolutions is significantly reduced, making VarKNet
friendly for embedded devices.

Furthermore, VarKNet can transform its three-branch
structure during training into a single-path structure through
structural re-parameterization, effectively improving infer-
ence speed on embedded devices.

VarKFaceNet is built on VarKNet, achieving an accuracy
of 99.5% on the LFW dataset and an inference speed of only
13.2ms on a Jetson Nano, striking a good balance between
speed and accuracy. It is worth mentioning that this is the first
time a non-traditional small kernel face recognition expert
network has shown exceptional performance on embedded
devices. However, there is still room for improvement in
VarKFaceNet. Since face recognition tasks should have more
texture preference, introducing large kernel convolutions
too early may cause feature contamination. Therefore,
VarKFaceNet requires more refined structural design. Addi-
tionally, attention mechanisms are an effective means to
improve recognition performance, which the authors have
not used due to concerns about excessive computational
load. VarKFaceNet also needs to explore the most suitable
loss function to improve model accuracy. Furthermore,
by introducing convolution kernels of different scales, it is
believed that VarKNet should exhibit more shape preference,
which is very beneficial for detection tasks involving targets
of different scales. We are currently exploring the application
of VarKNet in object detection, and related work will be
published soon.
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