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ABSTRACT This paper presents the implementation of a Deep Deterministic Policy Gradient (DDPG)
algorithm in Reinforcement Learning (RL) for self-balancing a motorcycle. The DDPG agent iteratively
interacts with the motorcycle environment to develop an optimal control policy, utilizing states such as
position and velocity, and actions like motor torque. The study evaluates the performance through simulations
and real-time experimentation, demonstrating the algorithm’s effectiveness in balancing the motorcycle
across various leaning angles and in handling external disturbances and model uncertainties. Comparative
analysis with a traditional PD controller highlights DDPG’s faster response times, improved disturbance
rejection, and enhanced adaptability to uncertainties. The results underscore the potential of RL algorithms
in enhancing motorcycle control systems for safer and more efficient operation.

INDEX TERMS Arduino nano 33 IOT, DDPG algorithm, deep RL, PD control, self-balancing motorcycle.

I. INTRODUCTION

Motorcycles, especially two-wheeled ones, are inherently
less stable than four-wheeled vehicles. In India, 70-85% of
motorist deaths are due to accidents, often resulting from
losing balance and control over the motorcycle. According to
the National Crime Records Bureau (NCRB), two-wheelers
claimed the highest number of lives, with nearly 70,000
people losing their lives in road accidents across the country
in 2021. Although accidents cannot be entirely prevented,
taking precautions can significantly reduce life-threatening
injuries. Self-balancing technology promises to enhance sta-
bility even in unbalanced conditions, providing a potential
solution to improve motorcycle safety.

The development of self-balancing motorcycles has gar-
nered significant attention in recent years due to their
potential applications in enhancing rider safety, improving
urban mobility, and advancing autonomous vehicle technolo-
gies. These motorcycles rely on advanced control systems to
maintain balance and stability, particularly when stationary or
moving at low speeds. Research in motorcycle balancing and
control has predominantly focused on methods to enhance

The associate editor coordinating the review of this manuscript and

approving it for publication was Fabrizio Messina

stability, with significant emphasis on optimizing the balance
of two-wheeled vehicles due to their potential for increased
flexibility and improved energy efficiency [1]. Research has
emphasized the use of steering control mechanisms [2],
[3], [4] and auxiliary balancing mechanisms like inertia
wheels and mass balancers [5], [6], [7], [8], [9]. However,
at low forward speeds, steering control is often insufficient to
resist disturbances, making inertia wheel mechanisms more
effective. Therefore, this paper considers the self-balancing
motorcycle with inertia wheel mechanism.

Existing solutions for motorcycle stability include var-
ious control mechanisms such as linear controllers like
PID (Proportional-Integral-Derivative) and LQR (Linear
Quadratic Regulator) [10], [11], [12], as well as nonlinear [9],
[13], [14] and intelligent control methods [15], [16], [17].
However, these traditional methods have limitations. PID and
its variants are widely employed in balance control applica-
tions [18], [19]. Balancing errors can be minimized with LQR
compared to PID with longer settling time [18], [20]. PID and
LQR controllers require precise system modeling and accu-
rate tuning, and they are often limited to small leaning angles
due to their reliance on linearization around operating points.
Nonlinear control techniques like Fuzzy Logic Controllers
(FLC) offer better stability and adaptability but involve
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complexities in rule formulation [21], [22]. Furthermore, the
integration of FLC with neural networks enhances the sta-
bility and adaptability of the system [23], [24]. Therefore,
these traditional approaches often struggle with handling the
nonlinear and under-actuated nature of motorcycle dynam-
ics, particularly in the presence of external disturbances and
model uncertainties.

In recent years, the DDPG algorithm has gained popularity
for its ability to solve continuous control problems in rein-
forcement learning. The DDPG algorithm is particularly rele-
vant for self-balancing motorcycles due to its ability to handle
complex, nonlinear dynamics without requiring a detailed
mathematical model. By continuously interacting with the
environment, the DDPG algorithm autonomously develops
control policies that enhance stability and adaptability [25].

The primary challenge in developing a self-balancing
motorcycle lies in the design of a control system that can
effectively maintain stability under various operating con-
ditions, including disturbances and varying rider inputs.
Traditional control methods often lack the adaptability and
learning capabilities required to handle these dynamic scenar-
ios. This study aims to address these limitations by leveraging
the DDPG-based RL approach to develop a robust con-
trol strategy for a self-balancing motorcycle. It seeks to
overcome the limitations of fixed-gain controllers by lever-
aging the adaptive capabilities of reinforcement learning. The
self-balancing motorcycle problem is modeled as an inverted
pendulum, a classical control problem known for its insta-
bility and complexity [26]. Achieving stable control in such
systems requires advanced techniques capable of handling
dynamic and uncertain environments.

In the context of our study, the term *“leaning angle”
refers to the angle at which a motorcycle tilts relative to the
vertical axis, whether in motion or stationary. This param-
eter is crucial for understanding motorcycle dynamics and
control, as it directly influences the vehicle’s stability and
maneuverability. When the motorcycle is perfectly upright,
the leaning angle is zero degrees.

Despite advancements in reinforcement learning (RL) and
control systems, there is limited application of DDPG in
self-balancing motorcycles, insufficient exploration of RL
algorithms integrated with real-time control systems for
motorcycles, and a lack of comprehensive comparative stud-
ies with traditional methods. This study aims to address these
gaps by implementing a DDPG-based control system that
utilizes continuous action spaces for precise motorcycle bal-
ance, incorporates real-time learning for dynamic adaptation,
and performs a detailed comparative analysis with traditional
control methods. This approach aims to advance autonomous
motorcycle technologies, enhancing safety and urban mobil-
ity efficiency.

The primary objective of this study is to design and imple-
ment a self-balancing motorcycle using the DDPG algorithm
augmented with a PD controller. The DDPG agent iteratively
improves its control strategy by leveraging states such as posi-
tion and velocity and actions like motor torque. This study
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aims to evaluate the performance of this approach through
simulations and real-time experimentation, highlighting the
algorithm’s effectiveness in maintaining balance across var-
ious leaning angles and handling external disturbances and
model uncertainties. The findings have implications for the
development of autonomous motorcycles and other robotic
systems requiring continuous control, potentially leading to
safer and more efficient transportation solutions.

Il. SELF-BALANCING MOTORCYCLE

The self-balancing motorcycle is a two-wheeled robot
designed to autonomously maintain its balance without tip-
ping over. It incorporates advanced sensing and control
technologies to achieve stability during operation. Key com-
ponents and controls of this motorcycle are illustrated in
Figure 1 [27].

The robot is equipped with an Inertial Measurement Unit
(IMU) consisting of three essential sensors: an accelerometer
for measuring acceleration, a gyroscope for tracking angular
velocity, and a magnetometer for detecting magnetic field
orientation. These sensors collectively provide real-time data
crucial for dynamic stabilization.

A pivotal component of the motorcycle is the BNO055 IMU,
a sophisticated 9-axis absolute orientation sensor. This IMU
integrates an accelerometer, gyroscope, and magnetometer,
enabling precise measurement of acceleration, angular veloc-
ity, and magnetic field orientation. This sensor’s capabilities
are instrumental in maintaining accurate orientation and
stability of the motorcycle.

The control system of the motorcycle utilizes an Arduino
Nano motor carrier, an add-on board designed for control-
ling two DC motors and one servo motor. One DC motor,
equipped with an encoder, rotates the inertia wheel, which
plays a critical role in maintaining the motorcycle’s balance.
Another DC motor drives the rear wheel for forward and
backward motion, while the servo motor enables precise
control of the motorcycles steering.

The motorcycle, developed from the Arduino Engineering
Kit Rev 2, leverages a rotating disc known as the inertia wheel
to counteract tilting movements and maintain balance. This
system is centrally controlled by an Arduino Nano 33 IoT
microcontroller, which coordinates the functions of the IMU,
motor carrier, and other components to ensure stable and
reliable operation position.

Inertia

Servo motor wheel

DC motor +
encoder

Ultrasonic sensor Battery

DC motor +
encoder

Arduino +
motor carrier

IMU sensor

FIGURE 1. Self-balancing motorcycle.
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The motorcycle will need a power source to run the motors
and microcontroller. It includes a 3.7 V, 3000mAh lithium-
polymer battery that can power the motorcycle for several
hours. The purpose of an inertia wheel in a self-balancing
motorcycle is to enhance stability and prevent the motorcycle
from tipping over. This spinning wheel leverages gyroscopic
principles to counteract tilting movements. When the motor-
cycle tilts, the inertia wheel generates a force that opposes
the tilt, helping to maintain the motorcycle’s upright position.
This technology is crucial for maintaining balance, especially
at low speeds and during maneuvers, making self-balancing
motorcycles safer and more reliable for riders.

lll. METHODOLOGY

The methodology employed in this research investigates the
efficacy of a reinforcement learning (RL) controller applied
to a self-balancing motorcycle. This methodology outlines
the steps taken to develop, implement, and validate the RL
controller for the self-balancing motorcycle, focusing on both
simulation and experimental aspects.

A. DYNAMIC MODEL DEVELOPMENT

The self-balancing motorcycle was modelled as an inverted
pendulum system using the Lagrange method. Key param-
eters such as mass, length, and moments of inertia were
derived from specifications provided by the Arduino Engi-
neering Kit Rev2 [28]. The dynamic model was implemented
in Simulink to simulate the motorcycle’s behaviour under
varying conditions.

B. REINFORCEMENT LEARNING (RL) CONTROLLER
IMPLEMENTATION

A Deep Deterministic Policy Gradient (DDPG) algorithm
was selected for controlling the self-balancing motorcycle.
The state space included the motorcycle’s angular position
and velocity, while the action space consisted of the torque
applied to the inertia wheel. Actor and critic networks were
constructed using deep neural networks within the Simulink
environment. Hyper parameters such as learning rates, batch
sizes, and noise levels were fine-tuned to optimize training.

C. SIMULATION AND TESTING

The trained DDPG agent was tested under different lean-
ing angles and disturbances (step and pulse disturbances)
to evaluate its robustness and performance. Comparative
analysis was conducted against a conventional Proportional-
Derivative (PD) controller. The simulation results were
analysed for set point tracking, disturbance rejection, and
response to model uncertainties.

D. EXPERIMENTAL VALIDATION

To validate the simulation results, the trained DDPG pol-
icy was deployed onto a physical self-balancing motorcycle
equipped with an Arduino Nano 33 IoT microcontroller
and a BNOO55 IMU sensor. The hardware setup was cali-
brated and tested under various initial conditions to observe
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real-time performance. The effectiveness of the RL controller
was assessed based on the motorcycle’s ability to main-
tain balance and recover from tilting angles in experimental
scenarios.

E. DATA ANALYSIS

Data from simulations and experiments were analysed to
compare the performance of the DDPG-based controller with
the PD controller. Metrics such as rise time, settling time,
overshoot/undershoot, steady-state error, peak velocity, and
control torque were used for quantitative evaluation.

The methodology outlined establishes a robust framework
for implementing reinforcement learning in the control of
self-balancing motorcycles. Future work will focus on refin-
ing the controller’s performance through extensive experi-
mental validation, aiming to enhance real-world applications
of autonomous vehicles and robotics.

IV. MOTORCYCLE DYNAMICS

When observing a stationary motorcycle from the rear,
it resembles a pendulum rod with an attached inertia wheel.
Hence, the motorcycle can be modelled as an inverted pen-
dulum with some assumptions. The inverted pendulum is
a classical control problem that has been used for many
years in position control, aerospace vehicles control, and
robotics [29]. Balancing the pendulum in the vertical upright
position is very challenging and complex as it is highly
unstable, under-actuated and nonlinear system [30]. Gen-
eral control techniques like LQR, MPC etc. requires a good
knowledge of the system and accurate tuning to achieve
desired performances. Nevertheless, describing an accurate
system mathematical model is very difficult. Motorcycle can
be modeled as an inverted pendulum with some assumptions
as shown in Fig. 2.

FIGURE 2. Motorcycle as inverted pendulum.

A is the rotation axis of the revolute joint between the
pendulum rod and the ground. l4p is the length of the pen-
dulum rod, i.e., the length of motorcycle frame. B is the
centre of mass of the pendulum rod. C is the rotation axis of
the revolute joint between the pendulum rod and the inertia
wheel.

The dynamic model can be derived using the Lagrange
method [28]. The state vector is given in (1) and time
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derivative of state vector is given in (2).

0
xt)=12¢ (D
w
6 6
. _ % g sin O (mylap+my lac) —Tm
x(1) = 9 my (0.5R>+13) + 1y my (3r2+ 13 ) +m- 3
@ T /15— 6
(2

where 6 is angular position, § is angular velocity, 6 is angular
acceleration, w is inertia wheel speed, /ap is length of pen-
dulum rod between A and B, Iap is length of pendulum rod
between A and D, Iac is length of pendulum rod between A
and C, g is gravitational acceleration, my, is mass of inertia
wheel, m; is mass of the rod, t, is motor torque applied
to inertia wheel, R is radius of inertia wheel, r is radius of
pendulum rod and I, I¢, are moment of inertia of the inertia
wheel about points A and C respectively. Model parameters
of motorcycle provided by the Arduino Engineering Kit Rev2
are shown in Table 1. I#, I® are moment of inertia of the
pendulum rod about points A and B respectively [28].

TABLE 1. Model parameters.

Parameters Values

g 9.80655 m/sec’
m_r 0.2948 Kg

mw 0.0695 Kg

R 0.05 m

r 0.02 m

1 AD 0.13m

1 AC 0.13m

I 4B 0.065 m

IwC 8.6875e-05 Kg-m?
IwA 0.0013 Kg-m?

1r B 4.4466e-04 Kg-m?
Ir4 0.0017 Kg-m?

The motorcycle model that describes the dynamics of this
nonlinear system in (2) is implemented in Simulink software
and shown in Fig. 3.

proral
1 { Z D)

stateVector
=]
torque —»-

FIGURE 3. Motorcycle model.

V. REINFORCEMENT LEARNING

RL makes use of a policy, a reward signal, a value function,
and environment model. Reward represents the goal in RL
problem. Agent interacts with the unknown environment to
learn the policy on its own [31]. Policy decides the action to
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be taken by the agent in a particular state of the environment.
When an action is performed on the environment, states of
the environment changes and reward is provided to the agent.
Delayed reward signals act as feedback signals to improve
learning further. Reward indicates immediate benefit of being
in a certain state whereas value function indicates long term
signals that is expected to be collected from that state on,
going into the future. Agent chooses an action based on past
experiences (exploitation) and new preferences (exploration).
The agent’s aim is to maximize the long-term reward. The
agent’s goal is both to explore new states and at the same
time to maximize its reward, to find an optimal policy. This is
called Exploration vs Exploitation trade-off. There are several
algorithms used in reinforcement learning like (Q-learning,
SARSA, DDPG, PPO, etc.).

The agent contains two components, a policy and a learn-
ing algorithm as displayed in Fig. 4. The policy maps states
-actions and is a function approximator, commonly a deep
neural network with adjustable parameters. The learning
algorithm iteratively updates the policy parameters based on
the actions, observations, and reward with the aim of finding
an optimal policy.

Observation Action

Environment f«——nx——

The steps in implementing RL are as follows. Firstly, the
environment needs to be defined, including the state space,
action space, and dynamics. Next, a reinforcement learning
algorithm needs to be chosen, such as Q-learning, SARSA,
DDPG, PPO, or others. After that, deep neural networks for
the agent need to be designed. This research work uses Deep
Deterministic Policy Gradient (DDPG) learning algorithm for
control of self-balancing motorcycle.

FIGURE 4. RL workflow.

VL. STEPS IN IMPLEMENTATION OF DDPG ALGORITHM
FOR SELF BALANCING MOTORCYCLE

DDPG algorithm is a model-free, online, off-policy reinforce-
ment learning (RL) technique [32], [33]. DDPG agents can
be trained in environments with continuous/discrete obser-
vation and continuous action spaces. It uses the actor-critic
architecture with deep neural networks. The actor network
is responsible for selecting actions, while the critic net-
work assesses the quality of those actions. DDPG uses a
replay buffer to store the experiences of the agent, which are
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then sampled randomly during training to reduce overfitting.
Additionally, the algorithm uses a soft update mechanism
to update the target networks, which helps to stabilize the
learning process. The steps in implementing DDPG learning
algorithm for controlling a self-balancing motorcycle are
discussed here.

The first step is to model the self-balancing motorcy-
cle’s environment, including its state space, action space,
and dynamics. The state space include motorcycle’s angular
position 6 and angular velocity 6. The action space includes
the torque applied to inertia wheel motor.

The second step is to select actor and critic deep neural net-
work architecture. The actor takes the motorcycle’s position
and velocity as inputs and outputs the corresponding torque
to be applied to the inertia wheel motor. The actor network is
trained to learn a deterministic policy, which maps states to
actions. The critic takes the motorcycle’s position, velocity
and the action selected as inputs and outputs an estimate of
Q-value (expected cumulative reward). The critic provides a
gradient signal that guides the actor network in adjusting its
parameters.

Next step is to select the buffer size to store past experi-
ences i.e., tuples of (state, action, reward, next state) collected
during the interaction of the motorcycle with the environ-
ment. This helps to enhance training stability, due to data
uncorrelation as these experiences are randomly sampled
from the buffer during training.

A pseudo code outlines the basic steps of implementing
the DDPG algorithm for training a self-balancing motorcycle
agent [34].

1. Initialize Networks and Parameters:

« Initialize actor network weights 6# and critic network

weights 8¢ randomly.

« Initialize target networks weights.

0% < 9" and 02 <« 92

« Initialize replay buffer R with maximum capacity N.
o Set hyper parameters: discount factor y, soft target
update parameter t, exploration noise ¢, mini-batch size
M, learning rates o, and «q, etc.
2. Define Actor and Critic Networks:
o Define the actor network w (s|6") to map states to
actions.
o Define the critic network Q (s, a|6*) to estimate the
Q-value for state-action pairs.
3. Define Exploration Noise:
« Define exploration noise process N to add noise to the
action outputs.
4. Training Loop:
« For each episode:
e Initialize the environment and set initial state sj.
e Initialize a random process N for action exploration.
e For each time step:

e Select action with noise.
ar = ,LL(S; |9,LL) +Nt
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e Execute action a; and observe reward r; and next
state St41-

e Store transition (s, ar, 1y, S;+1) in
buffer R.

e Sample a random minibatch of M transitions
(sj, ai, i, si+1) from R.

e Compute targets:
vi = 1+ yQ (s, (si116%) 162) for
critic update.

replay

a, = (si+1 |9“/) for actor update.
e Update critic by minimizing the loss:

1 2
— o - a: 102
b= 3 (i 0 sao?)
e Update actor policy using sampled policy
gradient:

1 .
Voud =~ M Z \Z10) (Sa al QQ) “s=si,a=p(s;)
i

x Voup (s16") iy

e Update target networks:

02 « 102+ (1-1)6?
0" — 1ot + (1 — 7)o"

5. Repeat Until Convergence: Repeat the training
loop until convergence or a predefined stopping
criterion is met.

During training, noise is to be added to the actions to
encourage the motorcycle to explore different actions. This is
called exploration whereas selecting the best action is called
exploitation. There should be a balance between these two.
Next step is to fine-tune hyperparameters, such as learning
rates, batch sizes, and noise levels, to achieve optimal perfor-
mance. Once DDPG algorithm is trained and fine-tuned, the
learned policy in the actor network can be used for controlling
the self-balancing motorcycle in real-time.

VIi. DDPG AGENT TRAINING

Reinforcement learning environment is specified by creating
a Simulink model as shown in Fig. 5 with an RL Agent
block. In this model, the states, action, and reward signals are
connected to the RL Agent block. Then the continuous reward
function is designed by giving weights of 1, 0.1 & 0.001 for 6,
6 and pervious control torque respectively. A reset function is
created in MATLAB for resetting the environment at the start
of each episode and starting the motorcycle at different initial
states.

In DDPG algorithm, the sampling time of 0.01 sec and final
time of 10 sec are considered. The critic learn rate of le-03
and actor learn rate of 1e-4 is used to train the critic and actor
networks. The agent options considered for training the agent
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are Target smooth factor le-3, discount factor 0.9, mini batch
size 128 and experience buffer length le-6.

A 0
- ; s

L1 theta_cot

u A inverted pendulum - Simulink
calovlate reward RLAgent

FIGURE 5. Simulink model of motorcycle with RL agent.

Agent is trained for 149 episodes with 1000 steps in each
episode. The training is stopped manually using the stop
training button, when true cumulative reward is closer to
expected cumulative reward Qg estimated by the critic as
shown in Fig. 6.

FIGURE 6. RL training progress.

It is observed that when the agent is trained in the correct
way, the reward increases. The trained DDPG agent with
motorcycle model is simulated with different positive and
negative leaning angles of 10° and 50°, pulse and step dis-
turbances and model uncertainties.

VIil. SIMULATION RESULTS AND DISCUSSION

The responses of motorcycle states (6, 6) and action (torque)
are observed and displayed in Fig. 7 for both positive and
negative leaning angles without any disturbance. From the
responses, it is evident that the motorcycle is balanced very
quickly i.e., angular position 6 becomes 0 as the control
torque provided by trained DDPG agent approaches 0.

The inertia wheel started rotating as the motorcycle posi-
tion is 10°. The trained agent tries to adjust the motor torque
applied on the inertia wheel to 0 N-m so that the inertia wheel
stops rotating maintaining the motorcycle balance. As torque
approaches 0 N-m, motorcycle position and velocity also
become 0° and 0°/sec respectively. It is noticed that the
motorcycle balancing is very fast even in case of higher
leaning angles.
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To observe disturbance rejection response, a step distur-
bance of amplitude 0.2 N-m is given to the torque signal for
positive and negative 10" and 50° leaning angles at 5 sec.
The regulatory response of observations (6, 6) and action
(torque) are as shown in Fig. 8. It is noticed that angular
velocity 6 approaches 0 very quickly in all the scenarios. Due
to fast disturbance rejection at higher leaning angle of 50°, the
motorcycle balancing is quick compared to smaller leaning
angle of 10° because of slow disturbance rejection.

To verify the robustness of proposed controller, a pulse
disturbance of amplitude 0.05 N-m, period 5 sec and pulse
width 2 % of period is also given to the torque signal for
positive and negative 10° and 50° leaning angles.

The regulatory response of observations (6, §) and action
(torque) are as shown in Fig. 9. The motorcycle tends to
respond more quickly to pulse disturbances, much like its
reaction to step disturbances.

After validating the performance of the trained agent under
different conditions, a policy is generated for the trained
DDPG RL agent and the RL agent is replaced with the policy
function, as illustrated in Fig. 10.

The states (9 and ) and action (torque) with policy
function for 50" leaning angle aim for responses like those
observed in the trained RL agent as shown in Fig. 11.

Finally, the policy function is working as the controller
which changes torque based on states 6 and 6. To evalu-
ate the effectiveness of proposed controller developed using
DDPG algorithm in RL, the responses are compared with the
conventional PD controller in case of 10° leaning angle and
pulse disturbance of amplitude 0.2 N-m, period 5 sec and
pulse width 2 % of period and shown in Fig.12 and Fig.13
respectively.

It is observed that the control torque changes quickly
to bring the motorcycle to balance position with the pro-
posed controller in case of positive 10° leaning angle and
no disturbance. Angular position and velocity obtained with
DDPG controller settled to zero much faster than the PD
controller.

In case of pulse disturbance at positive 50° leaning angle,
it is noticed that the control torque with the proposed con-
troller changes similarly with PD controller to balance the
motorcycle. With DDPG controller, the motorcycle is quickly
balanced i.e., angular position 6 approaches O compared to
PD controller. The advantage of DDPG lies in its ability to
rapidly adapt and stabilize the motorcycle.

While both PD and DDPG controllers aim to stabilize
a motorcycle after a disturbance, DDPG shows superior
performance in terms of speed and adaptability due to its rein-
forcement learning framework and continuous action policy.

The evaluation aims to demonstrate not only the effec-
tiveness of the proposed controller under normal conditions
but also its robustness in handling parameter variations that
can occur in real-world applications. This approach ensures
that the controller can maintain stability and performance
even when the system parameters deviate from their expected
values. Robustness refers to the ability of the controller to
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FIGURE 7. State and action simulation responses for various leaning angles.

maintain its performance despite uncertainties or variations

in the system parameters.
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It is clear from the comparison results that the pro-
posed controller balances the motorcycle rapidly under
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smaller and higher leaning angles with and without distur-
bances. To evaluate the robustness of proposed controller
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the responses are compared with the
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FIGURE 9. State and action simulation responses in case of pulse disturbance.

mass of the pendulum rod as shown in Fig. 14 and Even in case of model error, the motorcycle balances very
Fig.15. quickly and efficiently with DDPG controller. It is evident
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FIGURE 11. Policy function validation results.

from all the results that the proposed controller is more effi-
cient in balancing the motorcycle at various leaning angles
and more robust against disturbances and model uncertain-
ties. The performance of motorcycle with DDPG controller
is superior compared to that of the PD controller.

The DDPG policy tested initially in simulation environ-
ments helps validate its performance before deploying it
on real hardware. Now, this policy function is ready to
implement for real time hardware. Once the policy function
(the trained neural network) is ready for implementation
on real-time hardware, it can effectively adapt and control
the motorcycle based on its observations of the environ-
ment, leading to smoother, more precise, and potentially safer
operation.

IX. EXPERIMENTAL VALIDATION AND RESULTS

This policy is deployed on physical hardware. MATLAB
and Simulink support packages for Arduino Hardware are
required for developing hardware model. Firstly, the motorcy-
cle subsystem is created which consist of inertia wheel, IMU
sensor and battery Read as shown in Fig. 16.

117280

T

= DDPG

6 (rad)
o
2

0 1 2 3 4 5 6 7 8 9 10
Time (sec)

6 dot (rad/sec)
e

n L L L L L L L .
0 1 2 3 4 o 6 7 8 9 10
Time (sec)

T T : : T : T :
021 DDPG |
——pD

0.15

0.1

0.05
0 &

L L L L n L L L .
0 1 2 3 4 S 6 7 8 9 10
Time (sec)

T (N-m)

FIGURE 12. Comparison of responses for positive 10° leaning angle.

The digital controller subsystem consists of a state flow
chart, sensor preprocessing block, balancing switch, and the
remaining components as shown in Fig. 17.

The state flow chart has four parallel states out of which
check fallen, check IMU calibration and check battery
are input states and calculate enable is the output state.
These three input states execute concurrently and only if
all are true, then control is enabled. The last step within
design workflow is implementing a controller with the
DDPG policy function as shown in Fig. 18. Before deploy-
ing the model, the balancing switch is moved to the off
position.

Self-balancing motorcycle hardware is connected to con-
troller with RL policy as displayed in Fig. 19. Once the model
is deployed on to Arduino nano 33 IOT board, the IMU
sensor is calibrated. IMU is calibrated by moving the motor-
cycle in 3 spatial axes. The states inside the state flow chart
are observed and if they are active, the control is enabled.
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FIGURE 13. Comparison of responses for pulse disturbance.

The balancing switch is moved to on position to enable
motorcycle balancing.

The experimentation begins by tilting the motorcycle at
a positive angle of 10 degrees. Real-time state and action
responses are monitored and analyzed, with the results
depicted in Fig. 20. It’s observed that with the proposed
DDPG controller, the motorcycle rapidly returns to its upright
position within a mere 1.2 seconds. This quick recovery time
signifies a substantial improvement over the conventional PD
controller.

Comparatively, existing literature suggests that with a PD
controller, the motorcycle achieves balance only for leaning
angles below 6 degrees, and even then, it takes approximately
5.6 seconds to stabilize. During this stabilization period,
the controller continuously operates for about 2-4 seconds
to maintain stability. However, beyond this timeframe, the
controller ceases operation, and the motorcycle begins to tilt
once more.
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FIGURE 14. Comparison of responses in case of —10% model uncertainty.

To address these limitations and further enhance motorcy-
cle balance across a range of leaning angles, as well as to
mitigate external disturbances and model uncertainties, the
reinforcement learning based DDPG algorithm is introduced.
This algorithm leverages the principles of deep reinforce-
ment learning to autonomously learn optimal control policies
through interaction with the environment.

The results obtained from employing the DDPG algorithm
demonstrate significant improvements. The motorcycle is
now able to maintain balance for an extended duration of 8-10
seconds, a notable enhancement over the existing controller’s
capabilities. This increased stability duration ensures better
performance under varying conditions and provides greater
resilience against disturbances.

Simulation results are provided for motorcycle leaning
angles of 410, —10, +50, and —50 degrees. Comparison is

117281



IEEE Access

K. V. Lakshmi, M. Manimozhi: Implementation of DDPG-Based RL Control

| ——DDPG | |
==
0.16 1
0.14
0.12
O]
K
= 0.08
@
0.06 [
0.041
0.02
y
-0.02
0 1 2 3 4 5 6 7 8 9 10

Time (sec)

= DDPG
02 |1

-0.2

-0.4 4

0 dot (rad/sec)

-0.6

-0.8 1

0 1 2 3 4 5 6 7 8 9 10

Time (sec)
T T T T T T T T T
——FPD
0.15
~
E ol
Z
<
-
0.05
or
L . . L L . . L .
0 1 2 3 4 5 6 T 8 9 10
Time (sec)

FIGURE 15. Comparison of responses in case of +10% model uncertainty.
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made for setpoint tracking, disturbance rejection, and model
uncertainty. Table 2 presents the comparative performance of
DDPG-based reinforcement learning control and PD control
in terms of rise time, settling time, overshoot/undershoot,
steady-state error, peak velocity, and control torque for
different leaning angles and control objectives. DDPG gen-
erally exhibits faster rise times and settling times compared
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FIGURE 19. Experimental setup of motorcycle with RL controller.

to PD controllers across different leaning angles. DDPG
shows better disturbance rejection and model uncertainty
handling in terms of overshoot/undershoot. Peak velocities
and control torques vary depending on the leaning angle
and control method, with DDPG often providing higher
velocities and torques. These results indicate the potential
effectiveness of DDPG-based reinforcement learning control
for self-balancing motorcycles, particularly in handling dis-
turbances and uncertainties while achieving desired tracking
performance.

Overall, the utilization of the reinforcement learning based
DDPG algorithm represents a substantial advancement in
motorcycle control systems. By harnessing the power of
machine learning, the controller not only improves bal-
ance and stability but also enhances adaptability to diverse
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TABLE 2. Comparison of performance for various leaning angles.

Leaning Parameters Setpoint tracking Disturbance Model uncertainty
angle rejection +10% -10%
DDPG PD DDPG  PD DDPG  PD DDPG  PD
Positive 10° Rise time (sec) 0.29 0.46 0.04 0.06 0.28 0.48 0.22 0.47
Settling time (sec) 45 6 4.8 54 4.5 6 5.1 59
Undershoot (or) -0.01 -0.017  -0.10 -0.005 -0.012 -0.17 -0.007  -0.15
overshoot (rad)
Steady sate error 0 0 0 0 0 0 0 0
Peak velocity (rad/sec)  -1.01 -0.58 -2.55 -1.48 -0.95 -0.55 -1.06 -0.61
Control torque (N-m) 0.192 0.175 0.39 0.35 0.191 0.17 0.192  0.175
Negative 10" Rise time (sec) 0.23 0.47 0.35 0.56 0.23 0.46 0.21 0.46
Settling time (sec) 4.6 5.8 4.9 5.6 4.8 6.2 53 5.8
Undershoot (or) 0.01 0.018 0.027 0.029  0.012 0.17 0.005  0.17
overshoot (rad)
Steady sate error 0 0 0 0 0 0 0 0
Peak velocity (rad/sec)  1.01 0.57 0.55 0.32 0.95 0.55 1.06 0.65
Control torque (N-m) -0.192  -0.174  0.008 0.015  -0.193 -0.175  -0.192  -0.174
Positive 50° Rise time (sec) 0.22 0.47 0.15 0.42 0.23 0.46 0.22 0.45
Settling time (sec) 53 6.2 4.9 5.5 5.5 6.3 53 6.0
Undershoot (or) -0.05 -0.08 -0.039 -0.06  -0.05 -0.08 -0.04 -0.06
overshoot (rad)
Steady sate error 0 0 0 0 0 0 0 0
Peak velocity (rad/sec)  -5.13 -2.98 -6.64 -3.872  -49 -2.85 -5.40 -3.15
Control torque (N-m) 0.96 0.88 1.16 1.07 0.96 0.87 0.96 0.87
Negative 50°  Rise time (sec) 0.24 0.46 0.27 0.48 0.23 0.46 0.22 0.46
Settling time (sec) 5.5 6.3 5.1 5.7 5.7 6.5 5.5 6.2
Undershoot (or) 0.05 0.08 0.065 0.078  0.055 0.08 0.04 0.06
overshoot (rad)
Steady sate error 0 0 0 0 0 0 0 0
Peak velocity (rad/sec)  5.13 2.98 3.62 2.36 4.9 2.84 5.40 3.10
Control torque (N-m) -0.97 -0.88 -0.76 -0.67 -0.96 -0.87 -0.96 -0.87
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FIGURE 20. Motorcycle balancing with DDPG controller in real-time.

environmental conditions and uncertainties, ultimately con-
tributing to safer and more efficient motorcycle operation.
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X. CONCLUSION AND FUTURE SCOPE
In this paper, Deep RL controller using DDPG algorithm is
implemented for balancing the motorcycle on its own. When-
ever the motorcycle tilts, the inertia wheel starts rotating to
counter the torque. After training the DDPG agent for bal-
ancing the motorcycle, the performance is validated in both
simulation and hardware. This proposed control technique
ensures a more robust and stable controller for greater leaning
angles with less settling time and high balancing time.
Various RL algorithms like Proximal Policy Optimization
(PPO), Twin Delayed DDPG etc. can be used to optimize
the motorcycle behavior for any leaning angle and to further
improve the stabilizing time and robustness.
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