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ABSTRACT Barrier, solid insulator, is inserted between conductors to make compact power equipment.
Prediction of the dielectric strength is significant owing to nonlinear effect of barrier. In this paper,
positive lightning impulse breakdown voltages are predicted under sphere-to-barrier-to-plane air gaps using
machine learning algorithms including a support vector regression (SVR), Bayesian regression (BR), and a
multilayer perceptron (MLP), which are rarely used to derive breakdown voltages. Previous studies have
generally considered background electric fields in field arrangements that lacked barriers. In contrast,
electrostatic features are suggested based on the electro-geometric equivalency of each electrode, electric
field distributions between sphere and barrier or between barrier and plane, and a condition for stable
penetration of discharge channels, influencing background fields and discharge propagation characteristics in
air gaps. SVR yielded more precise Breakdown voltages than BR or MLP. Predictions from algorithms were
in good agreement with experimental results, regardless of geometrical parameters such as spherical radius,
gap distance and barrier width. In particular, the SVR-predicted voltages were even more accurate than the
calculated voltages from streamer propagation method in strongly inhomogeneous field with barrier. Our
proposed method derives breakdown voltages without the need to consider geometrical parameters affecting
streamer propagation.

INDEX TERMS Bayesian regression (BR), barrier, lightning impulse breakdown voltage, multilayer
perceptron (MLP), support vector regression (SVR), sphere-to-barrier-to-plane.

I. INTRODUCTION
Power equipment is becoming increasingly compact because
it must be installed in confined spaces such as urban substa-
tion or the nacelle of wind turbines. As the spatial distance
between current-carrying conductors decreases, the risk of
electrical breakdown (BD) in energy storage systems or gas
insulated medium-voltage switchgears increases. Therefore,
the design of the dielectric strength is very important to
withstand arbitrary disruptive voltages under operation. The
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dielectric strengths of power apparatusesmust withstand volt-
ages higher than the reference test voltages of International
Electronical Committee (IEC) [1]. Thus, the prediction of
breakdown voltages is essential.

Many studies have evaluated breakdown voltages based on
various gases present and the geometric shapes of electrodes.
Particle-in-cell and fluid models predict minimum ignition
voltages over the very short gas gaps of extinguishing regions
of circuit breakers and model electrical breakdown of air at
pd values higher than Paschen minimum, which is based on
the Paschen curves [2], [3]; the Paschen curve is one of tradi-
tional theoretical approaches to predict breakdown voltages,
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based on the product of gap distance(d) and pressure(p),
to control the number of generated electrons by nonlinear
collision ionization which results in breakdown. This law can
be only applied to quasi-uniform electric field distribution
such as sphere-to-sphere air gaps. One traditional theoreti-
cal criterion when evaluating gas breakdown in non-uniform
electric fields is streamer inception [4], [5], [6]; it is used
when evaluating impulse and AC power frequency break-
down voltages of gases such as dry air, SF6, CO2, and
mixtures thereof in non-uniform fields [7], [8], [9]; the
ionization coefficients are directly considered to reflect the
nonlinearity of the electron generation by collision. For such
criteria to be applied successfully, both ionization coefficients
and critical avalanche sizes are required. Ionization coeffi-
cients are affected by moisture; the critical avalanche sizes
differ among gases [10]. As such data are rarely reported,
efforts have been made to replace ionization coefficients by
other parameters derived from Paschen curve or to calculate
the critical avalanche size in air within pd of 100 bar·cm
[11], [12]. Nevertheless, the streamer inception criterion is
difficult to apply. A different criterion, streamer propagation,
is mainly used when field distributions are strongly inho-
mogeneous fields such as needle-to-plane field arrangement
or when the radius is much smaller than the air gap dis-
tance [13]; in the streamer propagation method, the potential
of streamer head is required for nonlinear electron generation
(by collisions) needed to generate the breakdown. The inter-
nal field strength behind the head of a streamer (Est ) is the
average electric field (∼0.5 kV/mm) associated with at least a
90% probability of complete breakdown and is influenced by
voltage shape, humidity, and polarity [14], [15]. In these tra-
ditional methods, the product of pd, ionization coefficient and
the potential of the streamer head are difficult to obtain within
the practical ranges needed for applications. Also, a needle-
to-barrier-to-plane electrode exhibits an electro-geometric
equivalency [16], but the slopes of the equivalency differ by
geometric shapes. Therefore, machine learning is required
to predict breakdown voltages, because machine learning
can individually consider geometrical design parameters and
physical parameters affecting both the nonlinear electron
generation and the discharge propagation, and analyze the
effect of each parameter on complex breakdown process,
based on calculated values of various electrical properties
corresponding to geometrical shapes.

Neural networks have been used to evaluate breakdown
voltages of transformer oils or partial discharges in power
equipment [17], [18], [19]. A support vector machine (SVM)
is employed to predict lightning impulse or AC power fre-
quency breakdown voltages of air gaps between various
geometric shapes, including parallel planes, rod-to-plane,
and sphere-to-sphere geometries. Many electrostatic field
features have served as inputs to SVM [20], [21], [22],
but only some of these are used. Therefore, optimiza-
tion methods are employed to reduce model complexity.
Generic algorithms (GA) are effective in this regard [23].
Principle component analysis (PCA) is useful when choosing

features that accurately reflect the electrical characteristics
of electrodes, but not when such features do not reflect
the electrical characteristics [24], [25]. Previous studies
have found that background electric fields may not be ade-
quately informative, depending on physical situations. Also,
deep learning has been employed to evaluate motor partial
discharge inception voltages (PDIVs) and to calculate the
breakdown voltages of ball-to-ball electrodes in ultra-high-
voltage apparatuses [26], [27]. However, thismethod can only
evaluate problems which can be solved by the known features
affecting phenomena of interest. Therefore, feature design is
very important.

Features were selected based on background electric fields
and discharge propagation characteristics of electrodes of
certain geometric shapes. Background electric fields are
determined by these shapes, and ionization is influenced by
background electric fields. Moreover, streamers are followed
by discharge channels. The conductivity of the streamer
is lower than that of the discharge channel. The streamer
propagation can be a precursor to the channel propaga-
tion. Therefore, streamer propagation capabilities have been
investigated using electrostatic field parameters to indirectly
analyze propagation characteristics of discharge channels
associated with geometrical shapes. Machine learning algo-
rithms that can evaluate breakdown voltages include a support
vector regression (SVR), a Bayesian regression (BR), and a
multilayer perceptron (MLP); all are used to train models.
Two of these algorithms feature only one hidden layer
but exhibit the high computational efficiency and the fast-
processing time [28]. A multilayer perceptron (MLP) may
have several hidden layers and can thus solve complex
problems.

In this paper, sphere-to-barrier-to-plane electrodes were
utilized as test electrodes to evaluate the dielectric strength
of current-carrying conductors in the compact power equip-
ment. Breakdown voltages of these electrodes are seldom
analytically predicted via machine learning, so the positive
lightning impulse breakdown voltages were predicted. The
prediction accuracies of SVR, BR, and MLP were compared.
Predicted voltages were compared based on the voltages
derived using both the streamer propagation-based method
and experimentally.

II. ELECTRIC FIELD SIMULATION UNDER ELECTRODES
Discharge ignites at the active (high voltage) sphere elec-
trode under the sphere-to-barrier-to-plane air gap, because the
discharge inception is closely associated with the maximum
electric field. The maximum electric field is mainly deter-
mined by the radius and the gap distance under such given
test electrodes. Furthermore, surface charges on the barrier
surface form the electric potential and electrically shield the
external potential of the active sphere electrode [29], [30].
Surface charges are influenced by the barrier position and
width [29]. Therefore, these factors were experimentally and
analytically considered.
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A two-dimensional model of the sphere-to-barrier-to-plane
system was built using a finite element method (FEM).
A voltage of 1 kV was applied to the high voltage spherical
electrode (copper) and the grounded potential was connected
to the plane electrode (stainless steel). A zero charge density
was initially applied to the surface of barrier (sheet molding
compound; SMC) of dielectric constant 3.7. Figure 1. (b)
presents a cloud chart of the electric field distribution. The
strongest electric field is that around the spherical electrode.
The breakdown (discharge) path is not shortest inter- elec-
trode path that is used to calculate capacitive energies of
the electrodes. Surface charges accumulate on the surface of
barriers [30]. One method of calculation assumes that the
surfaces are charged to saturation; thus, the normal field com-
ponent vanishes at surfaces that face the air when calculating
surface charges [31]. Then, surface charges can be calculated
using equation (1):

σsat,j = ϵinsEn,ins,j, (1)

where σsat,j is the saturation charge that accumulates on the
j-th element of a surface; ϵins is the dielectric constant of the
barrier; and En,ins,j is the j-th normal electric field of air.

FIGURE 1. Electric field distributions by electrode shape: a) Sphere-to-
barrier-to-plane electrode configuration, b) Electric field distribution. (r :
5 mm, gap distance: 100 mm, barrier width: 150 mm; voltage of 1 kV
applied to sphere.).

III. BREAKDOWN EXPERIMENTS AND RESULTS FOR
DATASETS
Figure 2 presents the experimental setup, which features an
impulse generator, a measuring system, and test electrodes.

FIGURE 2. Experimental configuration and conditions of test electrodes.

FIGURE 3. Discharge path and propagation length under sphere-to-
barrier-to-plane: a) Bypass discharge, b) Depiction of streamer
propagation length.

The lightning impulse generator delivers 1.2/50 us standard-
waveform impulse voltages. The measuring system detects
voltage waveforms using the voltage divider and stores them
on PC. All breakdown experiments were conducted in an up
and down method, and breakdown voltages were derived as
the barrier width, the gap distance and the spherical radius all
varied. Breakdown voltages were measured 15 times under
each condition: calculated voltages are expressed as mean
arithmetic values except for the maximum and minimum
voltage.

Bypass discharge moved from the sphere to the barrier
edge, and then to ground plane when sphere-to-barrier-to-
plane electrodes were employed, as shown in Fig. 1(a).
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TABLE 1. Breakdown voltages (VBD) in sphere-to-barrier-to-plane
(r : 5 mm).

TABLE 2. Breakdown voltages (VBD) in sphere-to-barrier-to-plane
(r : 10, 25 mm).

Neither puncture nor creepage discharges were considered
during the breakdown experiments, because such discharges
are uncommon in actual operation and the dielectric strength
of the bypass discharge is higher. In a previous study, the
discharge path length was used to identify how electrode
shape varied by the barrier position, sphere radius and gap
distance [29]. Because streamers are followed by discharges,
the discharge path can be viewed as streamer propagation
length (ds) of equation (2), as plotted in Fig. 3(b). Table 1
and Table 2 list the experimental results.

ds = k1 + k2, (2)

where k1 and k2 are constants.

IV. ELECTRICAL CHARACTERISTICS OF SPHERE-TO-
BARRIER-TO-PLANE
A. ELECTRO-GEOMETRIC EQUIVALENCY VARYING WITH
RADII
Electro-geometric equivalency means that the breakdown
voltages corresponding to the length of discharge (ds) are
nearly equal to those of bare electrodes with an air gap
distance (d) identical to ds [16]. The electro-geometric equiv-
alencies of sphere-to-barrier-to-plane electrodes that differed
in terms of spherical radii and barrier width were examined.
The average electric field at a spherical radius of 5 mm
differed from that at a spherical radius of 10 mm, leading to
different electro-geometric equivalencies. All the breakdown
voltages were also equivalent to an average electric field of
a same field arrangement without barrier, regardless of the
barrier width. The internal electric field of discharge chan-
nels were influenced more by spherical radii than by barrier
width. Thus, propagation forces (Force= qE) depend on bare
geometric shapes.

FIGURE 4. Electro-geometric equivalency by field arrangement:
a) Spherical radii, b) Barrier width. (Solid line, dotted line: average electric
field of each field arrangement without barrier, r: 5, 25 mm, d: 100 mm).

B. SEPARATION INTO TWO SUB-ELECTRIC FIELD
DISTRIBUTIONS
The electric field distributions of air gaps were electrostat-
ically examined along the shortest path from the sphere-to-
barrier-to-plane. As shown in Fig. 5., electric fields exhibit
different distribution depending on barriers. All electric
fields featured two sub-electric fields, one of which was a
non-uniform electric field between the sphere and the barrier,
and the other was a quasi-uniform electric field between the
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FIGURE 5. Electric field distribution along the shortest path. (r : 5 mm,
barrier position [width]: 30 %, [150 mm], d : 100 mm).

barrier and the plane. Because electric fields between spheres
and barriers change rapidly by gap distance, the non-uniform
electric field described above was more important in terms of
both discharge ignition and capacitive energy.

FIGURE 6. Charges by creepage distances from centers to edges by the
barrier positions. (r : 5 mm, barrier width: 150 mm, d : 100 mm, 1 kV
applied to sphere.).

C. SURFACE CHARGES AND EFFECT OF CHARGING ON
DISCHARGE PATH
Surface charges are accumulated via the ionization (between
molecules of air and electrons) and electric field accelera-
tion. Surface charge distributions were investigated along the
barrier creepage distance and varied by the barrier position,
shown in Figure 6. Surface charges assume ‘bell-shape’, so as
the barriers become closer to the sphere, the charge density
rapidly rose in the center of the barrier and thus increasingly
electrically shielded the sphere electrode potential. Surface
charges move the ignition position from the center to a side,
changing the discharge path and elongating the discharge
length.

D. ELECTRICAL PROPERTIES FOR BYPASS DISCHARGE IN
AIR GAPS
Streamers are followed by discharge channels. In the concep-
tual streamer involving positive ions (Figure 7(a)), internal
fields of streamers are generated by such ions and have
strengths in excess of 0.5 kV/mm at breakdown of 90 ∼

95 % [14]. The internal field of discharge channels is also
formed by positive ions but is lower than that of leader.

FIGURE 7. Electrical properties of streamers and discharge channels for
bypass discharge: a) Conceptual streamer structure, b) Conceptual
discharge channels. Dotted arrow is a discharge channel.

Therefore, the internal field of discharge channels may
be lower than 0.2 kV/mm. Conductivity depends on the
number of charged particles in channels. Discharge chan-
nels contain more charges than streamers, as confirmed by
Gauss’s law. Therefore, streamers have lower conductivities
than discharge channels. Streamers may precede discharge
propagation, so we examined stable streamer propagation
at the critical electric field strength (0.5 kV/mm) to indi-
rectly analyze discharge propagation in systems employing
sphere-to-barrier-to-plane electrodes.

V. ELECTROSTATIC FIELD FEATURES FOR MACHINE
LEARNING
The design of features is very important to predict break-
down voltages under the given test electrode. To show
this point, usefulness of an optimization method (PCA)
was explained [24], [25]. Various electrostatic field features
are introduced in addition to the background electric field,
to sufficiently reflect electrical characteristics over given
test electrodes before and during discharge. Electrostatic
field features are designed by the reference to electrical
characteristics and the background electric fields affected
by geometric shapes. Electrostatic field features can be
divided into six groups: capacitive energy, electric field
distribution, ionization characteristics, streamer propagation
characteristics, surface charges and spatial inhomogeneities.
According to previous studies, features involved background
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electric field quantities corresponding to various electrode
shapes such as rod-to-rod, sphere-to-plane and sphere-to-
sphere air gaps [20] and SVM predicted voltages were well
in agreement with experimental results. In our paper, both
capacitive energy and electric field distribution were used as
background electric field quantities under sphere-to-barrier
and barrier-to-plane contexts, and were calculated along the
shortest path. Furthermore, surface charging effect is con-
sidered varying with geometrical shapes, because charged
values on the surface vary depending on the barrier position
the gap distance and the radius. Consideration of ioniza-
tion characteristics involved only the length required for
charge generation. The streamer propagation characteris-
tics reveal the electric potential drops required for stable
propagation and the different electric forces needed to pen-
etrate air gaps of varying geometric shapes. Moreover, such
quantities can reflect environmental conditions and voltages
waveforms by using Ec0 term [15]. The streamer propaga-
tion characteristics are influenced by the internal electric
field (Ec0) of streamer, which is known to be dependent on
humidity, polarity and voltage waveform [13], [15]; since
ambient air is considered in this paper, Ec0 is 0.5 kV/mm;
if dry air is used, Ec0 can be 0.4 kV/mm; the value of
Ec0 may vary in the ranges of +/−10 ∼ 20 % depending
on humidity. Inhomogeneity reflects the spatial nonunifor-
mities of both capacitive energies and discharge channel
lengths.

TABLE 3. Electrostatic fields by feature groups.

The electrostatic fields were defined as follows:
1. Total capacitive energy: Cs

Cs =

∑n

i=1
E2
i di, (3)

where Ei and di are the electric field and the fine distance
of the i-th element, and n is the sum of elements along the
shortest path in air gaps.

2. Capacitive energy between sphere and barrier: Cs_SB

Cs_SB =

∑
E2
i di, where i satisfy

∑
di ≤ dsp_barrier ;

(4)

where dsp_barrier is the distance between sphere and barrier
along the shortest path in air gaps.

3. Average capacitive energy in air gaps: Cs_ave

Cs_ave = Cs/n. (5)

4. Capacitive energy between barrier and plane: Cs_BP

Cs_BP =

∑
E2
i di, where i satisfy

∑
di ≤ dbarrier_plane;

(6)

where dbarrier_plane is the distance between barrier and plane
along the shortest path in air gaps.

5. Maximum electric field (along the shortest path): Emax

Emax = maxEi(i = 1, 2, 3, . . . , n). (7)

6. Average electric field between sphere and plane:
Eave_shotest

Eave_shortest =

∑n

i=1

Ei
n

. (8)

7. Variance of electric fields in air gaps:

Evar =
1
n

∑n

i=1
(Ei − Eave_shortest )2. (9)

8. Variance of electric fields in air gpas between sphere and
barrier: Evar_SB

Evar_SB =
1
q1

∑q1

i=1
(Ei − Eave_SB_shortest )2, (10)

Eave_SB_shortest = (
∑q1

i=1
Ei)/q1, (11)

where q1 is the sum of a fine distance along the shortest path
in air gaps between sphere and barrier.

9. Variance of electric fields in air gaps between barrier and
plane: Evar_BP

Evar_BP =
1

n− q1

∑n−q1

i=1
(Ei − Eave_BP_shortest )2,

(12)

Eave_BP_shortest = (
∑n−q1

i=1
Ei)/(n− q1). (13)

10. Penetration electric force in air gaps between sphere
and barrier: Eave_SB / Ec0

Eave_SB/Ec0 = (
∑

Edis_i/
∑

i)/Ec0;

i satisfy
∑

li ≤ Ldis_SB; (14)

Edis_i is the electric field of i-th element along the break-
down discharge path; li is the fine length along the discharge
path; Ldis_SB is the length of discharge path from the sphere
to the edge of barrier; Ec0 is the critical electric field,
0.5 kV/mm [14].

11. Penetration electric force in air gaps between barrier
and plane: Eave_BP/Ec0

Eave_BP/Ec0 = (
∑

Edis_i/
∑

i)/Ec0;

i satisfy
∑

li ≤ Ldis_BP; (15)

Ldis_BP is the length of discharge path from the edge of barrier
to plane.
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12. Length of electric potential drop in case that streamers
stable proceed: Lst0.5

Lst0.5 =

∑
li, where i satisfy Edis_i ≥ 0.5 kV/mm. (16)

13. Electric potential drop in case that streamers stable
proceed: Vst0.5

Vst0.5 =

∑
Edis_ili, where Edis_i ≥ 0.5 kV/mm. (17)

14. Length of ionization: L_E90

L_E90 =

∑
di, where i satisfy Ei ≥ Emax × 0.9. (18)

15. Surface charges: σsurface charges

σsurface_charges = ϵinsEn,ins,j. (19)

16. Relative capacitive energy: Cs_SB/Cs, Cs_BP/Cs_SB
17. Relative length: Lst0.5/Ldis, L_E90/Ldis_SB where Ldis is

the total length of the discharge path from the sphere to the
edge of barrier and from that edge to plane, and is equal to ds;
Ldis_SB is equal to k1.

VI. MACHINE LEARNING ALGORITHMS AND
PARAMETER TUNNING
A. SUPPORT VECTOR REGRESSION (SVR)
A SVR is a machine learning algorithm that solves nonlinear
problems. The algorithm has one hidden layer. A ε-SVR
determines the hyperplane on which losses (ε) are accept-
able. The primary optimization problems are express by
equation (20), where C and ε are hyperparameters [20], [21].

min
1
2
∥ ω ∥

2
+ C

∑m

i=1
(ξi − ξ∗

i ). (20)

s.t. f (xi) − yi ≤ ε + ξi. (21)

yi − f (xi) ≤ ε + ξ∗
i . (22)

ξi, ξ
∗
i ≥ 0 (i = 0, 1, 2, 3 . . . n). (23)

The decision function of ε-SVR is expressed by
equation (24). The radial basis function (RBF) was used to
map data from the original space to higher dimensions. γ is
the Euclidean distance between two data points.

f (x) =

∑m

i=1
(α∗
i − αi)K (x, xi) + b. (24)

K (x, xi) = exp
(
−γ ∥ xi − xj ∥

2
)

. (25)

B. BAYESIAN REGRESSION (BR)
Bayesian models are forms of artificial intelligence. Bayesian
inference uses the prior probability and likelihood to estimate
a posterior probability employing equation (26) [32].

p (x |E) =

∫ x

0
p (x | θ) p (θ |E) dθ. (26)

The posterior probability changes as new data are added.
Posterior probabilities can serve as new prior probabilities,
so automation of data inference is possible.

BR uses bayesian inference to regress an analysis between
target (Y ) and independent variables (X ). The BR formula

is expressed by equation (27) [32]. X contains n attributes
including x1, x2, . . . and xn; each is assumed to be indepen-
dent; X, Y and ϵ are random variables; ϵ is a noise value. The
hyperparameters are alpha and lambda.

Y = a+ bX [n] + ϵ[n]. (27)

C. MULTILAYER PERCEPTRON (MLP) NEURAL NETWORK
Artificial neural network may be created using a multilayer
perceptron (MLP) algorithm. Figure 8 shows conceptual
MLP predicting breakdown voltages. A MLP features an
input layer, an output layer, and a hidden layer. The input
layer is a set of neurons that describe input features. Each
neuron of the hidden layer transforms values from input layer
via the weighted linear summation (W1X1 + W2X2 + · · · +

WmXm), followed by the activation function. The output layer
transforms results of hidden layers into output values. In each
neuron of the hidden layer, each parameter of (28) is trained.
W1 andW2 are the weights of input and hidden layers. b1 and
b2 are biases. Activation function (g) is ‘identity’ function.
The solver uses ‘‘lbfgs’’. Since SVR has one hidden layer,
the hidden layers in MLP were from 1 to 2. These algorithms
are implemented with Scikit-learn library, which provides
various modules associated with machine learning.

f (x) = W2g
(
W T

1 x + b1
)

+ b2. (28)

FIGURE 8. Conceptual multilayer perceptron.

D. NORMALIZATION AND PARAMETER TUNING
All the features were normalized to enhance predictive
accuracy using equation (29).

Xi =
xi − xmin
xmax − xmin

, (29)

where Xi is a normalized value of an i-th input feature
(xi). xmax and xmin are the maximum and minimum values,
respectively.K -fold cross-validation is employed withK = 3.
The test dataset included samples that were randomly divided
into three sub-datasets: two of these were used to train the
SVR, BR and MLP models, and the other was used to val-
idate the models. Gridsearch was employed to choose the
hyperparameters and adjust the models.
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E. CALCULATION OF PERMUTATION IMPORTANCES OF
FEATURES
The permutation importances of features were investigated
utilizing trained models that evaluated the test dataset; this
ensured that feature overfitting was absent over the model.
The importances are ordered by their R2 scores, and only
features that contributed more than 2 % to the predictions
were shown.

VII. SIMULATION RESULT AND DISCUSSION
A. MODEL TRAINING AND TESTING
Datasets are crucial when seeking to enhance predictive accu-
racy. Three datasets are randomly grouped by ds, as shown in
Table 1 and Table 2. All samples were included in all datasets.
The datasets that trained the SVR, BR and MLP models were
randomly chosen: one of the three datasets was used for train-
ing and the others were used to test generalization afforded by
the trained models and to analyze the predictive accuracies of
breakdown voltages; these varied by the algorithm.

Two error indices were used when analyzing predicted
breakdown voltages: the root mean square error (RMSE). The
RMSE is defined by equation (30) and the MAPE is defined
by equation (31).

RMSE =

√
1
m

∑m

i=1
(Ubi − Upi)2 (kV). (30)

MAPE =
1
m

∑m

i=1
|
Ubi − Upi

Ubi
|(%), (31)

where Ubi is the breakdown voltages and Upi is the value
predicted by SVR, BR and MLP. m is the number of total
samples.

TABLE 4. Datasets and samples.

TABLE 5. Error indices of predictions by three algorithms.

B. COMPARISON AMONG PREDICTED, CALCULATED AND
EXPERIMENT BREAKDOWN VOLTAGES
Table 5 lists the error indices. Averages and variances were
calculated for three all predictions. The average MAPE of the

SVR and the BRwere less than 0.9%. The variance ofMAPE
of BR was the lowest. Although the BR MAPE variance was
less than that of the SVR, the average BR MAPE was higher
than that of the SVR. In terms of RMSE, SVRwasmore accu-
rate than other algorithms. Therefore, VR optimally predicted
the breakdown voltages of test electrodes.

SVR-predicted voltages were compared with both cal-
culated voltages derived using the streamer propagation
criterion and experimental results for an electrode of radius
of 5 mm and a gap distance of 100 mm (Figure 9.). Voltages
were calculated by the equation (32).

V = V0 + Est · ds, (32)

where V0 is equivalent to the required potential of head for
breakdown; V0 was 23.7 kV in the present study because
the electrode shapes were very similar to those used in a
prior work [33], [34]. In general, SVR-predicted voltages
were in good agreement with experimental results at all
barrier widths, but large differences were apparent between
calculated and experimental results.

FIGURE 9. Comparison between SVR-predicted and calculated voltages by
barrier width: a) 150 mm, b) 300 mm. (r : 5 mm, d : 100 mm).

The SVR-predicted voltages were compared with exper-
imental results as the gap distance and the radius varied
(Figure. 10 and 11). Predictions were in good agreement with
experimental results as the gap distance under an electrode of
radius of 5 mm and a barrier width of 150 mm varied. In case
of the radius of 25 mm, a little deviation is observed at the
barrier position of 30 and 50 %. Since the deviation is below
5 kV, the value is smaller than differences between breakdown
voltages under experiment. Therefore, predictions were in
good agreement with experimental results.
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FIGURE 10. Comparison between SVR-predicted and experimental
voltages by gap distance: experiment [exper], prediction [pred].
(r : 5 mm, χ : 150 mm).

FIGURE 11. Comparison between SVR-predicted and experimental
voltages by radii: a) 10 mm, b) 25 mm. (d : 100 mm, χ : 150 mm).

C. DISCUSSION
It is very difficult to predict the breakdown voltages of
the sphere-to-barrier-to-plane electrodes, given the nonlinear
relationships between the suggested features and the electron
generation affecting both discharge ignition and discharge
propagation. Each suggested feature not only affects each
other, but also combines complexly to contribute to nonlin-
ear collision ionization which generates electrons. Machine
learning identifies the influence of each feature affecting
the electron generation to predict breakdown voltages. The
predictions of machine learning algorithms were in good
agreement with experimental results. Although SVR has one
hidden layer and is simple, it was more accurate and efficient
than the MLP. The most significant features affecting break-
down voltages are the length of the electric potential drop

FIGURE 12. Permutation importances of features in SVR-trained model
operating on a test dataset. (importance order: 1 to 6).

(Lst0.5) and the electric potential drop (Vst0.5) per se, which
influence stable discharge penetration into air, as shown in
Figure 12. Our findings demonstrate that machine learning
can evaluate breakdown voltages well, and can also reflect
the electrical properties required for streamer propagation.
Therefore, machine learning can be used to analyze break-
down accidents in industrial fields.

The utilization factor is approximately 0.0271 in a sphere-
to-barrier-to-plane with a spherical radius of 5 mm and a
gap distance of 100 mm; the electric field distribution is
thus strongly inhomogeneous. Accordingly, streamer propa-
gation was used to predict the breakdown voltages. To this
end, an equivalent potential (V0) is experimentally required
when the electrode shapes vary. V0 can range from 20 to
30 kV [34], and large deviation were observed even when V0
was 30 kV (Figure. 9(a)). However, machine learning affords
higher predictive accuracy than the theoretical approach and
can consider electric field distribution of geometrical elec-
trode shapes. Unlike traditional theoretical approaches, the
proposed method does not need to confirm whether the
electric distributions corresponding to geometrical shapes
are applicable. The method can predict breakdown voltages
through the computational analysis without experimental data
required to consider electron generation. Nevertheless, if the
shape of barrier surface is not flat and becomes complex,
it is necessary to add the physical characteristics as an input
parameter. Moreover, area effect may be considered in case
that the radius is larger than a certain value. When the radius
of the active (high voltage) electrode is larger than a certain
value, the area effect occurs, and breakdown voltages may
be influenced by the increase in the effective area of the
electric field with larger than 90% of the maximum electric
field. In case of compressed gases such as dry air and SF6,
surface roughness may be included, which is associated with
the discharge ignition [35].

VIII. CONCLUSION
In this paper, positive lightning impulse breakdown volt-
ages in the sphere-to-barrier-to-plane scenario were predicted
by machine learning algorithms. The breakdown voltages
are rarely analyzed using such algorithms. Unlike previous
studies, features of the background electric fields and the
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penetration characteristics of discharge channels in air gaps
were used, when evaluating the physical electrical charac-
teristics, yielding enhanced predictive accuracy for the elec-
trodes described above. The predictive accuracies of the SVR,
BR, and MLP were assessed, and predicted voltages were
compared with both the experimental results and voltages
calculated using the streamer propagation characteristics.

1) Electro-geometric equivalencies and stable streamer
internal fields were used to describe the discharge channels.
Surface charges and sub-electric field distribution between
spheres and barriers, or between barriers and planes, were
employed to describe the background electric fields of each
electrode shape.

2) SVR-predicted voltages were more accurate than those
of BR and MLP. The SVR thus optimally evaluated the
breakdown voltages of the studied electrodes.

3) At a spherical radius of 5 mm and a gap distance
of 100 mm (associated with a strongly inhomogeneous
field), SVR-predicted voltages were in line with experimen-
tal results, but large differences were apparent between the
experimental and the calculated voltages estimated using a
stable internal field of 0.5 kV/mm and an equivalent potential
(V0) of 23.7 kV.
4) Overall, SVR-predicted voltages were in good agree-

ment with experimental results regardless of differences in
geometric parameters such as spherical radius, gap distance,
and barrier width.

5) Discharge channel characteristics best played a role
in predicting the breakdown voltages. This is because such
properties indirectly represent the equivalent gap distances
that affect the breakdown voltage in the sphere-to-barrier-to-
plane scenario.

The features of the proposed method effectively aided
machine learning, enabling the prediction of breakdown volt-
ages without the need to consider field distribution when the
streamer propagation is in play. The proposed method phys-
ically explains the important electrical properties affecting
discharge under such conditions, so it will be of great benefit
to discharge analyses associated with power equipment oper-
ation. Further studies will explore different applied voltage
shapes and more complex creepage structure. Also, compari-
son on performance of different machine learning algorithms
on such problems, as well as main factors affecting prediction
accuracy will be conducted over various geometrical shapes.
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