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ABSTRACT A strong and reliable Traffic Sign Detection and Recognition (TSDR) system is essential for
the effective deployment of autonomous driving technology. In this field, numerous scholars have conducted
extensive research, but current studies only consider TSDR under ideal conditions, neglecting scenarios
such as rain, snow, fog, which can cause image blurring. This paper investigates the challenges of TSDR
performance degradation caused by five adverse environmental conditions: rain, snow, fog, lens dirt, and
lens blur. To overcome the adverse effects of these conditions on TSDR, this paper proposes a Convolutional
Neural Network (CNN)-based TSDR method, consisting of three modules: adverse environment classifi-
cation module, image enhancement module, and traffic sign detection module. The adverse environment
classifier, based on the VGG19 architecture, identifies whether the image includes the aforementioned five
adverse weather conditions. The image enhancement module named Enhance-Net enhances each of the five
adverse environments separately and specifically enhances the traffic sign regions within the image, rather
than the entire image area. To increase the speed of the proposed method, the traffic sign detection module
utilizes the YOLOv4 framework. The proposed method’s effectiveness is assessed using the CURE-TSD
dataset, which includes traffic videos recorded in various adverse environmental conditions. Experimental
results demonstrate that under five different levels of adverse environments, the pro-posed method achieves
95.03% accuracy and runs at a rate of 12.79 fps (frames per second). In contrast to the current benchmark,
although there is a 2.81% reduction in accuracy resulting from training the proposed method on a subset of
the dataset, the speed has increased by 12.03 fps, demonstrating the efficacy of the proposed approach.

INDEX TERMS CNN, adverse environments, image enhancement, TSDR.

I. INTRODUCTION
Autonomous driving has emerged as a transformative tech-
nology poised to revolutionize the transportation industry
by enhancing safety, efficiency, and convenience. Central
to the functioning of autonomous vehicles is the ability
to accurately perceive the surrounding environment using
a diverse array of onboard sensors. These sensors, which
include radar, ultrasonic sensors, GPS (Global Positioning
System), magnetometers, and cameras, collectively provide
comprehensive data that enable the vehicle to navigate com-
plex roadways autonomously [1]. The seamless integration
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of data from these sensors allows the autonomous driving
system to dynamically plan paths, respond to real-time road
conditions, and ensure automatic, safe, and reliable vehicle
operation. This multi-sensor approach is critical for the robust
and accurate perception necessary for autonomous driving.

The architecture of an autonomous driving system com-
prises three fundamental components: the positioning and
navigation system, the environmental perception system, and
the planning and control system. The positioning and naviga-
tion system, leveraging GPS and magnetometers, determines
the vehicle’s precise location and charts its course. Mean-
while, the environmental perception system utilizes radar,
cameras, and ultrasonic sensors to detect and interpret obsta-
cles, traffic signs, and other vehicles on the road. The
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planning and control system synthesizes this information
to make real-time decisions regarding speed, direction, and
braking, thereby safely guiding the vehicle to its destina-
tion. Among these components, the visual perception system,
which includes traffic sign recognition, plays an indispens-
able role in ensuring the safety and efficiency of autonomous
driving. Accurate recognition of traffic signs is crucial for
adhering to road regulations and enhancing driver awareness,
especially within the framework of Advanced Driver Assis-
tance Systems (ADAS) [2].

Leading technology companies such as Google, Uber,
Tesla, Volkswagen, Hyundai, NVIDIA, and Baidu are at the
forefront of developing and testing autonomous driving sys-
tems. These companies are not only advancing the technology
but also actively implementing pilot programs and commer-
cial applications worldwide. For instance, in countries like
China, the United States, and Germany, autonomous vehicles
are already being deployed for taxi services and long-distance
cargo transportation. These real-world applications highlight
the practical benefits and potential of autonomous driving
technology. However, the deployment of these systems in
varied and often unpredictable real-world conditions poses
significant challenges. One of the most critical challenges is
ensuring that autonomous vehicles can operate reliably under
diverse environmental conditions, such as rain, snow, fog,
and dirt, which can adversely affect the quality of traffic sign
recognition and overall sensor performance.

To address these challenges, extensive research focused
on traffic sign recognition in complex environments is
imperative. Such research is vital for improving the robust-
ness and reliability of environmental perception systems
in autonomous vehicles. Enhancing traffic sign recogni-
tion capabilities under adverse weather and lighting con-
ditions will significantly boost the safety and operational
effectiveness of autonomous driving technology. Moreover,
advancements in this area will facilitate broader applicability
of autonomous vehicles across various road environments,
paving the way for wider adoption and integration of this
transformative technology. The ongoing research and inno-
vation in this field are crucial for achieving the goal of fully
autonomous, safe, and reliable vehicles, capable of navigat-
ing the complexities of real-world environments.

II. LITERATURE REVIEW
In this section, we briefly review related topics: 1) traditional
methods for traffic sign recognition; 2) deep learning-based
traffic sign recognition.

A. TRADITIONAL METHODS FOR TRAFFIC SIGN
RECOGNITION
Vitabile et al. [3] perform traffic sign detection in the Hue
Saturation Value (HSV) color space, introducing dynamic
thresholds for color segmentation. The method employ-
ing dynamic thresholds for segmentation can mitigate
the impact of lighting variations on traffic sign detec-
tion, but it suffers from high computational complexity.

Chakraborty and Yeb [4] initially utilize the YCbCr color
model to mitigate the lighting sensitivity of image segmenta-
tion, then apply statistical thresholds for color segmentation,
followed by labeling and filtering for shape extraction, and
finally employ dis-tance vectors to the boundary to validate
the extracted regions of interest. This method is advantageous
for its simplicity and high accuracy but is relatively slow.
Lu [5] extracts the outer contour of traffic signs and employs
polygon approximation based on the Douglas Peucker (DP)
algorithm and shape features for sign detection. While this
method exhibits good detection performance, it is susceptible
to false positives due to environmental influences. Alam and
Jaffery [6] utilize the nearest neighbor matching method for
traffic sign recognition, where features extracted are com-
pared with those in a traffic sign feature database. SURF
(Speeded-Up Robust Features) features are employed in the
nearest neighbor matching method for traffic sign identifica-
tion, offering scale, translation, and rotation invariance along
with fast processing speed. While this method achieves high
recognition accuracy, its results are prone to distortion and
occlusion effects. Boi [7] propose a ‘‘HOG+SVM’’ method,
which utilizes a preprocessing module to extract Histograms
of Oriented Gradients (HOG) features from images, followed
by analysis of the extracted features using the Support Vec-
tor Machines (SVM) algorithm. This method exhibits good
stability but suffers from slow image processing due to high
computational complexity. Xu et al. [8] propose a multi-
class AdaBoost-based Extreme Learning Machine (ELM)
ensemble algorithm, which offers better learning speed and
generalization performance compared to the SVM algorithm.
This algorithm achieves high recognition accuracy with rela-
tively lower computational complexity.

In summary, traditional traffic sign recognition methods
offer the benefits of straightforward principles and high accu-
racy. However, they suffer from drawbacks such as high
computational complexity, relatively slow recognition speed,
and poor performance in complex scenarios.

B. DEEP LEARNING-BASED TRAFFIC SIGN RECOGNITION
The use of deep learning for traffic sign recognition has
become mainstream. Deep learning methods are classified
into two-stage object detection methods and one-stage object
detection methods.

R-CNN (Region-based Convolutional Neural Networks),
Fast R-CNN, Faster R-CNN, are typical classic two-stage
object detection algorithms. An improved traffic sign recog-
nition method based on Faster R-CNN is proposed by Huang
and Feng [9], replacing the VGG16 network with a residual
network. Faster R-CNN utilizes a region proposal network
for initial bounding box regression, followed by ROI pooling
to generate proposal boxes, and finally outputs classifica-
tion results and predicted boxes through fully connected
layers. While this method is applicable in most cases, its
recognition speed does not meet real-time requirements.
Wang et al. [10] developed a recognition method utilizing
Cascade R-CNN, in which the Cascade R-CNN algorithm
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links various R-CNN detectors based on Intersection over
Union (IoU). The improved algorithm incorporates the Fea-
ture PyramidNetworks (FPN) structure as a feature extraction
network, replacing the original loss function. This method
improves recognition accuracy, but the recognition speed is
only 2.74 frames per second (fps), and it can only clas-
sify traffic signs into four categories. Yu [11] proposed an
algorithm to improve the R-FCN (Region-based Fully Convo-
lutional Network) model by pruning the model to retain only
the first 25 convolutional layers. Due to the irregular shape of
traffic signs, this algorithm utilizes deformable convolutions
for feature extraction. The algorithm employs the K-means
method to find suitable anchor boxes and utilizes an online
hard example mining strategy to increase the learning inten-
sity of hard examples. The improved algorithm achieves both
accuracy and speed enhancements but can only classify signs
into three major categories.

One-stage object detection algorithms can simultaneously
perform bounding box regression and object classification.
Representative algorithms include SSD (Single Shot Multi-
Box), YOLOv3, YOLOv4, YOLOv5, etc. Wang [12] pro-
posed an im-proved FCOS (Fully Convolutional One-Stage
Object Detection) model, which incorporates the FPN (Fea-
ture Pyramid Networks) structure into the network. This
structure ensures that features of different scales are available
for targets of corresponding sizes. The algorithm introduces
a central sampling method to address the problem of a high
proportion of negative samples generated during target recog-
nition. The im-proved algorithm includes a self-attention
module, enhancing the ability to identify regions of interest.
However, the recognition speed of the algorithm is rela-
tively slow. Peng et al. [13] proposed an improved RetinaNet
algorithm, which incorporates a traditional feature pyramid
module into the original algorithm, enabling the network to
better distinguish foreground and background information.
The improved algorithm utilizes focal loss as the classifica-
tion loss function, allowing for thorough learning of positive
samples. The algorithm adopts the lightweight MobileNetV2
network as the backbone network, dramatically decreas-
ing the computational burden of the model. However, the
recognition speed of the algorithm does not meet real-time
requirements.

The authors in [14] proposed a network architecture that
allows for simultaneous computation and localization of
the region where the sign is located. In [15], the authors
further divided localization and character recognition into
two separate neural networks: the hybrid SegU-Net archi-
tecture, created based on SegNet [16] and U-Net [17],
which employs the VGG16 architecture [18] as a locator
for recognizing traffic signs. This algorithm only considers
traffic sign recognition under ideal conditions and does not
account for adverse environmental effects on sign recogni-
tion, thus lacking robustness. The study [19] improved upon
the SegU-Net framework by usingVGG16 to identify adverse
environmental conditions in images, such as rain, snow, fog,
or lens blur. If adverse conditions are detected, the images

are enhanced to mitigate the negative impact on traffic sign
recognition, resulting in higher road recognition accuracy.
However, experimental results indicate that its recognition
speed is slow, and re-al-time performance is poor.

To improve the recognition speed of traffic signs in com-
plex environments, this study improved upon the method
proposed in [19] by replacing the SegU-Net with YOLOv4
[20], effectively enhancing the speed of traffic sign recog-
nition. Moreover, the size of the training samples was
significantly reduced by removing regions from the images
that do not contain any traffic sign characters.

III. PROPOSED METHOD
A. OVERVIEW OF THE METHOD
The method presented in this paper consists of three separate
modules. The first module is the adverse environment classi-
fier, which detects the types of adverse environments present
in traffic images. The second module is the image enhance-
ment module, which performs the necessary enhancements
for different types of adverse environments. Lastly, the third
module is responsible for detecting traffic signs within the
image. The workflow of our proposed method is shown in
Fig 1.

The process of traffic sign detection under adverse envi-
ronments is as follows: Firstly, the image is inputted into
the adverse environment classifier, which detects whether
there are adverse environments present in the image. If the
classifier detects the presence of any of the five adverse
environments: rain, snow, fog, dirty lens, or lens blur, the
image will be forwarded to the image enhancement mod-
ule for adverse environment elimination. Images without
adverse environments will not undergo enhancement. Then,
the enhanced image or the image without adverse environ-
ments is inputted into the traffic sign detection module for
sign detection. Finally, the module outputs the localization
and name of the detected sign.

B. ADVERSE ENVIRONMENT CLASSIFIER
The adverse environment classifier utilizes a pretraining
approach on the ImageNet dataset with VGG19, followed
by fine-tuning on the CURE-TSD [21] dataset. Transfer
learning leverages the characteristics of convolutional neu-
ral networks, where shallow layers recognize angles, edges,
simple shapes, etc., while deeper layers recognize complex
features. All information about image features is stored in
the 16 convolutional layers, with generalization information
stored in three fully connected output layers. Therefore, dur-
ing transfer learning, only the last three layers are trained,
while the remaining layers are not trained.

The feature extraction and the classification are two parts
consisted for the adverse environment classifier. The feature
extractor reduces the information from the image into a com-
pact, low-dimensional feature space. These features are then
employed in the classification phase to conduct the necessary
classification.
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FIGURE 1. The workflow diagram of the proposed method in this paper.

Feature Extraction: The feature extractor includes 16 con-
volutional blocks, each consisting of a 3 × 3 convolutional
kernel, batch normalization layer, and ReLU activation layer.
Max-pooling operations are used for down-sampling, and
global average pooling is applied in the final stage to further
condense the features.

Classification: The classification component includes a
fully connected layer that utilizes the extracted features for
classification. The output comprises 6 classes: five different
types of adverse environments and one class indicating no
adverse environment, employing softmax activation.

Using frames with a resolution of 1236 × 1628 in the
adverse environment detection stage im-poses a significant
computational burden due to the size of the images. Addition-
ally, the effects of adverse environments manifest as global
features in the images. S Given that the adverse environment
classifier primarily aims to discern various types of adverse
environments, downsampling operations are expected to
augment these overarching features. Thus, we resize all cho-
sen adverse environment images to 512 × 512 pixels and

employ them to train the adverse environment classifier
with 6 classes: 5 classes for specified adverse environments
and 1 class for no adverse environment. During training,
we employ categorical cross-entropy as the loss function and
optimize our network using Adam [22]. The initial learn-
ing rate is initialized at 10−4, and if the validation score
fails to improve over 3 epochs, a learning rate scheduler is
implemented to halve the rate. Finally, following these speci-
fications, we conduct training for our network over 30 epochs.

C. IMAGE ENHANCEMENT
The paper utilizes the Enhance-Net from [19] for implement-
ing the image enhancement function. Enhance-Net employs
five enhancement blocks to address five different types of
adverse environments. Each block contains the same base
CNN network architecture, which is independently trained
for each of the five types of adverse environments. This
allows for easy adaptation to additional types of adverse envi-
ronments by adding more enhancement blocks. The structure
of Enhance-Net is shown in Fig 2.

FIGURE 2. Enhance-Net architecture.

Encoder, residual blocks, and decoder are three parts con-
sisted of Enhance-Net.

Encoder: The encoder begins with a convolutional block
featuring a 7 × 7 convolutional kernel, followed by instance
normalization and ReLU activation. Subsequently, there are
two more convolutional blocks, each employing a 3 ×

3 convolutional kernel, instance normalization, and ReLU
activation. The convolutional blocks consist of 64, 128, and
256 kernels, with strides of 1×1, 2×2, and 2×2, respectively.
The encoder transforms the image into latent feature maps,
which are subsequently refined by the residual blocks.

Residual Blocks: Each residual block is composed of
two convolutional layers using a 3 × 3 convolutional filter,
followed by an instance normalization layer and a ReLU
activation layer, incorporating a shortcut skip connection.
Enhance-Net utilizes 9 residual blocks, facilitating faster con-
vergence and minimization of the loss function.

Decoder: During each decoding step, the feature maps pro-
duced by the residual blocks undergo up-sampling through
two transpose convolutional blocks. Each block consists of a
3 × 3 transpose convolution with a stride of 2 × 2, followed
by an instance normalization layer and a ReLU activation.
The final decoding stage includes a convolutional block with
a 7×7 kernel size and a hyperbolic tangent (Tanh) activation
function.
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The overall enhancement of images containing adverse
environments may not necessarily result in the optimal
enhancement of traffic sign regions. Therefore, we modified
the loss computation to prioritize the traffic sign regions
over the entire image. According to research [23], employing
Mean Absolute Error (MAE) as the loss function enhances
image reconstruction performance.

Thus, the lower-level intermediate layers of a CNN pre-
trained on the ImageNet dataset can act as feature extractors
for edges, contours, and low-level image details. We utilize a
pretrainedVGG19 network from ImageNet to extract features
from intermediate layers for both the reconstructed image
and the target traffic sign region. Subsequently, we aim to
minimize the MAE between these reconstructed traffic sign
features and the target traffic sign features. This minimiza-
tion ensures that the reconstructed image accurately restores
essential details [24]. Let R and T denote the recon-structed
and target traffic sign regions, respectively, with H, W, and
C representing their height, width, and channels. We define
Len-hancement(sign) as follows:

Lenhancement(sign) =
1

H ×W × C

C∑
k=0

W∑
j=0

H∑
i=0

∣∣Rijk − Tijk
∣∣
(1)

Another approach is the so-called perceptual loss function,
where ∅(R) and ∅(T ) represent the image features extracted
from the seventh layer of the VGG19 network, pretrained on
the ImageNet dataset, for the reconstructed image and the
original image, respectively. The main idea behind using this
function (2) is to preserve as much information as possible
about the small portion of the sign, and the internal layers of
the pretrained VGG19 network already contain the necessary
feature information such as corners, edges, etc.

This paper adopts following equation as the loss func-
tion during training. adverse environment classifier utilizes a
pretraining approach on the ImageNet dataset with VGG19,
followed by fine-tuning on the CURE-TSD [21] dataset.

Lcontent(sign) =
1

H ×W × C

C∑
k=0

W∑
j=0

H∑
i=0

∣∣∅(R)ijk − ∅(T )ijk
∣∣

(2)

When training this module, first, we extract all frames
containing specific adverse environ-mental types of traffic
signs from the training video sequences. There are 5 diffi-
culty levels, each with 29,400 frames, resulting in a total of
29,400 × 5 = 147,000 frames, with each frame size being
1236× 1628 pixels. Next, we crop random blocks containing
traffic signs with a size of 1024 × 1024 from these frames.
Given hardware constraints, we train the model with a batch
size of 1.

To compensate for the small batch size, we employ gra-
dient accumulation. Gradients from 5 consecutive batches
are accumulated before updating the weights, ensuring that
these batches represent 5 distinct adverse environmental

conditions. We use these images to train the CNN enhance-
ment blocks with an initial learning rate of 10−4. We use
Adam [22] as our optimizer. The training spans 30 epochs.
If the validation score fails to improve over 3 consecutive
epochs, a learning rate scheduler reduces the learning rate by
a factor of 0.5.

D. TRAFFIC SIGN LOCALIZATION AND RECOGNITION
The enhanced images or images without adverse environ-
mental conditions are inputted into YOLOv4 for traffic sign
detection. The principle of training the traffic sign localiza-
tion and recognition module on the YOLOv4 architecture
is similar to that of training the normalization module [20].
The images are divided into two equal segments of 1024 ×

1024 pixels in the two upper corners of the image. The train-
ing is conducted for 4000 epochs, a large number necessitated
by the architecture of the network itself, as each image under-
goesmultiple processing stages. The architecture of YOLOv4
is shown in Fig 3.

FIGURE 3. YOLO v4 architecture.

YOLO v4 is an improved version of the YOLO object
detection model, offering better performance and accuracy
compared to its predecessors. The architecture of YOLO v4
consists of several key components that work together to
perform object detection efficiently.

1) BACKBONE
The backbone of YOLO v4 is responsible for extracting
essential features from the input images. In YOLO v4, the
CSPDarknet53 (Cross Stage Partial Darknet53) is used as
the backbone. CSPDarknet53 is an improvement over the
Darknet53 backbone used in YOLO v3. It incorporates the
CSPNet (Cross Stage Partial Network) strategy, which helps
to improve learning capability and reduce computation by
partitioning the feature map of the base layer into two parts
and merging them through a cross-stage hierarchy. This
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backbone is designed to provide a good balance between
accuracy and speed.

2) NECK
The neck of the YOLO v4 architecture is designed to generate
feature pyramids, which are crucial for detecting objects at
different scales. YOLO v4 utilizes several techniques in its
neck component:

1) SPP (Spatial Pyramid Pooling): This helps in increasing
the receptive field and separating out the most significant
contextual features.

2) PAN (Path Aggregation Network): This network
improves information flow and feature pyramid by fusing
low-level features with high-level features, thereby enhancing
the detection of small objects and improving the robustness
of the detector.

3) HEAD
The head of the YOLO v4 architecture is where the actual
object detection takes place. It predicts bounding boxes, class
probabilities, and abjectness scores. The head component
consists of multiple convolutional layers that output predic-
tions for different scales. The predictions are made at three
different scales, which helps in detecting objects of varying
sizes.

4) ADDITIONAL TECHNIQUES AND OPTIMIZATIONS
YOLO v4 incorporates several additional techniques and
optimizations to improve its performance. Some of these
include:

1) Bag of Freebies: These are methods that improve
detection accuracy without increasing the inference time.
Techniques include CutMix and Mosaic data augmentation,
Drop Block regularization, Class label smoothing, Cross
mini-Batch Normalization (CmBN), Self-Adversarial Train-
ing (SAT), and more.

2) Bag of Specials: These aremethods that slightly increase
the inference cost but provide significant accuracy improve-
ments. Techniques includeMish activation, CSP connections,
MiWRC, CIoU loss, DropBlock, and PANet.

3) YOLO Loss Function: YOLO v4 uses a modified loss
function that takes into account the bounding box regression
loss, objectness loss, and class probability loss, improving the
overall performance of the model.

5) ACTIVATION FUNCTIONS
YOLOv4 uses theMish activation function in its architecture.
Mish is a smooth, non-monotonic activation function that
improves the flow of information and gradients through the
network, leading to better accuracy.

IV. EXPERIMENTAL RESULTS
A. EXPERIMENTAL PLATFORM AND DATASET ANALYSIS
The hardware platform used in this experiment is the
Dell PowerEdge T640, con-figured with an Intel Xeon

Gold 6226R CPU, featuring 16 cores and a clock speed
of 3.22GHz. It is equipped with an NVIDIA GeForce
RTX 3080GPUwith 8GB of VRAM and 16GB of RAM. The
operating system is Ubuntu 20.04 LTS. The software platform
includes PyCharm 2022.2, Python 3.8, PyTorch 1.7, CUDA
Toolkit 11.0, and cuDNN 8.0.

This paper employs the CURE-TSD dataset for exper-
imental purposes, which comprises 49 video sequences,
each containing 300 frames. Additionally, for each video
sequence, there are 70 segments covering 14 weather condi-
tions, with each condition having 5 severity levels. The study
focuses on five common adverse environmental conditions:
rain, snow, fog, dirty lens, and lens blur. Each adverse con-
dition is further categorized into five levels, ranging from
nearly all signs being clearly visible (minimal impact of
adverse conditions on recognition quality) to signs in the far
distance being almost entirely invisible. Therefore, to conduct
recognition, 26 video sequences are required to capture each
segment, totaling 1274 segments. Additionally, the camera’s
angle relative to the road needs to be considered, determining
which part of the image actually contains specific traffic signs
and how many pixels will never be used for recognition.
Analysis of the dataset reveals that most traffic signs are
situated on the right side along the OY axis, and the pixel
area of the characters follows a nor-mal distribution, mainly
ranging from 0 to 646 pixels. Thus, at this camera angle,
approximately 52% of the entire image area can be cropped
without sacrificing recognition accuracy.

Furthermore, each frame may contain one to five charac-
ters, with distances be-tween characters exceeding 1024 pix-
els. This indicates that the method used by the authors in
the referenced paper [19], which involves randomly sampling
image segments of 1024 × 1024 pixels, is only applicable
when the characters in the image do not exceed one or two
and are guaranteed to be within the same segment. Hence, this
is likely to negatively impact the accuracy of character recog-
nition. On the other hand, the authors in another referenced
paper [13] opted for four segments of 1024 × 1024 pixels
each, training the SegU-Net network by cropping images at
the four corners (top and bottom). The minimum width of
signs used to train the traffic sign locator is 8, while the
maximum is 246. Thus, the minimum size of segments for
training the second and third modules could be either 512 or
1024 (256 is not used as it might result in losing information
about sign edges). The segment size must be a power of 2;
otherwise, information about image context may be lost dur-
ing the max-pooling operation in the convolutional network’s
internal layers. Reducing the segment size to 512 pixels
would shrink the network’s size but not decrease training
time. Therefore, for this study, the training segment size is
chosen as 1024 × 1024 pixels.

B. THE EFFECT OF IMAGE ENHANCEMENT
The image enhancement effect was tested using rain as an
adverse condition, de-fining levels 2 (light rain), 3 (moder-
ate rain), and 4 (heavy rain). Fig 4. to Fig 6. respectively
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illustrate the image enhancement effects under these three
rainy conditions. It can be observed from Figure 4 to Figure 6
that the Enhance-Net adopted in this paper exhibits good
image enhancement effects under light rain, moderate rain,
and heavy rain conditions. This is attributed to the excellent
feature learning ability of Enhance-Net, which demonstrates
good adaptability to image enhancement under different envi-
ronmental conditions.

FIGURE 4. Image enhancement effect under light rain conditions.

FIGURE 5. Image enhancement effect under moderate rain conditions.

FIGURE 6. Image enhancement effect in heavy rain conditions.

Moreover, the enhancementmodule should primarily focus
on the traffic sign region to improve traffic sign detection per-
formance. To validate this, we proposed using the Structural
Similarity Index (SSIM) between the enhanced traffic sign
region and the traffic sign region in a normal environment,
comparing both overall and localized enhancement methods.
Table 1 shows the SSIM values for different severity levels of
adverse conditions, representing the average values across all
types of adverse conditions. From the table, it is evident that
our proposed method attains a higher SSIM score of 0.82 for
the entire traffic sign area, where as the overall enhancement
method yields an SSIM score of 0.79. It is also evident that
in both cases, as the severity in-creases, the SSIM values

TABLE 1. Comparison of Structural Similarity Measure (SSIM) values for
overall enhancement versus traffic sign area enhancement.

TABLE 2. The accuracy of the proposed method under different adverse
environmental conditions.

decrease. However, our proposedmethod exhibits less perfor-
mance degradation compared to the conventional approach.

C. TRAFFIC SIGN DETECTION PERFORMANCE
Due to limitations in the experimental platform, the train-
ing set used by the algorithm in this paper is limited to
the first 20 video sequences. To prevent overfitting, the
training, testing, and validation sets consist of 16, 2, and
2 segments, respectively. As shown in Table 2 and Table 3,
based on accuracy as the evaluationmetric, comparisons were
made for different levels of adverse environments and the
same levels of adverse environments with different types,
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TABLE 3. The accuracy of the proposed method on the CURE-TSD dataset
testing set across various adverse environmental conditions at the same
leve.

TABLE 4. Performance of the proposed method in terms of runtime on
the CURE-TSD dataset test set across various adverse environmental
conditions.

in addition to normal environments. The average accuracy
tested on the validation set for the algorithm in this paper
is 95.03%, while the average accuracy reported in [19] is
97.84%, resulting in a difference of 3.11%. This significant
difference arises because [19] utilized the entire training set

consisting of all 49 video segments for training. Furthermore,
the accuracy reported in [19] for fog, dirty lens, and lens blur
conditions is much higher than that of the algorithm in this
paper, indicating that there is room for improvement in the
recognition accuracy of small target traffic signs when using
YOLOv4. Finally, both the proposed method in this paper
and the method in [19] achieve the highest recognition accu-
racy under level 1 adverse conditions, indicating that adverse
environments have a significant impact on the accuracy of
detection algorithms on the validation set of the CURE-TSD
dataset.

For further assessment of the proposed algorithm’s effi-
cacy, the evaluation running speed in normal and five
different adverse environmental conditions was used as a
metric, comparing the proposed algorithm with the method
in reference [19]. The results are shown in Table 4. From
Table 4, it can be observed that under normal conditions, both
the proposed method and the method in reference [19] have
the fastest running speeds, reaching 14.04 frames per second
(fps) and 4.91 fps, respectively. However, in rainy, snowy,
foggy, dirty lens, and blurry lens conditions, the running
speed decreases. Finally, the overall running speed of the
proposed algorithm averages 12.79 fps, while the average
running speed of the method in reference [19] is 2.76 fps,
indicating an average increase of 10.03 fps. This demon-
strates that replacing SegU-Net with YOLOv4 significantly
improves the detection speed of traffic signs.

V. CONCLUSION
In this paper, we proposed a modular CNN-based approach
for traffic sign detection under various adverse environmental
conditions. This method addresses the performance degrada-
tion of existing traffic sign detection algorithms under various
ad-verse environmental conditions, effectively reducing the
negative impact of adverse conditions on traffic sign detec-
tion. In our approach, the input image is passed through
an adverse environmental classifier based on VGG19, and
then optionally fed into an enhancement network, which
restores useful features for successfully detecting the traffic
sign region. Unlike existing methods based on overall image
enhancement, our enhancement network is trained using an
innovative loss function and training pipe-line that integrates
Mean Absolute Error (MAE) specifically targeting the traffic
sign region in both pixel and feature domains constrained by
a sign detection loss, effectively ensuring enhanced detection
of the traffic sign region. Through experiments, we have
also shown that prioritizing enhancement of the traffic sign
region leads to improved detection performance. Finally, the
enhanced images are fed into the traffic sign detection mod-
ule, where we adopt YOLOv4 as the detection framework.
Experimental results show that compared to the study [19],
the accuracy of YOLOv4 de-creases by an average of 2.81%
under each type of adverse environmental condition. This
is due to the incomplete training set used in our approach.
However, the detection speed increases from 2.76 frames per
second in [17] to 12.79 frames per second, indicating that the
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algorithm’s detection speed can be effectively improved with
minimal loss in detection accuracy.

Our method adopts a modular design where each module
can be independently designed and operated, which expands
the algorithm design space. Moving forward, we aim to
explore and optimize the architecture of each module to
effectively handle all adverse environmental conditions found
in the CURE-TSD dataset.

In the next phase of our research, we will focus on refin-
ing the modular architecture of our CNN-based approach
to further enhance traffic sign detection under adverse envi-
ronmental conditions. Specifically, we plan to optimize the
adverse environmental classifier and enhancement network
to better adapt to varying levels of environmental challenges,
leveraging advanced techniques such as transfer learning
and domain adaptation. Additionally, we intend to extend
our training set to cover a broader range of environmental
conditions and improve the robustness of our detection frame-
work. By conducting extensive experiments with the updated
CURE-TSD dataset, we aim to achieve a more balanced
trade-off between detection accuracy and speed, ultimately
ensuring our method’s applicability in real-world scenarios.
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