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ABSTRACT Bridges are exposed daily to environmental and operational factors that may cause weariness,
fatigue, and damage. Continuous structural health monitoring (SHM) has been crucial to ensuring public
safety, preventing accidents, and avert costly damages. In this regard, advances in Machine Learning and
Big Data technologies have enabled automated, real-time structural monitoring. However, challenges persist,
notably the scarcity of labeled data, rendering supervised learning impractical. Additionally, state-of-the-
art methods demand extensive training data to generalize and achieve satisfactory performance, which can
be limited in real-world scenarios. This paper presents a novel three-step method supported by advanced
Machine Learning and signal processing techniques aimed at detecting anomalous signals. This method
is trained solely on structural acceleration signals, eliminating the need for labeled data. Among the
contributions of this work, it can be mentioned that a remarkable accuracy in the detection of structural
damage was demonstrated quantitatively. (F1 Score of 93%), while requiring significantly less training data
volume than alternative methods (less than 25% of the total) and opening up different lines of research.

INDEX TERMS Structural health monitoring, bridges, damage detection, anomaly detection, machine
learning, deep learning, unsupervised learning.

I. INTRODUCTION

The bridges constitute a vital component of a country’s
infrastructure, facilitating the transportation of goods and
enhancing connectivity [1]. Given their pivotal role, main-
taining their structural integrity is crucial to ensure public
safety and, simultaneously, to prevent significant damages
whose repair could incur substantial costs [2]. In this context,
monitoring the structural health of bridges is paramount,
as they can be subject to wear, fatigue, and various forms
of damage, emphasizing the significance of continuous
inspection. Taking this into account, Structural Health
Monitoring (SHM) is crucial for ensuring the safety and
longevity of critical infrastructures like bridges by enabling
the early detection of anomalies and potential damages.

The associate editor coordinating the review of this manuscript and
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In contemporary developments, monitoring has evolved
significantly, shifting from reliance on visual inspections
alone to increasingly precise methods, utilizing automated
and real-time monitoring technologies.

Pattern recognition using artificial intelligence algorithms
and the application of signal processing techniques plays a
vital role in the SHM process [3], facilitating the accurate
analysis of structural responses and the identification of
unusual patterns indicative of potential issues. Various
techniques have been developed for SHM, including tra-
ditional statistical methods, machine learning approaches,
and advanced neural network models, each offering unique
advantages and limitations. Over the years, several machine
learning architectures have been proposed for supervised
damage detection. For instance, a combination of Con-
volutional Neural Networks (CNN) with Gated Recurrent
Unit (GRU) is applied in parallel in [4], and hierarchically
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in [5]. Furthermore, [6] combines CNNs with Recurrent
Neural Networks (RNN) to extract spatial and temporal
features from the data. On the other hand, [7] employs
Functional Echo State Networks for the extraction and
classification of multivariate features. Nevertheless, it is
crucial to consider that applying machine learning models
in real-life applications often proves impractical under a
supervised approach. This is due, on one hand, to the typically
time-consuming nature of data labeling. On the other hand,
it is often unfeasible to acquire data from various states of
damage to feed machine learning algorithms.

In light of these challenges, different techniques have
emerged that leverage an unsupervised learning approach,
specifically anomaly detection, for structural damage detec-
tion. In [8], a neural network-based detection method is
proposed for railway bridges. The study in [9] expands this
approach by incorporating temperature as an environmental
variable. While this approach allows for sensor-level damage
detection, it should be noted that both approaches require
a manual data labeling process to train the network with
various types of trains, which limits their applicability.
Moreover, [10] trains a Convolutional Autoencoder to learn to
reconstruct signals encoded as images. In line with the above,
[11] proposed a method based on artificial neural networks
for damage detection using data measured on a vehicle
passing over the bridge under evaluation. Although both
approaches do not make use of labeled data from different
damage states, the techniques applied are not specifically
designed to process temporal data, in addition to the fact that
they generally require a considerable training data set.

The latter issue, associated with the significant volume of
training data required by machine learning models, which
may not be readily available in real-world applications [12],
[13], [14], [15], is another challenge that needs to be
addressed. Several approaches have been employed to tackle
this issue. In [16], transfer learning is applied to overcome
this obstacle. Essentially, a CNN is trained using data from
a laboratory structure, and then this pre-trained model is
employed to learn to detect damage using data from a
bridge. Although it achieves excellent detection results,
it needs to be supported by a supervised approach, which
as already mentioned is not feasible in certain real-life
cases. Furthermore, in [17], a novel approach known as
population-based SHM is utilized. In broad terms, a model
is trained considering a population of structures to enhance
the information provided by each one. This work explicitly
addresses the problem of sparse training data by making
use of different structures for the data augmentation process,
although it should be mentioned that it is not directly applied
to structural damage detection.

Another way in which this problem has been addressed is
through the use of exclusively synthetic datasets (generated
by simulations) or hybrid datasets (mixing data extracted
directly from the structure with data generated by simulations
or physical models of the structure). For example, in [18],
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the generation of synthetic data through digital twins is
studied, which is a rather promising approach but is currently
mainly focused on generating data capable of representing
general scenarios, rather than trying to reproduce the data of
a particular bridge. Furthermore, as mentioned in [19] there
are different challenges that currently limit the applicability
of this approach in real-world applications. Some of them
include data quality (relative to measured data in the
structure), test case coverage, uncertainty related to the
environment, and so on. However, the trend that mixes data
from the structure under study, together with data from
computational simulations of the bridge (through a finite
element model (FEM), for example) has been intensively
studied lately. In [20], the authors adopt a hybrid scheme that
uses data from both the actual structure (through installed
sensors) FEM. This aims to augment the volume of data
input into the model, while also enabling a more accurate
representation of changes in structural response induced by
environmental or operational variables. Quite an interesting
approach, however, obtaining quality data often requires
complicated design processes and calibration of a FEM [21].
For more information about hybrid anomaly detection models
and their current limitations (using data from both the actual
structure and digital models) see [22].

In summary, despite advances in existing SHM techniques,
there remain different challenges that need to be addressed
together, such as limited accuracy, the need for large
volumes of labeled training data, and the difficulty in
handling complex temporal dependencies, highlighting the
need for improved methods. Accordingly, the three-step
method proposed in this paper addresses these shortcomings
by integrating advanced machine learning techniques, namely
Autoencoders (AE) and long short-term memory (LSTM)
networks, into a comprehensive SHM framework. The appli-
cation of these techniques allows to take better advantage
of the temporal information present in the measured bridge
signals, thus achieving a better performance when processing
time series, while at the same time making better use of a
reduced set of training data. This deep learning (DL) model is
accompanied by a preprocessing step using signal processing
techniques to optimize the results obtained by the model,
in addition to an anomaly detection strategy focused on
detecting signs of some type of structural damage. This new
approach aims for the detection of structural damage by the
employment of the vibration signals from the undamaged
structure, eliminating the need for labeled data with different
damage states.

The main idea of data-driven methods is that they should be
as descriptive as possible of the different loading conditions
that a structure can go through, so to avoid false detection
caused by anomalies in the bridge loading, a database that
considers different input load cases should be used. This
is why the use of a dataset with these characteristics is
necessary. To carry out the experimentation of the proposed
approach, the Z24 bridge, a highway structure with a box
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girder section that has been extensively studied, has been
selected as a case study. The choice of the Z24 bridge is due to
its wide acceptance in the scientific community as a reference
data set for the validation and evaluation of anomaly detection
techniques. This bridge was subjected to different manually
induced damage states, providing data for both its intact state
and various types of damage that are common in this typology
of structures [23]. The availability of these data allows a
thorough evaluation of the accuracy and effectiveness of the
proposed model under controlled and varied conditions, thus
ensuring the relevance and robustness of the results obtained.

The results demonstrate the effectiveness of our approach
to accurately detect structural anomalies, with significant
improvements over traditional methods in terms of accuracy
and computational efficiency, achieving an F1-Score of 93%.
Furthermore, it addresses the challenge of limited amount
of training data in real-world applications, as this novel
three-step method uses less than 25% of the total data volume
without sacrificing accuracy, compared to other state-of-
the-art algorithms achieving noteworthy results. The results
obtained highlight the potential of the proposed method
to significantly improve SHM processes, providing safer
and more reliable monitoring and maintenance of critical
infrastructures. This approach not only contributes to the
safety and durability of structures, but also provides a solid
foundation for future research. Several lines of research
emerge from this work, highlighting additional areas that can
be explored and optimized in future studies.

A. CONTRIBUTIONS OF THE ARTICLE

o Development of a Hybrid Model for Structural
Damage Detection: This work proposes a novel
hybrid model that combines advanced signal process-
ing techniques, specifically a low-pass filter, with
DL methods such as AE and LSTM networks. The
model enhances the accuracy of unsupervised structural
damage detection in bridges.

« Reduction in Training Data Requirements: The
proposed model achieves high accuracy in structural
damage detection with a significantly reduced volume of
training data compared to state-of-the-art methods. This
feature is particularly valuable in the context of bridge
SHM, where training data can be scarce.

o Quantitative comparison with State-of-the-Art
Methods: A detailed comparative analysis is presented
between the proposed model and a state-of-the-
art method, highlighting quantitatively the superior
performance of the new model in terms of precision
and efficiency in structural damage detection using real
bridge data.

« Potential for Future Applications and Extensions:
The developed model and methodology open new
avenues for future research and applications across
different types of infrastructures. Thus, it is expected
to address several challenges related to the application
of these techniques in increasingly realistic scenarios,
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paving the way for their possible integration into a real
surveillance system.

« Promotion of Machine Learning Techniques in Civil
Engineering: This research underscores the potential
and importance of advanced machine learning tech-
niques in the field of civil engineering, advocating
for the integration of cutting-edge technology in the
management and maintenance of critical infrastructure.

The remainder of the paper is organized as follows:

Section II section summarizes related work, comparing and
classifying existing methods. Section III provides general
background on SHM, AE and LSTM networks. Section IV
outlines the proposed three-step methodology. In Section V,
a comparative study is conducted to showcase the capabilities
of this new model in detecting damage using a reduced
amount of training data. Finally, Section VI concludes
the article, highlighting contributions and suggesting future
work.

Il. RELATED WORK

This section reviews the related work in the field of
SHM, particularly focusing on anomaly detection using DL
techniques. The objective is to contextualize the contributions
of our proposed method and highlight its novelty.

While the employment of RNN has increased quite a bit
lately in the context of bridge SHM, their use has been
mainly focused on signal reconstruction. For instance, in [33],
LSTM networks are used to predict missing data from faulty
sensors. Similarly, [24], [34] uses a comparable approach,
considering sensors of different types. Furthermore, in [25],
Bi-directional LSTM (Bi-LSTM) networks are utilized and
compared with CNNs to demonstrate their superiority in
capturing temporal relationships in signals. Additionally, [26]
propose a model consisting of a Bi-directional GRU (BiGRU)
and an autoregressive component to reconstruct missing data.
All of these investigations have demonstrated the ability of
recurrent networks to process temporal data, but they do not
focus specifically on damage detection, but rather on signal
reconstruction.

As previously mentioned, this proposal aims to detect
structural damage in an unsupervised manner, making it
relevant to review existing anomaly detection approaches.
In [27], an AE is used to reconstruct signals from the structure
under evaluation, with an ensemble learning strategy to
utilize information from multiple sensors for global damage
detection. Despite achieving good results, there are two areas
for improvement: the architecture is not specifically designed
for temporal data, and it demands a high volume of training
data for satisfactory outcomes. In contrast, [28] employs a
“drive-by”” approach, using signals measured from a vehicle
crossing the bridge (for more on this technique, see [35]). The
authors propose an Adversarial Autoencoder (AAE) model,
which integrates AEs with generative adversarial networks
to create a generative model. This model, combined with
signal processing techniques, calculates a damage index to
distinguish between different damage states. Although this
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TABLE 1. Related works comparison. - indicates not applicable. x indicates not considered. v indicates fully addressed. v/* indicates partially addressed.

Addresses Presents a
Focus on Unsupervised Validated | the problem | quantitative
Reference damage h with real | of limited study of
detection | “PPT03¢ data amount of damage detection
training data | performance
[24] - 2022 X - - -
[25] - 2023 X - - - -
[26] - 2023 X - - - -
[27] - 2023 v v v X v
[28] - 2023 v v X vF X
[29] - 2018 v v X X vF
[30] - 2024 v v X X v
[31]-2023 v X v X v
[32] - 2024 v v v X X
This study - 2024 | v/ v v v 4

approach shows improvement over simpler architectures like
principal component analysis, AE, and stacked-autoencoders,
its validation is exclusively on simulated data and a scaled
structure, challenging its comparability with other methods
and questioning its applicability to real bridges.

Even though some studies have already employed Long
Short-Term Memory Autoencoders (LSTM-AE) modules
for SHM anomaly detection, these are mainly focused on
an academic context. In [29], the authors apply a deep
learning model called Variational Long Short-Term Memory
Autoencoders, evaluating its ability to detect anomalies in
time series data. Although this work presents an interesting
approach, it remains mainly academic, as it exclusively uses
synthetic sinusoidal data to evaluate the model. On the other
hand, [30] proposes the use of a bidirectional LSTM-AE
in combination with a Wavelet decomposition technique to
detect and localize damage in composite materials. A notable
limitation of this approach is its high sensitivity to signal
variations, which can lead to a high false positive rate when
applied to real bridge monitoring systems. In addition, the
model is validated using two 550 mm x 550 mm carbon fiber
plates and a total of 12 piezoceramic transducers, suggesting
that the method may work well only with a high sensor
density installation, a condition not always feasible when
instrumenting a bridge [36].

On the other hand, despite the dataset being nearly
thirty years old, it continues to be extensively used by the
community to validate emerging proposals over the years,
demonstrating the high quality of the data. Among some of
the most recent works utilizing the Z24 dataset as a case study,
[31] employs a special type of Wavelet transform known
as synchrosqueezing transform (SST) in combination with
machine learning algorithms to detect and classify structural
damage. Although excellent results are achieved, the model
relies on a supervised approach, which limits its applicability.
Similarly, [32] uses this benchmark with a model that
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combines a Convolutional Autoencoder network with a self-
attention mechanism. While the study shows that the model
can distinguish between signals from the undamaged bridge
and those with damage, it does not quantitatively analyze the
damage detection results and focuses exclusively on severe
damage, making it difficult to compare with other methods.

A comparative analysis of these methods is presented
in Table 1, highlighting the strengths and limitations of
each approach. Several relevant aspects were considered
when comparing the related works in this research. First,
we assessed whether the work is specifically focused on
damage detection and employs an unsupervised approach.
Next, we evaluated if the model validation in the proposed
works was conducted using real data extracted from bridges,
as demonstrating a model’s ability to detect damage in a
scaled structure is not equivalent to doing so in a real bridge.
Subsequently, we compared the works to determine if they
directly address the issue of scarce training data. Finally,
we examined whether the works present a quantitative study
demonstrating damage detection. This last aspect is critical,
as a work might demonstrate its proposal’s capability to
distinguish between signals from a bridge in good and
damaged states but not explicitly and quantitatively present
the damage detection results.

In summary, while significant advances have been made
in SHM techniques that specifically address various chal-
lenges, the current trend focuses on developing models that
simultaneously tackle as many of these issues as possible.
This approach is particularly relevant for the implementation
of algorithms in real-world monitoring contexts, where all
these challenges, and possibly additional ones, arise concur-
rently. Integrating multiple approaches into a single robust
and versatile model not only enhances the accuracy and
efficiency of structural damage detection but also facilitates
the management and maintenance of critical infrastructures
in real-world scenarios. Therefore, future research should
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focus on creating holistic and adaptive solutions that can be
effectively applied in SHM systems for bridges and other
infrastructures.

lll. BACKGROUND

In the following subsections, a comprehensive overview
of the SHM process is presented. The necessary steps for
detecting structural damage through a monitoring system
are detailed, highlighting the significance of each stage.
Additionally, the role of machine learning techniques in
this monitoring process is introduced, explaining how these
advanced tools enhance the accuracy and efficiency of SHM.
Finally, a detailed background on the specific techniques
used in the proposed method is provided, emphasizing their
characteristics and particularities.

A. OVERVIEW OF STRUCTURAL HEALTH MONITORING
SHM is a vital process for maintaining the safety and integrity
of bridges and other critical infrastructure. SHM involves the
continuous or periodic collection of data from various sensors
installed on structures, followed by data analysis to detect
anomalies or damages. The primary goal of SHM is to ensure
public safety, prevent catastrophic failures, and minimize
maintenance costs. In recent years, advancements in Artificial
Intelligence and Machine Learning have revolutionized SHM
by enabling automated and real-time monitoring. These
techniques have significantly improved the accuracy and
efficiency of damage detection.

Generally, the SHM process of a bridge, supported by

machine learning techniques, consists of the following steps:

1) Data Acquisition: Various sensors are installed at
critical points on the bridge, such as accelerometers,
strain gauges, and temperature sensors, among others.
These sensors continuously or periodically collect data
on vibrations, deformations, temperature, and other
structural parameters.

2) Data Transmission: The data collected by the sensors
is transmitted to a central processing unit. This can be
done through wired or wireless connections, depending
on the bridge’s infrastructure and available technolo-
gies. In some cases, the data may be temporarily stored
on local devices before being transmitted.

3) Data Processing and Cleaning: The received data
typically contains noise and irrelevant information,
making it necessary to process and clean it. This
includes noise removal, correction of missing data, and
data normalization to ensure consistency and usability
for subsequent analysis. Data preprocessing techniques
and cleaning algorithms play a crucial role in this stage.

4) Damage Analysis and Detection: Once the data
is cleaned, it is analyzed using machine learning
techniques and statistical analysis. Anomaly detection
algorithms, such as AEs or RNNs, are applied to
identify unusual patterns that may indicate structural
damage. These algorithms are trained with historical
bridge data and can detect significant deviations
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from normal behavior. Finally, the analysis results

are interpreted to make informed decisions about the

bridge’s condition and necessary maintenance actions.

This comprehensive approach, supported by advanced

machine learning techniques, enables precise and efficient

monitoring of bridge structural health, contributing to the
safety and longevity of these critical infrastructures.

B. MACHINE LEARNING TECHNIQUES

As previously mentioned, the process of damage analysis
and detection can be automated through advanced machine
learning techniques focused on processing the signals
extracted from the bridge. This work employs a technique
that combines a neural network architecture known as
an Autoencoder with a special type of recurrent network
called Long Short-Term Memory. The following subsections
introduce the theory behind both techniques.

1) LONG SHORT-TERM MEMORY

In the literature, when dealing with time series data, it has
been illustrated that traditional neural networks were unable
to handle the complex temporal relationships inherent in
the data [37]. Due to this issue, RNN emerged, which has
been specifically designed to process sequential data. In such
neural networks, the output of previous layers provides
information to subsequent layers, as illustrated in Figure 1.

B ® ® B ®
e - ®

Cell state

Forget
gate

he

Hidden state

(b)
FIGURE 1. (a) RNN structure. (b) LSTM unit structure.

While these types of networks have been applied in
various areas [38], [39], [40], [41], they still face challenges
in learning long-term relationships present in signals [42].
With this in mind, a new neural network architecture called
Long Short-Term Memory is introduced in [43], which
was specifically designed to handle these complex long-
term relationships. Through a concept known as ‘“‘gates”
(see Figure 1b), LSTMs determine which information to
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remember (input gate), what information to forget (forget
gate), and what information to use for making predictions
(output gate). Assuming we have a time series represented by
X = X1, X2, X3, ..., Xy, this process can be summarized with
equations 1-6:

fr = o(Wrlhi—1, x,] + by) (D
ir = o (Wilhi—1, x:]1 + i) ()
C; = tanh(Welhi—1, x1 + be) 3)
Cz=fz-Cz_1+i;-51 )
or = o(Wolhi—1, X1 + b,) ®)
hy = oy - tanh(Cy) (6)

where x; denotes a sample of the signal at time ¢ (defined
by the sampling frequency), ¢ and tanh correspond to the
sigmoidal and hyperbolic tangent functions, respectively. -
denotes the dot product. The vectors f;, i;, 0y, and C; represent
the activation of the input gate, forget gate, output gate, and
memory cell at time 7, which have the same dimension as the
output factor 4. Finally, Wy, W;, W,, and W, represent the
weight matrices (for each gate and the memory cell), and by,
bi, by, and b, represent the biases (also for each gate and the
memory cell). Key features of this network include:

1) Handling Temporal Dependencies: LSTMs can
remember information for long periods, making them
ideal for time-series analysis.

2) Preventing Vanishing Gradient Problem: The
LSTM architecture includes gates that regulate the flow
of information, mitigating issues like the vanishing
gradient problem in standard RNNs.

2) AUTO-ENCODERS

On the other hand, AE are a special type of neural network
commonly used to reduce data dimensionality. They typically
consist of a minimum of three layers (although a multilayer
AE can also be implemented), where the first and last layers
are the input and output layers, respectively, and always
have the same number of neurons. On the other hand, the
hidden layer, also known as the bottleneck, is where the
AE represents the original data in a lower-dimensional latent
space [44]. This process can be expressed in equations 7-9.

h=0W,- x+b,), )
¥ =g=¢Wg-h+by), 3
1 N
_ @) 2(0))12
L(We, Wa) = 21 Ix® — 2O )
P

where x; and X; denote the i-th observation and the i-th
reconstruction, respectively. 6 and ¢ represent the activation
functions of the encoder and decoder, respectively. W, and
Wy correspond to the weights of the encoder and decoder,
b, and b, represent the biases of the encoder and decoder.
Finally, L(W,, W;) denotes the reconstruction error (how
much the original and reconstructed data differ), considering
the weights W, and W,. During the training process, the
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goal is to minimize this error, indicating that the network is
learning to reconstruct the data accurately. Key features of
this architecture include:

1) Dimensionality Reduction: AEs reduce the dimen-
sionality of input data, making it easier to manage and
analyze.

2) Anomaly Detection: By reconstructing input data,
AEs can identify anomalies through reconstruction
errors, which are significant when the input data
deviates from the norm.

3) LONG SHORT-TERM MEMORY AUTOENCODERS
Considering the two aforementioned neural network architec-
tures, a new class of networks, known as Autoencoder with
Long-Term Memory Neural Networks, emerges. These net-
works essentially amalgamate the information compression
capabilities (dimensionality reduction) of AE networks with
the ability to learn long-term relationships inherent in time
series data. In this architecture, a minimum of two LSTM
networks is utilized (though more layers can be incorporated).
One LSTM network serves as the signal encoder, responsible
for reducing dimensionality, while the second LSTM network
acts as the decoder, tasked with reconstructing the signal from
its compressed representation.

These networks have been previously employed for unsu-
pervised anomaly detection in signals [45], [46]. To achieve
this, it is necessary to establish a pre-defined threshold based
on the outcomes of the training phase (reconstruction errors).
Figure 2 outlines a general topology of such neural networks,
depicting the encoding layer that takes input from the
temporal sequence and transforms it into a lower-dimensional
representation. Subsequently, the decoding layer utilizes this
representation to reconstruct the original data.

IV. METHODOLOGY

In the following section, the proposed methodology is pre-
sented. Initially, the general three-step framework is outlined,
providing an overview of the entire process. Subsequently,
each step is explained in detail, highlighting the specific
features and particularities that distinguish our approach.

A. GENERAL FRAMEWORK
The design behind the proposed approach is based on the
interaction between LSTM networks and AE architectures.
In this way, the model is trained to learn how to reconstruct the
signals coming from the bridge in a healthy state, considering
the temporal relationships in the data. Figure 3 provides
a general overview of the proposed process. In essence,
a DL architecture is trained to reconstruct signals from the
undamaged structure. Subsequently, it can be determined
whether a signal s corresponds to a damaged state or not,
depending on how challenging it is for the network to
reconstruct it.

This approach can be essentially defined by three main
steps. Initially, a preprocessing strategy is employed to
prepare the data and facilitate subsequent analysis. Next, the
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previously mentioned reconstruction model is implemented
to learn the bridge’s dynamics. Finally, a damage detection
strategy is defined, which uses the reconstruction errors from
the model to determine if a signal should be labeled as
anomalous. The following subsections will provide a detailed
description of each specific step.

B. PREPROCESSING STRATEGY

To optimize the results obtained by this new method,
several preprocessing steps are required before moving on
to the training stage. The first strategy involves applying
a low-pass filter to eliminate high-frequency noise, which
can potentially degrade the algorithm’s performance in
reconstructing signals [25]. The filter’s cutoff frequency
should be defined based on the characteristics of the
bridge under evaluation to avoid losing crucial structural
information. As a second step, a data normalization process
is performed. The data normalization range may vary
depending on the activation function used. In this particular
model, normalization was conducted within the range
of [-1, 1].

Finally, the original signal obtained by the sensors (which
has already been processed in the previous steps) is divided
into N micro-sequences of a certain temporal length (up to
10 seconds, depending on the case). This segmentation into
shorter sequences reduces the complexity of the temporal
relationships that the network needs to learn. Additionally,
dividing the original signal into more segments provides
the network with a larger number of training samples. The
length of these micro-sequences is a parameter that must
be optimized during the training process to enhance the
network’s performance.
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FIGURE 3. General three-step framework proposed using the LSTM-AE
architecture.

C. RECONSTRUCTION MODEL
While errors will inevitably occur when decoding data from
a lower-dimensional space, the fundamental idea behind
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this model is to minimize reconstruction errors as much
as possible. Thus, if the error increases when evaluating a
signal corresponding to a damaged state, the majority of
the reconstruction error will likely be attributed to actual
changes in the structure’s vibration pattern due to damage.
This approach makes it easier to detect anomalous signals.
To achieve this, the LSTM-AE deep learning architecture
is employed, combining the reconstruction capabilities of
AE with the ability to learn temporal relationships from
LSTM networks [47]. This model is exclusively trained with
vibration signals from the structurally sound state. The goal
is to adapt the network parameters to minimize the difference
between the original and reconstructed signals, quantified
using a reconstruction loss metric.

The Mean Absolute Error (MAE), Mean Squared Error
(MSE), and Root Mean Squared Error (RMSE) are widely
used metrics for evaluating the accuracy of predictive models.
MAE measures the average magnitude of errors in a set of
predictions, without considering their direction, and is given
by the formula 10. MSE, defined by 11, penalizes larger
errors more significantly due to squaring the error term,
thus providing a more sensitive measure of error magnitude.
RMSE, calculated as 12, provides an error metric that is in the
same units as the original data, offering a more interpretable
measure of predictive accuracy. These metrics provide a
comprehensive assessment of model performance, balancing
sensitivity to large errors and overall prediction accuracy.

&
MAE = — ; Ix® — 0, (10)
MSE = ~ i(x“) — 702, (11)
N i=1
RMSE = i ﬁ:(x(i) — fc(i))2 (12)
N

i=1

D. DAMAGE DETECTION

A quite interesting approach to detecting structural damage
using anomalous signals is presented in [10]. This method
aims to reduce false positives by basing the decision on
whether or not a sequence corresponds to a damaged state
by considering subsequent sequences (not just the sequence
itself), forming macro-sequences, and providing a broader
perspective of the signal behavior. Thus, if a pre-established
threshold of damaged sequences is not exceeded within a
macro-sequence, it is not classified as damaged.

In this work, a quite similar process is undertaken, which
is expressed in the algorithm 1. For each of the N micro-
sequences processed by the network, the reconstruction error
metric is calculated, resulting in a vector E of length N, where
the i-th element represents the reconstruction error for the
i-th micro-sequence (line 2). Each element of vector E is
then compared with a preset threshold T,ic (line 5). If the
reconstruction error of the i-th element exceeds the threshold,
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the i-th micro-sequence is labeled as 1; otherwise, it is labeled
as 0 (lines 6 and 8). This process produces the vector Lyjcro
of length N, containing the labels for each micro-sequence.
Next, the labels in Ly, are grouped into macro-sequences,
where each macro-sequence is represented by M contiguous
micro-sequences, resulting in the vector Lyuc0 (line 12).

o .
/ i
B[ F] !
0 |
N, EFEETETEEEEER |
— |
WWMMMUWMWNV EFEFFEFEEEEE |
]

\

Evaluate the threshold
e >T

/ Merge into

T —

Evaluate the damage proportion > T,
[fJofoJrT1JoJoJo o 1JoJof ]t oJoJo]r]o "]

\
macro-sequences |
|
|
|

Healthy

FIGURE 4. Damage detection strategy.

For each macro-sequence, the proportion of micro-sequences
labeled as anomalous is calculated, yielding a value in the
range [0, 1] (line 16). This proportion is then compared with
a preset threshold T,4cr0 (line 17). If the proportion exceeds
the threshold, the macro-sequence (and all its constituent
micro-sequences) is labeled as anomalous (line 18).

This method employs two thresholds in the damage
detection strategy. The Ty threshold can be set as a
percentage between 90% and 99% of the error during the
training phase, requiring only healthy bridge signals for
calibration. On the other hand, the T};,,¢, threshold typically
yields good values within the range of 0.4 to 0.6. The optimal
value for T},4cr, can be fine-tuned based on simulations of the
bridge under various conditions.

V. COMPARATIVE ANALYSIS

The following section presents a comprehensive comparative
analysis that demonstrates the capabilities of the proposed
method for detecting structural damage. First, the case study
used in this work, a highway bridge widely studied by
the scientific community, is described. Next, the selection
process of the training and test data sets is detailed. Then,
the steps performed in the training process are explained,
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Algorithm 1 Pseudocode of the Damage Detection Strategy

. Smicro <— Mmicrosequences
: E < compute_error(Smicro)

1

2

3:

4: fori < 1toN do

5. if E[i] > Tyicro then
6 Lmicm[i] ~1

7 else

8 Lmicro[i] <0

9: end if

10: end for

11:

12: Lyacro < groupmacros(Lyjicro, M)
13: Npacro < length(Liyacro)

14:

15: for i < 1 to Nygcro do

16:  Ddamaged <— 1%4 Zﬁ‘il Liacroli, j
17: ifpdamaged > Tnacro then

18: damaged_macros[i] < 1
19: else

20: damaged_macros[i] < 0
21:  end if

22: end for

along with the optimization of the model hyper-parameters.
Subsequently, the state-of-the-art method selected to compare
the performance of our proposal is presented, specifying the
parameters used. Finally, the results of the damage detection
process are presented, highlighting the performance of both
methods during training and testing, and underlining the
improvements of the proposed method in the detection of
anomalies related to structural damage.

A. STUDY CASE DESCRIPTION
The Z24 bridge was a Swiss highway box girder bridge
built mainly with prestressed concrete. It had a total length
of 60 meters, which housed three spans and two lanes.
It connected Koppigen and Utzenstorf and was inaugurated
in 1963. Active for 35 years, the bridge was demolished
in 1998 to make way for a wider bridge accommodating a
new railway track. Before demolition, the bridge underwent
a year-long monitoring process as part of the SIMCES
project (System Identification to Monitor Civil Engineering
Structures) [48]. The aim was to investigate the influence
of environmental variations (temperature, air humidity,
rain presence, wind speed, and direction) on the bridge’s
dynamics [49]. In the last month before demolition (August
4th to September 9th), various interventions were performed
on the bridge to induce distinct damage states, thereby
capturing dynamic response data [50]. Among the induced
damage states were pier settlement, pier uplift (foundation
tilting), concrete spalling in the soffit, and tendon breakage,
among others.

Regarding the instrumentation system, an extensive setup
was implemented with significant emphasis on monitoring
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FIGURE 5. (a) Top view and cross section of the Z-24 Bridge, with the
sensor selected, (b) Settlement of pier scenario (Extracted from [51]).

the thermal condition of the bridge and its surroundings. This
translated to 12 sensors measuring ground temperature (near
the piers), and an additional 8 sensors mounted on the bridge.
Furthermore, 5 sensors recorded atmospheric conditions, and
a total of 16 acceleration sensors with a sampling frequency
of 100Hz were distributed across different parts of the bridge
to measure dynamic responses. Among the 16 acceleration
sensors, several exhibited failures during the data collection
period, while others began to produce corrupt and unreliable
data, which were subsequently excluded. Only 8 sensors
remained operational until the conclusion of the project, and
were utilized to construct the database. It is worth noting
that, to avoid extending this work excessively, only one
accelerometer was considered for the comparative study (see
Figure 5).

One of the main objectives pursued in this project was
to obtain a data set of bridge dynamics under operating
conditions as standardized as possible, so for the long-term
monitoring process of the Z24 bridge, acceleration data
were obtained mainly from environmental vibrations. These
vibrations included those caused by traffic and natural
environmental conditions, such as wind. This allowed a
continuous assessment of the dynamic behavior of the bridge
under normal operating conditions, providing a solid basis for
damage detection and analysis of its structural behavior.

B. DATA SELECTION

Since we aim to compare the algorithm’s ability to detect
structural damage using a smaller amount of training data,
two separate cases need to be defined. The first training
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TABLE 2. Overview of progressive damage test escenarios, extracted
from [52].

No. | Date (1998) | Scenario

1 01/08 Undamaged condition

2 10/08 Lowering of pier, 20mm

3 12/08 Lowering of pier, 40mm

4 17/08 Lowering of pier, 80mm

5 18/08 Lowering of pier, 95mm

6 19/08 Tilt of foundation

7 25/08 Spalling of concrete, 12m2
8 26/08 Spalling of concrete, 24m2
9 27/08 Landslide at abutment

10 | 31/08 Failure of concrete hinge

dataset (referred to as case 1 or FT, for full training) considers
the entire month of March 1998. Meanwhile, the second
dataset (referred to as case 2 or PT, for partial training)
includes only the first week of March 1998. Given that data
were measured every hour for eleven minutes, case 1 would
encompass approximately 7,920 minutes in total. In contrast,
case 2 only considers a total of 1,848 minutes, equivalent
to less than 25% of the data in case 1. In both cases, one
week’s worth of data (first week of April 1998) was used as
a validation set.

C. TRAINING PROCESS

As previously mentioned, a component of the data prepa-
ration process involves applying a low-pass filter. This is
done to mitigate the impact of high-frequency noise on the
model’s performance when reconstructing signals. Drawing
upon findings presented in [50] and [53], a filter with a cutoff
frequency of 18Hz is applied, ensuring that information about
the first 9 modal shapes of the Z24 bridge is retained. Figure 6
illustrates the applied filter alongside a sample of the original
signal and the signal post-filtering. Additionally, in Figure 7,
the Fourier transform of both the original and filtered signals
is depicted. As will be seen later, a slight improvement in the
training process was achieved after applying the filter.

To optimize the results obtained by this neural network
architecture, the training process was conducted with various
topologies and different parameters. This was done to
explore the model’s sensitivity and highlight its learning
capabilities in signal reconstruction. Experimental tests
were conducted to examine the influence of signal length
on the network reconstruction process. A basic network
topology was established, while the number of samples
per sequence was systematically varied. As illustrated in
Figure 8, this parameter exhibits a notable impact. As the
length of sequences increases, the network’s ability to capture
long-term temporal relationships diminishes, underscoring
the importance of maintaining this parameter at lower values
to achieve optimal outcomes.

On the other hand, another critical parameter for optimiz-
ing the LSTM-AE results is its topology. Four architectures
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were trained using the same dataset with a fixed number of
epochs, varying primarily the number of neurons per LSTM
layer. As depicted in Figure 9, noticeable improvements
in reconstruction error cease after reaching 64 neurons.
Moreover, Table 3 illustrates that as the number of neurons
increases, so does the required training time due to the higher
number of parameters to update at each step. Consequently,
selecting a neuron count that balances training time while
maintaining satisfactory performance becomes crucial.

Finally, a dynamic learning rate update strategy was
incorporated. This strategy automatically adjusts the learning
rate if the algorithm stagnates. The Patience parameter
indicates the number of epochs that must pass without
improvement in the optimization metric (reconstruction
error) before updating the learning rate using the established
Updatefactor. This strategy enables a faster initial decrease of
the loss function by employing a higher learning rate. As the
training process progresses and more promising regions are
discovered, the gradient optimization algorithm converges
more finely through the reduction of the learning rate. After
completing this hyperparameter tuning process, the topology
described in Table 5 was selected.

D. METHOD COMPARED

To test the detection capabilities of this new method under
conditions of limited training data, it was decided to compare
it with the AE-based method proposed in [27], for various
reasons. Firstly, it is more interesting to use contemporary
state-of-the-art methods for such comparisons. Secondly,
considering the excellent results it achieved, it sets a rather
ambitious benchmark to reach. Lastly, this method also
employs a similar approach to the one proposed in [10]
when evaluating macro-sequences, making it suitable for
comparison. Table 4 presents the parameters used in the
training process.

E. DAMAGE DETECTION RESULTS

To validate the proposed method, this study used both data
from the bridge in good condition and data from the damaged
bridge as the test set. The first two weeks of July 1998 were
used for the former, while the data for the damaged structure
was selected from August 10 to 25, 1998. These signals
mainly correspond to damage types such as lowering of pier,
tilt of foundation and spalling of concrete.

The network topology used, along with the parameters
of the training process, can be found in Table 5. Here, you
can also observe the number of parameters to be optimized
during the training period. On the other hand, in Figure 10,
you can see the convergence curves of the AE model
using data from both case 1 and case 2, in addition to
the LSTM-AE model only in case 2. From here, it can be
noted that this new model is capable of achieving lower
MSE values during the training process, indicating better
performance in reconstructing vibration signals. On the
other hand, it is confirmed that the LSTM-AE network
performs better after filtering the high-frequency noise from
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FIGURE 6. (a) Low-pass filter applied. (b) Original signal sample. (c) Filtered signal sample.

TABLE 3. Comparison of tested topologies.

Network | Layers N. Neurons | Training Time (seg) | MSE
LSTM 32
RepeatedVector | -

1 LSTM %) 718.6726 5.6031e-04
TimeDistributed | -
LSTM 64
RepeatedVector | -

2 LSTM o 773.3910 6.4635e-05
TimeDistributed | -
LSTM 128
RepeatedVector | -

3 LSTM 78 1010.7302 3.8565e-05
TimeDistributed | -
LSTM 256
RepeatedVector | -

4 LSTM 756 1046.9695 3.4260e-05
TimeDistributed | -

TABLE 4. Parameters of the AE proposed in [27], used in this study.

AE Parameter Value used
Input size (sequence length) 1000
Number of hidden layers 3
Neurons per layer [256, 128, 256]
Number of epochs 30

Batch size 64

the data, as the training error decreased from 9.8735¢7> to
1.7595¢>, considering the aforementioned cutoff frequency.
Considering the convergence curves, the first improvements
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in terms of the LSTM-AE network compared to the basic AE
architecture are already evident.

In Figure 11, examples of two sequences reconstructed
by the trained LSTM-AE network can be seen. In 11.a,
there is an arbitrary sequence corresponding to the set of
signals from the undamaged bridge. It can be observed that
the network reconstructs the sequence quite well, resulting
in a relatively low reconstruction error. On the other hand,
in 11.b, a sequence from the set of signals from the damaged
bridge is shown. Here, it is evident that the network struggled
to reconstruct this signal, leading to a significantly higher
reconstruction error. It is worth noting that a sequence was
selected where the network performed particularly poorly in
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transform of the filtered signal.
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terms of the reconstruction metric for illustrative purposes.
However, the difference between healthy and damaged
signals is not always as pronounced.
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TABLE 5. Topology and parameters of the LSTM-AE.

Layer (type) Output Shape | Params #

LSTM (None, 50, 64) | 16.896

Repeated Vector (None, 50,64) | O

LSTM (None, 50, 64) | 33.024

TimeDistributed (None, 50,1) | 65
Parameter Value

Epochs 30

Learning rate le-3

Optimizer Adam

Lr update strategy On Plateau

Patience 5

Update factor 0.9

Batch size 64

To evaluate the ability to detect anomalous signals related
to some structural damage, the Fl-score and Area Under
the Receiver Operating Characteristic Curve (AUC-ROC)
metrics were used. The Fl-score and the AUC-ROC are
essential metrics for evaluating the performance of classifica-
tion models. The F1-score is the harmonic mean of precision
and recall, providing a single metric that balances both
false positives and false negatives. The AUC-ROC quantifies
the overall ability of the model to discriminate between
positive and negative classes across all possible classification
thresholds. The ROC curve plots the true positive rate against
the false positive rate, and the AUC represents the probability
that a randomly chosen positive instance is ranked higher than
a randomly chosen negative instance. The AUC value ranges
from O to 1, with a value of 0.5 indicating no discriminative
power, and a value of 1 representing perfect classification.
These metrics are particularly useful in scenarios with
imbalanced class distributions and for comparing different
models regardless of their specific classification thresholds.

Besides, to enhance the comparison of this new method
with the state-of-the-art methods used in the validation,
a verification process is conducted using statistical tests.
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FIGURE 11. (a) Reconstructed signal of a healthy state. (b) Reconstructed signal from a damaged state.

These tests, based on a significance level, allow the
hypothesis to be validated or rejected. The procedure unfolds
as follows: initial samples underwent a scrutiny for normality
through the Kolmogorov-Smirnov Lilliefors test, which,
upon failing (p-values > 0.05), led to the subsequent
application of the non-parametric Mann-Whitney test to
assess the performance disparity between AE and LSTM-AE
outcomes. Two pivotal hypotheses merit consideration:

13)
(14)

Hy: WAE = RLSTMAE
Hy: WISTMAE # MAE

Here, puag and urstmap represent the median fitness
values corresponding to AE and the proposed LSTM-AE,

116542

TABLE 6. Results comparing. FT: Full trained - PT: Partially trained.

Model | LSTM-AE (PT) AE (FT) AE (PT)
Metric F1 AUC F1 AUC F1 AUC
Value 0.9377 | 0.9371 | 0.8883 [ 0.8931 | 0.7975 | 0.8002

respectively. It is crucial to note that the significance level
is set at 0.05, implying that values smaller than 0.05 reject
the assumption of Hp.

Accordingly, Table 6 delineates the comparison between
the two implementations, with statistically significant win-
ners highlighted in bold. Note that in the case where the full
training set was available, the AE model performed quite
competitively compared to LSTM-AE. However, for a fair
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FIGURE 12. (a) AE (Fully trained) confusion matrix. (b) AE (Partially
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matrix.

comparison, LSTM-AE should be compared with the AE
model in case 2 (with a fraction of the total training volume).
Here, the detrimental effects of having less training data are
evident, as the AE model completely deteriorates and fails
to generalize correctly. On the other hand, the LSTM-AE
model is capable of learning to reconstruct vibration signals
using less than 25% of the total training data. Figure 12
presents the confusion matrices, providing a clearer view of
this difference.

An important point to note is that the proposed LSTM-AE
model imposes a significantly higher time burden compared
to the simple AE network. This increase in processing time
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primarily stems from the complexity of more advanced
models, which involve a greater number of layers and/or
neurons per layer, requiring additional processing and
memory due to the increased number of parameters to
optimize. This can substantially increase the prediction time,
leading to longer training and reconstruction times as well.
Such considerations are crucial, as they may pose limitations
on the real-time implementation of the model within a SHM
system, particularly considering that the data acquisition rate
(sensor data) may outpace the detection results.

VI. CONCLUSION

In this study, a new algorithm based on deep learning
techniques was proposed for structural damage detection.
The accuracy and precision of this method were validated
using data from a real box-girder bridge, yielding excellent
results. Furthermore, among the contributions of this work,
it should be mentioned that it was demonstrated that this
novel three-step method does not require labeled data to
detect anomalous signals indicating structural damage. Addi-
tionally, the algorithm was shown to use a smaller training
data volume compared to other state-of-the-art methods,
without sacrificing accuracy, as competitive results were still
achieved. Also, a quantitative study was performed using
data from real bridges to demonstrate the capabilities of this
approach to detect anomalies that indicate structural damage.

To the best of our knowledge, as of the current date of

this article, this is one of the first work which proposes a
design based on the interaction LSTM-AE as an architecture
for structural damage detection in bridges. This architecture
proved to be more suitable for reconstructing vibration
signals compared to other state-of-the-art methods. This is
mainly because they are designed to process time series data.

Regarding to the future lines of research that emerge from

this work, the following can be mentioned:

o Damage localization: While the detection capability
of this new method was demonstrated, the ability to
locate structural damage was not investigated. Since an
LSTM-AE is trained for each sensor, detection errors
may be higher in sensors closer to the specific failure.

o Environmental variables: The effects of temperature
on the performance of this model were not studied
either, which could be interesting as some environmental
variables have been shown to influence certain behaviors
of structural response [54], [55].

o Thresholds selection: Another aspect worth considering
for future work is the selection of appropriate values
for the thresholds T}yicro and Tiicro. These parameters
are critical for the model to achieve good results,
and further research on the selection and optimization
process should be conducted. It might also be considered
to automate this selection process and adapt it alongside
changes in the dynamic responses of the bridge. This
would allow updating these values depending on how
the bridge’s health evolves throughout its lifecycle, thus
enabling a more robust and dynamic model.
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o Hyperparameter tunning: Considering the

results
obtained from the hyperparameter optimization process,
the significant sensitivity of this model was evident.
Incorrect selection of a parameter may result in the
model’s inability to generalize the reconstruction of
vibration signals from the bridge in good condition,
leading to poor performance in unsupervised damage
detection. Therefore, more time and effort need to
be invested in designing strategies to optimize these
network parameters and enhance the obtained results.
Contemporary models: As seen in this study, the
combination of LSTM with AE yielded superior results
compared to the state-of-the-art method. This under-
scores the importance of investigating the applicability
of emerging models, which exhibit greater capability
to handle temporal data, thus potentially enhancing
the obtained outcomes. Among these models, it would
be worthwhile to explore the applicability of Large
Language Models (LLMs) and transformers, which
have demonstrated excellent ability to capture temporal
relationships present in the data.
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