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ABSTRACT Highways serve as vital connectors between cities, yet they often suffer from traffic congestion
as the population continues to grow. Various intelligent frameworks or models for traffic status prediction
have been employed in the Intelligent Transport System (ITS) to provide services for convenient and
safe traveling, effective traffic management, and smart signal control. Most of these frameworks typically
involve learning processes that utilize learning algorithms and requires training data. For highway traffic,
the Greenshields model offers a practical relationship among vehicle speeds, traffic flows, and traffic
density, which can serve as fundamental knowledge for developing intelligent traffic management systems.
This paper proposes a fuzzy logic system based on the Greenshields model as the knowledge base for
quickly predicting highway traffic congestion without extensive preparing data. Our system operates in
two modes: jam and non-jam modes. In each model, the two inputs of vehicle speed and traffic flow are
processed respectively with specified membership functions for effective fuzzification. The set of rules
and conditions guided by the Greenshields theory is governed by the inference mechanism, which makes
decisions according to the input field. Subsequently, the defuzzification process converts the fuzzy sets
obtained by the inference engine into a congestion level as the output. To validate the accuracy of our system,
a polynomial regression model utilizing realistic data from roadside equipment on the Sun Yat-Sen Highway
in Taiwan is established for comparison. Comparing the observed data points from the polynomial regression
model with the outputs obtained from our system using the same inputs, both predicting outputs are found
to be consistent, affirming the practical feasibility of the proposed system. Moreover, our proposed scheme
is adaptable to suit diverse road conditions without extensive training data and possesses a short memory
to perform tasks. Integrating several systems by cascading them across different segments of the highway
enables rapid congestion prediction for long-distance traffic. These advantages make the proposed system
much more convenient for performing congestion prediction for traffic management and control in ITS.

INDEX TERMS Fuzzy logic, Greenshields model, ITS, polynomial regression, traffic congestion, traffic
flow.

I. INTRODUCTION
Highways serve as the lifeblood of modern urban connec-
tivity, supporting seamless movement between cities and
regions. According to statistics from the Freeway Bureau
of Taiwan [1], daily vehicle usage on Taiwan highways
increased by 1.5% compared to the previous year, reaching
over 87 million vehicle kilometers (MVK) in 2023. Gen-
erally, the capabilities of roads and transportation systems
struggle to cope with the explosive growth of vehicles in
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countries experiencing rapid economic expansion, partic-
ularly during rush hours. The increased traffic flows on
highways not only prolong periods of traffic congestion but
also elevate the probability of accidents. To improve various
traffic situations and provide safe and efficient travel services,
having real-time information on traffic and road conditions
for further processing is essential. By applying advances
in technologies such as electronics, communications, com-
puters, control, sensing, and detection across transportation
systems, the Intelligent Transport System (ITS) provides ser-
vices related to traveling and traffic management, enabling
road users to make more convenient, smarter, faster, and
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safer use of transport networks [2], [3], [4], [5]. ITS can be
divided into four subsystems: surveillance and collecting sub-
systems that monitor and collect traffic-related information
for effective traffic management and control, analyzing and
decision-making subsystems that employ intelligent algo-
rithms to analyze data and make decisions, control and
management subsystems that implement effective control and
traffic management strategies, and communication subsys-
tems that transmit data between subsystems for information
sharing [6], [7]. Traffic management and control involve
traffic congestion prediction, traffic flow control, accident
detection, and route guidance for efficient travel between
cities, ensuring timely arrival at destinations. An effective
traffic status prediction scheme is a key component to achieve
efficient performance improvement for traffic management
and control models.

Traffic data and parameters utilized for evaluating and
predicting traffic status in the models and frameworks of
ITS can be categorized into three main groups: volume and
capacity-related factors such as speed, flow, density, and
occupancy; time and position-related factors such as posi-
tion data, map data, travel time, and video monitoring data;
and road condition and environment-related factors such as
ramping area, road works, and accident events [5]. Traf-
fic data are generally segmented according to time series.
Traffic prediction schemes can be divided into three types:
frameworks, non-parametric models, and parametric mod-
els [4]. Various frameworks or models can be developed on
spatial, temporal, or both domains. Recent works for real-
istic traffic status prediction are based on a framework or
action model to perform tasks associated with intelligence
beings and representation learning. Frameworks facilitate
a collaborative approach of artificial intelligence (AI) and
deep learning (DL) technologies, utilizing artificial neural
networks or deep neural networks to handle vast amounts of
data analysis, conduct efficient learning, and make predic-
tive decisions. Tseng et al. [8] employed the Apache Storm
platform to achieve a support vector machine (SVM) based
real-time highway traffic congestion prediction (SRHTCP).
Li et al. [5] proposed a framework for traffic congestion pre-
diction and visualization based on machine learning and
the Fuzzy Comprehensive Evaluation scheme (MF-TCPV).
Kessler and Bogenberger [9] investigated detection rate by
comparing various freeway congestion patterns to provide
recommendations on the optimal application of detection
technology. For connected vehicles, frameworks utilizing
Internet of Vehicles (IoV) based schemes for traffic status
detection are practically feasible for congestion handling.
This type of framework typically involves communication
techniques through networks or the internet to facilitate
collaboration in inputs and decisions. Traffic status esti-
mation (TSE) methods for connected vehicles largely rely
on mobile-sensing technologies that require a certain mar-
ket penetration rate (MPR). Currently, fixed-sensing and
mobile-sensing technologies are expected to be used together

for traffic surveillance and control. Thakur and Malekian [2]
reviewed the utilization of fog computing-based principles in
vehicular wireless sensor networks for a vehicular conges-
tion detection system capable of covering a large area and
multiple scenarios. Abberley et al. [10] developed a fuzzy
system capable of capturing congestion levels on an urban
road network based on the Manchester Urban Congestion
Dataset. Sun et al. [11] utilized the current surveillance sys-
tem with a method based on the attention proposal module
and a deeply supervised inception network to enhance the
accuracy of traffic congestion detection. Ferrara et al. [12]
presented a hierarchical multi-level control scheme utilizing
a high-level model predictive controller (MPC) to alleviate
traffic congestion and reduce vehicle fuel consumption via a
platoon of connected and automated electric vehicles (CAVs).
Gao et al. [13] developed a rule-based algorithm utilizing full
cellular activity (FCA) data to determine the traffic conges-
tion state at on-ramp merging area. Chen et al. [14] presented
a roadside sensor data fusion framework that makes use of
data from connected vehicles to provide a more accurate
traffic flow state estimation. Based on the second order traffic
flow model, the macroscopic simulation program for motor-
way networks (METANET) has been applied for freeway
traffic status estimation [15].Messmer and Papageorgiou [16]
introduced a model based on METANET combined with
an extended Kalman filter (EKF) to improve traffic status
estimation with only fixed sensing. Zhao et al. [17] compared
three mixed estimation methods: METANET-EKF, speed-
uniformity-EKF, and MPR-KF, providing recommendations
on choosing a suitable estimation method with the minimum
number of sensors based on the range of MPR for connected
vehicles with mixed sensing.

Non-parametric models for traffic prediction typically
do not assume a specific form and have the flexibility to
adapt to the shape of the data. Artificial neural networks,
machine learning methods, and software simulations are
often involved in these schemes. Since SVM exhibits greater
generalization ability and performs well for limited samples,
it can be extended to solve regression problems and excel
in time series analysis. Furthermore, instead of adopting a
single model, a selected hybrid model is more advantageous
in handling traffic prediction problems in certain situa-
tions. A combination of the genetic algorithm (GA) and
time-delayed neural network for traffic flow prediction was
presented by Abdulhai et al. [18]. Xie and Zhang [19] intro-
duced traffic flow prediction using a combination of wavelet
transform and neural network models. Chang and Tsai [20]
proposed a hybrid model of SVM and the grey prediction
(GM) model for traffic flow prediction, aiming to reduce the
overshoot effect. Hong et al. [21] presented a hybrid method
in the support vector regression (SVR) model for traffic flow
prediction. Lopez-Garcia et al. [22] proposed a fuzzy-rule-
based scheme by combining the genetic algorithm (GA) and
the cross-entropy (CE) method to improve short-term traffic
congestion detection. Tang et al. [23], [24] proposed two
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traffic flows prediction models: one utilizing a combination
of artificial neural network and fuzzy C-mean methods, and
the other adopting combined denoising schemes and SVM
models, respectively.

Traffic status evaluation and prediction in parametric mod-
els typically employ statistical or regression analysis. By cap-
turing the key characteristics of traffic flowwithin a specified
problem, the requisite functions for prediction or control
can be derived through simulations or computations utilizing
empirical data. Xu et al. [25] proposed a robust and inter-
pretable Bayesian multivariate adaptive-regression splines
model, yielding more accurate traffic predictions compared
to corresponding temporal models. Dell’Acqua et al. [26]
developed a novel nearest neighbor regression method to
enhance the efficiency of the data-driven algorithms for traf-
fic flow prediction. In certain traffic scenarios, employing a
hybrid model that combines different algorithms or models
can yield superior prediction results. Van der Voort et al. [27]
devised a self-organizing map combined with the autore-
gressive integrated moving average (ARIMA) time series
model to create a hybrid forecasting model. Zhao et al. [28]
introduced a reliable model for short-term traffic forecasting
by merging the ARIMA model and a travel distance estima-
tion algorithm. Oh et al. [29] proposed a multifactor pattern
recognition model that integrates Gaussian mixture model
clustering with an artificial neural network for traffic flow
prediction.

Among traffic status predictions, travel time stands out
as a more intuitive and practical metric for road users to
comprehend. It holds a pivotal role in ITS and serves as a con-
venient index for traffic managements. Several frameworks
for travel-time prediction have been proposed, including
neural network models, SVM methods, regression model
analysis, and K nearest neighbors (K-NN) models. However,
these prediction models often entail longer training times
due to the vast amount of data utilized. Innamaa [30] uti-
lized neural networks for short-term travel time prediction
on interurban highways. Tang et al. [31] developed an evolv-
ing fuzzy neural network model for travel speed prediction.
Derrow-Pinion et al. [32] introduced a graph neural network
estimator with Google Maps for travel-time prediction based
on Meta-Gradients for training schedules. Wu et al. [33]
applied support vector regression (SVR) for travel time pre-
diction. Yang et al. [34] proposed a GA-SVM model for bus
arrival time prediction, showing improved accuracy. Zhang
and Rice [35] focused on enhancing travel time prediction
using a linear regression method. Khosravi et al. [36] intro-
duced a GA-based scheme to improve travel time prediction
intervals. Cho et al. [37] leveraged Gated Recurrent Units
(GRU) to enhance the efficiency of recurrent neural network
(RNN) training for travel time prediction. Zhao et al. [38]
jointly utilized optimized GRU and weight stochastic gra-
dient descent (WSGD) algorithms with GPS data for truck
travel speed prediction. Ting et al. [4] established a vehi-
cle travel time prediction method with high performance in

prediction accuracy and execution time, based onGRU neural
network and eXtreme Gradient Boosting (XGBoost) models
through time series linear regression. Yu et al. [39] proposed
a framework based on the K-NN method to integrate cluster
analysis and principal component analysis for bus arrival
time prediction. Liu [40] suggested a dynamic K-NN method
based on a large database to enhance the accuracy of the travel
time model.

For analyzing the statistical properties of large traffic
flows, Greenshields, Greenberg, and nonlinear models are
often essential. Liu et al. [41] proposed an improved general-
logistic-based speed-densitymodel incorporating heavy vehi-
cle effects for highway traffic status prediction. Karchroo and
Sastry [42] presented a method to predict highway travel time
based on density-based functions. Rice and Van Zwet [43]
introduced a linear time-varying model with time-varying
coefficients for travel time prediction, utilizing available
freeway sensor data. Direct travel time measurements are
increasing popular due to on-board positioning and commu-
nication technologies. Additionally, as parametric models,
ARIMA and their extended versions are widely employed
travel time prediction [44], [45]. Raiyn and Toledo [46]
proposed an exponential moving average (EMA) forecast
scheme as an extended ARIMA model for short-term free-
way travel time prediction. Soriguera andMartínez-Díaz [47]
presented a data fusion scheme to correct drift in cumulative
count curves, improving travel time prediction. The standard
Bureau of Public Road (BPR) model is frequently employed
for highway travel time evaluation, with parameters cali-
brated based on real-time traffic data [48]. Skabardonis and
Dowling [49] enhanced the BPR model for travel time pre-
diction by comparing field data and conducting simulations
to identify the best parameters. Liu et al. [50] developed a
traffic simulation procedure to estimate travel time functions
for heterogeneous traffic flows on freeways. Specifically,
for the travel time prediction after incidents on freeways,
Ru et al. [51] proposed a model based on the BPR model
for both regular and accident conditions. Generally, direct
travel time prediction necessitates a framework considering
various factors, particularly accident conditions, for complex
computations and simulations.

When considering wide-range traffic congestion detection
on highways, cellular probe methods are often employed,
utilizing transition data from wireless location technolo-
gies (WLT) to predict highway road traffic informa-
tion. Ran et al. [52] presented and compared cellular probe
methods, respectively, in handset-based and network-based
schemes. Existing network-based cellular probe methods
on freeways primarily rely on cellphone handover (HO)
data. Guido et al. [53] utilized the handset-based cellular
probe scheme to estimate traffic speed based on HO data.
While recently available HO data are decreasing, full cel-
lular activity (FCA) data, comprising cellphone activities
both on and off calls, are becoming tremendous and acces-
sible. Li et al. [54] proposed a feature-based approach that
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utilizes FCA data for traffic congestion detection on free-
ways. The accuracy of congestion detectionwithout road tests
improves compared to methods relying solely on cellphone
handover data. Compared with cellular probe-based methods
relying on on-call WL signal data, Gao et al. [13] utilized
FCA data to develop a rule-based algorithm for achiev-
ing more accurate freeway traffic congestion detection at
on-ramp merging area for connected vehicles. Additionally,
Derrow-Pinion et al. [32] proposed a graph neural network
(GNN) model for predicting the time of arrival based on
user-provided data in web mapping services.

Fuzzy logic constitutes a mathematical framework
addressing ambiguous information by integrating degrees of
truth through fuzzy sets. It has been a successful and practical
alternative for a variety of challenging control applica-
tions, providing a convenient method for handling nonlinear
dynamics using heuristic information [55], [56]. Fuzzy
schemes also have fundamental applications in numerous
intelligent algorithms or models within ITS for diverse pur-
poses. Lopez-Garcia et al. [22] employed a fuzzy-rule-based
system to enhance short-term traffic congestion detection by
optimizing system elements. Based on the Takagi-Sugeno
fuzzy inference system, Tang et al. [32] developed an evolv-
ing fuzzy neural network model. This model incorporated
the K-means method in the training process and utilized the
weighted recursive least squares error scheme to optimize
model parameters, particularly for travel speed prediction.
In the SVM-based real-time highway traffic congestion
prediction (SRHTCP) model proposed by Tseng et al. [8],
a fuzzy scheme to assess the real time traffic level of
road segment under actual conditions. Abberley et al. [10],
developed a fuzzy system capable of capturing congestion
levels. For emergency vehicle management, Shelke et al. [6]
proposed a fuzzy expert system to determine the priority of
road segments and the timing for activating traffic signals.
Li et al. [5] introduced the machine learning and Fuzzy
Comprehensive Evaluation scheme (MF-TCPV) for rating
traffic congestion levels, establishing a framework for pre-
dicting and visualizing traffic congestion. In the Dynamic
and Intelligent Traffic Light Control System (DITLCS) pro-
posed by Kumar et al. [57], a fuzzy inference system was
developed to select an appropriate mode based on traffic
information. Akopov et al. [58] devised a multiagent fuzzy
transportation system (FTS) utilizing a parallel biobjective
real-coded genetic algorithm to enhance the maneuverability
of manned ground vehicles (MGVs) and unmanned ground
vehicles (UGVs). It is evident that fuzzy inference systems
are widely employed in various aspects of ITS.

Alsrehin et al. [3] conducted a comprehensive review of
approximately 165 studies on traffic management approaches
employing data mining and machine learning techniques.
Their study revealed that there is no universally accepted
standardized traffic management approach within the traffic
management community. Nevertheless, vehicle speed, traffic
flow, and vehicle density remain the primary influencing
parameters of highway traffic. The Greenshields model,

Greenberg model, and other nonlinear models are frequently
utilized for predicting, managing, and controlling traffic
conditions on highways through effective parameter mea-
surements and evaluations [35], [41], [42], [47]. In practice,
the Greenshields model provides a simple yet practical rela-
tionship among vehicle speeds, traffic flows, and traffic
density for freeway traffic [41], [42], [59]. In comparisonwith
other traffic parameters, traffic density is a crucial factor for
predicting traffic congestion and evaluating travel time.

Regression models for predicting traffic status can be
established using traffic data and by analyzing the rela-
tionship between vehicle speed, traffic flow, and density.
However, fittings various parameters of static models to
practical scenarios can be intricate and time-consuming,
as variable factors such as lane numbers, speed limits, and
entry/exit conditions differ on each segment of the highway.
Additionally, achieving excellent results often requires a vast
amount of traffic data to be established regressionmodels, but
large datasets may lead to overfitting. Applying an intelligent
scheme such as fuzzy logic or artificial neural network to
build a prediction model is more suitable and useful for traffic
management and control.

Both fuzzy logic and neural networks are commonly used
for various tasks within ITS, such as recognition, classifi-
cation, or prediction. The choice between fuzzy logic and
neural networks depends on the specific problem at hand and
the available data. A neural network, comprises of different
layers of interconnected neurons, attempts to incorporate the
thinking process to solve problems without mathematical
modeling. Each neuron receives inputs, performs weighted
computations, and applies an activation function to generate
an output. Generally, a neural network involves a learning
process that utilizes learning algorithms and requires a large
amount of training data. On the other hand, fuzzy logic is a
mathematical framework for dealing with vague or ambigu-
ous information. It allows for the representation of imprecise
data and the use of linguistic variables. Fuzzy logic systems
employ fuzzy rules to capture expert knowledge and express
connections between factors. Hence, fuzzy logic is suitable
used in systems where precise mathematical modeling is
difficult.

In this paper, we propose a fuzzy logic system based on
the Greenshields model for predicting highway traffic con-
gestion. Our system integrates a fuzzy logic system with two
inputs: vehicle speed and traffic flow, and a single output,
which represents traffic density. Each input is associated with
specific membership functions, facilitating the conversion of
inputs into meaningful information through the fuzzification
process. The fuzzy inference module subsequently, guided
by the Greenshields model, utilizes logical rules to make
decisions based on the input information. At the output stage,
the defuzzification module converts the conclusions from the
inference mechanism to an output, offering a prediction of the
level of traffic congestion. This system is designed to adapt
rapidly to real-time situations, tailoring itself to different road
conditions in each segment of the highway. Experimental
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results obtained from our system will be compared with those
generated by a regression method using data collected from
roadside sensors to highlight the advantages of the proposed
fuzzy logic systems. Our contributions are briefed as follows:

1.We propose a Greenshields model-based fuzzy system to
predict traffic congestion on a highway road segment using
vehicle speed and traffic flow as inputs. The output, traffic
density, is expressed as a percentage of the maximum capac-
ity. To the best of the authors’ knowledge, no such scheme has
applied the Greenshields model directly in a fuzzy system for
congestion prediction.

2. The proposed system operates in two distinct modes:
jam mode and non-jam mode. Each mode is specifically
designed to address realistic traffic conditions by adjusting
input membership functions, fuzzy rules, and output member-
ship functions. These adjustments are based on Greenshields
models of vehicle speed, traffic flow, and density, derived
from a cross-analysis of practical traffic data collected by
roadside equipment. This approach allows for the quick gen-
eration of accurate results without the need for complex
computations or extensive data training, ensuring efficiency
in comparison with regression methods.

3. Each fuzzy system operates on a specified highway
road segment and can be integrated as a component of the
designated road segments for predicting traffic status. These
systems can be cascaded sequentially to provide a com-
prehensive prediction of traffic congestion along the entire
section.

In the following sections of this paper, the relevant
methodologies and corresponding theories for forecasting
traffic congestion are explored in Section II. Moving on to
Section III, the design process of the proposed fuzzy logic
system for predicting traffic jams is presented. In Section IV,
simulations are conducted through the actual cases, and
the outcomes will be analyzed and discussed. The results
obtained from our fuzzy system are compared with those
derived from the regression method. The simulation results
will serve to validate the benefits and efficacy of the proposed
system. Section V will provide concluding remarks along
with a summary of the accomplishments of the proposed
scheme.

FIGURE 1. Fuzzy logic system architecture.

II. PREPARATIONPREDICTION RELATED TECHNICAL
METHODS AND THERETICAL BASIS
The establishment of an efficient prediction system has the
potential to enhance highway safety and utilization efficiency,

ultimately leading to more seamless and enjoyable travel
experiences for everyone. In this section, each respective
subsection delves into the fuzzy logic method, Greenshields
model, and time series forecasting technologies as applied to
the proposed system for predicting congestion on highways.

A. FUZZY LOGIC METHOD
The utilization of fuzzy logic in our system offers a flexible
and intuitive method for handling uncertainty and impre-
cise information in various decision-making processes. Fuzzy
logic allows for degrees of truth, representing uncertainty
through a range of values between 0 and 1. It enables more
human-like, adaptable, and context-aware reasoning in ITS
applications. This is accomplished through the utilization of
linguistic variables and fuzzy sets, which assign membership
values to elements based on their degree of belonging to
a particular set. By employing fuzzy rules and inference
mechanisms, this approach enables the synthesis of imprecise
inputs to generate precise and actionable outputs. A general
fuzzy logic system is shown in Fig.1.

Fuzzification is the process of converting crisp input data
into fuzzy sets in a fuzzy logic system. It entails mapping
inputs to fuzzy sets using membership functions. A fuzzy
set A comprises elements (x, µA(x)), where x belongs to
the universe of discourse X , and µA(x) is the member-
ship function assigning a value between 0 and 1 to each
element x, representing its degree of membership in A.
Commonly used membership functions during fuzzification
include trapezoidal, Gaussian, triangular, and others. These
functions determine the degree of membership in a fuzzy set,
enabling the representation of uncertainty and imprecision in
the input data. Twowidely usedmembership functions are the
trapezoidal function and the Gaussian function [60]. Other
potential membership functions can be formulated based on
existing formulas and functions. The selection ofmembership
function shape is problem-specific and requires experience
with the given situation to tune-up achieve the best fit.

FIGURE 2. Membership function-trapezoidal function.

The trapezoidal function is defined by four parameters
(c, d, e, f ), where c ≤ d ≤ e ≤ f . These parameters
determine the shape and membership values of the fuzzy set,
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as shown in (1) and graphically represented in Fig. 2 [60].

µA (x) =



x − c
d − c

, c ≤ x ≤ d

1, c ≤ x ≤ d
f − x
f − e

, e ≤ x ≤ f

0, x ≥ f .

(1)

The Gaussian function expressed in (2) has two parame-
ters, g and σ . Parameter g determines the center and peak
value of the curve, while parameter σ controls the width. The
definition and graph of the Gaussian membership function is
shown in Fig. 3 [60].

µA (x) = e
−

1
2

(
x−g
σ

)2
. (2)

Fuzzy rules are vital in fuzzy logic systems, modeling
decision-making based on fuzzy logic principles. They con-
nect input and output variables using linguistic variables
and fuzzy sets, often using if-then statements with logical
operators. These rules capture relationships between inputs
and outputs, enabling flexible decision-making in areas like
control systems and artificial intelligence applications [61].

FIGURE 3. Membership function-gaussian function.

A fuzzy logic reasoning system is a computational frame-
work that mimics human thinking using fuzzy logic princi-
ples to make decisions based on fuzzy rules and input data.
It consists of three main components: the rule base (defining
fuzzy rules), the database (containing membership functions
used in the rules), and the reasoning mechanism (deriving
logical conclusions from the rules and facts). The system’s
operation involves fuzzification (converting inputs to fuzzy
sets), applying fuzzy rules to determine the output set, and
then using defuzzification to extract crisp values representing
the fuzzy set.

The defuzzifier is the final stage in a fuzzy logic system,
converting a fuzzy output set into a clear output value. Com-
mon defuzzification methods include the centroid method,
bisectormethod,maximummeanmethod, andweighted aver-
age method. Each method has its use cases and depends on
the characteristics of the fuzzy output set and application
requirements. The defuzzifier produces a crisp output value
for further decision-making processes.

B. GREENSHIELDS MODEL
Greenshields macroscopic traffic flow theory focuses on
the speed-density relationship in traffic flow. It establishes
connections between speed and density, flow and density,
and speed and flow. This theory is represented graphically
through speed-density, flow-density, and speed-flow dia-
grams. Congestion occurs when traffic density approaches
or exceeds a critical level, resulting in inefficient flow and
reduced speed. These relationships are widely used in traffic
flowmodels of highway and transportation planning to assess
traffic conditions, estimate capacity, and design efficient
transportation systems [59].

Graphical representations of speed-density, flow-density,
and speed-flow relationships offer insights into how changes
in traffic speed and flow impact traffic density impact. Trans-
portation planners and engineers use these relationships to
make informed decisions on road design, trafficmanagement,
and congestion mitigation. The speed-density relationship
curve shows the connection between traffic speed and density.
As the number of vehicles per unit of road length increases,
the average speed of vehicles decreases linearly. This is
because higher vehicle density reduces maneuvering space,
leading to decreased speeds.

FIGURE 4. Relationship between speed and density.

The relationship between the mean velocity v and the
density k can be expressed by [59]

v = vf −

(
vf
kj

)
k, (3)

where vf represents the free speed parameter and kj stands for
the density parameter. This relationship is visually depicted
in Fig. 4. As the density approaches to zero, speed will also
converge toward to zero.

The flow-density relationship curve illustrates how traf-
fic flow changes with varying traffic density and can be
expressed as follows [59]:

q = vf .k −

(
vf
kj

)
k2. (4)

At lower densities, traffic flow increases as density rises, but
it eventually levels off and decreases when density reaches a
tipping point, indicating congestion. Fig. 5 visually portrays
this relationship. This curve aids in estimating road capacity
and determining the maximum sustainable flow under differ-
ent density conditions.
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FIGURE 5. Relationship between flow and density.

FIGURE 6. Relationship between speed and flow.

The speed-flow relationship curve demonstrates how traf-
fic speed decreases as traffic volume increases. It is influ-
enced by factors such as congestion, vehicle interactions,
and road capacity. This relationship can be derived from
equations (3) and (4) and expressed in (5) [59]. A visual
representation is provided in Fig. 6.

q = kj.v−

(
kj
vf

)
v2. (5)

C. TRAFFIC DATA COLLECTION AND TIME SERIES
FORECASTING
The traffic flow within the highway network is influenced
by factors such as vehicle entry and exit ramps, the road
structure, and the traffic flow of adjacent interconnected road
sections. Collecting, integrating, and processing multi-modal
traffic data for congestion forecasting, performing accurate
travel time estimation, and managing hidden information are
essential steps in optimizing traffic control and enhancing
overall management.

Although determining exact free-flow speed and jam den-
sity directly from the field is changing, approximate values
can be derived from multiple observations of speed and den-
sity, followed by fitting a suitable equation between them.
Acquiring traffic flow data involves gathering information
about the current road network to formulate effective traffic
control strategies. Traffic management units utilize various
types of detectors, including circular vehicle detectors, image
detectors, microwave detectors, and radar detectors, to collect
real-time traffic flow data. Vehicle detectors play a cru-
cial role in estimating travel time and facilitating demand
analysis for traffic management. These fixed detectors are

permanently installed on the pavement, roadside, or above
driveways, using different measurement methods with sen-
sors such as loop coils, electronic tags, and microwave
sensors for data collection. As illustrated in Fig. 7, loop
coil detectors are commonly employed by Taiwan highway
bureaus, but other types like video vehicle detectors, license
plate readers, and electronic toll collection systems are also
used [62].

FIGURE 7. Illustrated diagram for the placement of various vehicle
detectors.

To establish Greenshields models in each segment of
Taiwan highways, regression analysis in time series forecast-
ing is used and experimentally validated according collected
traffic flow data. Specifically, polynomial regressionmethods
are applied to approximate a function by fitting a polynomial
equation to the data points. The goal is to find a smooth curve
that can be expressed by a polynomial with the degree n as
follows [26]:

Y = β0 + β1X + β2X2
+ . . . + βnXn + ϵ, (6)

where Y represents the dependent variable, X represents the
independent variable, and βi, i = 0, · · · , n, are the coeffi-
cients of the polynomial and ϵ is the error term. Polynomial
regression fits a polynomial equation to the data, allowing
estimation of the dependent variable for any given inde-
pendent variable value within the data range. Although the
method is simple, but may overfit the data if the polynomial
degree is too high, capturing noise and leading to a poor repre-
sentation of the relationship. The choice of polynomial degree
should be carefully considered based on data characteristics
and desired precision. For smoother curves or irregularly
spaced data, spline regression could be a better alternative.
The procedure to establish a model by the regression method
is shown in Fig. 8.

III. SYSTEM FOR HIGHWAY TRAFFIC CONGESTION
PREDICTION BASED ON GREENSHIELDS MODEL
The Greenshields model offers insights into how changes
in vehicle speed and flow traffic impact traffic density. The
proposed scheme for addressing highway traffic congestion
involves a two-input, one-output fuzzy system. Input param-
eters, namely vehicle speed and traffic flow, are employed,
and a fuzzification process is implemented using established
membership functions to transform these inputs into mean-
ingful information. Subsequently, a fuzzy inference module,
based on the Greenshields model, is devised to interpret,
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FIGURE 8. Procedure of creating regression models.

FIGURE 9. Block diagram of designing highway traffic congestion fuzzy
system.

and apply the input information using logical rules to facil-
itate optimal decision-making. To predict traffic congestion
conditions, a defuzzification module is employed to convert
the outcomes of the interference mechanism. Fig. 9 pro-
vides a visual representation of the step-by-step procedure for
designing the desired fuzzy logic system.

The traffic data collected for model verification was
sourced from the southbound section of the Sun Yat-Sen
Freeway in Taiwan, extending from Yongkang District to
Gangshan District [60]. This segment comprises three lanes
to facilitate efficient traffic flow, with a maximum speed
limit of 110 km/h and a buffer range up to 120 km/h. These
specifications are essential for designing a fuzzy system that
accurately reflects real-world traffic conditions. Additionally,
a polynomial regression model was developed using this data
to validate the proposed system.

A. MEMBERSHIP FUNCTION CONSTRUCTION
Speed and traffic flow are selected as the input and output
parameters. Three types of membership functions-namely,
trigonometric, Gaussian, and trapezoidal-are respectively
chosen to model ambiguous regions based on the collected
data, range of domain, and limitations for each segment of
Taiwan Freeway. This choice will determine which function
aligns best with Greenshields theoretical values. The selected
membership function should aptly capture uncertainty and
imprecision while remaining consistent with the theory.

The fuzzy system comprises two modes: jam mode and
non-jam mode. In the jam mode, the fuzzy domain of the
membership function for vehicle speed is categorized into
several levels: Extremely Slow (ES), Very Slow (VS), Slow
(S), Steady (St), Quite Slow (QS), Moderate Slow (MS),
and Moderate (M), as detailed in Table 1. Fig. 10 shows the

membership function of vehicle speed and its range values for
jam mode.

TABLE 1. Tabular membership function of vehicle speed for jam mode.

FIGURE 10. Membership function of vehicle speed for jam mode.

Similarly, the fuzzy domain of the membership function
for traffic flow in jam mode is segmented into various levels:
Extremely Low (EL), Very Low (VL), Low (L), Sparse (Sp),
Quite Low (QL), Moderate Low (ML), Moderate (M), Mod-
erate High (MH), Quite High (QH), Dense (De), High (H),
Very High (VH), and Extremely High (EH), as presented in
Table 2. Fig. 11 illustrates the membership function of traffic
flow and its range values for jam model.

TABLE 2. Tabular membership function of traffic flow for jam mode.

For the non-jam mode, the fuzzy domain of the member-
ship functions for vehicle speed is categorized into several
levels: Moderate (M), Moderate Fast (MF), Quite Fast (QF),
Speedy (Sp), Fast (F), Very Fast (VF), Extremely Fast (EF),
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FIGURE 11. Membership function of traffic flow for jam mode.

as detailed in Table 3. The membership function of vehicle
speed and its range values are designed as shown in Fig. 12,
while the membership function of traffic flow and its range
values are designed as shown in Fig. 13.

TABLE 3. Tabular membership function of vehicle speed for non-jam
mode.

FIGURE 12. Membership function of vehicle speed for non-jam mode.

FIGURE 13. Membership function of traffic flow for non-jam mode.

The output variable is traffic density, which is utilized
to assess the level of road congestion. Its fuzzy domain is

divided into several levels: Extremely Low (EL), Very Low
(VL), Low (L), Sparse (sp), Quite Low (QL), Moderate
Low (ML), Moderate (M), Moderate High (MH), Quite High
(QH), Dense (De), High (H), Very High (VH), and Extremely
High (EH). Themembership function of traffic density and its
range values in jammode are depicted in Fig. 14, whereas the
membership function of traffic density and its range values in
non-jam mode are designed as shown in Fig. 15.

FIGURE 14. Membership function of vehicle density for jam mode.

FIGURE 15. Membership function of vehicle density for non-jam mode.

B. RULE CONSTRUCTION AND DEFUZZIFICATION
The rule base of the proposed system, which defines the rela-
tionship between input variables (vehicle-speed and traffic-
flow) and output variables (traffic-density), significantly
influences subsequent model generation and its predictive
ability for real-world traffic conditions. The design of logical
and reasonable fuzzy rules within the proposed system for
generating traffic density, which is essential for congestion
prediction and travel time estimation, involves capturing data,
adhering to regulations, and incorporating expert knowledge
to reflect realistic traffic scenarios. Tabular representations
of possible sets of rules are employed to prevent contra-
dictory or illogical rules that do not align with real-world
traffic conditions on Taiwan freeways, ensuring consistency
for accurate predictions of traffic density. Based on the rela-
tionship between traffic density and traffic flow, the fuzzy
system operates in twomodes: jammode, and non-jammode.
Consequently, two tabular representations of possible rule
sets are defined, as presented in Table 4 and Table 5.

In Tables 4 and Table 5, the two operators - AND and
OR - are respectively applied according to T-norms and
T-conorms to combine rules and determine system behavior.
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TABLE 4. Traffic density rule table for jam mode.

TABLE 5. Traffic density rule table for non-jam mode.

The T-norm operation identifies the intersection of processing
rules, employing the minimum operation to calculate the
minimum value between two fuzzy sets, A and B, as shown
below [61]:

µA∪B (x) = min
[
µA,µB

]
= µA (x)ANDµB (x) , ∀x ∈ U ,

(7)

where x is an element of the universe of discourse U , and µA
and µB are the membership functions associated with their
respective fuzzy sets A and B.

The OR operator corresponds to the maximum operation
applied to the fuzzy sets A and B, respectively. The fuzzy set
operation for OR operator can be expressed by [61]

µA∪B (x) = max
[
µA,µB

]
= µA (x) orµB (x) , ∀x ∈ U .

(8)

Defuzzification plays a crucial role in transforming fuzzy
outcomes into precise, understandable values. This process
employs the centroid of area method, which determines the
central point of the block within the fuzzy region. By doing
so, it yields a definitive and interpretable value for the traffic
density. This step is pivotal in ensuring that the information
extracted from the proposed fuzzy system is not only accurate
but also readily comprehensible, thereby enhancing its appli-
cability and effectiveness in real-world traffic management
scenarios.

IV. SIMULATION RESULTS AND DISCUSSIONS
In this segment, we utilize real-world vehicle speed and traffic
flow data from the specified segment of the Sun Yat-Sen
Highway in Taiwan. These values are applied to both our
fuzzy system and the model using the regression method,
enabling us to evaluate the traffic density. We then conduct
a detailed comparison of the simulation results, providing a
comprehensive analysis that ultimately affirms the validity
and precision of our systems. The simulations clearly demon-
strate that our system’s adaptable nature allows for seamless
implementation across different segments of the highway.

A. UTILIZING POLYNOMIAL REGRESSION FOR
GREENSHIELDS MODEL
For comparison with the proposed fuzzy inference sys-
tem, a conventional approach was employed, entailing the
establishment of a Greenshields model using the polyno-
mial regression. This process leveraged comprehensive traffic
data collected from detectors installed along the Yongkang
to Gangshan segment of the Sun Yat-Sen Highway in
Taiwan [62]. Through polynomial regression analysis of the
traffic data, a set of models was generated. These mod-
els comprise the relationship diagram between speed and
traffic density shown in Fig. 16, the relationship diagram
between traffic flow and density shown in Fig. 17, and the
relationship diagram between speed and traffic flow shown
in Fig. 18. Each of these visual representations provides
valuable insights into the complex dynamics among velocity
and density, flow and density, as well as velocity and flow.
Clearly, these figures establish the Greenshieldsmodel for the
specified road section.

Using regression analysis to establish parametric models
for traffic status evaluation and prediction involves capturing
the key characteristics of traffic data for specified problems.
The requisite functions for prediction can be derived through

VOLUME 12, 2024 115877



M.-J. Hao, B.-Y. Hsieh: Greenshields Model-Based Fuzzy System

FIGURE 16. Relationship between speed and traffic density: realistic data
and polynomial regression, respectively.

FIGURE 17. Relationship between traffic flow and density: realistic data
and polynomial regression, respectively.

FIGURE 18. Relationship betweenvehicle speed and traffic flow: realistic
data and polynomial regression, respectively.

correlation operations and the least-squaresmethod on empir-
ical data. In general, regression models need large data sets
to obtain accurate results but may suffer from overfitting. For
specific predictions, it may require several related models
to achieve the results through mutual computations among
them. Furthermore, once the environment and conditions
change, it is necessary to correct a large amount of new data

for training to obtain the new parameters. Obviously, this
process is a time-consuming and tedious works.

B. GREENSHIELDS MODEL-BASED FUZZY SYSTEM
This section centers on the practical implementation of
designing a fuzzy system based on the Greenshields model
for a specific segment of the SunYat-SenHighway in Taiwan.
The goal is to accurately capture the relationship between
vehicle speed, traffic flow, and traffic density in real-world
scenarios. To ensure the accuracy and reliability of the model,
practical traffic data from theYongkang toGangshan segment
of the Sun Yat-Sen Highway is utilized as a reference point.
This empirical data forms the basis for parameterizing the
model, aligning it with the observed actual behavior on the
highway [62].

FIGURE 19. Relationship between vehicle speed and density for the fuzzy
system in jam mode.

To construct an effective fuzzy system, it is crucial to
define the range of each variable. In this case, vehicle speed
ranges from 0 to 130 km/h, traffic flow is represented as
a percentage ranging from 0% to 100%, and traffic density
is also expressed as a percentage, ranging from 0 to 100%.
The designed fuzzy system operates in two distinct modes:
non-jam and jam. Each mode features specific input and
output membership functions, as well as a set of rules for
system operation. This dual-mode approach allows for a com-
prehensive understanding of traffic dynamics under varying
conditions.

FIGURE 20. Relationship between vehicle speed and density for the fuzzy
system in non-jam mode.

The simulations are conducted using MATLAB, which
allows for precise modeling and analysis, providing a robust
foundation for evaluating the performance of the designed
fuzzy system. Fig. 19 illustrates a linear correlation between
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vehicle speed and traffic density within the jam mode. Sim-
ilarly, Fig. 20 presents a comparable relationship between
vehicle speed and traffic density for the non-jam mode. Fur-
thermore, Fig. 21 and 22 depict the relationship between
traffic flow and density in both jam and non-jam modes,
respectively. These figures demonstrate how the fuzzy system
accurately captures the relationship among vehicle speed traf-
fic flow, and traffic density. The Greenshields model-based
fuzzy rules generate the output according to the degrees
obtained from the inputs to validate its effectiveness. These
simulations provide additional insights into the behavior
of traffic under different conditions, further affirming the
applicability and flexibility of the designed fuzzy system.

FIGURE 21. Relationship between traffic flow and the upper density for
the fuzzy system in jam mode.

FIGURE 22. Relationship between traffic flow and the lower density for
fuzzy system in non-jam mode.

C. TEST AND DISCUSSIONS
There are two ways to enhance the prediction results of fuzzy
systems. The first method involves increasing the number
of fuzzy sets in the fuzzy partition of the space for each
mode and defining appropriate membership functions for
each fuzzy set. The second method classifies the input-output
relationships into several modes based on their nonlinearity.
Our fuzzy system is based on the Greenshields models. Given
the nonlinearity of these models, increasing the number of
fuzzy sets is a more convenient and effective approach. The
proposed fuzzy system is confirmed to align with the theoret-
ical framework by comparing it to a polynomial regression
model. The effectiveness of the system is further demon-
strated by comparing real-world data obtained from the fuzzy
system to data derived from the polynomial regressionmodel.

The validation process involves examining data related to
vehicle velocity, traffic flow, and traffic density relationships,
all of which are governed by the operational rules.

In Fig. 23, we present the actual simulation results for
high-speed conditions in the non-jam scenario. In the input
section, the vehicle speed is noted at 105 km/h, and the
vehicle flow rate stands at 85%. By feeding these parameters
into the fuzzy system, we ascertain that the vehicle density
registers at 30.6%, falling precisely within the range of the
little and light fuzzy traffic density zones. In Fig. 24, we illus-
trate the actual simulation results for low-speed conditions
in the jam scenario. Within the input section, the vehicle
speed is documented as 35 km/h, and the vehicle flow rate
remains at 20%. After incorporating these values into the
fuzzy system, we determine that the vehicle density reaches
86.5%, precisely matching the congestion levels found in in
the high and very high fuzzy traffic zones.

FIGURE 23. Defuzzified traffic density output in high speed and non-jam
scenarios.

FIGURE 24. Defuzzified traffic density output in low speed and jam
scenarios.

Comparing the system with the regression example in
Section A, it is evident that at a speed of 95 km/h, Fig. 16 indi-
cates a traffic density of approximately 29%. In our model,
the density for non-congested scenarios also hovers around
28%. Turning to the examination of the relationship between
flow and density, at a flow rate of 40%, Fig. 17 reflects a
non-jam mode traffic density of approximately 20%. Our
system closely aligns with this, registering at around 19.5%.
Notably, the prediction errors are minimal. Additionally, the
proposed system demonstrates distinct advantages in adapt-
ability and flexibility, enabling real-time adjustments, and
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can be easily implemented across different segments of the
highway.

V. CONCLUSION
Traffic congestion not only impacts on social costs through
increased fuel consumption and commuting time but also
diminishes living quality due to environments pollution.
The importance of real-time traffic congestion prediction
for efficient traffic management on highways within ITS
is undeniable. In this paper, we leverage the Greenshields
model, which establishes a critical connection between vehi-
cle speed, traffic flow, and traffic density, to develop a
fuzzy inference system for predicting traffic density. By uti-
lizing vehicle speed and traffic flow as input variables,
our proposed fuzzy system operates in two modes, effec-
tively quantifying the level of congestion as a percentage
of the maximum capacity on highways. Through the anal-
ysis of traffic data from Sun Yat-Sen Highway and a
comparative study with a polynomial regression model,
our consistent prediction results validate the accuracy of
our forecasting system. Even with limited existing traffic
data, the proposed method still demonstrates remarkable
precision.

In contrast to neural network schemes, our fuzzy logic pre-
diction system utilizes fuzzy rules to capture the Greenshields
theory as the knowledge base. By utilizing expert-defined
linguistic factors and rules, our proposed system can quickly
evaluate traffic density without the need for extensive and
laborious training. Moreover, the configuration of the sys-
tem model parameters can be easily adjusted using fuzzy
sets, logic rules, and membership functions, allowing it
to adapt promptly to changes in real-world traffic situ-
ations. Compared to regression models, which typically
require extensive training to obtain parameters for various
highway segments, the advantages of our system become
particularly evident. Additionally, our proposed system can
be seamlessly cascaded across multiple segments or the
entirety of the highway to provide long-distance predic-
tions of traffic congestion. This unequivocally reaffirms the
practicality of our prediction model within ITS, thereby facil-
itating efficient traffic management, congestion alleviation,
and ultimately enhancing overall travel services for road
users.
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