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ABSTRACT When a trip occurs, the utility of company-type 115/22 kV loading transformer trips out of the
electrical system, cutting off power to the distribution of a company customer. The outage damage is valuable
at 8.5 US$/kWh. A 12-step load transfer procedure at the utility control center takes the operator 433 seconds
to complete when restoring power to a customer experiencing an outage. Problem number 1 is that many
Supervisor Control and Data Acquisition (SCADA) message alarms will appear during the event, which
confuses the operator and possibly leads to an incorrect analysis of the trip event details. Problem number
2 occurs in the process where the operator incorrectly predicts theMW-load data of the Loading Transformer
will cause a power outage, causing the neighboring loading transformer to overload and cause damage after
the operator completes the LTR process. In this study, Pyauto2, an application developed with the Python
platform that connects to the utility control center’s SCADA and runs automatically, is introduced Pyauto2
serves two purposes: to work as an operator to reduce person-hours in the utility company’s LTR process
and to analyze find accurate answers to trip events of 68 Loading Transformers installed in the electrical
system in the central region of Thailand. The last purpose is to use Pyauto2 to reduce the LTR time. Pyauto2
can analyze the SCADA message alarm via fault tree analysis. To help plan the transfer load, it forecasts
MW load data on the day of the loading transformer trip using two-time series forecasting techniques.
Holt–Winters exponential smoothing (HWS) method is the second technique, and the triple exponential
moving average (TEMA) is the first HWS method. In this study, the distorted data are filtered out via the
exponential moving average (EMA) technique before being sent to TEMA and HWS for forecasting. The
data gathered between 2017 and 2020 revealed distortion in the MW load data, which may be brought on
using SCADA equipment or brief communication failures. Temporary outage, reduced traffic on holidays,
and arrangement of the distribution grid route. In this study, the grid search method is compared with limited-
memoryBroyden–Fletcher–Goldfarb–Shanno (L-BFGS) tomodify the alpha–gamma–beta value used in this
HWS. The prediction error values of the L-BFGS calculations are lower than those of the grid search method,
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with a mean absolute error of 0.4576, a mean square error of 0.3996, and a root mean square error of 0.6084.
After Pyauto2 is introduced, the average LTR time decreases from 433 s to only 64.88 s, and Pyauto2 works as
a substitute for the operator and accurately diagnoses the SCADA alarm, preventing the occurrence of neighbor
loading transformer supplying power overload after LTR.

INDEX TERMS Fault section diagnosis, transformer restoration, fault tree analysis, exponential moving average,
Holt-Winters method, Python language.

NOMENCLATURE
KT1A Power transformer name ‘‘KT1A’’.
115/22 Primary voltage/secondary voltage of power

transformer.
LP1 Provincial Electricity Authority delivery

point name ‘‘Circuit number 1’’.
P1A_trip Probability event of ‘‘KT1A’’ trip.
PHS−1A Probability event of breaker high-side

‘‘KT1A’’ operate.
PHS−1A−Tag Probability event of breaker high-side

‘‘KT1A’’ have ‘‘TAG’’ caution.
PLS−1A Probability event of breaker low-side

‘‘KT1A’’ operate.
PLS−1A−Tag Probability event of breaker low-side

‘‘KT1A’’ have ‘‘TAG’’ caution.
P51 Probability event of feeder overcurrent relay

operate.
P51T Probability event of transformer overcurrent

relay operate.
P87 Probability event of transformer differential

operate.
Pwatt Probability event of real power flow at deliv-

ery point.
Pvar Probability event of reactive power flow at

delivery point.
Pvolt Probability event of delivery point voltage.
Pcurrent Probability event of current flow through

delivery point.
SLG Single Line to Ground Fault.

I. INTRODUCTION
Restoration trip event is an essential function of the utility
control center. This feature will help minimize the inconve-
nience brought on by power outages. The effects of power
outages on Household electricity users will have difficul-
ties in their daily routines. Industrial power consumers will
impact the production process. The loading transformer is
the most crucial equipment in the electrical system, supply-
ing customers with electricity. When a loading transformer
trips out of the electricity system, customers in large areas
will be negatively impacted. Hence, in this study, the utility
control center must be able to determine ways to minimize
the time lost by customers due to power outages caused by
loading transformer trips. The utility company is in charge of
generating and acquiring electrical energy that will be deliv-
ered to the distribution company. The Loading Transformer

115/22 kV serves as the point of power delivery between
them. Once the power is delivered, the distribution company
will divide it into multiple feeders for further distribution [1].
The product is delivered by a loading transformer to the
substation delivery point. In Thailand’s central electrical
system area, electrical issues and power outages are most
common [2]. When utility control centers attempt to shorten
the average outage duration, customers experience power out-
ages [3], [4], [5]. The industrial customer group’s unplanned
outage cost is shown to be 8.5 US$/kWh. Flashover at the
loading transformer insulation support due to a common SLG
fault that causes power outages.

When the incident described above takes place, the loading
transformer protection system detects the anomaly. To guard
against damage, it prompts the open circuit breaker to cut
the loading transformer off from the power supply. Having
6,875.55 circuit kilometers of 500, 230, and 115 kV trans-
mission lines, Thailand’s company utility currently operates
a central electricity system (CKM), with 141 transformers
and 56 substations, totaling 32,489 MVA. The utility control
center employs the Supervisor Control and Data Acquisition
(SCADA) system to monitor and restore various measured
values at each substation in the electrical system when a
trip event occurs [6], [7], [8], [9], [10]. This enables the
center to control electrical equipment without overloading,
such as the electric power flow in the transmission line and
the transformer. An alarm text message on the SCADA will
appear when an electrical system anomaly takes place. The
utility control center presents these text message analyses
to monitor and determine which device is abnormal [11].
The relationship between the Fault section, the Status Circuit
Breaker, and the Status of Relay Protection at Operation
creates a diagram to analyze the Fault section, and a fuzzy
set is used to analyze the failure device [12]. A cause-effect
networkwas created to analyze SCADAalarmmessages [13],
[14]. The casual relationships are employed to establish a
substation automation system that analyzes protection relays,
including lockout, bus protection, transformer differential,
current, Buchholtz relays, and approaching equipment failure
at substations.

In 1961, while working for Bell Laboratories and the
United States Air Force Ballistics Systems, Watson estab-
lished the fault tree analysis (FTA) [15]. It is a type of failure
analysis through which the undesirable state of the system
is investigated. To understand the causes of system failures,
it performs risk analysis, determines the most efficient way
to minimize risk, and determines the event rates of a safety
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accident or a particular system-level failure; this method is
employed especially in the field of reliability and safety
engineering [16]. To establish a system fault tree, boundary
conditions and Boolean operators, which include ‘‘AND’’
Gate and ‘‘OR’’ Gate must be determined [17]. To simplify
mathematical and programming calculations, FTA converts
the system fault tree into a structure function [18]. By creating
a system fault tree with event symbols, FTA can be employed
to analyze five different types of faults that may occur in
power transformers. By utilizing the ‘‘OR’’ gate and ‘‘AND’’
gate, a bottom event can be operated [19]. FTA analyzes the
generator fault tree by employing the ‘‘IF-THEN’’ rule to
assist in creating a system fault tree. This type of analysis
leads to a rapid diagnosis and determination of accurate
charging device fault location [20]. By analyzing the SCADA
message alarm at the control center, FTA can differentiate
between the events that involve the loading transformers.
The trip is removed from the electrical system by examining
the bottom event, comprising the protection relay, which
includes the transformer differential relay and the overcurrent
relay [21], [22]. FTA provides a method for converting the
system fault tree to a structure function that can be mathe-
matically calculated [22]. It also offers failure probabilities on
fault trees and the application of Boolean algebra to resolve
the complexity of modeling large scale systems. After the
occurrence of a power outage due to the loading transformer,
the utility control center will implement a procedure known
as the load transfer procedure in order to restore the supply
of electricity. It takes a significant amount of time for the
initial LTR procedure to be completed, and the MW load
data that are utilized in the LTR procedure can deviate from
the actual data. This results in a loading transformer trip
with the overload protection tie [23]. It enables the overload
relay settings to be adjusted to 125% of the secondary full-
load current, which is the standard setting that ensures the
transformer is not damaged. Repeated instances of overload-
ing describe the varying loading states of the transformer
and how they influence the transformer’s loss of life [24],
[25]. Its capability to overload transformers to reduce normal
life expectancy loading shows the average temperature of
the equipment that affects the reduction in the transformer’s
lifetime. When a trip event occurs in the electrical system of
the utility control center, the primary objective is to make
the most efficient use of the time available to analyze the
SCADAmessage alarm and examine inwhich device the fault
occurred. After the root cause of the fault is found, the utility
control center will restore equipment not related to the fault at
the trip. Restoring the loading transformer in the case of a trip
cannot be energized immediately due to concerns that damage
may occur within the loading transformer while supplying
fault current during the fault. Therefore, it is necessary to
have the Dissolved Gas Analysis test (DGA), see the analysis
results first, and consider energizing the loading transformer.
The utility control center has LTR procedures to use another
loading transformer to supply MW load outage to reduce the

outage time required to wait for DGA. Forecasting techniques
are used to determine MW load data that will occur, such
as the double exponential moving average (EMA) and the
triple exponential moving average (TEMA) method, which
is a widely used approach in determining, for instance, local
water company revenue targets for the coming year, can be
utilized to carry out time series forecasting [27]. In building
air conditioning systems, TEMA has also been employed
as a load forecasting method [28]. Holt–Winters (HW) was
initially proposed in 1960 by Peter Winters, a student of
Charles Holt, and since then become the standard approach
in predicting the behavior of a sequence of values over time
(i.e., a time series). HW method is an exponential smoothing
method that can directly analyze seasonal time series.

Over the past few years, HW has been employed in the
process of forecasting various fields, which include but are
not limited to the following: cloud computing that supports
distributed services [29], Brazil patent deposits [30], air trans-
portation demand [31] and total Electron Content data [32].
In this study, we will present the formula for forecasting
the number of days for both the HW exponential smooth-
ing (HWS) additive and HWS multiplicative models. The
HWS method includes α, β, and γ parameters, whose values
range from 0 to 1. This study also presents the grid search
method for determining the values of HWS parameters via
loop calculations. In this method, each iteration adds all
three HWS parameters by increasing the value by 0.1, one
variable at a time, and selecting the three HWS parameters
that make the MAD at the lowest value [33], [34]. Trends,
cycles, seasonality, and irregular events are the components
of the time series dimension. Different characteristics will be
exhibited by the forecast input data in comparison to the four
aforementioned components [35]. HWS is a method that was
developed through the exponential smoothing technique [36].
It presents four types of time-series-based predictive models:
an exponential smoothing technique, an MAmodel, a regres-
sion model, and a neural network model. HWS forecasting
techniques that do not calculate the seasonality and ARIMA
model components to predict the number of tourists traveling
to Zambia are presented in this study [37]. The input data
for calculation in HWS is divided by window length into two
data ranges, namely, the training and the test sets, to calculate
forecasting [38]. HWS forecasts electricity usage a day in
advance using HWS. and ARIMA methods, with dataset
durations of 7, 14, 30, 90, and 180 days [39]. The genetic
algorithm must be employed in MATLAB to calculate the
HWS parameters. The HWS parameters α, β, and γ are uti-
lized to determine the most appropriate value that will result
in the most accurate prediction [40]. Using the solver toolbox
function in Microsoft Excel, the HWS parameter values with
the lowest mean square error (MSE) can be calculated. This
allows for the study of the investment, installation of the PV
rooftop, and utilization of the HWS for solar energy out-
put. Using the HWS method, important data can be updated
prior to employing them for calculation via the time series
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decomposition method [41]. Through the HWS method, the
number of passengers on the Shanghai subway in the short
term can be estimated [42], which allows for the extraction
of various types of passenger flow. In Spain, transmission
system operators can make an accurate prediction of future
energy demand using the HWS method [43]. For instance,
with 70 days of imported data and 48 days of forecasting,
the HWS method and MAPE can be employed to predict the
number of patients with coronavirus disease 2019 (COVID-
19) in India [44]. Using grid search by adjusting the values
of the three HWS method parameters, increasing them by
0.1 per cycle by performing 1,000 iterations and then calcu-
lating the HWS forecasts as well as the MAPE and root mean
square error (RMSE) tolerances for each iteration to select the
best values for all three HWS parameters from the available
options [45]. When making predictions about the manage-
ment of water resources, we employ the HWS multiplicative
and HWS additive methods [46]. Finding the HWS parameter
can be accomplished by minimizing the MAPE or RMSE
using the generalized reduced gradient algorithm (nonlinear)
[47], [48]. To solve the unconstrained optimization prob-
lems and adjust the HWS parameters, the limited-memory
Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) technique is
used. The HW method is the most effective for regular
trend prediction, which includes how energy consumption
shifts with the seasons and how it increases annually. When
calculating how to configure the hyperparameters in HW,
grid search, and the L-BFGS methods are utilized. This is
carried out to ensure that the prediction is as accurate as
possible. Before transferring the load to another transformer,
the amount of electricity consumed should be estimated by
applying the HW method’s exponential smoothing function.

A summary of the most important contributions of this
article is as follows:

1. The LTR procedure reduces the time customers
experience power outages due to the loading transformer
type 115/22 kV trip.

2. An automated tool that can connect with the SCADA
system at the utility control center to perform operations
rather than relying on the operator to evaluate the situation
is developed. The SCADA message alarm employs the FTA
technique to analyze the message to identify the most accu-
rate response in the shortest time.

3. The forecasted MW load for use in the LTR procedure.
This will prevent the loading transformer from having to
supply MW load, which will not resolve the power outage
because of continuous overloading, resulting in the electrical
system tripping out.

II. DECISION METHODS BASED ON POWER SYSTEM
A. FAULT TREE ANALYSIS
The FTA process converts a physical system into a structured
logic diagram, which is also known as a fault tree, in which
particular causes are shown to result in a single TOP event
of interest. The event and logic symbols are employed in

constructing the logic diagram. The ‘‘AND’’ and ‘‘OR’’ gates
are the two fundamental symbols; the ‘‘NOT’’ gate is an addi-
tional symbol that is utilized less frequently. To determine the
TOP events, a preliminary hazard analysis is used. The FTA
comprised three steps as follows:

1. Definition of the system
2. Construction of fault trees
3. Analysis of the fault tree

1) SYSTEM DEFINITION
To conduct a meaningful analysis, FTA originates from an
undesirable event statement, including a state of system fail-
ure. The three categories of fundamental system information
that are required are as follows:

1. Components and failure modes: The description of the
output stage of each component is influenced by the input
state of the component as well as the internal operating mode
of the component.

2. Components connected: identification of model the
relationships and dependencies between events leading to
a specific top-level undesired event. The connections are
represented using logical gates, and the structure forms a tree-
like diagram.

3. System boundary conditions: These conditions deter-
mine the extent to which the fault tree (map) will be drawn.
The system boundary conditions include the top event, the
initial conditions of events that are already occurring or not
permitted, and the tree top.

2) FAULT TREE CONSTRUCTION
FTA is a graphical representation that depicts the various
potential causes of a system failure or an undesirable event.
For fault tree construction, a systematic analysis of the sys-
tem, identification of possible failuremodes, determination of
causal relationships, and organization of this information in a
graphic representation that is both clear and coherent are the
steps necessary. Engineers can make informed decisions that
will improve the design and performance of a system by using
the fault tree that is produced. This tree can be employed to
evaluate a system’s risk, reliability, and safety.

3) FAULT TREE EVALUATION
The evaluation of the fault tree comprises two substeps: The
first is the qualitative evaluation, and the second is the quan-
titative evaluation:

1. Qualitative FTA: This is the first step in qualitative
evaluation, which determines the minimal cut, path sets,
and common cause failures. The deterministic methods and
the Monte Carlo simulation are two of the most important
approaches in determining the minimal cut sets for fault trees.

2. Quantitative analysis and criteria: As mentioned earlier,
reliability analysis is a probabilistic process; consequently,
to determine a meaningful value for the system’s reliability,
a comprehensive quantification of the system must be per-
formed. Since the logic of the system structure is composed
of a series of opposing logics, which are also known as failure
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logics, in FTA, the term ‘‘unreliability’’ is always employed
in place of ‘‘reliability.’’ For quantitative analysis, the unre-
liability can be understood as a value that complements the
reliability. The generation of the minimal cut sets is the initial
step in any FTA, as discussed in the preceding section. The
second step in the FTA process is determining which primary
event is the most unreliable by correctly assigning probability
values (data) to each primary event (component failures).

B. EXPONENTIAL SMOOTHING
Exponential smoothing is a family of forecasting methods
that can handle various characteristics of time series data.
There are several variants of exponential smoothing. The fol-
lowing are the primary categories of exponential smoothing
methods:

1. The level component is the only factor that is considered
in the single exponential smoothing (SES) method, which is
the most fundamental form of exponential smoothing. Time
series data that do not exhibit a discernible trend or seasonal-
ity are adjusted using this method.

2. Double exponential smoothing (Holt’s method): This
technique extends the capabilities of SES by incorporating
a trend component. This allows the method to capture the
direction and slope of the data. When there is no seasonality
in the time series, a downward trend should be observed.

3. Triple exponential smoothing (HW method): To extend
it further, a seasonality component is added to double expo-
nential smoothing. This method is called triple exponential
smoothing, which is also known as the HW method. It is
a method appropriate for time series data that exhibit both
trends and seasonality.

4. Additive and multiplicative seasonal exponential
smoothing: The HW method can be modified to handle both
additive and multiplicative seasonalities. This is referred to
as the ‘‘seasonal exponential smoothing strategy.’’ Decision-
making can be done by evaluating whether the magnitude of
seasonal fluctuations remains relatively constant (additive) or
changes proportionally with the level of the series. A decision
is made on the basis of this information (multiplicative).

C. UTILITY SUBSTATION
Specifically, the electrical system of Thailand is composed of
five distinct parts: 230, 115, 69, 33, and 22 kV. The voltages
were controlled by the utility company. This includes power
plants, transmission lines, substations, and delivery points.
To fulfill its obligation to supply the distribution company
with electrical energy, the utility company is responsible for
either producing or purchasing electrical energy. An indepen-
dent power producer, a firm small power produce (SPP firm),
and an SPP non-firm will be electricity suppliers in certain
regions. Substations, low-voltage transmission lines, and the
distribution company are where the distribution company
monitors electrical equipment. This monitoring extends from
the delivery point received from the utility company to the
customer power meter. The utility company substation’s bus
arrangements include the Breaker and a half, the double main

bus single breaker with transfer bus, and the main and transfer
bus. Factors including the level of flexibility required for
system operation, the level of cost considerations, the ease
of maintenance, and the requirements for system reliability
all play a role in determining the selected bus arrangement.
The selection of an arrangement must be based on electricity
consumption, the number of customer delivery points, and the
importance of customer load. Information on 53 substations,
68 loading transformers of type 115/22 kV, and 24 loading
transformers of type 230/115 kV are all part of the util-
ity company’s inventory as of January 2021. To investigate
the substation, with a pressure level of 115 kV, this study
employed the main and transfer bus model. The data pre-
sented above serve as the basis for this investigation. The
same substation boasts the installation of two loading trans-
formers of the 115/22 kV type.

D. DISTRIBUTION SUBSTATION
Bymonitoring electrical equipment, beginningwith the deliv-
ery point received from the utility company, low-voltage
substations, and low-voltage transmission lines, the distribu-
tion company is responsible for receiving power from the
utility company, lowering the voltage to 380 and 220 V, and
then delivering it to a large number of customers, including
residences, industrial plants, hospitals, and offices. Since
the distribution substation will have two incomings receive
power from the loading transformer and will be delivered
separately to the two customer groups, it will be separated
independently. Nevertheless, if one of the incoming trips
loses power, the distribution company will close the circuit
breaker to try the two customer groups together.

E. SCADA SYSTEM
The SCADA system is utilized in industrial control systems
and other applications to monitor and control various pro-
cesses, equipment, and systems [9]. A centralized computer
or server is typically included in a SCADA system. This
computer or server collects data from remote devices and
control systems through a communication network [8]. A user
interface is then used to display these data for monitoring
and analysis. The user interface can also send commands
back to the remote devices and control systems to carry
out actions, including turning the equipment on and off and
adjusting the parameters of the process. Typical applica-
tions for SCADA systems include the oil and gas industry,
the water and wastewater industry, the transportation indus-
try, the generation and distribution of electricity, and the
water and wastewater industry. To guarantee dependable and
secure operation, they are also utilized in the systems that
make up critical infrastructure, such as power plants [7] and
pipelines. SCADA systems are essential to modern indus-
trial control and automation procedures, providing operators
and decision-makers with real-time information and control
capabilities. However, SCADA systems are a potential target
for cyberattacks because of their widespread use and critical
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role [6]. Therefore, taking precautions to protect them from
such attacks is necessary.

In recent years, SCADA systems have been the subject of
significant research. Security is one of the numerous subjects
that are covered by this research. In addition to develop-
ing new security mechanisms and technologies for SCADA
systems, researchers have focused on identifying andmitigat-
ing security threats including cyberattacks and unauthorized
access. Enhancing the interoperability of SCADA systems
is another area of research that is being conducted. This
will allow seamless and efficient communication and data
exchange between various systems. Research on developing
new technologies and methods for remote monitoring and
control of SCADA systems has also been conducted. This
research has enabled operators to access and control the
systems at any time and from any location using the systems.

Furthermore, research on enhancing SCADA systems’
capabilities in data management and analysis has been carried
out. This has enabled improved inefficient decision-making
and operations. Real-time monitoring capabilities of SCADA
systems have also been enhanced through research. This
has made it possible for these systems to react rapidly to
shifting conditions and provide operators with timely infor-
mation. The human–machine interface of SCADA systems
has been the subject of research to make these systems
more user-friendly and intuitive to operate and improve
the overall user experience. These are some of the most
important research areas in SCADA systems. Due to the
constant introduction of new developments and technologies,
SCADA systems are becoming increasingly sophisticated,
highly secure, and efficient in their ability to control and
monitor industrial processes and systems.

III. THE CONTROL CENTER OF THE POWER SYSTEM
The utilization of company’s SCADA systems monitors
incoming events or alarms, controls and responds to com-
mands generated by those events, and collects, stores, and
records data. In Fig. 1, the diagram that depicts the data
transfers between the substation and the power system con-
trol center is constructed via three distinct data groups.
The first category comprises digital inputs. It is composed
of many annunciator alarms, including KT1A WINDING
TEMP ALARM STATE 1, KT2A BUCHHOLT ALARM,
KT1A MAJOR TROUBLE, and KT2A KWH LOSS OF PT.
It represents the current status of the circuit breaker between
closing or opening and the annunciator alarm. It displays the
trip event and the operating protective relays when the trip
occurs in the electric system. The second group is composed
of analog inputs. All of the values that have been measured
at the substation are transmitted to the control center of
the power system [10], which includes the voltage, current,
power, and tap position of the transformer. The third group
includes digital outputs. It involves commands to CLOSE or
OPEN circuit breakers, RAISE or LOW tap position com-
mands of the tie transformer and loading transformer, and ON
or OFF commands and protection devices including recloser

relay, under frequency, relay under, and voltage relay. It also
comprises all of the commands the operator provides at the
power system control center. The ‘‘SINGBURI’’ 115 kV of
the utility substation is depicted in a single-line diagram,
as shown in Fig. 2, including the primary and transfer bus
strategy. This particular substation is equippedwith ‘‘KT1A,’’
which is equipped with a high-side breaker known as ‘‘7012’’
and a low-side breaker known as ‘‘2212,’’ to supply the
‘‘PEA#1’’ delivery point, and ‘‘KT2A,’’ which is used to
supply the ‘‘PEA#2’’ delivery point. The measured analog
values, such as the voltage, MW, andMvar of the transformer
and the transmission line, are also displayed in the figure
below. A red square box represents the digital values that have
been measured, such as the closed status of a circuit breaker.
As for the open status of the circuit breaker, a green box is
used to represent the open status. Furthermore, this figure
shows the equipment status after ‘‘KT2A’’ tripped out of the
electrical system. This confirms that the transformer trips
out of the electrical system, the high- and low-side circuit
breakers trip, and the analog load value ‘‘KT2A’’ equals 0.
A ‘‘TAG’’ is what SCADA is designed to do to prevent
an operator from controlling a digital point while they are
located at one of the power system control centers. An ‘‘ON–
OFF’’ relay protection, a recloser relay, and a communication
carrier for a distance relay are some examples of what can
be prevented. An ‘‘OPEN–CLOSE’’ circuit breaker and an
order should be prevented. At the transformer tap position,
‘‘RAISE–LOW’’ is displayed. If the device is damaged or if
it is being operated by maintenance, the control center will
attach a ‘‘TAG’’ to it. If the abnormal message alarm indicates
an open circuit breaker and the circuit breaker itself has a
‘‘TAG,’’ then there is an open circuit breaker that must be
maintained. There has been no trip event that has occurred in
the electrical system.

FIGURE 1. Schematic data flow at the control center.

If a trip event occurs, the SCADA system allows the
control center to monitor the status of the power equip-
ment in the electrical system and provides a solution to
the problem. Fig. 3, which illustrates the ‘‘ALARM ALL’’
command, presents six columns. The alarm sounded at
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6:31 a.m. on January 24, 2019. A trip transformer designated
as ‘‘KT1A’’ can be found at the SATTAHIP 1 substation.
By utilizing an electrical apparatus, the operator of the control
center performed an analysis and interpreted the trip event.
In this scenario, we assume that any abnormal occurrences,
including a loss of loads, a failure in communication, or a trip
in the transmission line, take place simultaneously. In such
a scenario, numerous incoming alarms will occur, and the
trip transformer will be displayed throughout the process.
Because of this, the operator might become confused and fail
to screen and investigate the factors that led to the occurrence
of the events.

FIGURE 2. Utility substation bus arrangement of ‘‘SINGBURI’’ 115 kV.

FIGURE 3. SCADA annunciator alarm when transformer ‘‘KT1A’’ trips.

The Man Machine Interface (MMI) console for the oper-
ator, five consoles, and four monitors are depicted in Fig. 4,
which illustrates the hierarchical architecture of all operating
software applications. There is a practical program called
‘‘Power Application,’’ which collects data and displays volt-
age deviation, as well as the ‘‘DDT Viewer’’ tool. Using a
‘‘Report Generator,’’ the digital and analog values of the data
are automatically recorded at regular intervals of 30 min and
saved in the CSV format. ‘‘Data Processor’’ is a computation
result generator for analog values such as the VA value,

percentage of the rated values, and current and trend graphs.
Additional examples of these types of values include the VA
value. ‘‘Display Converter’’ is a tool for converting measure-
ment data from the remote terminal unit (RTU) of substations
to be displayed on the MMI console for the operator to con-
trol. An alarm that occurs is managed by a component known
as the ‘‘Alarm Processor.’’ Furthermore, the abnormal alarm
classification communicates with the RTU of each substation,
sending and receiving information, updates, and scanning the
alarm. Its sound pattern is distinct from a regular ‘‘DACA-
gent’’ alarm. The status circuit breakers, alarm events, and
relay protection operations in substations are the sources of
‘‘DI’’ (digital input).

Moreover, in substations, SCADA displays on MMI con-
soles are created using ‘‘AI’’ (analog input) data, including
the voltage, current, watt, and var, and ‘‘AO’’ (analog output),
which is brought from the control room to the substa-
tion. Examples of the latter include the close–open circuit
breaker and the raise–low tap position of the transformer.
The SCADA power control center will sound an alarm
whenever there is a problem with the power system. Among
the various types of alarms, digital point-types are included.
These types of alarms include information about the open
circuit breaker status, active protection relay information,
and alarm type. The voltage–current measurement is either
higher or lower than the average amount (MW,Mvar). Owing
to the numerous electrical devices connected to the modern
electrical system, alarms are frequently triggered from vari-
ous pieces of equipment, and sometimes, they are triggered
simultaneously. In addition to processing digital and analog
point alarms, the SCADA application ‘‘Alarm Processor’’
helps filter and display alarms. It displays significant alarms
as text with color and sound that are distinct from those of
other alarms.

FIGURE 4. SCADA application and MMI console.

IV. LOADING TRANSFORMER PROTECTION RELAY
Detecting fault events in electrical equipment necessitates
the use of measurement quantities including currents and
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voltages. The current transformer measures current, and the
potential transformer measures voltage. The protection relay
is responsible for obtaining and treating these two mea-
surements accordingly. Fig. 5 shows a portion of the Bay
loading transformer depicted in Fig. 2. The current trans-
former, potential transformer, and relay at the installation
location are all displayed on this screen. A 115/22 kV loading
transformer with the designation ‘‘KT2A’’ has circuit break-
ers with the designations ‘‘E’’ and ‘‘F’’ on the high and low
sides, respectively. It is the 22 kV voltage level referred to as
the delivery point, and it is the 115 kV voltage level connected
to themain grid. From here, the distribution company receives
power. A protection system primarily operates quickly while
isolating only the defective equipment from the rest of the
electrical system. Put another way, the information about the
electrical system that surrounds the electrical equipment that
must be protected is measured by the current and potential
transformers. The data from the measurements are then sent
to the relay to be processed from there. For instance, assume
that the prerequisites for the occurrence of a fault, such as
a relatively high electric current, are met. In comparison to
the norm, the direction of the electric current is different.
The relay will determine whether there is a problem with the
electrical equipment and if a low voltage occurs. The relay
will send a command to open the circuit breaker to separate
the malfunctioning electrical equipment from the rest of the
electrical system.

The electrical power system control center cannot be
immediately energized if the loading transformer trips out
of the electrical system. To verify the equipment’s zone of
differential relay (87k1) flashover traces, it is necessary to
wait for the maintenance unit to perform an inspection ini-
tially. The insulator that supports the apparatus deteriorates.
Oil stains can make their way into the transformer, or the oil
in the transformer might require inspection by someone from
DGA. If the loading transformer trips, the electrical power
system control center must devise a load transfer plan rather
than a restoration transformer back plan. This is to shorten the
amount of time that power is out. A wide variety of protection
devices can detect various faults, and these devices are used
for loading transformers. As shown in an illustration, the
‘‘87k1’’ transformer differential relay can determine irregu-
larities in how electricity is transmitted through a transformer.
If the ‘‘51T’’ overcurrent high-side relay detects abnormal-
ities in the magnitude of the high current flowing through
it, it will alert the user. The Buchholz relay, pressure relay,
and oil flow relay that make up the ‘‘86 × 1’’ transformer
self-protection relay are responsible for detecting any issues
or faults within the transformer.

V. LOAD TRANSFER PROCEDURE
The utility company and the distribution company are respon-
sible for controlling the electrical equipment shown in Fig. 6.
The utility company supervises and controls the device that
is located above the blue dotted line. Conversely, the distribu-
tion company is in charge of the electrical equipment below

FIGURE 5. Overall protection of the transformer in the main and transfer
bus arrangements.

the blue dotted edge. The utility company utilizes the ‘‘main
and transfer’’ bus arrangement pattern. The 115/22 kV load-
ing transformers in this substation are designated as ‘‘KT1A’’
and ‘‘KT2A,’’ and each has a capacity of 50MVA. The square
symbol represents a circuit breaker. The black square repre-
sents the status of the closed square. In contrast, the white
square highlights the open status. Sixty-eight delivery points
are supplied to the distribution company by 33 substations
in the central region of Thailand. These are referred to as
the ‘‘main and transfer’’ distribution system. Two feeders are
supplied by ‘‘KT1A,’’ which are made up of loads with four
load points, that is, LP1, LP2, LP3, and LP4. Alternatively,
three feeders are supplied by ‘‘KT2A,’’ which are composed
of four load points, namely, LP5, LP6, LP7, and LP8. That
‘‘KT1A’’ will not be connected with ‘‘KT2A’’ in the electrical
system of distribution companies is the result of the agree-
ment, which stipulates that ‘‘BVB-01’’ will always be in an
open status. The process of load transfer for the ‘‘KT2A’’ trip
will begin only after the distribution control center receives
the notification of the ‘‘KT2A’’ trip confirmation event from
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the utility control center and information regarding the trip
event, which includes the date and time of the event. The
operator verifies that circuit breakers ‘‘7042’’ and ‘‘2222’’
are open, determines the type of protection relay that is
functional, and obtains information about the MW load of
‘‘KT1A’’ and ‘‘KT2A.’’

FIGURE 6. Single-line diagram when ‘‘KT2A’’ trips.

In the first method, which is referred to as ‘‘moving the
load within the same substation,’’ the distribution company
has two options. Carrying out this method will take approx-
imately 3 min. To deliver the LP5-LP8 load, the distribution
control center will open ‘‘2BVB-01’’ and then close ‘‘BVB-
01.’’ At this point, the power will be turned off to pick up
from ‘‘KT1A.’’ The second method involves moving the load
to a location that is not the source of the substation operation.
When moving in this direction, the maintenance team must
drive the vehicle to the switching load break switch, which
causes the process to take longer thanwhenmoving in the first
direction. Given the distance between the location and the
power source, bringing the power from another location takes
approximately half an hour. This method is only employed
when the combined load of ‘‘KT1A’’ and ‘‘KT2A’’ before
the trip is greater than 50 million volts of air. The overload
will cause damage to the ‘‘KT1A’’ if the load is moved using
the first method, which is the most common method. The

‘‘YS-2’’ load break switch will be closed once the distribution
company has determined the source of the trip and the amount
of power being consumed. The load is recommended to be
moved from LP5–LP8 to Substation ‘‘D’’ instead. The load
is transferred from one location to another within the same
substation. The ‘‘KT1A’’ loading transformer risks experi-
encing an overload trip because of this, but it is possible to
provide a fast service. Fig. 7 shows the traditional loading
transformer restoration procedure case. The procedure has
14 steps, starting when the loading transformer trips out of
the electrical system and ending when the distribution control
center switches and transfers the outage customer to receive
MW load from the neighboring loading transformer. This step
is referred to as the LTR, which is carried out by the utility
control center, responsible for Steps A1–A12 functions. The
distribution control center is responsible for the functions of
Steps A13–A14.

FIGURE 7. Traditional loading transformer restoration procedure
flowchart.

During the period beginning on January 1, 2018, and end-
ing on December 31, 2018, the utility control center has
recorded nine instances of loading transformer event statis-
tics, as indicated in Table 1. LTR is composed of 12 steps
and takes an average of 433 s. When the utility control center
is in operation, the SCADA system frequently displays the
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text of the message alarm. In the case of the capacitor bank,
shunt reactor, transmission line, bus, tie transformer, loading
transformer, BESS, and SVC, for instance, the alarm text
notifies the voltage level that the delivery point is either
higher or lower than the MW Mvar control threshold. This
occurs in electrical devices near the rated or message alarm
text. This is a result of electrical equipment-producing trips.
The SCADA receives a wide variety of alarm texts every time.

This study focuses solely on the 115/22 kV loading trans-
former event during its investigation. ‘‘A1’’ is the operator’s
procedure when the alarm messages appear on the SCADA
in the control center. This procedure involves the operator
reading the alarmmessage text row by row and then analyzing
what causes the loading transformer trip event following the
reading.When the operator is in ‘‘A2,’’ they will first examine
the text of the alarm message, then determine the substation’s
location, and finally examine the layout of the substation.
The A3–A6 procedure is a procedure for confirming that
the loading transformer trip is actually out of the electrical
system. ‘‘A3’’ is when the operator opens the SCADA alarm
message summary page to view the text line by line. While
the event occurred, the protection relay worked and checked
if the protection relay that operated as the protection relay
of the loading transformer caused the trip event. ‘‘A4’’ opens
the substation layout to inspect the high-side status and the
loading transformer’s low-side circuit breaker. ‘‘A5’’ checks
for every circuit breaker in ‘‘A4’’ without TAG, whereas
‘‘A6’’ checks for the analog value of the loading transformer
consisting ofMW,Mvar, current, and voltage. All valuesmust
be equal to 0. After confirming the data in steps ‘‘A3’’–‘‘A6,’’
the conditions have been completed, indicating that the load-
ing transformer is tripping out of the electrical system. Next,
the ‘‘A7’’ step will be the first one to inform the distribution
control center about the preliminary trip event. The data that
will be sent to the distribution control center will include the
date that the event known as the loading transformer occurred,
the name of the substation, and the protection relay that is
currently operating. A SCADA application called ‘‘Report
Viewer’’ is opened when the ‘‘A8’’ operator is activated. This
application is utilized to view analog data in reverse. A time
limit of 30min has been included. The operator first opens the
substation layout and records the MW load data, the period
before the event of the loading transformer, the trip, and
the period yesterday. Finally, the operator orders the Query
Application, which takes approximately 25 s to query. This is
the procedure known as ‘‘A9.’’

The MW load data of the neighbor loading transformer
from yesterday and the time period before the trip’s occur-
rence is recorded by the section labeled ‘‘A10.’’ At the
distribution control center, which contains data comprising
the MW load of the loading transformer that trips out of
the electrical system and the neighbor loading transformer
that supplies the transfer load, the procedure known as
‘‘A11’’ informs the distribution control center about the trip
event information. The operator opens the line application,
enters the trip event detail information, and then sends it to

Maintenance Term Contact to fix it as quickly as possible.
This is the procedure known as ‘‘A12.’’ In procedure ‘‘A13’’
of operation following the receipt ofMW load data, the distri-
bution control center will calculate the impact of transformer
overloading and plot out the process of load movement. The
distribution control center has two options for accomplishing
this task: The first one is to move the load within the same
substation, and the second one is to move the load between
substations by switching the load break switch. Both of these
options are available to the distribution facility. The switching
and transfer load was completed in ‘‘A14.’’ The LTR process
was found to have three limitations, as described in this
study: It takes a significant amount of time for the utility
control center operators to monitor and analyze the text of the
message alarm, execute query data at the ‘‘Report Viewer,’’
search for and record MW load data, and comply with the
requirements of ‘‘LTR.’’

As a result of the large number of message alarms that
are displayed, the operators are accustomed to monitoring
SCADA alarms, which have the potential to be incorrect. The
utility control center uses MW load data from before the trip
event and yesterday to calculate the MW load that will be
transferred to the neighbor loading transformer. The data used
in this calculation must be highly accurate.

TABLE 1. Time used in the conventional procedure of 115/22 kV
transformer load transfer.

VI. FAULT TREE ANALYSIS
The modern electrical system comprises an ever-increasing
number of apparatuses, such as transmission lines. To
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accommodate the increasing load, a new substation will be
established besides adding a transformer. More electrical
equipment will be connected to the electrical system, which
will increase the frequency of abnormal alarms during events
that involve high–low analog voltage at the main bus and high
voltage values at distribution points. For instance, a trans-
mission line or tie transformer operates at 115 or 22 kV of
power flow. The daily load curve changes at various points
throughout the day, impacting the analog values. This occurs
when a maintenance circuit breaker or protection system is
in operation during the period. It transfers from the control
center’s close–open capacitor bank connectivity to the power
system for abnormal digital alarms, trips out of the system,
or appears in other equipment. It also appears in varying
power system equipment. Assume that >25 messages appear
on SCADAdisplay devices simultaneously and that abnormal
alarms occur frequently. If this is the case, the operator at
the control center will examine the abnormal text alarm to
identify the component of the electrical system that makes the
trip, requiring a significant amount of time to diagnose com-
plicated problems. Moreover, the operator may incorrectly
diagnose the occurrence. The decision tree technique is the
foundation for the FTA, which describes the cause and impact
of an event. It will be organized as a tree, with a root node
that represents the top-layer decision node. These branches
contain the decision node or the significant cause and leaves
that contain the event being considered. To determinewhether
the outcomes are true or not, the FTA requires the true and
false subevent inputs and then analyzes them. In the present
study, FTA was utilized to analyze abnormal alarms. It refers
to the root node, which is the event that causes the loading
transformer to trip out of the system. Conversely, the leaf node
is for the 1, 2, 3, and 4 instances of the loading transformer
that occur for the decision node. It is possible to combine
leaf node events by utilizing the ‘‘AND’’ and the ‘‘OR’’ gate
conditions. The event or leaf node is represented by the green
circle at the bottom of the diagram, while the leading cause,
also known as the root node, is represented by the red square
at the top of the diagram.

Fig. 8 illustrates the abnormal alarm that is included in the
electrical system. ‘‘AND,’’ ‘‘OR,’’ and ‘‘NOT’’ are examples
of logic gates that are utilized by a decision node to connect
many events. Considering that it analyzes and comprehends
images, FTA is a user-generated model that is easy to con-
struct. There are a significant number of events, associated
events, and FTAs that can be utilized for root cause analysis.
Given that the loading transformer trips are not mutually
independent, the FTA 1 figure illustrates the investigation of
the Trip 1 loading transformer event. This means that a single
trip of a loading transformer will not cause other loading
transformers to trip. There is only 1 the loading transformer
in existence. This study examines an electrical system with
68 loading transformers installed in central Thailand. To eval-
uate each loading transformer connected to the power supply
of the electrical system, the authors developed 68 FTAs.
Three primary cause groups are provided to facilitate the

process of designing systems that incorporate experiences.
The initial sequence of occurrences is associated with the
status of the circuit breaker tag on the loading transformer,
which can be described as ‘‘Close’’ or ‘‘Open’’ and ‘‘On’’
or ‘‘Off.’’ This event is performed to maintain the circuit
breakers. Group 2 includes both the event check that is
employed to identify the analog value of the loading trans-
former and the protection relay event that causes the loading
transformer to trip. This group comprises the event caused
by the protection relay. Several types of flow fall under this
category, which includes wattage flow, var flow, current flow,
and delivery point voltage. Event A’s probability of occurring
is abbreviated as P(A). There are two possible outcomes for
each of the events described in this study: ‘‘0’’ indicates that
Event A does not occur, and ‘‘1’’ indicates that Event A
transpires. The joining event uses logic gates as operators
despite FTAs comprising branches and multiple events. For
instance, for Event C to occur, both Events A and B must
take place. Specifically, the ‘‘AND’’ gate is employed in this
scenario, as depicted in (1). To carry out event operations, this
study uses the ‘‘OR’’ logic gate, represented in (2). There are
several types of transformer protection relays, including the
‘‘51T’’ overcurrent high-side relay, the ‘‘87k1’’ transformer
differential relay, the ‘‘86 × 1’’ transformer self-protection,
and the ‘‘51’’ low-side overcurrent relay protection. With
a ‘‘NOT’’ gate function, (3) generates an event associated
with the ‘‘TAG’’ symbol of all loading transformer circuit
breakers. Equation (4) shows all events of the loading trans-
former trip ‘‘KT1A’’ or P(1A_Trip). A ‘‘KT1A’’ trip out
of the system occurs if the result of calculating the events
in (4) makes the result P(1A_Trip) equal to 1. This program
employs Python to convert the abnormal alarms generated by
the SCADA system into Event P(A) and then transmit this
information to the FTA to analyze the trip event.

P(A and B) = P(A ∩ B) = P(A) ∗ P(B) (1)

P(A or B) = P(A ∪ B) = P(A) + P(B) (2)

P(Not A) = P̄(A) = 1 − P(A) (3)

P(1A _Trip) =
{
P(HS) ∗ P̄(HStag) ∗ P(LS) ∗ P̄(LStag)

}
∗

{
P(51T ) + P(87k1) + P(86x1) + P(51)

}
∗

{
P(Voltage) + P(current) + P(Watt) + P(Var)

}
(4)

where P(i) ∈ [0, 1] is the probability of occurrence of the ith
SCADA event.

VII. TIME SERIES FORECASTING METHODS
Time series forecasting methods make predictions about the
load data associated with the loading transformer triggered by
the electrical system. The essential step is to utilize this load
information in the planning process for assigning electricity
consumers who experienced a power outage to another load-
ing transformer. Assume that the predicted load data are lower
than the actual load data. In this case, the loading transformer
will have to be transferred to the other loading transformer
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FIGURE 8. Fault tree analysis of ‘‘RATCHABURI 1’’ KT1A trip.

with a higher supply, which will cause overload problems
and trip from the power system. Moreover, assume that the
load data are predicted to be higher than what occurs. In this
scenario, the distribution company will require additional
time to switch equipment to transfer the load to a loading
transformer located at another distribution substation, which
results in an extended power outage. When using load data
from the previous day, planning of transfer, and transferring
the load, the load data may be inaccurate owing to the weather
conditions, modifications made to the distribution grid for
maintenance, or the movement of the load from one location
to another. The production capacity of smaller solar power
plants connected to the distribution grid remains unclear.
Owing to these factors, the load data from the day before is
not accurate when compared to the data of the current day.

The time series forecast method was selected to predict
the load data in this study to eliminate fluctuations due to
the external factors mentioned earlier. The most recent data
points are given greater weight and significance by an EMA,
which is a type of MA that differs from an MA in terms
of weight and importance. An exponentially weighted MA
responds more strongly to recent changes in data than a
simple MA (SMA), which gives the same amount of weight
to every observation taken during the period. One of the most
important distinctions between an EMA and an SMA is the
degree to which each one is sensitive to variations in the data
used in its calculation. The EMA emphasizes recent prices
more, whereas the SMA gives equal weight to all values.
The two averages are comparable because technical traders
frequently use them to smooth out price fluctuations and
interpret them in a relatively similar manner. Considering that

they give more weight to recent data than to older data, EMAs
are more responsive to recent changes in data than SMAs.
The TEMA, an advanced version of the EMA, is designed
to reduce lag and provide a more responsive MA. An EMA
already gives more weight to recent prices, but the TEMA
applies the triple smoothing technique, which takes this con-
cept even further.

Compared to traditional MAs, the TEMA provides trend
information that is smoother, more accurate, and more reli-
able. It incorporates multiple levels of smoothing to get
rid of the lag that is associated with MAs that are more
straightforward. Users frequently utilize TEMA to recognize
trends, patterns of reversal, and possible entry or exit points
within the data. This study utilizes two prediction methods:
the triple EMA method [27], [28] and the HWS method.
The HWS method is a powerful technique that manages
several components of time series data (level, trend, and
seasonality) and adapts to various situations that require
prediction. The HWS has also produced excellent results
with low forecasting errors, especially when seasonality is
present. When time series data is complex with trends and
seasonality, The HWS produces more accurate forecasts
than simpler methods. Multiple components help it cap-
ture data patterns and variances. The Holt-Winters technique
is a common trend- and seasonality-capturing forecasting
algorithm.

There are two types of recurring behavior for data on
power consumption: a daily recurrence, which includes an
increase in electricity use between 05:00 a.m. and 06:00 a.m.,
08:00 a.m. and 12:00 a.m., 01:00 p.m. and 04:00 p.m., and
06:00 p.m. and 08:00 p.m., and a decrease in power use
between 08:00 a.m. and 04:00 a.m. In general, Thailand is
divided into three distinct seasons, which begin at the begin-
ning of each year. Winter is the 4th month with the lowest
electricity usage and then transitioning to summer, which
starts in April, with the highest electricity usage. Afterward,
the rainy season arrives, which has lower electricity usage.
To enable the operator to make use of the control of the
electrical system, analog values such as active power (W),
reactive power (var), current (A), voltage (V), and tap position
will be transmitted to the SCADA system and displayed on
a monitor located at the power system control center. These
files will be stored in CSV format once SCADA has shown
them. Between 00:00 and 23:30, the information is saved in a
single file, updated every 30 min. The operator control center
can view historical data of the mw load data by opening the
personal computer and then opening the shared folder of the
SCADA enterprise: Select the folder year, choose the folder
month, and then select the date to view the file CSV format.
On January 1, 2018, the control center had 59 substations and
8,860 analog values that needed monitoring and controlling.
The SCADA system will record any 30-min interval begin-
ning at 00:00 a.m., 00:30 a.m., 01:00 a.m., . . . , 11:00 p.m.,
and 11:30 p.m. for a total of 48 times. ACSVfile that contains
all analog values and has a dimensional size of [8,860∗336]
in [Row∗Column] is stored by SCADA on a daily basis.
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The process of calculating TEMA will start with (5). The
choices made in this study for smooth = 2 and period =

7 resulted in an alpha value of 0.25 for smoothing factors,
which has a value between 0 and 1. The selection of smooth-
ing factor value the most recent data are given a higher
weight when the smoothing factor value is 0.1, and applying
a smoothing factor between 0.2 and 0.3 will produce a result
that strikes a balance between smoothness and responsive-
ness. As with a straightforward MA, a smoothing factor
0.5 assigns the same weight to every data point. An EMA that
is smooth and less responsive to recent changes is indicated
by a smoothing factor greater than 0.5. This indicates that
older data are weighted more than more recent data. The
calculation process makes use of Equations 18–20, where the
values are the outcomes of the calculation that was performed
using Equations 6–8. These values are referred to as the
linear, exponential smoothing value, the double exponential
smoothing value, and the triple exponential smoothing value
of the time series, respectively, in period T . The parameters
are referred to by their names, and they are the smoothing
model parameters of the TEMA method that are calculated
using Equations 9–11. The value is the forecast interval,
which in this study provides a forecast of 48 values or data
every half hour for 1 day. It is the value that is anticipated at
the point in time from the time series (12).

α =
smooth
1 + k

(5)

S(1)
t = (α ∗ Yt ) + (1 − α) ∗ S(1)

t−1 (6)

S(2)
t = (α ∗ S(1)

t ) + (1 − α) ∗ S(2)
t−1 (7)

S(3)
t = (α ∗ S(2)

t ) + (1 − α) ∗ S(3)
t−1 (8)

at = 3S(1)
t − 3S(2)

t + S(3)
t (9)

bt =
α

2(1 − α)2

[
(6 − 5α)S(1)

t − (10 − 8α)S(2)
t

+(4 − 3α)S(3)
t

]
(10)

ct =
α2

(1 − α)2
(S(1)
t − 2S(2)

t + S(3)
t ) (11)

Ft+m = at + btm+
1
2
ctm2 (12)

Alpha (α), beta (β), and gamma (γ ) are the three HWS
parameters that are utilized in the HWS approach. These
parameters, also referred to as the smoothing components,
have values ranging from 0 to 1 and illustrate the behavior of
the data. An initial calculation of the internal values of level
(Ls), trend (bs), and seasonality is performed by HWS using
Equations 13–15. Following this, the subsequent calculation
is performed using Equations 16–18. MW load forecast-
ing can be quantified using Equation 19 because Thailand’s
electricity demand forecast data ‘‘pdp2018’’ and the level
component of information on central Thailand’s electricity
use made it possible for this study to make use of the HW
additive model. Four different kinds of errors are employed
to evaluate the performance of the models that are being
tested. A well-known method for determining the disparity

between what a model or estimator predicts and what occurs
is the measurement of MSE is depicted in (20). The fields of
statistics and machine learning make use of it. To evaluate
how accurate a prediction or estimate method is, MSE is
designed to measure its effectiveness. When the MSE is low,
the model or estimate is more effective in making predictions.
In the context of time series forecasting and regression, the
mean absolute error (MAE) shown in (21), as well as the
MAPE, are utilized to evaluate the accuracy of predictions.
The difference between the values that were expected and
those that were observed is quantified in slightly different
ways by each of them. MAE is the measure of the average
absolute difference between predicted and observed values.
RMSE is typically called the ‘‘root mean square’’ shown
in (22) because it computes the square root of the average
of the squared differences between the expected values and
those observed. Squared errors can be quickly identified
using the square root after the converted data units.

Ls =
1
s

s∑
i=1

yi (13)

bs =
1
s
(
ys+1 − y1

s
+
ys+2 − y2

s
+ . . . +

ys+s − ys
s

)

(14)

S1 = y1 − LS (15)

Lt = α∗(yt − St−s) + (1 − α)∗(Lt−1 + bt−1) (16)

bt = β∗(Lt − Lt−1) + (1 − β)∗bt−1 (17)

St = γ ∗(yt − Lt ) + (1 − γ )∗St−s (18)

Ft+m = Lt + mbt + St (19)

MSE =
1
T

T∑
i=1

(Fi − Yi)2 (20)

MAE =
1
T

T∑
i=1

|Fi − Yi| (21)

RMSE =

√√√√√ T∑
i=1

(Fi − Yi)2

T
(22)

where

Yi is the measurement load data
Fi is the forecast load data
s is the length of the seasonal cycle = 48
T is the length of the test set = 48 points/day ∗ 7 days

= 336

Fig. 9 depicts the imported data and the prediction data
generated via the HWS method. Moreover, the import data
utilized in the forecast is represented by the blue line on the
graph. The following two categories can be used to classify
these data: 365 days are referred to as the training set for the
first set, and 7 days are referred to as the test set for the second
set. The date of the trip event is relevant. One can observe it
on the dotted line, located in the area where the orange line

116314 VOLUME 12, 2024



R. Taksana et al.: Design of Power Transformer Fault Detection of SCADA Alarm

displays the proposed data. A full-day alpha, gamma, and
beta are the three HWS parameters. The values fall within
the range of 0 to 1. Within this study, the datasets for each
HWS parameter are defined. There are 10 numbers involved:
α = 0.1, 0.2. . . , 1.0, β = 0.1, 0.2. . . , 1.0, and γ = 0.1, 0.2. . . ,
1.0. All of these numbers represent individuals as part of the
sorting process according to Table 2; an iteration of setting the
value of the HWS parameter is performed. When the results
of the calculations for MAE,MSE, and RMSE are the lowest,
the HWS parameter value that produces the best forecast
result within a total of 1,000 iterations is determined. This is
performed to ensure that the results are accurate. Data on the
MW load of the loading transformer ‘‘KT1A’’ are displayed
in the top graph of Fig. 10, covering 372 days before the trip
date.With aWindows time of 30min, these data are available.
As shown in the graph below, the MAE calculation result of
the 1,000 iterations with different HWS parameter values was
found at Iteration No. 800. The values of α, γ , and β were
found to be 0.9, 0.1, and 0.1, respectively, which resulted in
a minimum MAE value of 0.306511.

FIGURE 9. Training and test sets and forecasting of ‘‘KT2A.’’

TABLE 2. Settings for the holt–winters model parameters.

Table 3 and Fig. 11 illustrate the application developed for
this study, referred to as ‘‘Pyauto1.’’ It consists of 17 steps.
Using the Automate tool to replace the operator’s work at the
utility control center was the goal of this application, which
was developed to solve the LTR problem of reducing the

FIGURE 10. MAE, MSE, and RMSE results using the grid search method.

amount of time spent in ‘‘LTR,’’ locate the actual MW load
informationwithout causing it to be distorted, and accomplish
this goal. Pyauto1 will use the FTA technique to analyze to
confirm that the loading transformer trip occurred from the
electrical system. It will automatically retrieve the data from
the SCADAmessage alarm every 60 s, then convert each line
of themessage alarm to P(x) and calculate the P(1A_Trip) and
P(2A_Trip) of every loading transformer. If any P(1A_Trip)
or P(2A_Trip) value is found to be equal to 1, it means that a
trip event has occurred in the electrical system. The next step
is Pyauto1 forecasting of MW load using two methods. The
first method is called TEMA. Calculate the forecasting value
of the MW load of the loading transformer at trip, denoted by
F(TEMA, TX_trip). Then calculate the forecasting value of
theMW load of the neighboring loading transformer, denoted
by F(TEMA, TX_LTR). Pyauto1 then calculates the sum of
F(TEMA, TX_trip) and F(TEMA, TX_LTR) to be F(TEMA,
TX_trip+TX_LTR). The HMS additive method is the second
approach used to calculate by using grid search to adjust the
three HWS parameters to produce forecast results that are
as close to reality as possible. The HMS additive method
calculates F(HWS, TX_trip) and F(HWS, TX_LTR) to be
F(HWS, TX_trip+TX_LTR). The loading transformer trip
between March 2021 and November 2021 is presented in
Table 4. The findings show that the processing time for certain
events could take up to 190.1 s.

VIII. ABNORMAL ELECTRIC LOAD CURVE PROBLEM AT A
DELIVERY POINT IN THAILAND
In this study, the subject was found to be interesting after the
authors collected the active power or MW load data of the
115/22 kV loading transformer, which had 68 installations
in substations in central Thailand. The Matplotlib Library,
a Python program, was used to generate a 365-day plot
graph by using data from the year 2020. Compared with the
standard graph, the graph revealed that specific data must be
adjusted. Several pieces of information, for instance, were
abruptly reduced to 0. Eventually, the data went back to its
initial value, or the MW data went from being excessively
high to extremely low in a short amount of time, and then,
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TABLE 3. Flow chart of the pyauto1 application.

it went back to its initial value. Both forecasting methods
TEMA and HWS, when imported, will result in inaccurate
forecasting results if unusual data are used in the forecasting
process. Consequently, they brought about high values for
MSE, MAE, and RMSE.

The temporal abnormality pattern of MW data can be
classified into four different patterns, as shown in Fig. 12,
based on the data collection results. A specific time period
was found to have a value of 0, according to Pattern 1, which
was discovered. Afterward, the data returned to normal as
more time passed. There is a momentary failure in the com-
munication system that connects the substation to the control
center, or SCADA equipment, such as the MPU and analog
card is temporarily down. In some instances, maintenance
work is performed on the substation’s communication sys-
tem. On certain days of the year, which occurred at different
times throughout the year, Pattern 2 discovered that the MW
data decreased and had values lower than usual for more
than 24 h in a row. There is a significant difference between
the pattern of the graph and the regular pattern of data col-
lected in the past. The number of behaviors that fall under

FIGURE 11. Flowchart of PyAuto1 using TEMA and HWS with grid search
technique.

TABLE 4. Time used of hws grid search technique in Pyauto1.

Pattern 2 is <20% of the normal range, but it is not equal
to 0. It is discovered during special holidays in Thailand,
such as the Songkran Festival or significant religious cere-
monies, which will be holidays for 3–5 days in a row, causing
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businesses that use electricity to stop the production process
in factories located in various industrial estates. According
to Pattern 3, the MW data either decreased or increased,
which was a departure from the initially collected data. When
the distribution company changes the route configuration of
the transmission line to perform maintenance on electrical
equipment or when there is a trip incident and equipment
is damaged, it typically takes place between 8:00 a.m. and
4:00 p.m. most of the time. Alterations are made to the MW
load of the two loading transformers due to the distribu-
tion company’s transfer of customers who receive electricity
from the loading transformer to another transformer. Pattern
4 is the final pattern, comprising MW data that are either
extremely high or extremely low at a specific time. Later on,
things went back to how they were before. Interruptions or
data packet losses, instrumentation errors, electrical noise,
and other problems can be due to communication failures,
which are links between the substation and the SCADA
system. Using TEMA and HWS techniques to send data
Patterns 1 and 4 as initial data for forecasting, the forecast
results will be different from reality because the data patterns
contain information irrelevant to the forecast’s purpose. Con-
sequently, the first step in the forecasting process is to employ
the following steps of the EMA forecasting technique. After-
ward, the study will explain how to filter and separate the data
in Patterns 1 and 4 from the dataset.

FIGURE 12. Four patterns of load data distortion in transformers.

Table 5 presents the algorithm for filtering and removing
distorted data developed for this study. This algorithm fil-
ters and removes distorted data before sending good data to
TEMA and HWS to calculate forecast values. This algorithm
has six steps, beginning with step ‘‘C1,’’ which will retrieve
MW load data from SCADA enterprise for the past 365 days.
Next, step ‘‘C2’’ will calculate the forecast value of MW
load for 1 day, which has 48-time values from 00.00 a.m.
to 11.30 p.m., using the EMAwith an α value of 0.25. Finally,
step ‘‘C3’’ will calculate the forecast value of the MW load

for the next day. An upper line with a value of 130% of the
EMA and a lower line with 30% of the EMA are created by
step ‘‘C3’’ by utilizing the results of step ‘‘C2’’ regarding
the EMA. After the addition of the upper line, a solid blue
line, and the lower line, a solid orange line, the data for the
loading transformer’s 2-MW load is plotted together with the
data for the MW load. Fig. 13 illustrates this phenomenon.
It was found that the MW load data graph of any day could be
considered distorted if the values were either higher than the
upper line or lower than the lower line. TheMW load data that
are more significant than 130% or less than 30% is recorded
in step ‘‘C4,’’ which searches the data imported in step ‘‘C1’’
by recording the dates. A step labeled ‘‘C5’’ will delete days
that contain distorted data and import data for other days to
replace them in an amount equal to the number of deleted
days. Following the recalculation of the EMA in step ‘‘C6,’’
the steps ‘‘C3,’’ ‘‘C4,’’ and ‘‘C5’’ are repeated in the same
order until the input data does not contain any distorted MW
load values.

TABLE 5. Procedure: Filter abnormality curve pattern algorithm.

FIGURE 13. MW load of the loading transformer with the addition of the
upper line and the lower line by the EMA method.

IX. LIMITED-MEMORY BFGS ALGORITHM
An alternative to the BFGS algorithm, the L-BFGS
algorithm is a method that approaches the purpose of high
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TABLE 6. Time used in the load transfer procedure when using python
automate version 2.

memory requirements when considering large-scale opti-
mization problems. Although it does not explicitly store
the inverse Hessian matrix, the L-BFGS algorithm uses a
limited-memory approach to approximate it. Within the con-
text of the L-BFGS algorithm, the inverse Hessian matrix is a
matrix that represents the second-order partial derivatives of
a function. This matrix is utilized to determine the curvature
of the function at a specific point. An approximation of the
inverse Hessian matrix is constructed by making use of a
restricted amount of memory and basing it on the gradients
and steps that have been taken by the algorithm in the past.
A small amount of memory is utilized to make an approxima-
tion of the inverse Hessian matrix by using the gradients and
steps that have been taken by the algorithm in the past. In the
subsequent iteration of the algorithm, the search direction
computed by the inverse Hessian matrix is utilized to locate
the minimum of the function (the minimum). To find the three
HWS parameter values that result in the lowest RMSE, this
study has used the L-BFGS algorithm rather than the grid
search method to solve the problem identified. The calcula-
tion steps begin with initializing an estimate of the inverse
Hessian matrix (23), typically the identity matrix. Next, the
computation of the gradient of the objective function (24) at
the current state is performed. An algorithm known as the
line search algorithm (25) determines the appropriate step
size toward the negative gradient. Bring the current state up
to date by (26). To determine the difference between the old
and new gradients, perform the calculation (27). To update the
inverse Hessian estimate, use the formula (28) derived from
the secant equation. This formula involves a low-rank update
that uses the gradient difference and the step. Until conver-

gence or a criterion is reached, continue moving forward with
proceedings.

H0 = I (23)

gk = ∇f (xk ) (24)

αk = argminα>0 f (xk − αgk ) (25)

xk+1 = xk − αkgk (26)

gk+1 = ∇f (xk+1)

sk = xk+1 − xk (27)

yk = gk+1 − gk
Hk+1 = (I − pkskyTk )Hk (I − pkyksTk ) + pksksTk

pk =
1

yTk sk
(28)

X. PYTHON AND LINE API APPLICATION
Python is an open-source software that includes text cutting,
arranging, connecting, and conditioning. It is a programming
language that combines remarkable power with clear syntax.
As it is free, a significant number of unique Python libraries
have been developed. Using the Python programming lan-
guage, this study uses the Matplotlib plotting library. You
can use it to create graphs and plots in two dimensions.
It is used with NumPy arrays to facilitate matrix opera-
tions and complicated mathematical calculations. We also
use the line-bot-SDK library to send messages through
the line application on a mobile phone. Python’s speedy
processing is another language advantage, making it an
ideal choice for analyzing incoming alarms with multiple
co-occurrences.

Currently, the control center of the utility company is
responsible for monitoring 56 substations, which have 9,538
analog point values and 80,249 digital points. The Line appli-
cation is a program that is available for free. It is utilized
by utility companies as an alternative to SMS because it is
more cost-effective than SMS. Graphics, still images, and
moving pictures can all be transmitted using this device. Like
social media, but more like social networks, it is a form of
online communication. It is a mobile application that can
be downloaded on various smartphone devices, including
Android and iOS phones. It can also be downloaded on
desktop computers, laptops, and tablets that run Microsoft’s
Windows and Mac OS operating systems. Users can com-
municate with one another through the use of text messages.
Utilizing the application program interface, the Line Notify
service allows the application developer to send notifications
to personal accounts or groups from the service itself or any
devices connected to the internet (API). Support for the Thai
alphabet, the ability to send messages to many recipients,
and accessibility are all advantages of Line Notify. Line
Notify is similar to SMS notifications on mobile phones in
that it is not expensive. We employed the Line Application
on the Python platform to keep the maintenance staff and
distribution company control centers informed about trip
events.
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FIGURE 14. Flowchart of Pyauto2.

XI. PROCESS OF THE PROPOSED METHOD
Fig. 14 shows the flowchart of Pyauto2, an application devel-
oped from Pyauto1. It was designed to improve forecasting
results, increase response efficiency, and decrease the amount
of time the application takes to work. This was accomplished
via the L-BFGS method in the HWS technique. The L-BFGS
system used the Update 3 HWS parameter method rather
than the grid search approach. When a trip occurs, Pyauto2
calculates the best three HWS parameters that have been
prepared rather than performing every new calculation. This
helps reduce the amount of time spent on the application. Two
distinct sections comprise Pyauto2: The first consists of steps
C1–C10. This section is executed once a day. In this section,
the best three HWS parameter values are calculated and
prepared for use in the subsequent section. Steps C11–C23
will determine whether a trip event has occurred, compute
the forecast, and transmit the results to the mobile phone. The
working time in Part 1 will be initiated by Pyauto2 at 00:15
in the morning. Data will be documented between the hours

of 00:00 and 00:12 a.m. to avoid any potential overlap with
SCADA operations. These operations will record the electri-
cal system equipment of the previous 24 h of that day in the
file CSV format database. Pyauto2will establish a connection
to SCADA enterprise as soon as 00:15 a.m. The MW load
values for the past 372 days must be determined. To filter the
input data, the EMA values in Step C2 must be calculated.

This study includes the definitions of smooth = 2 and
period= 7. To calculate the 24-hMW load forecast, the EMA
method must be used. Then, the results from the EMA must
be employed to create the upper line, which will be 130%
of the EMA, and the lower line, which will be 30% of the
EMA. The upper and lower lines must be considered to check
and filter the MW load value for 372 days. The data on days
when the MW load value is greater than the upper line and
less than the lower line must be eliminated. This applies to
days where the upper line is higher than the lower line. In C4,
the initial value of three HWS parameters, which include α,
β, and γ , should be set to 0.5.

VOLUME 12, 2024 116319



R. Taksana et al.: Design of Power Transformer Fault Detection of SCADA Alarm

FIGURE 15. Pyauto2 results displayed on mobile.

FIGURE 16. Group B data show the MW load curve of the TX_trip.

Afterward, the calculation process must be started using
the additive Holt–Winter method, with the training set equal
to 365 days and the test set equal to 7 days. Calculating
the MAE, MSE, and RME tolerances for the given values.
Pyauto2 will then utilize the L-BFGS technique in Step C7
to update three HWS parameters to generate the MAE, MSE,
and RMSE values that are the lowest possible. If the three
HWS parameters become suitable, it will cease updating the
three HWS parameters. When steps C2–C10 are completed
until the 68 loading transformer, the process is considered to
have begun in Part 1. Pyauto2 Part 2 is an application that con-
stantly conducts checks to identify any abnormal occurrences
that may be occurring in electrical systems. This begins with

FIGURE 17. Results of group C data of event 1.

FIGURE 18. Results of group C data of event 5.

procedure C11, an FTA equation of 68 equations explicitly
created to analyze the loading transformer trip. Step C12:
The working time that will be used to retrieve the message
text alarm from SCADA at a rate of once every minute is
determined. Each retrieval time will retrieve approximately
10 to 25 lines that will then be repeated. In the 13th step,
the application will convert each line of message text alarm
into P(x1), P(x2), . . . , P(xn) and then use these values to
calculate the P(x). Confirming the results of the calculation
for 68 equations of P(x). If any P(x) has a value equal to 1, this
indicates that the loading transformer event designated as ‘‘x’’
has been tripped out of the electrical system. If Pyauto2 Part
2 employs the FTA technique to check the message text alarm
and determines that a trip event has occurred, it will record
information such as the date and time, the name of the sub-
station where the event took place, and the name ‘‘TX_trip.’’
Pyauto2 searches for ‘‘TX_LTR’’ within the knowledge base
during Step C17. By considering the circumstances that arise
when a loading one transformer trips, loading transformers
that can supply power to replace the load in the event of a
power outage are determined.
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FIGURE 19. Displays group ‘‘C’’ data results for events in which TX_LTR
does not supply overload.

FIGURE 20. Display on the operator’s mobile phone.

Pyauto2 uses the TEMA method to compute the MW
load forecast. These calculations begin with the calcula-
tion and then estimate the MW load values of the two
load transformers, namely, F(TEMA, TX_trip) and F(TEMA,
TX_LTR). The next step is to compute the value F(TEMA,
TX_trip+TX_LTR), which is derived from the sum of
F(TEMA, TX_trip) and F(TEMA, TX_LTR). The value
F(TEMA, TX_trip+TX_LTR) represents the MW load value
of the loading transformer ‘‘TX LTR’’ responsible for sup-
plying the power outage rather than the loading transformer
tripping. To generate a 24-h MW load forecast, Step C20
makes use of the TEMA method. Using the HWS method,
the forecast is created in Step C21. This is accomplished by
calculating the three HWS parameters earlier in the step. This
calculation uses Section C10, which significantly reduces
the time required. HWS first computes the values F(HWS,
TX_trip) and F(HWS, TX_LTR), and then, it computes the
values F(HWS, TX_trip+TX_LTR), and finally, it generates

a graph showing the results. The final step, part 2, of Pyauto2
is to send 24-hour MW load forecast graph data on the
day of the Loading Transformer trip event. This data con-
sists of Graph1, which is the MW load of ‘‘TX-trip,’’ and
Graph2, which is the MW load, the sum of ‘‘TX_trip’’ and
‘‘TX_LTR,’’ sending information with Line Notify to the
Mobile Phone of the operator, the Distribution Company, and
the Maintenance Term.

XII. RESULTS AND DISCUSSION
Suppose the loading transformer trips event takes place on a
particular day. In that case, the results of Application Pyauto2
are the 24-h MW load forecasting graph of the loading trans-
former associated with the LTR procedure. After the trip
event was identified, the results of Pyauto2 are displayed in
Fig. 15. Each of the three data groups, namely, groups A, B,
and C, can be applied to the display comprising one message
and two images. Group A will display information regarding
the trip event, including the name of the ‘‘TX_trip’’ that
occurred during the trip, the name of the substation that was
created as a result of the trip, and the date that the event took
place. MW load graph data of the ‘‘TX_trip’’ is included in
Group B shown in Fig. 16. A graph of the data obtained from
the sum of theMW load between ‘‘TX_trip’’ and ‘‘TX_LTR’’
is used to create Group C. A graph in Group C is depicted
in Fig. 17, which consists of four graph lines displaying
the results from 00:00 to 23:30. In Graph 1, the red dotted
line depicts the rating of the loading transformer. Between
‘‘TX_trip’’ and ‘‘TX_LTR’’ before the 1-day trip event date,
the total data of the MW load is displayed on the second
graph line, which is the blue line. The forecasting sum using
the TEMA technique method for MW load is displayed on
the green line on the third graph line. This sum is calcu-
lated between ‘‘TX_trip’’ and ‘‘TX_LTR’’ on the day of the
transportation event. Utilizing the MW load HWS method,
the forecast sum data between ‘‘TX_trip’’ and ‘‘TX_LTR’’
on the day the trip takes place is displayed on the fourth line
of the graph, which is the black line. A display is also made of
the maximum MW load data for each of the four graph lines.
The Pyauto2 method produces a MW load graph as close
to reality as possible on the day of the loading transformer
trip event. This is an improvement over the previous method,
which involved the operator at the control center using MW
load data from the last day to plan LTR. To calculate the
forecast results, Pyauto2 employs the HWSwith the L-BGFS
method, which is more accurate than the HWS with the
grid search method that Pyauto1 employs. Because the MAE
calculation yielded a result of 0.4576, the MSE was 0.3996,
and the RMSEwas 0.6084. The processing time of Pyauto2 is
64.88 s on average, significantly faster than that of Pyauto1,
which is 172.51 s on average. The operator at the control cen-
ter uses theMW load totals graph data obtained from Pyauto2
between ‘‘TX_trip’’ and ‘‘TX_LTR.’’ Considering that if the
sum is greater than the red dotted line or the rated equipment
line, the control center operators are required to inform the
distribution center to bring the power outage MW load from
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other external loading transformer substations. This prevents
loading transformer trips with overload relays immediately
following LTR. The automatic transmission of trip event data
to the individuals involved in repairing and editing the loading
transformer and the operator at the control center is one of
the advantages of Pyauto2. This will result in a reduction in
the amount of time that is spent on the LTR process being
carried out. Figs. 18 and 19 show the results of Group C data,
and Fig. 20 shows the data from pyauto2 displayed on the
operator’s mobile phone in the utility control center.

XIII. CONCLUSION
The LTR procedure is a procedure that the utility control
center utilizes to restore energy if a 115/22 kV loading trans-
former trip occurs from the electrical system. To resolve the
issue of reducing the amount of time required for the LTR
process, this study incorporates three different tools: FTA,
HW with the L-BFGS optimization algorithm (HWS), and
Line Notify. Shortening the amount of time spent in the
LTR process will reduce the amount of time customers are
subject to power outages. In the analysis process, the FTA
technique takes the place of the operations that the operator
currently performs at the utility control center. Numerous
abnormal message alarm occurrences occur on the SCADA
system to differentiate and confirm the loading transformer
event. These occurrences occur in six steps (A1–A6), which
are reduced to 10 s. FTA will minimize the number of
person-hours operators need to put in and produce more accu-
rate results than using humans for analysis. The process of
locating MW load data to calculate the load transfer from one
loading transformer to another is an essential step in the LTR
process to achieve the closest possible prediction of the MW
load following a trip event. EMA, which is utilized to calcu-
late changes in short-term data, and HWS, which is employed
to calculate changes in data that have a recurring pattern
over time, are the two methods proposed in this study for
MW load forecasting. This forecasting technique will replace
the previous method, which used 1 day’s historical data to
calculate load transfer. The rationale behind this change is
to ensure that overload trip problems are avoided after the
LTR step. This study proposes a method to find and extract
distorted MW load data to get the correct MW load data
sent to the EMA and HWS forecasting methods that will be
calculated in the subsequent step. This intends to resolve the
problem of distorted MW load data that has been occurring
in Thailand’s central region electrical system. For screening,
the technique involves first bringing all the imported data
to estimate the EMA value and then bringing the EMA
value created to create the upper and lower lines. The HWS
forecasting technique is suitable for use with the data on
electricity usage from 22 kV power distribution points. These
points show recurring changes around the pattern of electric-
ity usage and temperature changes that occur seasonally and
annually. Calculating the values of α, β, and γ , which are
parameters in HWS, is accomplished by utilizing the L-BFGS
optimization algorithm in this study. If the optimal parameter

is obtained, HWSwill compute the most precise forecast with
the least amount of forecasting error. Because it can replace
two operators for all LTR procedures and takes less time
than conventional methods, the Pyauto2 can reduce the num-
ber of person-hours taken into consideration. Pyauto2 will
automatically detect the SCADA abnormal message alarm,
and it will then take the time to analyze the message on
the loading transformer trip out of the electrical system. The
values of the MW load forecast for the TX_trip and TX_LTR
will be displayed. Pyauto2 will carry out this. Because of the
ease with which this graph can be read, the control center
will be able to view the information after the trip, which
will prevent the loading transformer trips from overloading
after the LTR.

Finally, as a methodological extension of this work,
we plan to study several issues, such as Issue 1: Reduce
the effects of the variance on the renewable solar plant
with an installed capacity of less than 8 MW linked into
a 22 kV electrical system, which could potentially impact
the forecast error. Issue 2: Develop Pyauto2 to be able to
analyze other equipment, such as analyzing main bus trip
events, 230/115 kV loading transformers, or substations with
a breaker and a half bus arrangement that is equipped with
multiple protection relays. Many types and more complex
functions include breaker failure relay, bus differential relay,
or distance relay zone backup. Issue 3: develop the fuzzy
relation technique to analyze the SCADA alarm instead of
the FTA to solve the problem of the FTA’s limitations in
the issue of the protective relay not working properly as
designed. Malfunctions or some digital point alarms are not
sent to be displayed on the SCADA at the utility control
center.
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