IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 15 July 2024, accepted 10 August 2024, date of publication 20 August 2024, date of current version 4 September 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3446708

== RESEARCH ARTICLE

A Neural Network Architecture for Maximizing
Alpha in a Market Timing Investment Strategy

JAVIER H. OSPINA-HOLGUIN“! AND ANA M. PADILLA-OSPINA"2

lDepartment of Accounting and Finance, Universidad del Valle, Cali 760042, Colombia
2Depa.rtment of Administration and Organizations, Universidad del Valle, Cali 760042, Colombia

Corresponding author: Javier H. Ospina-Holguin (javier.ospina@correounivalle.edu.co)

This work was supported in part by Universidad del Valle under Grant *“Convocatoria Interna 131-2021 para presentacién de Proyectos de
Investigacién y Creacion Artistica en las Ciencias, las Artes, las Humanidades, las Tecnologias y la Innovacién.”

ABSTRACT In finance, assuming more risk often corresponds to the expectation of higher, compensating
returns. In this setting, alpha stands out as one of the most prevalent and refined measures of risk-adjusted
return ever postulated, allowing for the estimation of the excess return that cannot be explained by the
risk factors impacting an asset. This article introduces a neural network architecture designed to formulate
an investment strategy with the explicit goal of maximizing alpha. The strategy, centered around market
timing, determines on a daily basis, based on past returns of the risky asset, whether to fully invest in the
risky asset or opt for the risk-free alternative. The neural network architecture comprises two components: a
policy network for strategy implementation and an evaluation network for long-term alpha computation
during parameter optimization. Employing value-weighted US size decile portfolios as risky assets, the
study achieves significant out-of-sample alphas ranging from 3.6% to 8.2% per year under the ¢° asset
pricing model (with a transaction cost assumption of one basis point). By construction, these alphas are not
generated by risky asset growth. Robustness tests yield similar results with equal-weighted decile portfolios
or under the Fama and French six-factor asset pricing model. Variations in transaction cost, number of past
returns used as inputs, policy network design, or training sample size produce similar outcomes. This study
underscores the effectiveness of reinforcement learning-inspired techniques in uncovering alpha in financial
markets.

INDEX TERMS Alpha, asset pricing, reinforcement learning, stock returns, investment decisions, random
walk hypothesis, market timing, machine learning, artificial intelligence.

I. INTRODUCTION the return on that risk-free asset at the close of the trading
Financial alpha is generally considered the main aspiration day.

of active money managers [1, p. 28]. This article introduces a
neural network architecture capable of automatically trading
to maximize alpha as measured by a given asset pricing
model. The alpha-maximizing neural architecture is able to
represent a market timing algorithm constructed from daily
return data. Each day, it decides whether to invest the entire
account balance in a risky portfolio and earn the daily return
on that portfolio at the close of the trading day or to instead
invest the entire account balance in the risk-free asset and earn

The associate editor coordinating the review of this manuscript and

approving it for publication was Chun-Wei Tsai

Alpha, in finance, denotes the additional return that an
asset generates compared to a specific benchmark. Typically,
the benchmark reflects the expected return based on a given
asset pricing model. Alpha represents the return above what
the asset pricing model expects the asset to generate, given
its exposure to given asset pricing factors. These factors are
typically interpreted as sources of risk and are believed to
explain the return of any asset. In modern times, alpha has
become one of the most important measures of risk-adjusted
return (see Section II).

Many previous works in the computer science literature
on trading algorithms have shown little connection with the

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

VOLUME 12, 2024

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

119445


https://orcid.org/0000-0002-0103-3280
https://orcid.org/0000-0003-3859-8741
https://orcid.org/0000-0003-0128-4052

IEEE Access

J. H. OSPINA-HOLGUIN, A. M. PADILLA-OSPINA: NEURAL NETWORK ARCHITECTURE

finance literature [2]. This is evident when algorithms opti-
mize for total return without considering risk. Any reasonable
financial approach requires risk considerations in one way
or another. While maximizing profit may seem desirable,
algorithms that do so without accounting for risk fail to
distinguish between high risk-adjusted profitability and high
profitability resulting from taking more risk and simply get-
ting lucky.

When risk is considered in the literature on stock market
trading algorithms, common risk-adjusted measures of return
are used, most frequently the Sharpe ratio and expected utility
(see Section III). These measures are often formulated based
on desirable mathematical properties. While they are not
inherently flawed, they do not fully capture the significant
advancements in asset pricing, especially in empirical asset
pricing.

Empirical asset pricing seeks to understand and model
financial returns using empirical data. The field aims to
identify the factors that actually impact an asset’s return
based on evidence. For instance, despite being derived from
first principles and reasonable mathematical assumptions, the
CAPM, considered the first and most basic asset pricing
model, was soon found to be empirically incorrect in asset
pricing tests [3].

To illustrate the dimensions of today’s financial land-
scape, the financial literature has already identified over
450 financial anomalies. Each of these anomalies repre-
sents unexpected (abnormal) returns systematically present
across the entire market [4]. In other words, each anomaly
is an empirically identified, documented, and in principle
validated source of impact on asset returns. This landscape
has given rise to what is colloquially known as the “fac-
tor zoo” [5], an enormous set of potentially new asset
pricing factors believed to determine the returns of any
asset.

With the passing of time, new anomalies and compet-
ing asset pricing models have been continually introduced
and tested against the backdrop of previous anomalies
and established models. This ongoing research has directly
influenced the development of parsimonious asset pric-
ing models, which attempt to summarize the impact of
most factors and serve as the basis for calculating alpha
today. Therefore, alpha, as derived from these modern
parsimonious asset pricing models, represents the culmina-
tion of empirical knowledge and contemporary perspectives
on explaining the risk-adjusted profitability of assets and
portfolios.

Modern parsimonious asset pricing models are thus more
refined than ever and are robust to the multitude of system-
atic abnormal returns empirically encountered. For instance,
out of the hundreds of documented anomalies, approxi-
mately 65% could not be replicated by [4]. However, of the
150 anomalies replicated by [4], the ¢° model used in this
article is capable of explaining all but 23 at standard sig-
nificance levels, or 6 at more stringent significance levels

119446

that account for data mining [6].! Generating alpha within
the framework of modern asset pricing models is deemed
challenging enough that several companies have incorporated
it into their names, such as Alphabet® (the parent company
of Google) and Seeking Alpha (“‘a crowd-sourced content
service for financial markets’”).

Additionally, various studies on funds suggest that they
are unlikely to consistently achieve alpha, except for a lim-
ited subset of such funds [7], [8]. Similar opinions are held
regarding individual investors [9]. The significant rise in the
popularity of passive investing [10] and smart beta invest-
ing [11] underscores the inherent difficulty in consistently
generating alpha through active management. Moreover, for
institutional investors like hedge funds, alpha emerges as one
of the crucial performance measures today, alongside several
variants based on it [1, pp. 27-32].

Although it is difficult to determine whether the alpha
of a particular investment portfolio is a return generated by
active investing or if it is due to the use of an inadequate or
incomplete factor model, a question that remains unanswered
is whether investment portfolios that maximize alpha through
market timing can be automatically constructed when alpha
is measured using a prespecified asset pricing model.

The present article provides a positive answer to this
question. Previous literature on trading algorithm strategies
had largely overlooked alpha, along with other important
financial principles. Our literature review revealed only two
instances of alpha-optimization trading algorithms: [12],
[13]. This article aims to fill this gap in the literature by
developing trading strategies that leverage sound financial
principles, with the use of alpha as a risk-adjusted measure
of return being its primary strategy.

In this context, the contributions of this article are as
follows:

First, this article presents the first nontrivial neural network
architecture that enables the automatic design of algorithms
to maximize alpha based on a given asset pricing model by
exploiting patterns in a certain input information set. By using
alpha as a performance measure, the resulting algorithm
achieves an abnormal return beyond what is expected based
on the asset pricing model used, by design. In our frame-
work, it is trivial to modify or reuse the algorithm so that
it maximizes alpha in a better asset pricing model if the
currently used asset pricing model is deemed to be incorrect
or incomplete. After all, as the saying goes, “‘one person’s
alpha is another’s beta’ [14], meaning that estimated positive
alphas could arise in insufficient asset pricing models that
would disappear in more complete models with additional
risk factors—a problem similar to the omitted variable prob-
lem in regressions [14]. In our proposal, it is also easy to
optimize alpha using other types of past information, even

n a robustness check, we also employ the popular six-factor Fama—
French model with RMW [58].
2See https://abc.xyz/.

VOLUME 12, 2024



J. H. OSPINA-HOLGUIN, A. M. PADILLA-OSPINA: NEURAL NETWORK ARCHITECTURE

IEEE Access

though we only use short-term past returns to make trading
decisions.

Also following financial practices, the profitability
achieved through the algorithm introduced here is measured
from a zero-cost arbitrage position. This position involves
being long on the asset that the algorithm indicates should be
bought (the risky portfolio or the risk-free asset, depending on
the case) and short on the underlying portfolio, which is the
risky portfolio. In other words, the earnings of the original
underlying portfolio are subtracted from the position taken
by the algorithm each day. The advantage of this method-
ology is that it allows measuring the intrinsic profitability
of the investment rule and not simply the profitability of
the underlying portfolio that is used to invest. For example,
if all the algorithm does is buy and hold the underlying
risky portfolio for the entire investment period, the return
on the zero-cost arbitrage position each day will be zero,
and so will the alpha. Often, when a zero-cost arbitrage
position is not used when trading and an algorithm reports
high returns, it is almost impossible to distinguish whether
this is due to the performance of the algorithm itself or
because the portfolio on which the algorithm is based has
increased the algorithm’s performance. For instance, during
an investment period in which the underlying portfolio is
only increasing, a profitability measure that does not use
a zero-cost arbitrage position may suggest that a buy-and-
hold algorithm is excellent, given that the algorithm would
have simply ridden the ‘“growth wave” of the underlying
portfolio value. However, in reality, such an algorithm did
not earn anything beyond what the underlying portfolio was
earning, and no one would pay much for such an algorithm,
since it is useless in comparison to just buying the underlying
portfolio.

Similarly, the algorithm we propose to optimize alpha
takes into account transaction costs by design. This ensures
that the achieved alpha is viable considering a certain level
of transaction costs. While this paper uses a low overall
transaction cost (though accessible even to non-institutional
investors through modern brokerage firms such as Inter-
active Brokers LLC), it is essential to consider transac-
tion costs in trading algorithms a priori. Some authors
do not consider transaction costs [15], or only report
breakeven transaction costs (BETC)? [12]. However, it is
important to factor in transaction costs from the outset,
as they can influence and alter the optimal trading strategy
choices.

Finally, the alpha reported in our results is calculated
out-of-sample and using several distinct portfolios in var-
ious conditions. Therefore, the data used to construct the
algorithm were not employed to calculate the reported alpha.
This strengthens the evidence that the alpha reported in this
work is genuine and not simply an artifact of data snooping
or overfitting.

3The breakeven transaction cost is the highest transaction cost that the
algorithm can tolerate without incurring losses.

VOLUME 12, 2024

Il. ALPHA: BASIC BACKGROUND
This section reviews the concept of alpha and its interpreta-
tion for readers who may not be familiar with it.

In finance, alpha represents the additional return that an
asset generates beyond a specific benchmark. Typically, this
benchmark is estimated by the expected return predicted by a
particular asset pricing model.* In a conventional (static and
linear) asset pricing model, the expectation of any risky port-
folio’s excess returns r is expressed as a linear combination
of expected premiums:

E[r]=BiE[n]+ -+ BE[w]. (D

Alpha can then be measured as the non-expected return « by
estimating the linear equation:

rr=a+ By + -+ Brvie + &1, )

using ordinary least squares (OLS), where¢t = 1,...,T.

Typically, asset pricing models are interpreted in terms of
risk. In this context, y; = (Vlt)thl is interpreted as a column
vector representing the risk premium varying over time for the
[-th risk factor, with /=1, ... ,k. The scalar 8;, on the other
hand, represents the amount of asset exposure to the /-th risk
factor. The term &; represents idiosyncratic risk, assumed to
have an average value of zero. Thus, the scalar constant o
denotes the (abnormal) return obtained above (or below) the
chosen asset pricing model benchmark. This return cannot
be explained by the risk factor exposures in the asset pricing
model. (For this reason, it is also called the pricing error.) If
the asset pricing model is correct and fully explains the return
of every risky asset, o is expected to be zero for any given
asset.

For example, in the basic capital asset pricing model
(CAPM) [16], [17], where k = 1, there is a single risk
premium and a single risk exposure. The risk premium in the
CAPM is the market risk premium, representing the excess
return of the market portfolio. A simple numerical example
using the CAPM may better illustrate the meaning and impor-
tance of alpha (and beta). Suppose we have a risky asset X
with an excess return X of 15% per annum and a risk-free
rate of 3% per annum. Therefore, the risky asset has a (raw)
return of 15%+-3% = 18% per annum. This may seem like an
excellent investment. However, the perspective can be quite
different when accounting for risk exposures.

Relative to the one-factor CAPM model, we can compute
alpha (and beta) by running the following time-series regres-
sion for asset X:

I’,X = o + BmkerMke + & 3)

The only risk factor in the CAPM, given by ryys, is the
excess return of the market. This factor ryik,; measures the

4In our case, the “asset return” is represented by the return—in excess—
of the market timing algorithm applied to the underlying risky portfolio
minus the return—in excess—of that same underlying portfolio. The term
“in excess” denotes that the return of the risk-free asset is subtracted from the
original raw return. However, according to our previous definition of “‘asset
return,” original raw returns may be used instead of excess returns since the
risk-free rate gets canceled in the subtraction.

119447



IEEE Access

J. H. OSPINA-HOLGUIN, A. M. PADILLA-OSPINA: NEURAL NETWORK ARCHITECTURE

movement of the market’s excess return as a whole. The
market beta term, Bpk, represents the exposure to the market
risk factor. For example, if the regression (3) for asset X yields
an estimated Bwvk of 0.8, this indicates that when the market
moves up (or down) by 1%, asset X ’s excess return will move
in the same direction by 0.8 x 1% = 0.8%.

If the CAPM is the correct asset pricing model, the esti-
mated o should be zero for every asset. Suppose that asset
X actually has an estimated alpha of zero, an estimated beta
of 0.8, and the aforementioned excess return, r,X , of 15% per
annum. While the asset’s performance seems quite impressive
in terms of excess return, the value of alpha reveals that it is
not. After all, asset X simply moves up (or down) in the same
direction as (and probably in response to) the movements
of the whole market. An investor could achieve exactly the
same excess return by simply investing 80% of her portfolio
money in a low-cost market index and holding 20% in cash.
No advanced investment techniques are required to replicate
the excess returns of asset X.

On the other hand, consider a very different set of assump-
tions. Suppose that X actually has an estimated alpha of 15%,
an estimated beta close to zero, and assume the same excess
returns for X of rX = 15% annually. In this case, it makes
no difference whether the entire market goes down or up; the
excess return will always be (on average) 15% per annum.
Furthermore, it will be impossible to replicate this return by
simply investing a constant amount of money (over time) in a
market index and the rest in cash. Knowing how to replicate
X’s return is now not only highly non-trivial but also highly
desirable. If the only major risk in investing, as recognized
by the CAPM, is the movement of the overall market, then
asset X is indeed immune to that risk and will always deliver
a 15% annual excess return regardless of what happens in
the market. This is perhaps why Pedersen [1, p. 28] asserts
that alpha is clearly the most desirable term in the regression,
referring to an equation similar to (3).

Alpha also plays a crucial role in understanding investment
styles. Within the context of alpha, investors can be classified
in two classic ways: passive and active investors. A passive
investor typically subscribes to the belief that markets are
efficient and that a given asset pricing model is accurate. If the
asset pricing model being utilized is (sufficiently) accurate,
it will reliably predict the expected return of any asset (or
portfolio), and it will not be possible to earn anything beyond
the benchmark of what is expected given the risk exposures
[18, p. 703]. Consequently, there would be no incentive to
seek positive alpha, at least not consistently.

This implies that for a passive investor, there would be
no incentive to seek out and analyze special information
about the assets in the portfolio or to employ sophisticated
trading strategies to achieve alpha or “beat the benchmark”
[18, p. 233]. The acquisition of such information and the
development of trading strategies would only result in unre-
covered costs [18, p. 233]. Therefore, the passive investor
would typically aim to minimize trading costs by opting to

119448

buy and hold a sufficiently diversified portfolio, such as a
market index [18, p. 234].

An active investor, on the other hand, would specifically
aim to earn more than her chosen benchmark—that is, beyond
what is expected based on her exposure to the risk factors.
In essence, she would strive to maximize alpha. To achieve
this objective, she would likely seek to gather any special
information about the assets in the portfolio and capitalize on
this information through specialized trading strategies. Alter-
natively, she might seek to exploit other investors’ behavioral
biases. (Even newer investment approaches, such as smart
beta or factor index investing, can also be understood within
the context of alpha.)

IIl. LITERATURE REVIEW

For the past two decades, return forecasting models have been
a popular subject in the literature. Initially, these models were
often based on classical econometric algorithms [19]. With
the rise of machine learning, new stock market forecasting
techniques have emerged. Modern stock market forecasting
models often originate from machine learning approaches uti-
lizing supervised learning algorithms. In contrast to classical
econometric analysis, which focuses on parameter estima-
tion, supervised learning aims to predict outcomes directly
by discovering a forecast function that exploits complex and
often nonlinear patterns in the relationship between input
and output variables in a generalizable way [20]. Supervised
learning often involves regularization, a technique intended
to prevent overfitting. A regularizer attempts to constrain
the complexity of the forecast function being sought or con-
structed. Therefore, the construction of the forecast function
usually involves two steps: “The first step is, conditional
on a level of complexity, to pick the best in-sample loss-
minimizing function. The second step is to estimate the
optimal level of complexity using empirical tuning,” such as
out-of-sample cross-validation [20]. This approach fine-tunes
the forecast function for optimal out-of-sample performance
using a hold-out sample not previously seen during the
algorithm’s construction [20]. The algorithm’s final perfor-
mance is then typically reported on a third testing sample that
has not been previously seen.

In the context of stock market forecasting, two main classes
of supervised learning models exist: regression and classi-
fication [21]. Regression models predict future asset return
values or price levels, while classification models predict the
future direction of the return—whether it will go upwards or
downwards.

Accuracy has been the most used measure in evaluating
the performance of models predicting stock return direction
through classification [22]. However, other related measures,
such as hit ratio, precision, recall, F; score, and balanced
accuracy, have also been reported [23]. These measures
assess the success of classification in various ways, often by
comparing the forecasted return direction to the actual return
direction, as observed in a testing sample.

VOLUME 12, 2024



J. H. OSPINA-HOLGUIN, A. M. PADILLA-OSPINA: NEURAL NETWORK ARCHITECTURE

IEEE Access

As in the classical econometric approach, supervised
learning regression models are traditionally evaluated using
error-based metrics, such as root mean square error (RMSE),
or more advanced ones like mean absolute prediction error
(MAPE) [23], [24]. Other commonly used metrics in this
field have a similar nature [23], [24]. Additionally, paired
t-tests have been used for statistical comparisons between
regression-based returns and a benchmark [23].

The common emphasis on minimizing prediction error or
loss function, rather than maximizing return or risk-adjusted
return through a trading rule, is a challenge shared by classical
and supervised learning models. In their review, Kumbure
et al. [23] noted that only a minority of machine learning
studies reported return-based measures, such as the rate of
return or average return. When utilizing forecasts to inform a
market timing algorithm, determining the appropriate action
based solely on predicted information can be challenging.
Specifically, deciding when to buy or sell the risky portfolio
may be unclear. As Neely et al. [25] stated, “‘the forecasting
problem is not equivalent to finding an optimal trading rule,
although the two are clearly linked. A profitable trading rule
may forecast rather poorly much of the time, but perform well
overall because it is able to position the trader on the right side
of the market during large moves.”

The limitations of trading to minimize forecast error
become more pronounced when transaction costs are factored
into the trading algorithm. Even a market timing algorithm
with perfect forecasting, which predicts whether the return
of the risky portfolio will be greater or less than the return
of the risk-free asset and buys or sells accordingly, may not
be profitable due to the substantial number of trades and
associated costs. In other words, the algorithm may propose
an excessive number of transactions that fail to offset the full
costs incurred. Therefore, even when similar risk-adjusted
measures of return, such as those used in this study, are
reported—as seen in [26], which assesses the sources of risk
in forecasts and their performance under transaction costs—
those forecasts are not necessarily optimized to consider the
sources of risk or transaction costs, as we do in this work.

The literature most closely related to this proposal involves
the use of reinforcement learning (RL) or evolutionary com-
putation (EC) to guide investment decisions. In reinforcement
learning, the emphasis is on discovering an optimal trading
algorithm rather than an optimal forecast. A reinforcement
learning algorithm or policy determines the next action to take
based on the current state, which describes the environment.
For instance, it decides whether to buy or sell a risky asset
based on the current information about its past returns. The
algorithm learns the optimal policy of actions based on the
actions taken and the rewards earned. In this way, the trading
algorithm is explicitly designed to optimize a reward mea-
sure, rather than the more common focus on forecast error.

In the context provided, a standard market timing algorithm
can be viewed as a dynamic (intertemporal or multiperiod)
portfolio optimization problem featuring only two assets:
the risky portfolio and the risk-free asset. Analytical solu-

VOLUME 12, 2024

tions for such problems in continuous time, optimizing
expected utility, have existed since at least 1969 [27]. These
solutions even include considerations for transaction costs
since at least 1988 [28]. However, these problems often
become intractable when formulated in more realistic terms
[29, p. 225]. Nevertheless, they prove to be well-suited for the
reinforcement learning framework, as acknowledged in dis-
crete time since at least 2001 [30]. Indeed, the reinforcement
learning framework facilitates the direct search for policies
that optimize returns or risk-based measures of returns, even
when using more realistic descriptions of states, environ-
ments, or rewards.

Another area of related research that has influenced the use
of reinforcement learning in finance involves the endeavor
to extend the single-period mean-variance portfolio opti-
mization problem proposed by Markowitz [31] to a discrete
multiperiod setting through reinforcement learning [32]. It is
important to note that in the mean-variance portfolio choice
problem, the return measure is represented by the mean of
the return series, and risk is quantified by the variance of
the return series. A clear and insightful description of the
relationship between discrete-time portfolio optimization and
reinforcement learning is given in [33]:

One can postulate that the portfolio optimization problem can
be reformulated as a discrete-time (partially observable) Markov
Decision Process (MDP) and hence as a stochastic optimal con-
trol, where the system being controlled in discrete time is a
portfolio consisting of multiple investments, and the control is the
portfolio weights (fractions of capital allocation). The problem is
then solved by a sequential maximization of portfolio returns as
rewards in a Bellman optimality equation. If the MDP is fully
deterministic (or state transition probabilities are known) and if a
reward function is also known, the Bellman optimality equation
can be solved using a recursive backward value iteration method
of Dynamic Programming (DP). If, on the other hand, the system
dynamics is unknown and the optimal policy should be computed
from samples, one can use model-free Reinforcement Learning
(RL) to solve the problem. In portfolio optimization, neither the
future returns of investments nor the state transition probabilities
are known. Consequently, the MDP is nondeterministic and one
can use RL for the problem.

Model-free RL approaches have become increasingly
popular because they do not rely on investment return model-
ing [33]. These approaches do not require an understanding of
the underlying return dynamics because they can approximate
a Bellman optimality equation using only sample data [33].

The commonly used reward measure in this literature is
profitability or total profit [34], [35]. However, alternative
approaches have sought to maximize risk-based measures of
return, such as the Sharpe ratio or the Sortino ratio, along
with their variants [34], [35], [36]. (The Sharpe ratio assesses
risk-adjusted return by dividing the average excess return—
over a target—by the overall volatility of the portfolio,
as measured by the standard deviation of excess return.
The Sortino ratio replaces the entire standard deviation with
the “downside deviation,” which excludes positive portfolio
fluctuations and solely considers the variability associated

119449



IEEE Access

J. H. OSPINA-HOLGUIN, A. M. PADILLA-OSPINA: NEURAL NETWORK ARCHITECTURE

with losses relative to the target return.) Some forms of
expected utility have also been optimized as a reward [37].
Additionally, alphas from several modern asset pricing mod-
els were reported in the results of an RL algorithm in a prior
study [38]. However, it is worth noting that the algorithm
examined in [38] optimizes for the out-of-sample Sharpe
ratio, while our work focuses specifically on optimizing for
alpha. To the best of our knowledge, no (nontrivial) neural
network architectures have been proposed with the specific
goal of maximizing alpha, as described in this study.

There is yet another series of studies that have aimed to
discover optimal rules for trading—typically through evo-
lutionary computation (EC)—but not necessarily utilizing
modern neural network architectures. EC is a field of Natural
Computation inspired by the evolutionary mechanisms of
nature, as understood from a neo-Darwinian perspective [39].
Neo-Darwinism integrates the principles of Darwinian evo-
lution with modern knowledge of its basic mechanisms such
as DNA [39]. EC attempts to solve an optimization problem
through the evolution of a population of candidate solutions
that coexist in parallel [39]. To ““breed’” each new generation,
genetic search operators (typically mutation and crossover) as
well as selection operators are used. Mutation and crossover
enable the creation of new candidate solutions from mod-
ifications of existing ones through operators analogous to
mutation and sexual reproduction in organic species. The
selection process allows the identification of the best among
the “bred” candidate solutions so that they constitute the next
generation of the population. Specifically, selection refers
to the process by which solutions with the worst fitness are
discarded from the population. Here, fitness is a quantitative
measure of the effectiveness of the candidate solution in
solving the specific problem at hand [39]. The search and
selection processes are iteratively repeated until optimal or
satisfactory solutions are found. Within the framework of
EC, each strategy or transaction rule is typically represented
by a candidate solution, with fitness indicating a desirable
characteristic of the strategy, such as its overall profitability.

Evolutionary algorithms offer a number of advantages
over more traditional optimization methods, including: First,
greater flexibility. These algorithms can be applied to
problems with non-differentiable or discontinuous objective
functions, such as the space of certain potential rules [25],
[40]. Second, due to the stochastic nature of the search and
selection operators, evolutionary algorithms are less likely to
converge to a local optimum than other methods [40]. Finally,
evolutionary algorithms can be employed for problems with
very large search spaces and are easily parallelizable [40].
For example, the manual searches conducted in past decades
for the most profitable combination of technical indicators
(i.e., buy or sell indicators or signals based on past prices
and transaction volumes) can be efficiently automated using
EC [39].

The majority of studies in EC in finance evaluate their
rules by simulating their operation in the market and reporting
total return or profits [41]. While some works also report the

119450

Sharpe ratio as a measure of risk-adjusted return [41], the
fitness function usually directly incorporates these measures
of return or risk-adjusted return. Among these studies, most
consider transaction costs and compare their results with an
index or a buy-and-hold strategy [41]. Other researchers focus
on metrics that are more closely related to prediction, such
as RMSE, MAPE, hit rate, mean absolute error (MAE), and
accuracy [41]. In portfolio theory applications, there has also
been progress in incorporating more realistic constraints into
single-period mean-variance portfolio optimizations through
EC, or by utilizing advanced risk measures beyond variance,
such as mean absolute downside semi-deviation, value-at-
risk, and expected shortfall [39].

Within the area of EC, we identified two instances closely
related to our work. Both instances focus on optimizing for
alpha. In [12], genetic programming (GP) is used to maximize
Carhart’s [42] (also known as Fama and French four-factor)
alpha of a zero-cost arbitrage trading strategy based on an
algorithm applied to each of the US volatility decile portfo-
lios. The trading rules are encoded by basic functional trees
with four levels of operations: Boolean operators (“‘if-then-
else”, “and”, “or”’) determining buy or sell signals at the
first level, relational operators (*‘<’’ or “>"") returning O or
1 values at the second level, real functions encompassing
various technical analysis indicators and applicable to both
numerical values and time series of numbers at the third
level, and inputs (primarily prices or returns) at the last level.
Each strategy decides whether to take a long position in the
risky asset, a short position, or hold the risk-free asset. The
fitness function computes alpha but explicitly excludes candi-
date solutions (trading strategies) with alphas having a small
p-value in the Carhart [42] regression and solutions unable
to withstand trading costs of at least 25 basis points [12].
Time-averaged rolling out-of-sample alphas, averaged across
multiple optimization runs, are reported and found to be
substantial [12].

In [13], a different approach is taken, using the simplest
neural network, a perceptron, or McCulloch-Pitts neuron—a
linear combination of inputs introduced by [43] in 1943. This
model aims to maximize alpha through differential evolution
(DE), another evolutionary algorithm. The inputs consist of
past contiguous returns of US size decile portfolios, and each
strategy is represented by a Heaviside function of a linear
combination of these returns plus a constant (bias), where
the output 1 represents being 100% in the risky portfolio
and O represents being 100% in the risk-free asset. An a pri-
ori transaction cost of 1 basis point is imposed for trading
the risky asset. The study identifies Fama and French five-
factor [44] sizable alphas, as well as Carhart’s [42] sizable
alphas, for a zero-cost arbitrage trading strategy in the test
sample. The main takeaway from [13] is that an evolutionary
algorithm can achieve a form of RL, as previously suggested
by [45] using evolution strategies. Section V-D) compares
the approach of the present work with the state-of-the-art
approach in [13], positioning the current work as an inter-
mediate point between two lines of research: those employ-

VOLUME 12, 2024



J. H. OSPINA-HOLGUIN, A. M. PADILLA-OSPINA: NEURAL NETWORK ARCHITECTURE

IEEE Access

ing RL and those maximizing alpha through evolutionary
techniques.

IV. METHODOLOGY

A. PROBLEM

This article proposes a neural network architecture capable of
trading automatically, choosing to invest 100% of the capital
in a risky asset or 100% of the capital in a risk-free asset,
in such a way that alpha is maximized in a given asset pric-
ing model. In the reinforcement learning context, the neural
network architecture can be interpreted as an agent that takes
actions in an environment, in this case, the market [46, p. 48].

To describe the way the neural network architecture was
built, it is worth first stating the problem in a simple way:

Suppose there is a policy a;_ that decides at each moment
t — 1 what action to carry out based on the state of the market
or environment s;_1; that is, the state stores the information
used to make the decision to carry out that action. In this
algorithm, the action taken yesterday a;—; can be only one
of two possible values that we will designate as 1 or 0.

When the action taken yesterday a,—;= 0, the algorithm
orders for the next day to be (or continue) ‘“‘out of the mar-
ket”. In other words, if the investor was 100% in the risky
portfolio yesterday, the next day, the investor will sell the
risky portfolio and buy the risk-free asset. If the investor
was 100% in the risk-free asset yesterday, the investor will
continue with this risk-free asset the next day. Thus, when
a;—1= 0, the return for the investor from yesterday to today
by being long in the algorithm is:

Fo=r )
where r{ is the return on the risk-free asset.

However, in this work, we want to determine how much
additional profitability the algorithm achieves over the risky
portfolio return. The purpose of measuring additional returns
in this way is not to attribute to the algorithm the returns
that the underlying risky portfolio may already have. To do
this, the return r, on a zero-arbitrage position, long in the
asset that the algorithm indicates should be bought (the risky
portfolio or the risk-free asset, as the case may be) and short
in the underlying portfolio, that is, short in the risky portfolio,
is measured as:

rr =7 —R; (5)

where R; is the return of the risky portfolio. Thus, when
a—1=0,

ro=r] —Ri. (6)

Similarly, when the action taken yesterday a;—1 = 1, the
algorithm orders for the next day to be (or continue) “‘in
the market”. If the investor was 100% in the risk-free asset
yesterday, the next day, the investor will sell the risk-free
asset and buy the risky portfolio. If the investor was 100%
in the risky portfolio, the investor will continue with this
risky portfolio the next day. According to the abo