
Received 15 July 2024, accepted 10 August 2024, date of publication 20 August 2024, date of current version 4 September 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3446708

A Neural Network Architecture for Maximizing
Alpha in a Market Timing Investment Strategy
JAVIER H. OSPINA-HOLGUÍN 1 AND ANA M. PADILLA-OSPINA 2
1Department of Accounting and Finance, Universidad del Valle, Cali 760042, Colombia
2Department of Administration and Organizations, Universidad del Valle, Cali 760042, Colombia

Corresponding author: Javier H. Ospina-Holguín (javier.ospina@correounivalle.edu.co)

This work was supported in part by Universidad del Valle under Grant ‘‘Convocatoria Interna 131-2021 para presentación de Proyectos de
Investigación y Creación Artística en las Ciencias, las Artes, las Humanidades, las Tecnologías y la Innovación.’’

ABSTRACT In finance, assuming more risk often corresponds to the expectation of higher, compensating
returns. In this setting, alpha stands out as one of the most prevalent and refined measures of risk-adjusted
return ever postulated, allowing for the estimation of the excess return that cannot be explained by the
risk factors impacting an asset. This article introduces a neural network architecture designed to formulate
an investment strategy with the explicit goal of maximizing alpha. The strategy, centered around market
timing, determines on a daily basis, based on past returns of the risky asset, whether to fully invest in the
risky asset or opt for the risk-free alternative. The neural network architecture comprises two components: a
policy network for strategy implementation and an evaluation network for long-term alpha computation
during parameter optimization. Employing value-weighted US size decile portfolios as risky assets, the
study achieves significant out-of-sample alphas ranging from 3.6% to 8.2% per year under the q5 asset
pricing model (with a transaction cost assumption of one basis point). By construction, these alphas are not
generated by risky asset growth. Robustness tests yield similar results with equal-weighted decile portfolios
or under the Fama and French six-factor asset pricing model. Variations in transaction cost, number of past
returns used as inputs, policy network design, or training sample size produce similar outcomes. This study
underscores the effectiveness of reinforcement learning-inspired techniques in uncovering alpha in financial
markets.

INDEX TERMS Alpha, asset pricing, reinforcement learning, stock returns, investment decisions, random
walk hypothesis, market timing, machine learning, artificial intelligence.

I. INTRODUCTION
Financial alpha is generally considered the main aspiration
of active money managers [1, p. 28]. This article introduces a
neural network architecture capable of automatically trading
to maximize alpha as measured by a given asset pricing
model. The alpha-maximizing neural architecture is able to
represent a market timing algorithm constructed from daily
return data. Each day, it decides whether to invest the entire
account balance in a risky portfolio and earn the daily return
on that portfolio at the close of the trading day or to instead
invest the entire account balance in the risk-free asset and earn

The associate editor coordinating the review of this manuscript and

approving it for publication was Chun-Wei Tsai .

the return on that risk-free asset at the close of the trading
day.

Alpha, in finance, denotes the additional return that an
asset generates compared to a specific benchmark. Typically,
the benchmark reflects the expected return based on a given
asset pricing model. Alpha represents the return above what
the asset pricing model expects the asset to generate, given
its exposure to given asset pricing factors. These factors are
typically interpreted as sources of risk and are believed to
explain the return of any asset. In modern times, alpha has
become one of the most important measures of risk-adjusted
return (see Section II).

Many previous works in the computer science literature
on trading algorithms have shown little connection with the

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 119445

https://orcid.org/0000-0002-0103-3280
https://orcid.org/0000-0003-3859-8741
https://orcid.org/0000-0003-0128-4052

J. H. OSPINA-HOLGUÍN, A. M. PADILLA-OSPINA: NEURAL NETWORK ARCHITECTURE

finance literature [2]. This is evident when algorithms opti-
mize for total return without considering risk. Any reasonable
financial approach requires risk considerations in one way
or another. While maximizing profit may seem desirable,
algorithms that do so without accounting for risk fail to
distinguish between high risk-adjusted profitability and high
profitability resulting from taking more risk and simply get-
ting lucky.

When risk is considered in the literature on stock market
trading algorithms, common risk-adjusted measures of return
are used, most frequently the Sharpe ratio and expected utility
(see Section III). These measures are often formulated based
on desirable mathematical properties. While they are not
inherently flawed, they do not fully capture the significant
advancements in asset pricing, especially in empirical asset
pricing.

Empirical asset pricing seeks to understand and model
financial returns using empirical data. The field aims to
identify the factors that actually impact an asset’s return
based on evidence. For instance, despite being derived from
first principles and reasonable mathematical assumptions, the
CAPM, considered the first and most basic asset pricing
model, was soon found to be empirically incorrect in asset
pricing tests [3].

To illustrate the dimensions of today’s financial land-
scape, the financial literature has already identified over
450 financial anomalies. Each of these anomalies repre-
sents unexpected (abnormal) returns systematically present
across the entire market [4]. In other words, each anomaly
is an empirically identified, documented, and in principle
validated source of impact on asset returns. This landscape
has given rise to what is colloquially known as the ‘‘fac-
tor zoo’’ [5], an enormous set of potentially new asset
pricing factors believed to determine the returns of any
asset.

With the passing of time, new anomalies and compet-
ing asset pricing models have been continually introduced
and tested against the backdrop of previous anomalies
and established models. This ongoing research has directly
influenced the development of parsimonious asset pric-
ing models, which attempt to summarize the impact of
most factors and serve as the basis for calculating alpha
today. Therefore, alpha, as derived from these modern
parsimonious asset pricing models, represents the culmina-
tion of empirical knowledge and contemporary perspectives
on explaining the risk-adjusted profitability of assets and
portfolios.

Modern parsimonious asset pricing models are thus more
refined than ever and are robust to the multitude of system-
atic abnormal returns empirically encountered. For instance,
out of the hundreds of documented anomalies, approxi-
mately 65% could not be replicated by [4]. However, of the
150 anomalies replicated by [4], the q5 model used in this
article is capable of explaining all but 23 at standard sig-
nificance levels, or 6 at more stringent significance levels

that account for data mining [6].1 Generating alpha within
the framework of modern asset pricing models is deemed
challenging enough that several companies have incorporated
it into their names, such as Alphabet2 (the parent company
of Google) and Seeking Alpha (‘‘a crowd-sourced content
service for financial markets’’).

Additionally, various studies on funds suggest that they
are unlikely to consistently achieve alpha, except for a lim-
ited subset of such funds [7], [8]. Similar opinions are held
regarding individual investors [9]. The significant rise in the
popularity of passive investing [10] and smart beta invest-
ing [11] underscores the inherent difficulty in consistently
generating alpha through active management. Moreover, for
institutional investors like hedge funds, alpha emerges as one
of the crucial performance measures today, alongside several
variants based on it [1, pp. 27–32].
Although it is difficult to determine whether the alpha

of a particular investment portfolio is a return generated by
active investing or if it is due to the use of an inadequate or
incomplete factor model, a question that remains unanswered
is whether investment portfolios that maximize alpha through
market timing can be automatically constructed when alpha
is measured using a prespecified asset pricing model.

The present article provides a positive answer to this
question. Previous literature on trading algorithm strategies
had largely overlooked alpha, along with other important
financial principles. Our literature review revealed only two
instances of alpha-optimization trading algorithms: [12],
[13]. This article aims to fill this gap in the literature by
developing trading strategies that leverage sound financial
principles, with the use of alpha as a risk-adjusted measure
of return being its primary strategy.

In this context, the contributions of this article are as
follows:

First, this article presents the first nontrivial neural network
architecture that enables the automatic design of algorithms
to maximize alpha based on a given asset pricing model by
exploiting patterns in a certain input information set. By using
alpha as a performance measure, the resulting algorithm
achieves an abnormal return beyond what is expected based
on the asset pricing model used, by design. In our frame-
work, it is trivial to modify or reuse the algorithm so that
it maximizes alpha in a better asset pricing model if the
currently used asset pricing model is deemed to be incorrect
or incomplete. After all, as the saying goes, ‘‘one person’s
alpha is another’s beta’’ [14], meaning that estimated positive
alphas could arise in insufficient asset pricing models that
would disappear in more complete models with additional
risk factors—a problem similar to the omitted variable prob-
lem in regressions [14]. In our proposal, it is also easy to
optimize alpha using other types of past information, even

1In a robustness check, we also employ the popular six-factor Fama–
French model with RMW [58].

2See https://abc.xyz/.

119446 VOLUME 12, 2024

J. H. OSPINA-HOLGUÍN, A. M. PADILLA-OSPINA: NEURAL NETWORK ARCHITECTURE

though we only use short-term past returns to make trading
decisions.

Also following financial practices, the profitability
achieved through the algorithm introduced here is measured
from a zero-cost arbitrage position. This position involves
being long on the asset that the algorithm indicates should be
bought (the risky portfolio or the risk-free asset, depending on
the case) and short on the underlying portfolio, which is the
risky portfolio. In other words, the earnings of the original
underlying portfolio are subtracted from the position taken
by the algorithm each day. The advantage of this method-
ology is that it allows measuring the intrinsic profitability
of the investment rule and not simply the profitability of
the underlying portfolio that is used to invest. For example,
if all the algorithm does is buy and hold the underlying
risky portfolio for the entire investment period, the return
on the zero-cost arbitrage position each day will be zero,
and so will the alpha. Often, when a zero-cost arbitrage
position is not used when trading and an algorithm reports
high returns, it is almost impossible to distinguish whether
this is due to the performance of the algorithm itself or
because the portfolio on which the algorithm is based has
increased the algorithm’s performance. For instance, during
an investment period in which the underlying portfolio is
only increasing, a profitability measure that does not use
a zero-cost arbitrage position may suggest that a buy-and-
hold algorithm is excellent, given that the algorithm would
have simply ridden the ‘‘growth wave’’ of the underlying
portfolio value. However, in reality, such an algorithm did
not earn anything beyond what the underlying portfolio was
earning, and no one would pay much for such an algorithm,
since it is useless in comparison to just buying the underlying
portfolio.

Similarly, the algorithm we propose to optimize alpha
takes into account transaction costs by design. This ensures
that the achieved alpha is viable considering a certain level
of transaction costs. While this paper uses a low overall
transaction cost (though accessible even to non-institutional
investors through modern brokerage firms such as Inter-
active Brokers LLC), it is essential to consider transac-
tion costs in trading algorithms a priori. Some authors
do not consider transaction costs [15], or only report
breakeven transaction costs (BETC)3 [12]. However, it is
important to factor in transaction costs from the outset,
as they can influence and alter the optimal trading strategy
choices.

Finally, the alpha reported in our results is calculated
out-of-sample and using several distinct portfolios in var-
ious conditions. Therefore, the data used to construct the
algorithm were not employed to calculate the reported alpha.
This strengthens the evidence that the alpha reported in this
work is genuine and not simply an artifact of data snooping
or overfitting.

3The breakeven transaction cost is the highest transaction cost that the
algorithm can tolerate without incurring losses.

II. ALPHA: BASIC BACKGROUND
This section reviews the concept of alpha and its interpreta-
tion for readers who may not be familiar with it.

In finance, alpha represents the additional return that an
asset generates beyond a specific benchmark. Typically, this
benchmark is estimated by the expected return predicted by a
particular asset pricing model.4 In a conventional (static and
linear) asset pricing model, the expectation of any risky port-
folio’s excess returns r is expressed as a linear combination
of expected premiums:

E [r] = β1E [γ1] + · · · + βkE [γk] . (1)

Alpha can then be measured as the non-expected return α by
estimating the linear equation:

rt = α + β1γ1t + · · · + βkγkt + εt , (2)

using ordinary least squares (OLS), where t = 1, . . . ,T .
Typically, asset pricing models are interpreted in terms of

risk. In this context, γ l = (γlt)
T
t=1 is interpreted as a column

vector representing the risk premiumvarying over time for the
l-th risk factor, with l= 1, . . . ,k. The scalar βl , on the other
hand, represents the amount of asset exposure to the l-th risk
factor. The term εt represents idiosyncratic risk, assumed to
have an average value of zero. Thus, the scalar constant α

denotes the (abnormal) return obtained above (or below) the
chosen asset pricing model benchmark. This return cannot
be explained by the risk factor exposures in the asset pricing
model. (For this reason, it is also called the pricing error.) If
the asset pricing model is correct and fully explains the return
of every risky asset, α is expected to be zero for any given
asset.

For example, in the basic capital asset pricing model
(CAPM) [16], [17], where k = 1, there is a single risk
premium and a single risk exposure. The risk premium in the
CAPM is the market risk premium, representing the excess
return of the market portfolio. A simple numerical example
using the CAPMmay better illustrate the meaning and impor-
tance of alpha (and beta). Suppose we have a risky asset X
with an excess return rX of 15% per annum and a risk-free
rate of 3% per annum. Therefore, the risky asset has a (raw)
return of 15%+3% = 18% per annum. This may seem like an
excellent investment. However, the perspective can be quite
different when accounting for risk exposures.

Relative to the one-factor CAPM model, we can compute
alpha (and beta) by running the following time-series regres-
sion for asset X :

rXt = α + βMktrMkt + εt (3)

The only risk factor in the CAPM, given by rMkt,t , is the
excess return of the market. This factor rMkt,t measures the

4In our case, the ‘‘asset return’’ is represented by the return—in excess—
of the market timing algorithm applied to the underlying risky portfolio
minus the return—in excess—of that same underlying portfolio. The term
‘‘in excess’’ denotes that the return of the risk-free asset is subtracted from the
original raw return. However, according to our previous definition of ‘‘asset
return,’’ original raw returns may be used instead of excess returns since the
risk-free rate gets canceled in the subtraction.

VOLUME 12, 2024 119447

J. H. OSPINA-HOLGUÍN, A. M. PADILLA-OSPINA: NEURAL NETWORK ARCHITECTURE

movement of the market’s excess return as a whole. The
market beta term, βMkt, represents the exposure to the market
risk factor. For example, if the regression (3) for assetX yields
an estimated βMkt of 0.8, this indicates that when the market
moves up (or down) by 1%, asset X ’s excess return will move
in the same direction by 0.8 × 1% = 0.8%.

If the CAPM is the correct asset pricing model, the esti-
mated α should be zero for every asset. Suppose that asset
X actually has an estimated alpha of zero, an estimated beta
of 0.8, and the aforementioned excess return, rXt , of 15% per
annum.While the asset’s performance seems quite impressive
in terms of excess return, the value of alpha reveals that it is
not. After all, asset X simply moves up (or down) in the same
direction as (and probably in response to) the movements
of the whole market. An investor could achieve exactly the
same excess return by simply investing 80% of her portfolio
money in a low-cost market index and holding 20% in cash.
No advanced investment techniques are required to replicate
the excess returns of asset X .
On the other hand, consider a very different set of assump-

tions. Suppose that X actually has an estimated alpha of 15%,
an estimated beta close to zero, and assume the same excess
returns for X of rX = 15% annually. In this case, it makes
no difference whether the entire market goes down or up; the
excess return will always be (on average) 15% per annum.
Furthermore, it will be impossible to replicate this return by
simply investing a constant amount of money (over time) in a
market index and the rest in cash. Knowing how to replicate
X ’s return is now not only highly non-trivial but also highly
desirable. If the only major risk in investing, as recognized
by the CAPM, is the movement of the overall market, then
asset X is indeed immune to that risk and will always deliver
a 15% annual excess return regardless of what happens in
the market. This is perhaps why Pedersen [1, p. 28] asserts
that alpha is clearly the most desirable term in the regression,
referring to an equation similar to (3).
Alpha also plays a crucial role in understanding investment

styles. Within the context of alpha, investors can be classified
in two classic ways: passive and active investors. A passive
investor typically subscribes to the belief that markets are
efficient and that a given asset pricingmodel is accurate. If the
asset pricing model being utilized is (sufficiently) accurate,
it will reliably predict the expected return of any asset (or
portfolio), and it will not be possible to earn anything beyond
the benchmark of what is expected given the risk exposures
[18, p. 703]. Consequently, there would be no incentive to
seek positive alpha, at least not consistently.

This implies that for a passive investor, there would be
no incentive to seek out and analyze special information
about the assets in the portfolio or to employ sophisticated
trading strategies to achieve alpha or ‘‘beat the benchmark’’
[18, p. 233]. The acquisition of such information and the
development of trading strategies would only result in unre-
covered costs [18, p. 233]. Therefore, the passive investor
would typically aim to minimize trading costs by opting to

buy and hold a sufficiently diversified portfolio, such as a
market index [18, p. 234].

An active investor, on the other hand, would specifically
aim to earnmore than her chosen benchmark—that is, beyond
what is expected based on her exposure to the risk factors.
In essence, she would strive to maximize alpha. To achieve
this objective, she would likely seek to gather any special
information about the assets in the portfolio and capitalize on
this information through specialized trading strategies. Alter-
natively, she might seek to exploit other investors’ behavioral
biases. (Even newer investment approaches, such as smart
beta or factor index investing, can also be understood within
the context of alpha.)

III. LITERATURE REVIEW
For the past two decades, return forecastingmodels have been
a popular subject in the literature. Initially, these models were
often based on classical econometric algorithms [19]. With
the rise of machine learning, new stock market forecasting
techniques have emerged. Modern stock market forecasting
models often originate frommachine learning approaches uti-
lizing supervised learning algorithms. In contrast to classical
econometric analysis, which focuses on parameter estima-
tion, supervised learning aims to predict outcomes directly
by discovering a forecast function that exploits complex and
often nonlinear patterns in the relationship between input
and output variables in a generalizable way [20]. Supervised
learning often involves regularization, a technique intended
to prevent overfitting. A regularizer attempts to constrain
the complexity of the forecast function being sought or con-
structed. Therefore, the construction of the forecast function
usually involves two steps: ‘‘The first step is, conditional
on a level of complexity, to pick the best in-sample loss-
minimizing function. The second step is to estimate the
optimal level of complexity using empirical tuning,’’ such as
out-of-sample cross-validation [20]. This approach fine-tunes
the forecast function for optimal out-of-sample performance
using a hold-out sample not previously seen during the
algorithm’s construction [20]. The algorithm’s final perfor-
mance is then typically reported on a third testing sample that
has not been previously seen.

In the context of stockmarket forecasting, twomain classes
of supervised learning models exist: regression and classi-
fication [21]. Regression models predict future asset return
values or price levels, while classification models predict the
future direction of the return—whether it will go upwards or
downwards.

Accuracy has been the most used measure in evaluating
the performance of models predicting stock return direction
through classification [22]. However, other related measures,
such as hit ratio, precision, recall, F1 score, and balanced
accuracy, have also been reported [23]. These measures
assess the success of classification in various ways, often by
comparing the forecasted return direction to the actual return
direction, as observed in a testing sample.

119448 VOLUME 12, 2024

J. H. OSPINA-HOLGUÍN, A. M. PADILLA-OSPINA: NEURAL NETWORK ARCHITECTURE

As in the classical econometric approach, supervised
learning regression models are traditionally evaluated using
error-based metrics, such as root mean square error (RMSE),
or more advanced ones like mean absolute prediction error
(MAPE) [23], [24]. Other commonly used metrics in this
field have a similar nature [23], [24]. Additionally, paired
t-tests have been used for statistical comparisons between
regression-based returns and a benchmark [23].
The common emphasis on minimizing prediction error or

loss function, rather than maximizing return or risk-adjusted
return through a trading rule, is a challenge shared by classical
and supervised learning models. In their review, Kumbure
et al. [23] noted that only a minority of machine learning
studies reported return-based measures, such as the rate of
return or average return. When utilizing forecasts to inform a
market timing algorithm, determining the appropriate action
based solely on predicted information can be challenging.
Specifically, deciding when to buy or sell the risky portfolio
may be unclear. As Neely et al. [25] stated, ‘‘the forecasting
problem is not equivalent to finding an optimal trading rule,
although the two are clearly linked. A profitable trading rule
may forecast rather poorly much of the time, but performwell
overall because it is able to position the trader on the right side
of the market during large moves.’’

The limitations of trading to minimize forecast error
becomemore pronounced when transaction costs are factored
into the trading algorithm. Even a market timing algorithm
with perfect forecasting, which predicts whether the return
of the risky portfolio will be greater or less than the return
of the risk-free asset and buys or sells accordingly, may not
be profitable due to the substantial number of trades and
associated costs. In other words, the algorithm may propose
an excessive number of transactions that fail to offset the full
costs incurred. Therefore, even when similar risk-adjusted
measures of return, such as those used in this study, are
reported—as seen in [26], which assesses the sources of risk
in forecasts and their performance under transaction costs—
those forecasts are not necessarily optimized to consider the
sources of risk or transaction costs, as we do in this work.

The literature most closely related to this proposal involves
the use of reinforcement learning (RL) or evolutionary com-
putation (EC) to guide investment decisions. In reinforcement
learning, the emphasis is on discovering an optimal trading
algorithm rather than an optimal forecast. A reinforcement
learning algorithm or policy determines the next action to take
based on the current state, which describes the environment.
For instance, it decides whether to buy or sell a risky asset
based on the current information about its past returns. The
algorithm learns the optimal policy of actions based on the
actions taken and the rewards earned. In this way, the trading
algorithm is explicitly designed to optimize a reward mea-
sure, rather than the more common focus on forecast error.

In the context provided, a standardmarket timing algorithm
can be viewed as a dynamic (intertemporal or multiperiod)
portfolio optimization problem featuring only two assets:
the risky portfolio and the risk-free asset. Analytical solu-

tions for such problems in continuous time, optimizing
expected utility, have existed since at least 1969 [27]. These
solutions even include considerations for transaction costs
since at least 1988 [28]. However, these problems often
become intractable when formulated in more realistic terms
[29, p. 225]. Nevertheless, they prove to be well-suited for the
reinforcement learning framework, as acknowledged in dis-
crete time since at least 2001 [30]. Indeed, the reinforcement
learning framework facilitates the direct search for policies
that optimize returns or risk-based measures of returns, even
when using more realistic descriptions of states, environ-
ments, or rewards.

Another area of related research that has influenced the use
of reinforcement learning in finance involves the endeavor
to extend the single-period mean-variance portfolio opti-
mization problem proposed by Markowitz [31] to a discrete
multiperiod setting through reinforcement learning [32]. It is
important to note that in the mean-variance portfolio choice
problem, the return measure is represented by the mean of
the return series, and risk is quantified by the variance of
the return series. A clear and insightful description of the
relationship between discrete-time portfolio optimization and
reinforcement learning is given in [33]:

One can postulate that the portfolio optimization problem can
be reformulated as a discrete-time (partially observable) Markov
Decision Process (MDP) and hence as a stochastic optimal con-
trol, where the system being controlled in discrete time is a
portfolio consisting of multiple investments, and the control is the
portfolio weights (fractions of capital allocation). The problem is
then solved by a sequential maximization of portfolio returns as
rewards in a Bellman optimality equation. If the MDP is fully
deterministic (or state transition probabilities are known) and if a
reward function is also known, the Bellman optimality equation
can be solved using a recursive backward value iteration method
of Dynamic Programming (DP). If, on the other hand, the system
dynamics is unknown and the optimal policy should be computed
from samples, one can use model-free Reinforcement Learning
(RL) to solve the problem. In portfolio optimization, neither the
future returns of investments nor the state transition probabilities
are known. Consequently, the MDP is nondeterministic and one
can use RL for the problem.

Model-free RL approaches have become increasingly
popular because they do not rely on investment return model-
ing [33]. These approaches do not require an understanding of
the underlying return dynamics because they can approximate
a Bellman optimality equation using only sample data [33].

The commonly used reward measure in this literature is
profitability or total profit [34], [35]. However, alternative
approaches have sought to maximize risk-based measures of
return, such as the Sharpe ratio or the Sortino ratio, along
with their variants [34], [35], [36]. (The Sharpe ratio assesses
risk-adjusted return by dividing the average excess return—
over a target—by the overall volatility of the portfolio,
as measured by the standard deviation of excess return.
The Sortino ratio replaces the entire standard deviation with
the ‘‘downside deviation,’’ which excludes positive portfolio
fluctuations and solely considers the variability associated

VOLUME 12, 2024 119449

J. H. OSPINA-HOLGUÍN, A. M. PADILLA-OSPINA: NEURAL NETWORK ARCHITECTURE

with losses relative to the target return.) Some forms of
expected utility have also been optimized as a reward [37].
Additionally, alphas from several modern asset pricing mod-
els were reported in the results of an RL algorithm in a prior
study [38]. However, it is worth noting that the algorithm
examined in [38] optimizes for the out-of-sample Sharpe
ratio, while our work focuses specifically on optimizing for
alpha. To the best of our knowledge, no (nontrivial) neural
network architectures have been proposed with the specific
goal of maximizing alpha, as described in this study.

There is yet another series of studies that have aimed to
discover optimal rules for trading—typically through evo-
lutionary computation (EC)—but not necessarily utilizing
modern neural network architectures. EC is a field of Natural
Computation inspired by the evolutionary mechanisms of
nature, as understood from a neo-Darwinian perspective [39].
Neo-Darwinism integrates the principles of Darwinian evo-
lution with modern knowledge of its basic mechanisms such
as DNA [39]. EC attempts to solve an optimization problem
through the evolution of a population of candidate solutions
that coexist in parallel [39]. To ‘‘breed’’ each new generation,
genetic search operators (typicallymutation and crossover) as
well as selection operators are used. Mutation and crossover
enable the creation of new candidate solutions from mod-
ifications of existing ones through operators analogous to
mutation and sexual reproduction in organic species. The
selection process allows the identification of the best among
the ‘‘bred’’ candidate solutions so that they constitute the next
generation of the population. Specifically, selection refers
to the process by which solutions with the worst fitness are
discarded from the population. Here, fitness is a quantitative
measure of the effectiveness of the candidate solution in
solving the specific problem at hand [39]. The search and
selection processes are iteratively repeated until optimal or
satisfactory solutions are found. Within the framework of
EC, each strategy or transaction rule is typically represented
by a candidate solution, with fitness indicating a desirable
characteristic of the strategy, such as its overall profitability.

Evolutionary algorithms offer a number of advantages
over more traditional optimization methods, including: First,
greater flexibility. These algorithms can be applied to
problems with non-differentiable or discontinuous objective
functions, such as the space of certain potential rules [25],
[40]. Second, due to the stochastic nature of the search and
selection operators, evolutionary algorithms are less likely to
converge to a local optimum than other methods [40]. Finally,
evolutionary algorithms can be employed for problems with
very large search spaces and are easily parallelizable [40].
For example, the manual searches conducted in past decades
for the most profitable combination of technical indicators
(i.e., buy or sell indicators or signals based on past prices
and transaction volumes) can be efficiently automated using
EC [39].
The majority of studies in EC in finance evaluate their

rules by simulating their operation in themarket and reporting
total return or profits [41]. While some works also report the

Sharpe ratio as a measure of risk-adjusted return [41], the
fitness function usually directly incorporates these measures
of return or risk-adjusted return. Among these studies, most
consider transaction costs and compare their results with an
index or a buy-and-hold strategy [41]. Other researchers focus
on metrics that are more closely related to prediction, such
as RMSE, MAPE, hit rate, mean absolute error (MAE), and
accuracy [41]. In portfolio theory applications, there has also
been progress in incorporating more realistic constraints into
single-period mean-variance portfolio optimizations through
EC, or by utilizing advanced risk measures beyond variance,
such as mean absolute downside semi-deviation, value-at-
risk, and expected shortfall [39].

Within the area of EC, we identified two instances closely
related to our work. Both instances focus on optimizing for
alpha. In [12], genetic programming (GP) is used tomaximize
Carhart’s [42] (also known as Fama and French four-factor)
alpha of a zero-cost arbitrage trading strategy based on an
algorithm applied to each of the US volatility decile portfo-
lios. The trading rules are encoded by basic functional trees
with four levels of operations: Boolean operators (‘‘if-then-
else’’, ‘‘and’’, ‘‘or’’) determining buy or sell signals at the
first level, relational operators (‘‘<’’ or ‘‘>’’) returning 0 or
1 values at the second level, real functions encompassing
various technical analysis indicators and applicable to both
numerical values and time series of numbers at the third
level, and inputs (primarily prices or returns) at the last level.
Each strategy decides whether to take a long position in the
risky asset, a short position, or hold the risk-free asset. The
fitness function computes alpha but explicitly excludes candi-
date solutions (trading strategies) with alphas having a small
p-value in the Carhart [42] regression and solutions unable
to withstand trading costs of at least 25 basis points [12].
Time-averaged rolling out-of-sample alphas, averaged across
multiple optimization runs, are reported and found to be
substantial [12].
In [13], a different approach is taken, using the simplest

neural network, a perceptron, or McCulloch–Pitts neuron—a
linear combination of inputs introduced by [43] in 1943. This
model aims to maximize alpha through differential evolution
(DE), another evolutionary algorithm. The inputs consist of
past contiguous returns of US size decile portfolios, and each
strategy is represented by a Heaviside function of a linear
combination of these returns plus a constant (bias), where
the output 1 represents being 100% in the risky portfolio
and 0 represents being 100% in the risk-free asset. An a pri-
ori transaction cost of 1 basis point is imposed for trading
the risky asset. The study identifies Fama and French five-
factor [44] sizable alphas, as well as Carhart’s [42] sizable
alphas, for a zero-cost arbitrage trading strategy in the test
sample. The main takeaway from [13] is that an evolutionary
algorithm can achieve a form of RL, as previously suggested
by [45] using evolution strategies. Section V-D) compares
the approach of the present work with the state-of-the-art
approach in [13], positioning the current work as an inter-
mediate point between two lines of research: those employ-

119450 VOLUME 12, 2024

J. H. OSPINA-HOLGUÍN, A. M. PADILLA-OSPINA: NEURAL NETWORK ARCHITECTURE

ing RL and those maximizing alpha through evolutionary
techniques.

IV. METHODOLOGY
A. PROBLEM
This article proposes a neural network architecture capable of
trading automatically, choosing to invest 100% of the capital
in a risky asset or 100% of the capital in a risk-free asset,
in such a way that alpha is maximized in a given asset pric-
ing model. In the reinforcement learning context, the neural
network architecture can be interpreted as an agent that takes
actions in an environment, in this case, the market [46, p. 48].
To describe the way the neural network architecture was

built, it is worth first stating the problem in a simple way:
Suppose there is a policy at−1 that decides at each moment

t−1 what action to carry out based on the state of the market
or environment st−1; that is, the state stores the information
used to make the decision to carry out that action. In this
algorithm, the action taken yesterday at−1 can be only one
of two possible values that we will designate as 1 or 0.

When the action taken yesterday at−1= 0, the algorithm
orders for the next day to be (or continue) ‘‘out of the mar-
ket’’. In other words, if the investor was 100% in the risky
portfolio yesterday, the next day, the investor will sell the
risky portfolio and buy the risk-free asset. If the investor
was 100% in the risk-free asset yesterday, the investor will
continue with this risk-free asset the next day. Thus, when
at−1= 0, the return for the investor from yesterday to today
by being long in the algorithm is:

r̃t = r ft (4)

where r ft is the return on the risk-free asset.
However, in this work, we want to determine how much

additional profitability the algorithm achieves over the risky
portfolio return. The purpose of measuring additional returns
in this way is not to attribute to the algorithm the returns
that the underlying risky portfolio may already have. To do
this, the return rt on a zero-arbitrage position, long in the
asset that the algorithm indicates should be bought (the risky
portfolio or the risk-free asset, as the case may be) and short
in the underlying portfolio, that is, short in the risky portfolio,
is measured as:

rt = r̃t − Rt (5)

where Rt is the return of the risky portfolio. Thus, when
at−1= 0,

rt = r ft − Rt . (6)

Similarly, when the action taken yesterday at−1 = 1, the
algorithm orders for the next day to be (or continue) ‘‘in
the market’’. If the investor was 100% in the risk-free asset
yesterday, the next day, the investor will sell the risk-free
asset and buy the risky portfolio. If the investor was 100%
in the risky portfolio, the investor will continue with this
risky portfolio the next day. According to the above, when

at−1 = 1, the return from yesterday to today for the investor
being long in the algorithm is:

r̃t = Rt (7)

where Rt is the return of the risky portfolio.5 Therefore, when
at−1 = 1, the return rt on the zero-arbitrage position, long
on the asset that the algorithm indicates should be bought and
short on the underlying portfolio, which is the risky portfolio,
is:

rt = r̃t − Rt = Rt − Rt = 0. (8)

In general, note how the return from yesterday to today on the
zero-arbitrage position can be written in terms of the action
taken yesterday as follows:

rt = Rtat−1 + (1 − at−1) r
f
t − Rt

=

(
Rt − r ft

)
at−1 −

(
Rt − r ft

)
=

(
Rt − r ft

)
(at−1 − 1) . (9)

The above expression can be further generalized to include a
one-way transaction costC when the risky portfolio is bought
or sold. Following, for example, [47], [48], we may assume
that there is no cost for trading the risk-free asset. Then, if the
function representing the transaction cost is c, such a function
can be expressed through the actions taken yesterday and the
day before yesterday as follows:

c (at−1, at−2) =

0, if at−2 = 1 ∧ at−1 = 1
C, if at−2 = 1 ∧ at−1 = 0
0, if at−2 = 0 ∧ at−1 = 0
C, if at−2 = 0 ∧ at−1 = 1

= C
(
1 − δat−1at−2

)
= C |at−1 − at−2| (10)

where C denotes the one-way cost of buying or selling the
risky portfolio, δij represents the Kronecker delta and |·|

denotes the absolute value. Introducing this cost function c,
the yesterday to today return of the zero-arbitrage position
can be written in terms of the actions of yesterday and the
day before yesterday in the following form:

rt =

(
Rt − r ft

)
(at−1 − 1) − c(at−1, at−2)

=

(
Rt − r ft

)
(at−1 − 1) − C |at−1 − at−2|. (11)

Now, our purpose is to optimize alpha (hopefully
in an out-of-sample generalizable way) given the vector
of zero-arbitrage position returns in time r = (rt)Tt=3 and
given the vectors of each of the k asset pricing factors in time
γ l = (γlt)

T
t=3, with l = 1, . . . , k . That is, the algorithm must

5Asset-pricing models customarily use the excess risky portfolio return
here, but since in this work we examine the return rt on a zero-arbitrage
position, using the raw return for the risky portfolio is also possible (see
footnote 1).

VOLUME 12, 2024 119451

J. H. OSPINA-HOLGUÍN, A. M. PADILLA-OSPINA: NEURAL NETWORK ARCHITECTURE

take a sequence of actions represented by the vector a =

(at)
T−2
t=1 that maximizes the alpha (α) of a given asset pricing

model defined in terms of the values of its factors γ l =

(γlt)
T
t=3, with l = 1, . . . , k .

From (2), we have, in matrix notation:

rt = α +

∑k

l=1
βlγlt + εt

r =
(
1 γ 1 γ 2 · · · γ k

)
·

(α β1 β2 · · · βk)
⊤

+ ε

r = ΓB+ ε,

(12)

where t = 3, . . . ,T , and ε = (εt)
T
t=3. Here, B = (α β)⊤ =

(α β1 β2 · · · βk)
⊤ is a (1 + k) × 1 column vector, β =

(β1 β2 · · · βk) is a 1 × k vector of factor exposures, and
Γ =

(
1 Γ ⋆

)
, where Γ ⋆

=
(
γ 1 γ 2 · · · γ k

)
. Each γ l is a

(T − 2) × 1 column vector containing the l-th risk factor
values over time t = 3, . . . ,T , with l = 1, . . . , k .
Therefore, we can compute an estimated alpha using ordi-

nary least squares (OLS) from (12) as:

α̂ =

(
B̂

)
1

=

((
Γ ⊤Γ

)−1
Γ ⊤r

)
1

=

(
Γ −1P r

)
1
, (13)

where B̂ is the OLS estimate of B, r is the vector of returns
(generated by a), (v)1 denotes the first element of the vector
v, and P is the projection matrix Γ

(
Γ ⊤Γ

)−1
Γ ⊤.

Using this notation, we aim to minimize the total reward:

min
(at)

T−2
t=1

[
−α̂

]
= min

(at)
T−2
t=1

[
−(B̂)1

]
= min

(at)
T−2
t=1

[
−

((
Γ −1P

)
r
)
1

]
, (14)

since this is equivalent to maximizing the OLS estimate of
alpha. Note that Γ −1P does not depend on the actions, but
r = r(a) does.

The optimization problem is recursive and complex, espe-
cially since an optimal action at−1 depends on the choice
previously made at−2 due to (11) and specifically due to the
form of the expression c(at−1, at−2). Since this is valid at
any time t≥3, at−1 is potentially a function of the sequence
a1, a2, a3, . . . , at−2.
The neural network architecture we propose to solve this

problem in a simple way is composed of two neural networks:
a policy network and an evaluation network. The policy
network simultaneously determines the vector of actions a
as a parametric function where each at−1 = f (θ , st−1), θ

is a vector of trainable parameters, and st−1 is the state of
the market (the environment) at t − 1. In our case, st−1
is fully observable and does not contain actions. Moreover,

the function f is a proper parametric stochastic function (for
example, a neural network) and is stable in time, as is θ . So,

a = (at)
T−2
t=1

=
(
f (θ , st)

)T−2
t=1

=
(
f (θ , s1), · · · , f (θ , sT−2)

)
. (15)

According to the policy network, to obtain a sequence of
optimal actions, it is enough to obtain the optimal vector of
parameters θ .
The above simplification is consistent with the way a sig-

nificant fraction of rule-based investors trade, for example,
technical analysts. In some of the trading rules they use,
technical analysts assume that a market timing trade decision
can be made based on past price history (we use past return
history instead). In this context, their transaction rules are
stable over time (even deterministic), and the state of the
environment does not contain the history of the decisions
made.
For example, consider a standard double moving average

crossover rule in technical analysis, which suggests holding
the risky asset at time t if the shorter moving average at
time t − 1 is greater than the longer moving average at time
t − 1, or holding the risk-free asset otherwise. Here, a moving
average at time t − 1 represents the average of daily prices
from t − m− 1 up to t − 1, where m ∈ N . The parameter m
takes the value ms for the shorter moving average and ml for
the longer moving average, with 1 ≤ ms < ml [49].
While the profitability of technical analysis remains a

matter of research and debate [50], the existence of pos-
sible patterns of predictability in the market, especially in
portfolios, has been empirically demonstrated in several stud-
ies [51], [52]. However, how do you incorporate the fact
that we want to maximize alpha (and not directly, say, total
return)? Or how do you incorporate the fact that the invest-
ment rule must consider transaction costs that may depend
on the entire sequence of previous actions? To answer both
questions, the evaluation network is introduced.
The evaluation network calculates the agent’s final reward

based on the actions it has taken and depends on the
expression (14). Remember that if r = r(a) is the set of
all zero-arbitrage returns that the investor earns over time,
the final reward is the alpha (B̂)1 calculated from this r
and a certain asset pricing model described and specified
by Γ .
According to this, the evaluation network maximizes alpha

as follows:

min
(at)

T−2
t=1

[
−α̂

]
= min

(at)
T−2
t=1

[
−(B̂)1

]
= min

(at)
T−2
t=1

[((
Γ −1P

)
r
)
1

]
, (16)

where r (a) is the vector of returns in terms of the actions,
(v)1 denotes the first element of the vector v, and P is the

119452 VOLUME 12, 2024

J. H. OSPINA-HOLGUÍN, A. M. PADILLA-OSPINA: NEURAL NETWORK ARCHITECTURE

projection matrix Γ
(
Γ ⊤Γ

)−1
Γ ⊤. As noted above, only

r = r(a) depends on the actions (as
(
Γ −1P

)
does not), and

thanks to the simplification made through the policy network,
according to which at = f (θ , st), for a given functional form f
and given state st , r only depends on the vector of parameters
θ .

B. THE NEURAL NETWORK ARCHITECTURE MODEL: BASE
MODEL
In the neural network architecture model, the policy network
is represented by a function f (θ , st−1) that depends on a
vector of trainable parameters θ and the state st−1 to decide
which action at−1 = f (θ , st−1) to take every previous day.
In the base model, the neural network f used to describe the
policy is a simple two-layer feed-forward neural network.
This neural network is composed of an initial linear layer
(with biases) with a size-two output, a logistic sigmoid activa-
tion function, and a second final linear layer (without biases)
with a size-two output. Finally, a softmax layer is applied to
assign actions to 0 or 1. That is, for each state, carrying out the
policy leads to either 1, representing being ‘‘in the market’’,
or 0, representing being ‘‘out of the market’’. Only the first
output of the softmax layer is used.

In the context of reinforcement learning, the information
used by the policy network to decide which daily action to
take is given by the characteristics encoded into the state.
In this way, the state contains the variables that describe the
environment in which the agent acts. In the base model, the
state is the vector that represents the returns of the risky
portfolio over the last L = 10 days (cf. [53]), that is,

st−1 = (Rτ)
t−1
τ=t−(L−1)−1 . (17)

Note how the state does not include information about past
trading actions (in contrast with [53], for example). Such
information is only encoded in the evaluation network. Also
note how consecutive states are not independent. Although
this form of state is quite simple, the complete neural network
architecture is capable of obtaining enough information from
it to generate alpha.

In the base model, the neural network architecture then
uses the q5-model [6], a five-factor model, as the asset pricing
model in the evaluation network. This means that the defini-
tions of Γ and P in (16) refer to the q5-model factors.6 The
q5-model improved on the original Hou-Xue-Zhang q-factor
model [54] by adding an additional factor, for a total of five
factors.

The first factor in the q5-model refers to the market factor.
The market factor is built as the market return over the risk-
free rate. This fundamental factor was already present as early
as in the original CAPM, the first asset-pricing model.

The second factor in the q5-model is a size factor. This fac-
tor is constructed as the return on a portfolio of stocks of small
capitalization companies minus the return on a portfolio of
stocks of large capitalization companies. This factor attempts

6As published in https://global-q.org/factors.html by the authors of [6].

to capture the size effect, according to which small companies
tend to outperform large ones [54].

The third factor in the q5-model is an investment fac-
tor. The investment factor is constructed as the return on a
portfolio of stocks of companies with low investment minus
the return on a portfolio of stocks of companies with high
investment. According to [54], given expected cash flows, the
net present values of new capital projects, and therefore the
investment itself, diminish when the cost of capital is high,
and vice versa. For this reason, investment and returns are
related.

The fourth factor in the q5-model is a profitability factor,
constructed as the return on a portfolio of stocks of companies
with high ROE (return on equity) and the return on a portfolio
of stocks of companies with low ROE. According to [54],
ROE is related to returns because, given low investment, high
expected ROE requires high discount rates, and vice versa.
If the discount rates were not higher when expecting a higher
ROE, firms would deduce high net present values of new
capital and invest more instead, and vice versa [54].

The fifth factor added to the q5-model is an expected
growth factor. This factor is constructed as described in [6].
According to [6, p. 2]:

In the investment theory, firms with high expected invest-
ment growth should earn higher expected returns than firms with
low expected investment growth, holding current investment and
expected profitability constant. Intuitively, if expected investment
is high next period, the present value of cash flows from next
period onward must be high. Consisting primarily of the present
value of cash flows from next period onward, the benefit of
investment this period must also be high. As such, if expected
investment is high next period relative to current investment, the
discount rate must be high to offset the high benefit of investment
this period to keep current investment low.
As stated in the introduction, despite its parsimony, the

q5-model has been very successful at explaining most
systematic abnormal returns (or anomalies) that have
been previously identified and replicated. For example, of
150 anomalies that were found to be replicable by [4], out
of a total of over 450 anomalies examined, the q5-model [6]
could explain all but 23 at standard significance levels. Or all
but 6 at more stringent significance levels that take potential
datamining into account. Thismay seem to imply that finding
abnormal returns using the q5-model should be an inherently
difficult test to pass for any proposed algorithm.

To sum up the workings of the base model, the eval-
uation network specifically uses the information from the
q5-model factors to determine

(
Γ −1P

)
and calculate alpha,

as in (16). The expression
(
Γ −1P

)
depends only on the

factors, and since alpha is calculated as the first component
of the vector

(
Γ −1P

)
r (a), the other pieces of informa-

tion required to compute alpha are the returns r(a) =

r
((
f (θ , s1), · · · , f (θ , sT−2)

))
which do not depend on the

factors at all. Indeed, the returns only depend on the states
and the vector of trainable parameters θ as defined in the
policy network. Then, alpha is optimized by changing this
vector θ .

VOLUME 12, 2024 119453

J. H. OSPINA-HOLGUÍN, A. M. PADILLA-OSPINA: NEURAL NETWORK ARCHITECTURE

Note that the policy’s functional form and parameters
f (θ , ·) in the policy network, although stochastic, remain
unchanged over states and therefore remain unchanged over
time. Since the function f and the θ vector remain unchanged
for the whole sample during every round of alpha evalua-
tion, what the evaluation network is doing is an optimization
where the policy network is successively applied with θ

parameters that are effectively shared in time throughout the
optimization.

In line with modern optimization practices, the model is
fit in a time-ordered first training set, but then a contiguous
time-ordered validation set is used to select the θ parameters
that render the smallest (validation) loss. Both the training
and the validation sets are chosen of equal lengths. The
use of a logistic function in the policy network, instead of
a deterministic Heavisde function as described in [13] or
instead of a sign function as described in a similar problem
in [30], as well as the stochastic nature of the policy, instead
of a deterministic one as in [12] or [13], help allow the loss
in (16) to be optimizable through stochastic descent in what
would otherwise be a nondifferentiable optimization.

Indeed, the maximization of alpha in the neural network
architecture is accomplished in the base model by minimiz-
ing the loss, computed as the negative of alpha, through
ADAM [55], a variant of stochastic gradient descent that
uses an adaptive learning rate. Here, alpha can be seen as
a stochastic scalar function differentiable with respect to the
parameters in θ . In the ADAMoptimization scheme, adaptive
estimates of lower-order moments are used for the optimiza-
tion, whereas the invariance of the learning rate to diagonal
rescaling of the gradients is guaranteed [55].
Initially, to prevent overfitting, a global L2 regularization

with a regularization parameter of 0.01 was used. As an
additional form of early stopping to prevent overfitting, the
optimization algorithm was also initially stopped when the
absolute change of the loss did not improve by at least
0.001 for more than five rounds. However, these safeguards
were later found to be unnecessary and were omitted in the
end.

The results of the optimization are the optimal parameters,
θopt. They make up the optimal policy. Then, to evaluate the
out-of-sample performance of the neural network architec-
ture, it is enough to apply this optimal policy to data outside
the original (training and validation) sample and calculate the
alpha in a similar way to the one already described in (13),
but with

(
Γ −1P

)
r (a) using out-of-sample factors and out-

of-sample returns, with the returns determined by f (θopt, ·)
and the new out-of-sample states.

Out-of-sample alpha in the testing sample is measured
(and reported) as annual percentage points by multiplying
the daily alpha by 252, where 252 is the average number
of trading days per annum.7 The returns are correspondingly
measured as percentage points. Additionally, when comput-

7While this annualization scheme is technically valid only under indepen-
dent and identically distributed daily returns, it is the standard in the finance
literature.

ing alpha, a one-way transaction cost of one basis point is
used, i.e., 0.01. This cost was on the lower end of the spectrum
in the financial literature toward 2000 [47], but it has also
been used as a more recent minimum benchmark in modern
reinforcement learning studies on finance [13], [53].

V. RESULTS AND DISCUSSION
A. BASE MODEL
To illustrate the ability of the neural network architecture
to generate alpha, we use each of the 10 size decile portfo-
lios (i.e., market capitalization decile portfolios) of the three
major US stock exchanges (NYSE, NASDAQ, AMEX) as a
risky portfolio separately.8 These portfolios result from order-
ing all the shares of the NYSE stock market according to the
market capitalization of the companies they represent. To do
this, the data at the end of June for each company are used, and
breakpoints are calculated resulting from grouping the shares
ordered by size from the NYSE into ten equally large sub-
sections. These breakpoints are then used to assign the stocks
of all three exchanges (NYSE, NASDAQ, AMEX) into ten
groups or deciles. Portfolios are rebalanced at the end of each
June with the same procedure. Accordingly, the daily return
of the p-th risky portfolio is the value-weighted daily return of
all stocks on the three exchanges (NYSE, NASDAQ, AMEX)
assigned to the p-th decile group. Specifically, the first decile
p = 1 denotes the decile group of the smallest companies, and
the last decile p = 10 denotes the decile group of the largest
companies. The risk-free rate corresponds to the thirty-day T-
bill. The use of value-weighted portfolios in the base model
is very important, given that previous literature has suggested
that microcaps explain many anomalies and that such anoma-
lies tend to disappear when using value-weighted portfolios
instead of equal-weighted portfolios [4].
The evaluation and the policy networks used in the base

model are the ones described in Section IV-B. Once the policy
network optimal vector, θopt, is found, the optimal policy is
applied out-of-sample, and the alpha it produces is measured
in the testing set. Thus, the alphas are measured using data
not previously used during the construction of the optimal
policy. Instead, the out-of-sample testing set is simply used to
calculate the alpha with the policy already established during
training and validation.

The in-sample evaluation uses the (5400−L−1)-returns
sample from January 18, 1967, to June 28, 1988, as the
training set, with the length of the state being L = 10
in the base model. The in-sample evaluation also uses a
(5400−L−1)-returns sample, but from June 29, 1988,
to November 10, 2009, as the validation set. The testing set
begins on November 11, 2009, and goes until December 31,
2021, for a total of a little over 12 years.

It is important to note that the dataset of states begins in
every case L + 1 days before the starting date of the returns
sample, given that each state has L past returns and given that
two consecutive states (and correspondingly two consecutive

8Available at Kenneth French’s website: https://mba.tuck.dartmouth.edu/
pages/faculty/ken.french/.

119454 VOLUME 12, 2024

J. H. OSPINA-HOLGUÍN, A. M. PADILLA-OSPINA: NEURAL NETWORK ARCHITECTURE

actions) are needed to determine the return of the algorithm
according to (11). For example, for L = 10, the first state in
the training sample goes from January 03, 1967, to January
16, 1967, the second from January 04, 1967, to January 17,
1967, and so on.

Table 1 reports the summary statistics of the out-of-sample
risky portfolios, and Table 2 reports the out-of-sample alpha
achieved by the algorithm. The returns of the risky portfolio
are subtracted from the returns obtained from the algorithm’s
position in the portfolio to obtain a zero-arbitrage position
(see Section I); thus, the alpha is not the naïve result of just
following the underlying risky portfolio growth (for example,
a buy and hold strategy on the risky portfolio would provide
a zero alpha in this setting).

The q5-model alphas achieved are of economic signifi-
cance, never going below 3.64% per annum and going up to
8.21% per annum in the best scenario, which occurred when
using the portfolio with the smallest firms as the underlying
portfolio. Furthermore, in eight of the ten portfolios exam-
ined, the algorithm achieves a statistically significant alpha
at the 95% confidence level.

B. POTENTIAL EXPLANATION OF RESULTS
If the algorithm can achieve such high economic alphas by
solely utilizing the last ten days of risky portfolio returns to
inform its actions, a pertinent question arises: why does the
algorithm perform so well?

To explore this, consider an experiment where actions
(either 1 or 0) are randomly chosen with a 50% probabil-
ity and applied to each portfolio. Repeat this experiment
1000 times for each portfolio and measure alpha each time.
An interesting observation arises: the median alpha for each
portfolio is less than zero in statistical terms.

Now, compute an optimal sequence of actions for each
portfolio following the proposed basemodel algorithm. Then,
calculate the ratio φp of 1-actions to the total number of
actions, for every p-th decile portfolio. This φp ratio indicates
the likelihood of investing in the risky asset if optimal actions
are followed. Now use this ratio φp to define a Bernoulli
distribution to randomly choose actions (either 1 or 0). Repeat
this experiment 1000 times. Despite themedian alpha remain-
ing statistically less than zero for every portfolio, each new
median alpha is economically higher in every portfolio com-
pared to the previous median alpha computed when actions
were chosen with a 50% probability.9

All of this suggests that the φp ratio provides useful infor-
mation about when to invest in the risky or risk-free asset.
However, this information alone is insufficient to achieve a
statistically positive alpha when the sequence of actions is
randomized. Thus, the order, and therefore the history, of the
optimal actions are crucial.

Interestingly, the trained policy networks for each portfolio
are essentially the same, sharing identical weights and biases

9Similar results are obtained even when estimating a discrete-time, two-
state Markov process for each portfolio and simulating it 1000 times.

(denoted as θopt above). Even when the optimizer’s random
seeds are changed, they converge to the same θopt for every
portfolio, indicating that the network exploits similar patterns
across different portfolios. Furthermore, optimization for
each portfolio is achieved in only one round, encompassing
all returns in the training and validation sets simultaneously,
as per (16). While it may seem unlikely that θopt is exactly
the same for different portfolios, it appears that the ADAM
optimization converges to the same local optimum for each
portfolio.

The former suggests that differences between any two
optimal sequences arise from variations in input states rather
than differences in the policy functions themselves. Nev-
ertheless, optimal actions across portfolios are also highly
similar: the percentage of common elements in out-of-sample
optimal actions between any two distinct portfolios ranges
from 81.3% to 95.1%.

Consequently, the policy network appears to learn simi-
lar patterns from the input data across different portfolios,
although these specific patterns are challenging to pinpoint.
For instance, it was observed that returns from risky portfolios
exhibit temporal patterns that are likely exploitable. This
conclusion emerged from applying a standard variance ratio
test for a random walk to each portfolio.10 However, even
when the in-sample time series of risky portfolios are shuffled
randomly before training, the out-of-sample alpha for the
deciles does not disappear. This suggests that the algorithm
does not only learn temporal patterns in the data.

In summary, the algorithm’s efficacy appears to stem from
its ability to recognize complex patterns in the data. These
patterns include not only temporal variations in the states,
which are inherited from the risky portfolio series but also
potentially cross-sectional and temporal patterns in the fac-
tors and the risk-free rate series. The algorithm effectively
captures the interrelations between these elements, which
collectively contribute to generating alpha.

C. ROBUSTNESS TESTS OF THE NEURAL NETWORK
ARCHITECTURE MODEL
In robustness tests, various modifications of the base model
were evaluated. For this, the following cases were considered:

1) EQUAL-WEIGHTED RISKY PORTFOLIOS INSTEAD OF
VALUE-WEIGHTED RISKY PORTFOLIOS
In this scenario, the base model is applied to the size
(i.e., market capitalization) decile portfolios of the three
main US market exchanges (NYSE, NASDAQ, AMEX) but
constructed with equal weights. This means that the daily
return of the p-th risky portfolio is calculated as the daily
return of an equal-weighted portfolio of all the shares of the

10A randomwalk test usingwild bootstrapping [67], conducted in overlap-
ping segments of exactly ten days with 2000 bootstrap iterations, was applied
to the entire return series of each value-weighted US size decile portfolio.
Only the returns of the decile 9 portfolio were found to be ‘‘random,’’ mean-
ing they did not reject the random walk hypothesis at the 90% confidence
level.

VOLUME 12, 2024 119455

J. H. OSPINA-HOLGUÍN, A. M. PADILLA-OSPINA: NEURAL NETWORK ARCHITECTURE

TABLE 1. Summary statistics of value-weighted US size decile portfolios.

three exchanges (NYSE, NASDAQ, AMEX) assigned to the
p-th decile group, instead of using value weighting. The rest
of the details are left as equal to those in the base case.

Table 3, Scenario #1, gives the q5-model alphas obtained
by the algorithm. Nine out of the ten calculated alphas are
significant at least at the 90% confidence level, ranging from
4.15% per annum to 9.72% per annum. It is interesting to
highlight that the best six alphas achieved were all significant
at least at a 95% confidence level. Equal-weighted portfolios
tend to protect against outliers (in this case, outliers in size),
but they often need additional rebalancing. The algorithm
handles these portfolios at least as well as the value-weighted
ones.

In the following two scenarios, we return to the base model
of Section V-A, but with details from the policy network
definition changed to test for the robustness of the results
under policy variations.

2) SHORTER STATE VECTOR
In this shorter state vector scenario, the base model is com-
puted using the standard sample of value-weighted risky
portfolios but with a state that contains less information,
specifically, fewer historical returns. Indeed, in this test, the
state is the vector that represents the returns of the risky
portfolio containing the last eight days instead of the usual
ten days of the base model. Table 3, Scenario #2, reports the
q5-model alphas obtained by the algorithm. All of them are
of economic significance, ranging from 2.74% per annum to
7.75% per annum. In half of the portfolios, the algorithm was

TABLE 2. Algorithm’s alphas using value-weighted US size decile
portfolios: Base model case.

able to achieve a statistically significant alpha at the 90%
confidence level.

As would be expected, the decreasing of available informa-
tion when passing from ten past risky portfolio returns input
state vectors to eight past risky portfolio returns input state
vectors weakens alpha, both statistically and economically.

3) DIFFERENT POLICY NEURAL NETWORK
In this scenario, the base model is computed as always,
using US value-weighted risky portfolios, but with a different
functional form for the policy network. Everything else is left
unchanged in comparison with the base case.

Here, instead of a vanilla policy network, a self-
normalizing network [57] is used. Specifically, the
self-normalizing network is composed of an initial linear
layer (with biases) with a size-two output, a SELU (Scaled
Exponential Linear Unit) activation function, a dropout layer,
and a second final linear layer (without biases) with a size-two
output. With a probability of 0.2, the dropout layer randomly
sets the input variables to zero while maintaining the input’s

119456 VOLUME 12, 2024

J. H. OSPINA-HOLGUÍN, A. M. PADILLA-OSPINA: NEURAL NETWORK ARCHITECTURE

mean and variance (i.e., alpha dropout is used [57]). A soft-
max layer is then added at the end to assign actions to 0 or
1. In other words, implementing the policy results in either
a 1, signifying being ‘‘in the market,’’ or a 0, signifying being
‘‘out of the market’’, for each state. The softmax layer’s first
output is the only one that is used.

Self-normalizing networks tend to be quite flexible and
general (at least in classification problems), so it is interesting
to examine whether they can adequately represent the alpha-
optimizing 0 or 1 actions. Unfortunately, only one of the
alphas was significant, and only at the 10% level (Table 3,
Scenario #3). However, all alphas were still economically
positive, ranging from 0.74% per annum to 5.98% per annum.
This illustrates the superiority of the vanilla policy network,
perhaps due to themore complicated policy tending to overfit.
(It is worth mentioning that self-normalizing neural networks
often assume mean 0 and variance 1 data, a transformation
we did not apply since the data were already stationary with
a close-to-null mean).

4) LARGER TRAINING AND VALIDATION SETS
In this scenario, we use a larger training set and a larger
validation set (Table 3, Scenario #4). Since the available data
are the same, this means that the testing set was shorter. The
in-sample evaluation used the (6400−L−1)-returns sample
from January 18, 1967, to June 11, 1992, as the training set
and the (6400−L−1)-returns sample from June 12, 1992,
to October 20, 2017, as the validation set. The testing set
ranges from October 23, 2017, to December 31, 2021, for
a total of slightly over 4 years. Other parameters are left
unchanged with respect to the base model, including the
length of the state L = 10.
The algorithm’s alphas were even more impressive, per-

haps due to the additional training and validation information
(Table 3, Scenario #4). All alphas were economically over
6.51% per annum. Seven of them surpassed 10% per annum,
with six of those showing statistical significance at the 5%
level.

5) HIGHER TRANSACTION COST
In this scenario, the base model using value-weighted risky
portfolios is applied, but with a transaction cost of five basis
points instead of one basis point. As would be expected,
alphas deteriorate due to the higher cumulative transaction
costs. All alphas stopped being significant at the 10% level.
However, they remain economically important, ranging from
0.16% per annum to 4.50% per annum (Table 3, Scenario #5).

6) FF6 MODEL INSTEAD OF THE q5 MODEL
In this scenario (Table 3, Scenario #6), the base model using
the standard value-weighted risky portfolios is applied, but
using the Fama-French six-factor asset pricing model [58],
instead of the q5 model. In [58], Fama and French developed
an extension of their original asset pricingmodels: their three-
factor model [59] and their five-factor model [44], adding a
momentum factor, as in [42].

TABLE 3. Algorithm’s alphas in robustness scenarios.

Although the Fama-French six-factor model is believed
to be outperformed by the q5 model [6], it is another of
the recent models with wide diffusion. The previous Fama-
French five-factor model [44] explains asset returns using
five risk factors: a market factor (Mkt), a size factor (SMB),
a value factor (HML), a profitability factor (CMA), and an
investment factor (RMW). The six-factor model [58] adds an
additional factor to the five-factor model: a momentum factor

VOLUME 12, 2024 119457

J. H. OSPINA-HOLGUÍN, A. M. PADILLA-OSPINA: NEURAL NETWORK ARCHITECTURE

(UMD). The factor data are available at Kenneth French’s
website.11

Using the Fama-French six-factor model on the usual
value-weighted risky portfolios, the algorithm delivers eco-
nomically positive alphas for every portfolio. Furthermore,
eight alphas, ranging from 5.47% per annum to 8.74% per
annum, are significant at least at the 5% level. Such results
distinctively show that the algorithm’s efficacy is not due to
the asset pricing model initially chosen but can be replicated
successfully with other standard asset pricing factors.

D. COMPARISON TO OTHER METHODS
1) COMPARISON TO THE METHOD IN [13]
As highlighted in Section III, one of the two most similar
predecessors to the present work is [13], making it valuable
to draw a comparison with the method proposed therein.
In [13], the action taken by the trading strategy at a given
time is represented by a Heaviside function with a range of
{0, 1}. Similar to this work, a value of 0 signifies being 100%
invested in the risk-free asset, while a value of 1 denotes
being 100% invested in the risky asset within a market timing
strategy. Specifically, to determine the appropriate action,
[13] computes a linear combination of past days’ returns
plus a constant (a bias) and applies a Heaviside function.
States based on L = 10 past days returns, akin to the base
model in this paper, are used. Alpha is directly calculated as
per (13), after its expression in terms of actions contingent on
Heaviside functions. The optimization function is nonlinear
and non-differentiable due to the utilization of Heaviside
functions, comprising fragments of parallel hyperplanes at
different heights on the alpha axis. Nevertheless, this is
not problematic as the optimization is conducted by differ-
ential evolution (DE), which is robust to nonlinearity and
non-differentiability.

In the original study by [13], Carhart’s (i.e., Fama and
French four-factor) alphas [42] and Fama and French five-
factor alphas [44] were computed by applying their algorithm
to US size decile portfolios and assessing the return of a
zero-cost arbitrage position. For comparison, the alpha of the
q5-model applied to the method in [13] is calculated here.
It is worth noting that the use of the q5-model in this context
establishes a more stringent benchmark for evaluating the
method in [13] than the one originally employed, given that
the Fama and French models are considered to be surpassed
by the q5-model, which also boasts greater explanatory power
for the anomalies documented in the literature [6].

The portfolios in this comparison are identical to those in
the base model: Each of the 10 value-weighted size decile
portfolios (i.e., market capitalization decile portfolios) of
the three major US stock exchanges (NYSE, NASDAQ,
AMEX) is used separately as a risky portfolio. The compari-
son involves the same a priori one basis point transaction cost
for trading the risky portfolio. Given that the method in [13]
does not involve training and validation, only the validation

11https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/.

data is utilized to derive parameters that maximize the in-
sample alpha. In other words, the in-sample evaluation also
utilizes the (5400−L−1)-returns sample from June 29, 1988,
to November 10, 2009. (Using the sample from January 18,
1967, to November 10, 2009, yielded qualitatively similar
results but with a lower alpha for the decile of the smallest
firms.) Out-of-sample results are computed and reported in a
test set. The test set is the same as in the base case, spanning
from November 11, 2009, to December 31, 2021, for a total
of over 12 years. Table 4, Model #1, presents the outcomes
of applying the method in [13] to the test set, which are fully
comparable to those obtained in the base case.

The first thing to note is that the method in [13] per-
forms well for the decile portfolio with the smallest firms.
This aligns with the base model, which also reports the
highest alpha for the same portfolio. The alpha achieved by
the [13] method is of a comparable magnitude and signif-
icance (α = 7.88% per annum with a t = 2.42 using [13]
versus α = 8.21% per annum with a t = 2.57 in the base case
using the exact same test sample). This positive alpha sug-
gests that the [13] algorithm can effectively exploit patterns
in the underlying decile portfolio to generate risk-adjusted
returns. However, it is essential to note that the method in [13]
does not yield positive and significant alphas in any of the
other underlying decile portfolios.

This observation might imply that the [13] algorithm is
effective only in the portfolio where the signal is stronger
or easier to exploit for extracting alpha. Looking at the in-
sample alphas, they are notably higher than the in-sample
alphas of the base model presented in this paper. Specifically,
the in-sample alphas of the base model in the present study
range from 4.38% per annum (for the decile of the largest
firms) to 12.9% per annum (for the decile of the smallest
firms). In contrast, the in-sample alphas using the method
described in [13] range from 10.10% per annum (for the
second decile of the largest firms) to 21.46% per annum
(for the decile of the smallest firms). This discrepancy sug-
gests that the method in [13] may be overfitting. This is not
entirely surprising, since the method described in [13] does
not incorporate the use of hold-out information to improve
its out-of-sample performance.

In short, although the method described in [13] is sig-
nificantly easier to program and execute, it is much less
flexible and generalizable. It is less flexible by default, as it
does not attempt to avoid overfitting through the use of a
hold-out sample (in fact it tended to overfit in the conducted
comparison). Moreover, its lack of flexibility extends to its
failure to leverage the extensive knowledge available about
neural networks that have already been developed and opti-
mized. For example, the model presented in this work is
not only agnostic to the specific architecture of the neu-
ral network used as a policy, making it easily adaptable
to other types of networks, but it also takes advantage of
well-known neural network training methods like automatic
differentiation [60]. This adaptability could prove highly
valuable when extending the method to more realistic and

119458 VOLUME 12, 2024

J. H. OSPINA-HOLGUÍN, A. M. PADILLA-OSPINA: NEURAL NETWORK ARCHITECTURE

complex scenarios, such as employing states with hundreds or
thousands of variables, as opposed to the ten used in the base
case.

2) COMPARISON TO SUPERVISED LEARNING METHODS11

In this section, we make an additional comparison between
the proposed algorithm and standard supervised learning
methods. In supervised learning, the goal is to find a general
function that connects input variables to an output variable
based on multiple examples of input-output pairs. Therefore,
the objective of this approach is to directly construct the
policy function f (θ , ·) that determines the actions at−1 =

f (θ , st−1), using examples of pairs of state vectors st−1 and
optimal actions at−1.

The main difficulty with this approach is that the actions
optimizing alpha are not predetermined; therefore, there are
no examples of outputs to be paired with inputs. First, alpha
depends on a comprehensive history of actions, determining
stock returns r, as observed in (13). Second, within this
framework, each action recursively depends on all preceding
actions in a complex manner, as explained after (14). Third,
alpha is influenced by variables not directly dictated by the
actions, such as the risk factor vectors of the asset pricing
model used.

These are precisely the reasons why a reinforcement learn-
ing approach was originally preferred in this work instead
of supervised learning. However, to compare the proposed
algorithm with supervised learning models, it is essential to
have examples of optimal actions in some form. To facil-
itate this comparison, the optimality criterion will need to
shift away from alpha maximization, as an algorithm that
establishes optimal actions in this sense is currently unknown
(other than those introduced in [12], [13], and this work, all of
which directly provide f (θ , ·) without requiring supervised
learning).

Instead, we will seek to maximize the one-step ahead
return (from a zero-arbitrage position of the algorithm). For
simplicity, we will refer to this concept of optimality as
rt -optimality to distinguish it from the usual optimality in this
work, which focuses on alpha maximization. It is important
to note that rt -optimality does not necessarily imply alpha
optimality, as an rt -optimal algorithm aims to maximize daily
return alone, whereas an alpha optimization algorithm aims
to maximize a complex risk-adjusted return based on an asset
pricing model.

In general, finding a multi-period solution that maximizes
total return is highly complex (cf. [61]). However, it is
straightforward to establish an analytical criterion for one-
step-ahead rt -optimality, provided we have future return data
associated with each past action in advance, as is the case with
the training and validation samples.

It is important to note that given an action at−2 at time t−2,
the return rt on the day after making the decision at−1 at time

11We appreciate the advice of an anonymous reviewer on the importance
of including this comparison.

t − 1 is, according to (11):

rt =

(
Rt − r ft

)
(at−1 − 1) − C |at−1 − at−2|. (18)

Then, if r(at−1 = 1, at−2) is greater than r(at−1 = 0, at−2),
the best empirical decision that could have been made at t −

1 is at−1 = 1. Otherwise, it is at−1 = 0. Therefore,
the condition for at−1 = 1 can be expressed, in terms of
rt (at−1, at−2), as:

rt(1, at−2) > rt(0, at−2)

−C |1 − at−2| > −

(
Rt − r ft

)
− C |−at−2|(

Rt − r ft
)

−C (1 − 2at−2) > 0, (19)

where the facts that at−2 ∈ {0, 1}, | − at−2| = at−2 and
|1 − at−2| = 1 − at−2 were used.
From this condition, an empirical sequence of rt -optimal

actions can be computed period by period, starting from an
initial value, for example a1 = 0, and calculating consecu-
tively

at−1 = H
((
Rt − r ft

)
− C (1 − 2at−2)

)
(20)

from t=3 until the end of the training and validation samples,
where H(x) is the Heaviside function defined as:

H(x) ≡

{
1, x ≥ 0
0, x < 0.

(21)

Once the sequence of empirical rt -optimal actions is deter-
mined, it becomes feasible to train any supervised learning
algorithm using input–output pairs to establish the policy
function f (θ , ·) that maps the state vector st−1 to the action
at−1 = f (θ , st−1).
Table 4, Models #2–#5, shows the out-of-sample alphas

achieved when applying the policy f (θ , ·) in the test sam-
ple. This policy was obtained using four standard supervised
learning models: a (self-normalizing) neural network, a gra-
dient boosting machine, a logistic regression, and nearest
neighbors. The same training and validation sample as the
original algorithm were used.

For the self-normalizing neural network [57], only one
training round was applied, and a very high L2 regularization
with a regularization parameter of 10 was used to prevent
overfitting. The LightGBM implementation of the gradient
boosting machine also used the same regularization parame-
ter of 10. In the case of logistic regression, only one training
round was applied, with an L2 regularization parameter of
10 again used. For nearest neighbors, a high distribution
smoothing parameter was employed.

All supervised methods produce alphas of economic sig-
nificance for the decile of the smallest firms. However, except
for the supervised learning neural network method, the per-
formance of the other supervised learning methods is subpar.

The results from the supervised learning neural network
are particularly promising. This method achieved alphas of
economic significance for seven out of the ten portfolios,

VOLUME 12, 2024 119459

J. H. OSPINA-HOLGUÍN, A. M. PADILLA-OSPINA: NEURAL NETWORK ARCHITECTURE

TABLE 4. Algorithm’s alphas using value-weighted US size decile
portfolios with alternative methods.

although statistical significance was only observed for the
decile of the smallest firms. Economically, it outperformed
all other comparison methods in terms of alpha, including
the specialized method in [13]. This underscores the ver-
satility achieved by the self-normalizing neural network
in supervised learning, likely attributable to its universal

approximation properties [62], along with effective strategies
implemented to prevent overfitting: validation sample usage,
early stopping, and rigorous regularization. While similar
techniques were employed in the other supervised learning
methods, they were not as effective.

However, when compared with the method introduced in
this work, the results were economically inferior across all
portfolios, except for the two decile portfolios containing
the smallest firms, where the alphas achieved by the neu-
ral network supervised learning method were comparable
to those of the proposed algorithm. Additionally, the pro-
posed algorithm consistently yielded economically positive
alphas, whereas the algorithm based on the neural network
supervised learning method produced negative alphas in all
three decile portfolios containing the largest firms. As our
experiments have shown, these portfolios pose the greatest
challenge when trying to identify and capitalize on patterns.

It is also interesting to compare the self-normalizing rein-
forced learning neural network used in a robustness test
(Table 3, Scenario #3) with the self-normalizing supervised
learning neural network (Table 4, Model #2). The super-
vised learning neural network exhibited highly competitive
performance compared to the reinforcement learning neu-
ral network of the same structure, achieving economically
superior alphas in the four decile portfolios containing the
smallest firms, where signals are presumably easier to extract.
However, only the reinforcement learning neural network
consistently delivered economically positive alphas across all
portfolios. This demonstrates that the exact same neural net-
work structure can exhibit very different behaviors depending
on the type of learning—supervised or reinforced—and the
optimization criteria applied.

VI. CONCLUSION
It is well known that investors are willing to take greater risks
when they expect higher returns. Consequently, an investor is
interested not only in the net return on their investment but
also primarily in the risk-adjusted return. Among the various
measures of risk-adjusted returns in finance, alpha from an
asset pricing model is perhaps the most widely used and
developed today.

Through alpha, asset pricing models enable the calcu-
lation of an asset’s return beyond what is expected from
its exposure to impacting risk factors. Achieving significant
positive alpha in investments is challenging. For instance,
research on mutual funds has demonstrated that most funds
do not generate alpha using relatively modern asset pricing
models [8], [63].

Despite the recent increase in machine learning applica-
tions in stock market trading algorithms, no alternative had
been presented thus far that allows for the direct discovery
of alpha through nonlinear neural networks. The present
work accomplishes this by introducing a neural network
architecture capable of training a market timing algorithm
that maximizes the alpha of a given linear asset pricingmodel.
Although market timing models generally face profitability

119460 VOLUME 12, 2024

J. H. OSPINA-HOLGUÍN, A. M. PADILLA-OSPINA: NEURAL NETWORK ARCHITECTURE

challenges [64], the introduced algorithm has achieved eco-
nomically significant and often statistically significant alphas
out of sample, suggesting that these results are not due to in-
sample optimization.

In studies that postulate the existence of alpha, such as the
present one, inquiring into data snooping is a valid concern.
Nevertheless, in robustness tests, the algorithm continued to
perform well out-of-sample under a wide range of different
specifications, changing the algorithm details, the risky port-
folios, or the in-sample dates.

The algorithm’s novelty is rooted in its use of a neural
network architecture to directly maximize alpha. This archi-
tecture consists of two key components: a policy network
and an evaluation network. The policy network represents
a parametric investment rule that makes daily decisions
about investing in a risky asset or risk-free asset based on
historical returns. The evaluation network focuses on the
long-term computation of alpha during the optimization of
the policy network’s shared-in-time parameters. By employ-
ing this dual-network structure, the algorithm learns to
exploit patterns in past return data and the cross-section
of returns and risk factors to make investment decisions
that yield alpha, i.e., returns exceeding those predicted by
the chosen asset pricing model. Furthermore, the algorithm
is designed to incorporate real-world constraints, including
transaction costs, in the decision-making process, and uses
a zero-cost arbitrage position for performance evaluation.
This approach ensures that the resulting alpha is realistic and
representative of actual profitability, not an artifact of unre-
alistic assumptions or inflated by the underlying portfolio’s
performance.

Evidently, the validity of any obtained alpha depends on the
validity of the asset pricing model used. In this paper, two of
themost complete parsimoniousmodern asset pricingmodels
were used: the q5 model [6] and, in robustness tests, the Fama
and French 6-factor model [58]. It is always possible to argue
that if an alpha was obtained, it is because the model is not
capturing other types of risks that should be considered. How-
ever, the neural network architecture is trivially generalizable
to any other asset pricingmodel that is linear in its risk factors,
even if it includes new factors, so that if exploitable patterns
persist in the architecture’s inputs, positive alpha should again
be achievable.

Additionally, the introduced neural network architecture
achieved its results relatively easily: the computational
method is fast and requires very little information compared
to alternative models for alpha optimization, such as those
of [12], [13]. One of the most interesting features of this new
proposal is that it can potentially be enhancedwithmore com-
plex neural network models and more efficient optimization
algorithms.

Another strength of the algorithm is that it not only consid-
ers transaction costs but is also easily applicable to other types
of costs or restrictions, such as taxes. Additionally, although
the historical returns of risky assets were used as input state
vectors, the algorithm allows the incorporation of any other

type of historical information to determine optimal actions,
such as macroeconomic or accounting information specific to
the risky portfolios. In the future, it is conceivable to develop
more advanced versions of the algorithm that use further
information, perhaps including supervised learning forecasts
as inputs.

In summary, the present work adds a robust, generalizable,
and easy-to-use tool to the existing arsenal of asset man-
agement tools. Nevertheless, the implications of automatic
alpha-maximizing trading strategies for asset pricing theories
remain to be explored. In principle, new anomalies and trad-
ing factors could be easily and programmatically detected in
the future, but the financial sources and potential interpre-
tation of these anomalies may remain opaque. Additionally,
as these same anomalies can be easily detected by other
investors, it is uncertain how persistent they will be [65].
Furthermore, a deeper exploration of the market-related con-
sequences of these strategies, particularly in terms of market
stability and systemic risk, would be valuable for future
research. This is particularly important since alpha-earning
active managers require a counterparty loser for every move
they make in order to be successful [66].

ACKNOWLEDGMENT
The following tools and services were used to improve gram-
mar and style: DeepLWrite, Google Translate, Google Bard,
ChatGPT, American Journal Experts, and Cambridge Proof-
reading. The authors would like to thank four anonymous
reviewers and Dr. Chun-Wei Tsai, the associate journal edi-
tor, for their valuable feedback, which greatly improved the
quality of this article. The content of the manuscript is the
sole responsibility of the authors.

REFERENCES
[1] L. H. Pedersen, Efficiently Inefficient: How Smart Money Invests and

Market Prices Are Determined. Princeton, NJ, USA: Princeton Univ. Press,
2015, doi: 10.2307/j.ctt1287knh.

[2] A. Brabazon, M. Kampouridis, and M. O’Neill, ‘‘Applications of genetic
programming to finance and economics: Past, present, future,’’ Genetic
Program. Evolvable Mach., vol. 21, nos. 1–2, pp. 33–53, Jun. 2020, doi:
10.1007/s10710-019-09359-z.

[3] D. B. Keim, ‘‘Financial market anomalies,’’ in The New Palgrave Dic-
tionary of Economics, 2nd ed., S. N. Durlauf and L. E. Blume, Eds.,
Basingstoke, NY, USA: Palgrave Macmillan, 2008.

[4] K. Hou, C. Xue, and L. Zhang, ‘‘Replicating anomalies,’’ Rev. Financial
Stud., vol. 33, no. 5, pp. 2019–2133, May 2020, doi: 10.1093/rfs/hhy131.

[5] G. Feng, S. Giglio, and D. Xiu, ‘‘Taming the factor zoo: A test of
new factors,’’ J. Finance, vol. 75, no. 3, pp. 1327–1370, Jun. 2020, doi:
10.1111/jofi.12883.

[6] K. Hou, H.Mo, C. Xue, and L. Zhang, ‘‘An augmented q-factor model with
expected growth,’’ Rev. Finance, vol. 25, no. 1, pp. 1–41, Feb. 2021, doi:
10.1093/rof/rfaa004.

[7] K. Cuthbertson, D. Nitzsche, and N. O’Sullivan, ‘‘Mutual fund
performance: Measurement and evidence,’’ Financial Markets, Inst.
Instrum., vol. 19, no. 2, pp. 95–187, May 2010, doi: 10.1111/j.1468-
0416.2010.00156.x.

[8] E. F. Fama and K. R. French, ‘‘Luck versus skill in the cross-section of
mutual fund returns,’’ J. Finance, vol. 65, no. 5, pp. 1915–1947, Oct. 2010,
doi: 10.1111/j.1540-6261.2010.01598.x.

[9] Clark Center Forum. Diversified Investing. Accessed: Mar. 10, 2023.
[Online]. Available: https://www.igmchicago.org/surveys/diversified-
investing-2/

VOLUME 12, 2024 119461

http://dx.doi.org/10.2307/j.ctt1287knh
http://dx.doi.org/10.1007/s10710-019-09359-z
http://dx.doi.org/10.1093/rfs/hhy131
http://dx.doi.org/10.1111/jofi.12883
http://dx.doi.org/10.1093/rof/rfaa004
http://dx.doi.org/10.1111/j.1468-0416.2010.00156.x
http://dx.doi.org/10.1111/j.1468-0416.2010.00156.x
http://dx.doi.org/10.1111/j.1540-6261.2010.01598.x

J. H. OSPINA-HOLGUÍN, A. M. PADILLA-OSPINA: NEURAL NETWORK ARCHITECTURE

[10] K. Anadu, M. Kruttli, P. McCabe, and E. Osambela, ‘‘The shift
from active to passive investing: Risks to financial stability?’’
Financial Analysts J., vol. 76, no. 4, pp. 23–39, Oct. 2020, doi:
10.1080/0015198x.2020.1779498.

[11] T. Smith and S. Anderson. Smart Beta: Explanation, Strategy
and Examples. Accessed: Mar. 10, 2023. [Online]. Available:
https://www.investopedia.com/terms/s/smart-beta.asp

[12] J. Brogaard and A. Zareei, ‘‘Machine learning and the stock market,’’
J. Financial Quant. Anal., vol. 58, no. 4, pp. 1431–1472, Jun. 2023, doi:
10.1017/s0022109022001120.

[13] J. H. Ospina-Holguín and A. M. Padilla-Ospina, ‘‘The search for time-
series predictability-based anomalies,’’ J. Bus. Econ. Manage., vol. 23,
no. 1, pp. 1–19, Nov. 2021, doi: 10.3846/jbem.2021.15650.

[14] B. T. Kelly and D. Xiu, ‘‘Financial machine learning,’’ 2023, doi:
10.2139/ssrn.4501707.

[15] T. L. Meng and M. Khushi, ‘‘Reinforcement learning in finan-
cial markets,’’ Data, vol. 4, no. 3, p. 110, Jul. 2019, doi: 10.3390/
data4030110.

[16] W. F. Sharpe, ‘‘Capital asset prices: A theory of market equilibrium under
conditions of risk,’’ J. Finance, vol. 19, no. 3, pp. 425–442, Sep. 1964, doi:
10.1111/j.1540-6261.1964.tb02865.x.

[17] J. Lintner, ‘‘The valuation of risk assets and the selection of risky invest-
ments in stock portfolios and capital budgets,’’ Rev. Econ. Statist., vol. 47,
no. 1, pp. 13–37, Feb. 1965, doi: 10.2307/1924119.

[18] Z. Bodie, A. Kane, and A. Marcus, ISE Essentials of Investments, 12th ed.,
Columbus, OH, USA: McGraw-Hill Education, 2021.

[19] G. S. Atsalakis and K. P. Valavanis, ‘‘Surveying stock market forecasting
techniques—Part I: Conventional methods,’’ in Computation Optimization
in Economics and Finance Research Compendium, C. Zopounidis, Ed.,
New York, NY, USA: Nova Science, 2013, pp. 49–104.

[20] S. Mullainathan and J. Spiess, ‘‘Machine learning: An applied econometric
approach,’’ J. Econ. Perspect., vol. 31, no. 2, pp. 87–106, May 2017, doi:
10.1257/jep.31.2.87.

[21] M. Kuhn and K. Johnson, Applied Predictive Modeling. New York, NY,
USA: Springer, 2013.

[22] O. Bustos and A. Pomares-Quimbaya, ‘‘Stock market movement fore-
cast: A systematic review,’’ Exp. Syst. Appl., vol. 156, Oct. 2020,
Art. no. 113464, doi: 10.1016/j.eswa.2020.113464.

[23] M. M. Kumbure, C. Lohrmann, P. Luukka, and J. Porras, ‘‘Machine
learning techniques and data for stock market forecasting: A literature
review,’’ Exp. Syst. Appl., vol. 197, Jul. 2022, Art. no. 116659, doi:
10.1016/j.eswa.2022.116659.

[24] G. Kumar, S. Jain, and U. P. Singh, ‘‘Stock market forecasting
using computational intelligence: A survey,’’ Arch. Comput. Meth-
ods Eng., vol. 28, no. 3, pp. 1069–1101, May 2021, doi: 10.1007/
s11831-020-09413-5.

[25] C. Neely, P. Weller, and R. Dittmar, ‘‘Is technical analysis in the for-
eign exchange market profitable? A genetic programming approach,’’
J. Financial Quant. Anal., vol. 32, no. 4, pp. 405–426, Dec. 1997, doi:
10.2307/2331231.

[26] T. Fischer and C. Krauss, ‘‘Deep learning with long short-term memory
networks for financial market predictions,’’ Eur. J. Oper. Res., vol. 270,
no. 2, pp. 654–669, Oct. 2018, doi: 10.1016/j.ejor.2017.11.054.

[27] R. C. Merton, ‘‘Lifetime portfolio selection under uncertainty: The
continuous-time case,’’ Rev. Econ. Statist., vol. 51, no. 3, pp. 247–257,
Aug. 1969, doi: 10.2307/1926560.

[28] J. F. Eastham and K. J. Hastings, ‘‘Optimal impulse control of portfo-
lios,’’ Math. Oper. Res., vol. 13, no. 4, pp. 588–605, Nov. 1988, doi:
10.1287/moor.13.4.588.

[29] A. Rao and T. Jelvis, Foundations of Reinforcement Learning With
Applications in Finance. Boca Raton, FL, USA: CRC Press, 2022, doi:
10.1201/9781003229193.

[30] J. Moody and M. Saffell, ‘‘Learning to trade via direct reinforcement,’’
IEEE Trans. Neural Netw., vol. 12, no. 4, pp. 875–889, Jul. 2001, doi:
10.1109/72.935097.

[31] H. Markowitz, ‘‘Portfolio selection,’’ J. Finance, vol. 7, no. 1, pp. 77–91,
Mar. 1952, doi: 10.2307/2975974.

[32] B. Hambly, R. Xu, and H. Yang, ‘‘Recent advances in reinforcement
learning in finance,’’Math. Finance, vol. 33, no. 3, pp. 437–503, Jul. 2023,
doi: 10.1111/mafi.12382.

[33] Y. Sato, ‘‘Model-free reinforcement learning for financial portfolios: A
brief survey,’’ 2019, arXiv:1904.04973.

[34] J. Wang, Y. Zhang, K. Tang, J. Wu, and Z. Xiong, ‘‘AlphaStock: A
buying-winners-and-selling-losers investment strategy using interpretable
deep reinforcement attention networks,’’ in Proc. 25th ACM SIGKDD Int.
Conf. Knowl. Discovery Data Mining, New York, NY, USA, Jul. 2019,
pp. 1900–1908, doi: 10.1145/3292500.3330647.

[35] X.-Y. Liu, H. Yang, J. Gao, and C. D. Wang, ‘‘FinRL: Deep reinforcement
learning framework to automate trading in quantitative finance,’’ in Proc.
2nd ACM Int. Conf. AI Finance, New York, NY, USA, Nov. 2021, pp. 1–9,
doi: 10.1145/3490354.3494366.

[36] J. Moody, L. Wu, Y. Liao, and M. Saffell, ‘‘Performance functions and
reinforcement learning for trading systems and portfolios,’’ J. Forecast,
vol. 17, nos. 5–6, pp. 441–470, Sep. 1998, doi: 10.1002/(SICI)1099-
131X(1998090)17:5/6%3C441::AID-FOR707%3E3.0.CO;2-%23.

[37] P. N. Kolm and G. Ritter, ‘‘Modern perspectives on reinforcement learning
in finance,’’ 2019, doi: 10.2139/ssrn.3449401.

[38] L. Cong, K. Tang, J. Wang, and Y. Zhang, ‘‘AlphaPortfolio for investment
and economically interpretable AI,’’ 2020, doi: 10.2139/ssrn.3554486.

[39] A. Brabazon, M. O’Neill, and I. Dempsey, ‘‘An introduction to evolution-
ary computation in finance,’’ IEEE Comput. Intell. Mag., vol. 3, no. 4,
pp. 42–55, Nov. 2008, doi: 10.1109/MCI.2008.929841.

[40] F. Allen and R. Karjalainen, ‘‘Using genetic algorithms to find technical
trading rules,’’ J. Financial Econ., vol. 51, no. 2, pp. 245–271, Feb. 1999,
doi: 10.1016/s0304-405x(98)00052-x.

[41] Y. Hu, K. Liu, X. Zhang, L. Su, E. W. T. Ngai, and M. Liu, ‘‘Application of
evolutionary computation for rule discovery in stock algorithmic trading:
A literature review,’’ Appl. Soft Comput., vol. 36, pp. 534–551, Nov. 2015,
doi: 10.1016/j.asoc.2015.07.008.

[42] M. M. Carhart, ‘‘On persistence in mutual fund performance,’’
J. Finance, vol. 52, no. 1, pp. 57–82, Mar. 1997, doi: 10.1111/j.1540-
6261.1997.tb03808.x.

[43] W. S. McCulloch and W. Pitts, ‘‘A logical calculus of the ideas immanent
in nervous activity,’’ Bull. Math. Biophys., vol. 5, no. 4, pp. 115–133,
Dec. 1943, doi: 10.1007/bf02478259.

[44] E. F. Fama and K. R. French, ‘‘A five-factor asset pricing model,’’
J. Financial Econ., vol. 116, no. 1, pp. 1–22, Apr. 2015, doi:
10.1016/j.jfineco.2014.10.010.

[45] T. Salimans, J. Ho, X. Chen, S. Sidor, and I. Sutskever, ‘‘Evolution
strategies as a scalable alternative to reinforcement learning,’’ 2017,
arXiv:1703.03864.

[46] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,
2nd ed., Cambridge, MA, USA: MIT Press, 2018.

[47] A. W. Lynch and P. Balduzzi, ‘‘Predictability and transaction costs: The
impact on rebalancing rules and behavior,’’ J. Finance, vol. 55, no. 5,
pp. 2285–2309, Oct. 2000, doi: 10.1111/0022-1082.00287.

[48] P. Balduzzi and A. W. Lynch, ‘‘Transaction costs and predictability: Some
utility cost calculations,’’ J. Financial Econ., vol. 52, no. 1, pp. 47–78,
Apr. 1999, doi: 10.1016/S0304-405X(99)00004-5.

[49] C.-H. Park and S. H. Irwin, ‘‘The profitability of technical analysis: A
review,’’ 2004, doi: 10.2139/ssrn.603481.

[50] C.-H. Park and S. H. Irwin, ‘‘What do we know about the profitability of
technical analysis?’’ J. Econ. Surv., vol. 21, no. 4, pp. 786–826, Sep. 2007,
doi: 10.1111/j.1467-6419.2007.00519.x.

[51] K.-P. Lim, W. Luo, and J. H. Kim, ‘‘Are US stock index returns
predictable? Evidence from automatic autocorrelation-based
tests,’’ Appl. Econ., vol. 45, no. 8, pp. 953–962, Mar. 2013, doi:
10.1080/00036846.2011.613782.

[52] A.W. Lo andA. C.MacKinlay, ‘‘Stockmarket prices do not follow random
walks: Evidence from a simple specification test,’’ Rev. Financial Stud.,
vol. 1, no. 1, pp. 41–66, Jan. 1988, doi: 10.1093/rfs/1.1.41.

[53] Y. Deng, F. Bao, Y. Kong, Z. Ren, and Q. Dai, ‘‘Deep direct reinforcement
learning for financial signal representation and trading,’’ IEEE Trans.
Neural Netw. Learn. Syst., vol. 28, no. 3, pp. 653–664, Mar. 2017, doi:
10.1109/TNNLS.2016.2522401.

[54] K. Hou, C. Xue, and L. Zhang, ‘‘Digesting anomalies: An investment
approach,’’ Rev. Financial Stud., vol. 28, no. 3, pp. 650–705, Mar. 2015,
doi: 10.1093/rfs/hhu068.

[55] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic optimization,’’
2014, arXiv:1412.6980.

[56] W. K. Newey and K. D. West, ‘‘A simple, positive semi-definite, het-
eroskedasticity and autocorrelation consistent covariance matrix,’’ Econo-
metrica, vol. 55, no. 3, pp. 703–708, May 1987, doi: 10.2307/1913610.

[57] G. Klambauer, T. Unterthiner, A. Mayr, and S. Hochreiter, ‘‘Self-
normalizing neural networks,’’ 2017, arXiv:1706.02515.

119462 VOLUME 12, 2024

http://dx.doi.org/10.1080/0015198x.2020.1779498
http://dx.doi.org/10.1017/s0022109022001120
http://dx.doi.org/10.3846/jbem.2021.15650
http://dx.doi.org/10.2139/ssrn.4501707
http://dx.doi.org/10.3390/data4030110
http://dx.doi.org/10.3390/data4030110
http://dx.doi.org/10.1111/j.1540-6261.1964.tb02865.x
http://dx.doi.org/10.2307/1924119
http://dx.doi.org/10.1257/jep.31.2.87
http://dx.doi.org/10.1016/j.eswa.2020.113464
http://dx.doi.org/10.1016/j.eswa.2022.116659
http://dx.doi.org/10.1007/s11831-020-09413-5
http://dx.doi.org/10.1007/s11831-020-09413-5
http://dx.doi.org/10.2307/2331231
http://dx.doi.org/10.1016/j.ejor.2017.11.054
http://dx.doi.org/10.2307/1926560
http://dx.doi.org/10.1287/moor.13.4.588
http://dx.doi.org/10.1201/9781003229193
http://dx.doi.org/10.1109/72.935097
http://dx.doi.org/10.2307/2975974
http://dx.doi.org/10.1111/mafi.12382
http://dx.doi.org/10.1145/3292500.3330647
http://dx.doi.org/10.1145/3490354.3494366
http://dx.doi.org/10.1002/(SICI)1099-131X(1998090)17:5/6%3C441::AID-FOR707%3E3.0.CO;2-%23
http://dx.doi.org/10.1002/(SICI)1099-131X(1998090)17:5/6%3C441::AID-FOR707%3E3.0.CO;2-%23
http://dx.doi.org/10.2139/ssrn.3449401
http://dx.doi.org/10.2139/ssrn.3554486
http://dx.doi.org/10.1109/MCI.2008.929841
http://dx.doi.org/10.1016/s0304-405x(98)00052-x
http://dx.doi.org/10.1016/j.asoc.2015.07.008
http://dx.doi.org/10.1111/j.1540-6261.1997.tb03808.x
http://dx.doi.org/10.1111/j.1540-6261.1997.tb03808.x
http://dx.doi.org/10.1007/bf02478259
http://dx.doi.org/10.1016/j.jfineco.2014.10.010
http://dx.doi.org/10.1111/0022-1082.00287
http://dx.doi.org/10.1016/S0304-405X(99)00004-5
http://dx.doi.org/10.2139/ssrn.603481
http://dx.doi.org/10.1111/j.1467-6419.2007.00519.x
http://dx.doi.org/10.1080/00036846.2011.613782
http://dx.doi.org/10.1093/rfs/1.1.41
http://dx.doi.org/10.1109/TNNLS.2016.2522401
http://dx.doi.org/10.1093/rfs/hhu068
http://dx.doi.org/10.2307/1913610

J. H. OSPINA-HOLGUÍN, A. M. PADILLA-OSPINA: NEURAL NETWORK ARCHITECTURE

[58] E. F. Fama and K. R. French, ‘‘Choosing factors,’’ J. Finan-
cial Econ., vol. 128, no. 2, pp. 234–252, May 2018, doi:
10.1016/j.jfineco.2018.02.012.

[59] E. F. Fama andK. R. French, ‘‘Common risk factors in the returns on stocks
and bonds,’’ J. Financial Econ., vol. 33, no. 1, pp. 3–56, Feb. 1993, doi:
10.1016/0304-405x(93)90023-5.

[60] A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind, ‘‘Auto-
matic differentiation in machine learning: A survey,’’ J. Mach. Learn.
Res., vol. 18, no. 1, pp. 5595–5637, Jan. 2017. [Online]. Available:
https://dl.acm.org/doi/10.5555/3122009.3242010

[61] S. Boyd, E. Busseti, S. Diamond, R. N. Kahn, K. Koh, P. Nystrup, and
J. Speth, ‘‘Multi-period trading via convex optimization,’’ Found. Trends
Optim., vol. 3, no. 1, pp. 1–76, 2017, doi: 10.1561/2400000023.

[62] P. Kidger and T. Lyons, ‘‘Universal approximation with deep narrow
networks,’’ 2019, arXiv:1905.08539.

[63] L. Barras, O. Scaillet, and R. Wermers, ‘‘False discoveries in mutual fund
performance: Measuring luck in estimated alphas,’’ J. Finance, vol. 65,
no. 1, pp. 179–216, Feb. 2010, doi: 10.1111/j.1540-6261.2009.01527.x.

[64] L. Bodson, L. Cavenaile, and D. Sougné, ‘‘A global approach to mutual
funds market timing ability,’’ J. Empirical Finance, vol. 20, pp. 96–101,
Jan. 2013, doi: 10.1016/j.jempfin.2012.11.001.

[65] R. D. Mclean and J. Pontiff, ‘‘Does academic research destroy stock
return predictability?’’ J. Finance, vol. 71, no. 1, pp. 5–32, Feb. 2016, doi:
10.1111/jofi.12365.

[66] R. D. Arnott, C. Brightman, V. Kalesnik, and L. Wu, ‘‘Earning alpha by
avoiding the index rebalancing crowd,’’ Financial Analysts J., vol. 79,
no. 2, pp. 76–97, Apr. 2023, doi: 10.1080/0015198x.2023.2173506.

[67] J. H. Kim, ‘‘Wild bootstrapping variance ratio tests,’’ Econ. Lett., vol. 92,
no. 1, pp. 38–43, Jul. 2006, doi: 10.1016/j.econlet.2006.01.007.

JAVIER H. OSPINA-HOLGUÍN was born in Cali, Colombia. He received
the B.S. degree in physics and the M.Sc. degree in organizational sci-
ences from Universidad del Valle, Cali, in 2001 and 2007, respectively, the
M.Sc. degree in economics from the University of Amsterdam, Amsterdam,
The Netherlands, in 2011, and the Ph.D. degree in business administration,
with a concentration in finance, from Universidad del Valle, in 2018.

He is currently a Full Professor with the Department of Accounting
and Finance, Universidad del Valle. His research interests include financial
forecasting and econometrics, through machine learning and reinforcement
applications to finance, to empirical asset pricing and portfolio theory.

Prof. Ospina-Holguín has received several scholarships and awards
throughout his career, such as a Pacific Alliance Scholarship, a Tinbergen
Institute Full Scholarship, and a first place standing in Colombia’s national
high school exit examination (ICFES).

ANA M. PADILLA-OSPINA was born in Cali, Colombia. She received the
bachelor’s degree in business administration, the M.Sc. degree in organiza-
tional sciences, and the Ph.D. degree in administration from Universidad del
Valle, in 2007, 2013, and 2019, respectively.

Since 2020, she has been an Assistant Professor in foreign trade and inter-
national business with the Faculty of Administrative Sciences, Universidad
del Valle. She has also participated in international projects, such as Project
617RT0531 (2018–2022) through the Open Network for Foresight and Inno-
vation for Latin America and the Caribbean funded by the Ibero-American
Program of Science and Technology for Development (CYTED) and the
Technical-Economic Proposal for the Design and Execution of an Agrifood
Prospective study, through the Inter-American Commission on Science and
Technology (COMCYT) of the Organization of American States (OAS)
(2021–2022) funded by the Organization of American States (OAS) and
Minciencias. She is the author of more than 17 articles and a book chap-
ter. Her research interests include innovation financing, innovation activity
development, social innovation, competitive development strategies, cur-
rency analysis, and economic value-added assessment.

Dr. Padilla-Ospina was a recipient of Grant 617 of 2013 from Colombian
Ministry of Science, Technology and Innovation (Minciencias), the Grant
for Doctoral Students of 2016 from Universidad del Valle and the Pacific
Alliance Scholarship, in 2016.

VOLUME 12, 2024 119463

http://dx.doi.org/10.1016/j.jfineco.2018.02.012
http://dx.doi.org/10.1016/0304-405x(93)90023-5
http://dx.doi.org/10.1561/2400000023
http://dx.doi.org/10.1111/j.1540-6261.2009.01527.x
http://dx.doi.org/10.1016/j.jempfin.2012.11.001
http://dx.doi.org/10.1111/jofi.12365
http://dx.doi.org/10.1080/0015198x.2023.2173506
http://dx.doi.org/10.1016/j.econlet.2006.01.007

