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ABSTRACT Distributed Machine Learning (D-ML), such as Federated Learning (FL) and Split Learning
(SL), aims at resolving the limitations of Centralized Machine Learning (C-ML) by enhancing scalability
and efficiency. D-ML relies on the client-Parameter Server (PS) paradigm, in which clients collaboratively
train ML models while keeping their data locally, reducing the need for central data storage and preserving
data privacy. In this paper, we propose a new fully-distributed method, named Split Consensus Federated
Learning (SCFL), which combines the characteristics of FL and SL into a network of clients that cooperate
in learning a sharedmodel. Inspired by the iterative approach ofMessage Passing Neural Networks (MPNN),
the proposed SCFL framework allows to decentralize the training and inference tasks of the neural networks
at the clients, preserving the privacy of locally stored data. The proposed SCFL framework removes the
need for a coordinating central entity, i.e., the PS, resulting into a fully-decentralized solution where both
the training and inference procedures are distributed over the clients. We present three different strategies for
SCFL implementation and we validate them in a cooperative positioning use case where clients use D-ML
for network localization. Results show that the proposed SCFL method is able to combine the computational
power (and data) of all clients to train local models which closely approximate the global C-ML solution at
convergence.

INDEX TERMS Split consensus federated learning, split learning, federated learning, message passing
neural network, consensus, cooperative positioning.

I. INTRODUCTION
In recent years, Machine Learning (ML) has contaminated
several fields, including healthcare [1], [2], finance [3], [4],
and transportation [5], [6]. Most of the applications rely
on a Centralized Machine Learning (C-ML) architecture
where data collection and processing from multiple clients
is performed at a single central server, which raises concerns
about data privacy and security. Furthermore, with the rapid
increase in volume and complexity of data available at
different locations and machines, C-ML may face difficulties
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in terms of scalability and efficiency. Consequently, there
is a growing demand for alternative methodologies that can
efficiently address the complexity and security issues while
retaining the benefits of conventional ML techniques.

Distributed Machine Learning (D-ML) [7], [8] has
emerged as a viable solution for avoiding data aggregation
at a single central entity. A popular D-ML mechanism is
Federated Learning (FL) [9], [10], which allows spatially
distributed clients to collaboratively train a global ML
model without the need of sharing their raw data. In FL,
each client keeps a local copy of the model, e.g., a Deep
Learning (DL) model, and trains it using local data, while
a coordinating Parameter Server (PS) aggregates the locally
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trained models to produce a global model shared among
all clients. This approach not only preserves data privacy
by keeping data within local boundaries but also enhances
computational efficiency and scalability in various distributed
environments [11], [12], [13], [14], [15], [16]. As a drawback,
the PS-based structure still relies on a central coordinating
entity for the aggregation of models, potentially leading
to a single point of failure and increased communication
overhead.

An alternative to FL is Split Learning (SL) [17], a
D-ML approach that has been recently designed to address
the challenges of resource-constrained setups, such as
Internet of Things (IoT) networks where clients may have
limited computing capabilities and energy resources. In SL,
the model training and validation processes are divided
between the clients and a PS, each having only a partial
access/visibility to/of a specific portion of the model [18].
This characteristic ensures both model and data privacy
while improving communication efficiency and convergence
speed compared to FL [19]. Specifically, the Neural Network
(NN) to be trained is split into two sub-networks at a
specific layer, named split or cut layer, and the upper
and lower layers are assigned to the clients and the PS,
respectively. Clients perform forward propagation and send
the output, called smashed data, to the PS, which com-
putes the final output. Gradients are then back-propagated,
with the PS sending the cut layer’s gradient back to the
clients. This process is repeated until new training data is
obtained.

A conceptual comparison of the two D-ML methods is
reported in Figure 1, in which we present the FL (Figure 1a)
and SL (Figure 1b) frameworks, indicating their main steps
indexed in chronological order. Specifically, the steps for
FL are: 0) local model optimization, 1) aggregation, 2)
broadcast of the updated global model; while the steps for
SL are: 0) client forward pass and exchange of smashed
data, 1) PS forward pass and back-propagation, 2) exchange
of PS gradients, 3) client back-propagation, 4) client model
exchange with next neighbors.

Although SL has received significant research attention,
a number of open problems are still to be addressed,
such as leakage reduction [20], [21], [22], [23], [24], non-
Independent and Identical Distributed (IID) data distribution
among clients [25], [26], [27], and communication costs.
Tackling these challenges is crucial for unlocking the full
potential of SL for D-ML applications.

A. RELATED WORKS
In this section, we discuss how the limitations of FL and SL
have been addressed so far in the literature and our proposal
to solve remaining open problems.

Vanilla FL architectures present two main drawbacks
related to centralization at the PS and limited computational
capabilities of clients. Decentralization has been proposed by
replacing the PS with a consensus procedure that performs

FIGURE 1. Schematic example of (a) FL and (b) SL in a network of two
clients and a PS. The client model parameters and gradients are indicated
with wi and ∇Li (wi ), respectively. On the contrary, the global or PS
model parameters and gradients are indicated with wPS and ∇LPS(wPS),
respectively. The weighted average of the FL is indicated with a thick bar.
Finally, the forward pass is indicated with F (·), back-propagation is
indicated with the model gradients inside a self-loop, and dashed lines
represent the next timestamp.

model fusion through iterative inter-client exchanges of
model parameters. First works in this direction are repre-
sented by fully-distributed gossip FL [28] and Consensus-
driven Federated Averaging (CFA) [29], [30]. In gossip
FL, local updates are propagated in a peer-to-peer manner
where each client shares its own local model update to
the immediate neighbors. CFA extends gossip approaches
to include average consensus by exploiting all or a subset
of neighbors at each round. Regarding FL with resource-
constrained devices, state-of-the-art approaches mainly focus
on optimized versions of SL that split the computations
between clients and PS, usually located in the cloud [31],
[32], [33]. However, SL does not exploit parallelization
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of training and validation procedures and still relies on a
centralized architecture with a PS.

More specifically, in SL, clients interact with the PS
sequentially, causing other clients’ resources to remain idle
during the relay-based training process. This results in
increased training overhead and latency, especially when
a large number of devices are involved in the learning
process. To solve this issue, some authors proposed to impose
differences in the training order and adjust the data size inside
the nodes [34]. A full parallelization has been introduced with
the Split Federated Learning (SFL) framework by the pioneer
works in [35], [36], and [37]. SFL integrates the primary
benefit of FL, i.e., parallel processing among distributed
clients, with the core advantage of SL, i.e., partitioning
the network into client-side and server-side sub-networks
throughout training. Unlike SL, SFL enables all clients to
carry out computations concurrently while engaging with
both a split PS and a federated PS. Contrary to SL, SFL allows
all clients to interact with the federated PS and the split PS
simultaneously while doing calculations.

A further problem of SL relies on the mandatory usage of
a PS whose main operation is to distribute the computational
complexity of model training and inference. However,
in massive IoT networks, a PS may not be available or
may be prohibitive from a communication point of view.
A first step in this direction is taken by the works [38], [39]
which introduce a split version of Recurrent Neural Networks
(RNNs) with a continuous exchange of smashed data among
clients. However, these architectures still rely on a PS, thus
lacking from a full decentralization.

B. ADDRESSING FL AND SL OPEN PROBLEMS
Unavailability of a fully-distributed methodology for both
training and inference is a major issue for adoption of FL and
SL in resource-constrained networks of devices, and it is thus
the topic we aim to address in this work.

For the design of a completely decentralized architecture,
we proposed the following. We first observe that in SL,
the key aspect is that clients alone are not able to perform
a complete inference (and back-propagation) of the whole
model, as the model is split between clients and PS to lower
the computational complexity of each node. Therefore, for
distributed SL, we conceive to train an overall model whose
intermediate outputs, i.e., smashed data, are computed and
exchanged between clients. A DL framework which satisfies
the aforementioned characteristics can be found in Graph
Neural Network (GNN) [40], more specifically in the variant
of Message Passing Neural Network (MPNN) [41]. Indeed,
in MPNN, the final inference is the result of sequential
intermediate outputs, obtained with a message passing
procedure [42], [43]. However, in vanilla MPNN, both the
training and inference procedures are centralized since the
exchange of node and edge embeddings happens in the same
physical machine. Moreover, the built computational graph
permits to back-propagate gradients in a unique and parallel

way such that at the end each nodes will have the same NN
parameters. In this paper, we propose to exploit the MPNN
methodology to fill the literature gap and design a new fully
decentralized SL architecture for distributed inference and
training, as outlined in the following section.

C. CONTRIBUTION
In this work, we propose to incorporate the message passing
scheme inside the MPNN as a sequence of smashed data
exchanged among clients, i.e., the nodes of the graph.
According to this scheme, at each timestep the clients do
not complete the inference of the whole model, but they
just perform one iteration of the message passing at a time.
Thus, the complete model is composed of many small models
retained by individual clients. The information available at
each client does not explicitly describe the available data, as it
is a hidden representation incorporated by the so-called node
and edge embeddings of the MPNN. This aspect ensures data
privacy, just as in vanilla SL, since each client holds private
labels or outputs. To accelerate the entire training process,
similarly to SFL, a consensus scheme is executed after
the message passing iterations. Depending on the number
of operations within the message passing iteration and by
the type of consensus scheme, i.e., full model exchange or
gradient average, we can distinguish between three main
training procedures, namely, 3-Steps Strategy (3SS), 2-Steps
Strategy (2SS) and Distributed-MPNN (D-MPNN). We refer
to this new fully-distributed framework as Split Consensus
Federated Learning (SCFL).

To summarize, the main contributions of the paper are the
following:
• A comprehensive review and comparative analysis of
FL, SL and SFL, with focus on the iterative processing
steps for training;

• The design of a fully-decentralized SFL architecture,
namely SCFL, which exploits the above analysis and
extends the centralized MPNN to perform distributed
training and inference procedures between physically
separated clients;

• The proposal and validation of three decentralized
training procedures for SCFL which can be effectively
adopted in fully-distributed agent networks.

Compared to FL, SL, and SFL, the key distinctive
advantages of the proposed SCFL method are the following:
• The introduction of a SL paradigm within the FL
framework, enabling complex DL models to be trained
on distributed resource-constrained devices through
an efficient message-passing mechanism inspired by
MPNN. This approach reduces the model bias and
enhances the model’s ability to accurately capture
underlying data patterns.

• The scalability with respect to the number of nodes,
allowing SCFL to be trained and scaled over complex
network topologies without procedural alterations. This
property is crucial for applications in dynamic network
environments with large number of connected devices.
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TABLE 1. Comparison of SL, FL, SFL and the proposed SCFL method.

• The unique capability of training DL models on
physically separated clients, where the inference of each
client is dependent on its neighbors. This feature is
particularly beneficial for tasks requiring collaborative
information sharing, such as cooperative positioning in
networks of agents.

• The preservation of privacy, the fully-decentralized
architecture, and the low complexity training, which
are fundamental for deployment in privacy-sensitive,
resource-constrained environments.

A summary of the main differences between the proposed
SCFL method and SL, FL and SFL is provided in Table 1.

The proposed SCFL solution is suitable for operating
conditions where distributed cooperative training is the only
viable option, and it is here validated for the illustrative use
case of Cooperative Positioning (CP) in agent networks [44],
[45], [46], [47], [48]. Examples of possible domains of
application are within the fields of vehicular networks [49],
[50], [51], [52], IoT [53], [54], maritime surveillance [55],
[56] and drones [57], [58].

D. PAPER ORGANIZATION
This paper is organized as follows. Section II presents the
distributed machine learning context, comprised of FL and
SL. Section III first introduces the proposed SCFL framework
and its relationship with the MPNNs, and then it presents
the distributed training and inference strategies, as well as
the innovation aspects of SCFL that allow to overcome the
limitations of current FL architectures. Section IV discusses
the CP use case of SCFL and its main experimental results.
Lastly, Section V draws the conclusions.

II. FUNDAMENTALS OF DISTRIBUTED ML
This section is designed to provide the reader the basic
understandings of D-ML, concentrating on architectural
and algorithmic aspects. The contents of this section are
indeed functional to contextualize and introduce the core
principles of the proposed SCFL method, described later
in Section III, as well as to highlight the differences with
respect to our solution. To this extent, we first describe the
framework of FL, specifically focusing on consensus-based
algorithms. Then, we describe the vanilla SL framework and
the related parallelized SFL version with PS. The focus on
such state-of-the-art notions is required since the proposed
SCFL paradigm inherits both the FL and SL features
and extends them to accommodate for a fully-distributed
scheme.

A. FEDERATED LEARNING
In the context of FL, we consider a network which includes
one PS and a set of I clients denoted as I = {1, . . . , I }. Each
client has its own dataset Si of size Si = |Si|. The objective
of the FL procedure is to obtain a global DL model defined
by the parameters w by minimizing:

wPS = argmin
w

L(w), (1)

where the loss function L(w) is given by:

L(w) =
1
I

I∑
i=1

Li(w,Si), (2)

with Li representing the loss determined by client i utilizing
the local data batches Si. To obtain the global model wPS,
an iterative process is carried out with each iteration involving
a local model optimization step performed by the client and
followed by an aggregation step executed on the PS.

Clients generate local models typically employing super-
vised and gradient-based optimization techniques, e.g.,
Stochastic Gradient Descent (SGD) or Adam optimizers [59],
with mini-batch B of size B and learning rate η. Each client i
carries out E local epochs prior to exchanging the local model
with the PS, which is responsible for updating the global
model.

In vanilla FL, i.e., Federated Averaging (FedAvg), the
aggregation step during federated round n = 1, . . . ,N is
conducted at the PS using a weighted average accounting for
the number of samples Si from each client as:

wPS,n+1 =
ϵ∑I
j=1 Sj

I∑
i=1

Siwi,n + (1− ϵ)wPS,n, (3)

where wi,n are the local model parameters and ϵ modulates
the memory of previous models.

On the contrary, when no PS is available, the consensus-
based FL regime applies. In this framework, a network of
clients constitutes a graph G = (V, E), where each node
i ∈ V represents a client, while the edge (i, j) ∈ E ,
with i ̸= j, indicates the presence of a communication link
from client i to client j. Observe that edges (i, j) and (j, i)
are distinct, i.e., (i, j) ̸= (j, i), and they may not necessarily
exist concurrently. From the graph G, we define the set of
neighbors of client i as Ni = { j ∈ V|(i, j) ∈ E} and
Ni∗ = Ni ∪ {i}.

The consensus-based algorithm, called CFA, works in the
following way. At round n, each client i, after performing
a local model optimization step, exchanges the model
parameters wi,n with its neighbors Ni and subsequently
performs an aggregation step, similarly to the PS [29],
as:

ψ i,n = wi,n +
ϵ∑

j∈Ni
Sj

∑
j′∈Ni

Sj′
(
wj′,n − wi,n

)
, (4)

where ψ i,n is the aggregated model. This aggregation step is
needed to let the local model converge to a consensus global
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Algorithm 1 Consensus-Driven Federated Averaging
1: procedure CFA(Ni, ϵ, η) ▷ Run on client i
2: initialize wi,0← client i
3: for each round n = 1, . . . ,N do ▷ Training loop
4: broadcast wi,n
5: receive {wj,n}j∈Ni
6: eq. (4)
7: wi,n = ModelUpdate(ψ i,n)
8: end for
9: end procedure

10: procedureModelUpdate(ψ i,n) ▷Model opt. step
11: compute F(ψ i,n) ▷ Forward-pass
12: compute ∇Li,n(ψ i,n) ▷ Backward-pass
13: ψ i,n← ψ i,n − η∇Li,n(ψ i,n) ▷ Local SGD
14: end procedure

model. The complete pseudo-code for CFA algorithm is
reported in Algorithm 1, where the local model optimization
step has been represented as a single-batch model update. For
simplicity of notation, we do not consider n-dependence on
hyper-parameters and graph structure. Note that the algorithm
works in the same way if the clients send the gradients of
the local model update, instead of exchanging the model
parameters.

B. SPLIT LEARNING
In the simplest SL framework, the model parameters w are
split into two parts (one for the PS and for the clients),
i.e., wPS,n and wi,n. Note that, here, differently from FL,
the model structures of wPS,n and wi,n are distinct. Thus,
to complete inference and back-propagation procedures,
an exchange of smashed data and gradients must be carried
out between PS and clients. The pseudo-code for SL
algorithm is given in Algorithm 2, reporting for simplicity
only the synchronization of the learning process in peer-
to-peer mode [17]. At the end of the training, SL permits
to achieve identical results to a traditional (i.e., centralized)
training procedure, where all layers are available at the same
entity, since it involves the same steps and processes (forward
propagation and back-propagating gradients), just applied in
a different order.

A drawback of the SL procedure is that it must be
executed sequentially by each client. To address this issue,
SFL algorithms remove the constraint on the sequentiality of
inter-client model exchange, performing forward propagation
of the client-side model in parallel. The PS processes the
forward propagation and back-propagation on its server-
side model using each client’s transformed data separately,
allowing a high degree of parallelism. After sending the
gradients back to the respective clients for their own back-
propagation, a step of FedAvg is performed by the PS and by
the clients through an additional PS for the federated part, i.e.,
FPS [35]. We refer to Figure 2 for a representation of the SFL
workflow.

Algorithm 2 Split Learning
1: procedure SL(η)
2: initialize wi,0 ∀ i ∈ I
3: for each round n = 1, . . . ,N do ▷ Training loop
4: for client i = 1, . . . , I do ▷ Run on client i
5: compute F(wi,n) ▷ Client Forward-pass
6: send F(wi,n) to PS
7: receive

∇LPS,n(wPS,n) = PSUpdate(F(wi,n))
8: wi,n = ClientUpdate(wi,n)
9: send wi,n to client i+ 1
10: end for
11: end for
12: end procedure
13: procedure ClientUpdate(wi,n) ▷Model opt. step
14: compute ∇Li,n(wi,n) ▷ Client Backward-pass
15: wi,n← wi,n − η∇Li,n(wi,n) ▷ Local SGD
16: end procedure
17: procedure PSUpdate(F(wi,n)) ▷Model opt. step
18: compute F(wPS,n) ▷ PS Forward-pass
19: compute ∇LPS,n(wPS,n) ▷ PS Backward-pass
20: wPS,n← wPS,n − η∇LPS,n(wPS,n) ▷ Local SGD
21: end procedure

III. DESIGN OF SPLIT CONSENSUS FEDERATED
LEARNING
In D-ML frameworks where the PS is absent, the distribution
among clients of training and inference tasks becomes
challenging, especially for training. Indeed, the absence of
a PS prevents the direct coordination and consolidation of
local models into a global version. We here overcome such
limitations by proposing the SCFL approach.

SCFL differs from vanilla FL as it does not require
a PS coordinating the clients and aggregating the local
models for the convergence to a global version (exactly as
in distributed consensus-FL). The final goal of SCFL is
still to achieve the same global model in each client at the
end of training, but it is achieved with direct Device-to-
Device (D2D) communications. The fundamental difference
from consensus-FL is that, in SCFL, the clients need to
perform in a distributed way both training and inference
procedure. Indeed, they cannot complete a whole inference
autonomously for model complexity reasons, as in PS-based
SL. On the other hand, SCFL differs from PS-based SL as it
does not exist a PS-version of the model structure, since each
client is fundamentally equivalent to the others.

Themain assumptions that wemake for the design of SCFL
are the following:

A1) As in SL, FL and SFL, each client has the same model
structure;

A2) As in SL, FL and SFL, each client needs the forwarding
procedure result, i.e., smashed data, of its neighbors
to complete the inference. Thus, it results that both
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FIGURE 2. SFL framework with vanilla architecture composed of a split
PS, i.e., SPS, and a federated PS, i.e., FPS. For ease of notation, step 2) is
represented in the same way for both the clients.

training and prediction have to be performed in a fully-
distributed way;

A3) Each client has the ability of exchanging different types
of messages that span from direct model parameters or
gradients, up to smashed data. In any case, the body of
the messages must not disclose any private information
about the local retained data inside the clients.

These assumptions do not limit the usage or applicability
of SCFL, they rather give a performance advantage in
cooperative contexts, e.g., CP, where the exchange of
smashed data dramatically improves the performances. This
claim is analyzed in Section IV-C3, where we compare the
proposed solution with the CFA approach.

The above assumptions highlight a similarity with the
vanilla MPNNs approach, where nodes are represented by
distributed clients. Indeed, the inference message passing
procedure of MPNNs can be seen as multiple forwards
passes between clients which exchange smashed data, i.e.,
intermediate outputs of a bigger model. In the same manner,
back-propagation is computed by taking into account all
the predictions during message passing. However, while in
vanilla MPNNs the forward and backward passes are com-
puted within the same computational graph (i.e., centralized
procedure), for performing distributed operations, especially
training, we need to carefully design the strategy to follow.
We thereby propose to exploit this synergy by first revising
the centralized MPNN (Section III-A) and then designing an
extension to a distributed framework by incorporating the
MPNN into the proposed SCFL approach. This allows to
combine the benefits of both SL and FL. The distributed
features of the proposed SCFL solution are detailed for
both inference (Section III-B) and training (Section III-C)
procedures.

A. REVIEW OF CENTRALIZED MPNN
NNs operating on graphs have been investigated only in the
recent years, initially as GNNs [40], [41], and subsequently
expanded to include variations such as MPNNs [60].
Their goal is to train, in a centralized way, a function
that disseminates information throughout a graph G. The
information is diffused by message passing using node and
edge latent features, called embeddings, and denoted as v(t)i,n
and e(t)j→i,n, respectively, where t is the message passing
iteration index. For the encoding of the embeddings, a NN is
placed at each node and edge of the graph. TheNN at the node
is denoted by gv(·), while the one at the edge is represented
by ge(·). Then, according to the specific task, e.g., regression
or classification, an additional global NN is present.

Let us consider the node regression task with a specific
NN at the node g(regres)v (·). Given that gv(·), g

(regres)
v (·) and

ge(·) maintain the same parameters, across each node and
each edge respectively, they can be centrally trained on small-
scale graphs before being utilized in large-scale problems.
The final node prediction is performed independently by
each node after T message passing iterations in which node
and edge embeddings are updated through the NN models
according to the specific message passing structure.

We here recall the centralized vanilla MPNN inference and
training procedure. The inference procedure starts with the
node and edge embedding initialization, i.e., v(0)i,n, ∀j ∈ V ,
and e(0)j→i,n, ∀j ∈ Ni, through a feature extraction mech-
anism, e.g., an encoding NN. Then, at message passing
iteration t = 1, . . . ,T , each node i ∈ V sends the following
message to its neighbors Ni:

e(t)j→i,n = ge
(
v(t−1)i,n , v(t−1)j,n , e(t−1)j→i,n

)
, ∀j ∈ Ni, (5)

with

v(t)i,n = gv
(
v(t−1)i,n , 8

(
{e(t)j→i,n}j ∈ Ni

))
, (6)

where8(·) is called aggregation function and it can be chosen
among whatever function which is invariant to permutations
of its inputs, e.g., element-wise summation. After T message
passing iterations, the prediction is performed as:

ŷi,n = ŷ(T )i,n = g(regres)v

(
v(T )i,n

)
, (7)

where ŷi,n is the estimate of the true target variable
yi,n. Since the exchange of messages is centralized, the
inference and forward-pass procedure can be performed in
parallel considering all the edge and node embeddings as
samples of a batch that is given as input to the edge and
node NNs, respectively. Hence, what is carried out is the
training, in this case, of only three distinct and individual
NNs that will subsequently be distributed across various
network topologies. In order to compute the training loss
and perform back-propagation, the Residual Sum of Squares
(RSS) estimated at each epoch n and at the end of each
message passing iteration t after the regressor prediction ŷ(t)i,n
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FIGURE 3. Distribute inference procedure. a) node embedding exchange. b) edge and node embedding update. c) prediction.

is considered. It is defined as:

L =
1

N |V|

N∑
n=1

T∑
t=1

∑
i ∈ V

∥∥∥̂y(t)i,n − yi,n
∥∥∥2
2
. (8)

In centralized MPNN, a key (limiting) aspect is that each
node cannot proceed with the next message passing without
the output of its neighbors at previous message passing
iteration. In the proposed SCFL framework, we overcome
such limitation by considering each node as an independent
and physically separated client that needs the neighbors
smashed data, i.e., node embeddings, to proceed with the
inference and, ultimately, perform prediction. The proposal
is detailed in the next section.

B. DESIGN OF DISTRIBUTED INFERENCE IN SCFL
In the proposed SCFL framework, each physically separated
client has to carefully choose the type of information
to be exchanged with its neighbors, avoiding unfeasible
communication costs. Therefore, we design an equivalent
distributed inference procedure where clients exchange node
embeddings v(t)i,n, i.e., smashed data, to their neighbors.
Here, as in CFA, the set of neighbors is built starting
from the communication links between agents, which may
vary according to the environment. However, in this work,
we focus on the proposal of a new distributed architecture,
rather than focusing on tackling specific non-IID distributions
among agents.

The inference starts with the initialization by each
individual client i of the node embeddings v(0)i,n, ∀j ∈ V ,
and incoming edge embeddings, e(0)j→i,n, ∀j ∈ Ni. Note
that this initialization can be performed with whatever local
NN which is not required to retain the same parameters
across all clients. Then, for T message passing iterations, the
following steps are performed by each client:
1) Node embeddings exchange: at message passing itera-

tion t = 1, . . . ,T , each client i broadcasts v(t−1)i,n and
receives v(t−1)j,n from its neighbors j ∈ Ni. Note that,

as in SL, the messages exchanged (smashed data) do not
disclose private information.

2) Edge and node embeddings update: at message passing
iteration t = 1, . . . ,T , the edge embeddings are updated
as:

e(t)j→i,n = ge
(
v(t−1)j,n , v(t−1)i,n , e(t−1)j→i,n

)
, ∀j ∈ Ni. (9)

Subsequently, the node embeddings are updated as:

v(t)i,n = gv
(
v(t−1)i,n , 8

(
{e(t)j→i,n}j ∈ Ni

))
. (10)

We would like to point out here that (9) and (10) can be
modified accordingly to the type of task, input features
or particular requirements, without altering the inference
structure.

3) State inference: lastly, after T message passing steps,
each client i predicts the estimate:

ŷi,n = ŷ(T )i,n = g(regres)v

(
v(T )i,n

)
. (11)

A graphical representation of the steps is reported in Figure 3.

C. DESIGN OF DISTRIBUTED TRAINING IN SCFL
To design the fully-distributed training procedure peculiar of
SCFL, we first observe that the distributed inference relies on
the fact that each client needs the same parameters for gv(·),
g(regres)v (·) and ge(·), as in centralized MPNN. To enforce this
behaviour, we propose three distributed training procedures
which are derived from SL and consensus-FL. In particular,
SL is adopted for performing a complete distributed inference
and back-propagation, while consensus-FL is exploited for
convergence to a unique, globally aggregated model. This
is especially pertinent, as convergence to a global model
has been demonstrated to be attainable with as few as two
neighbors, affirming the efficiency of the process [29]. Given
the fact that the SL is implemented with a message passing
procedure, we can choose the number and type of operations
within each message passing iteration. This results in three
distinct procedures that we denote as 3SS, 2SS andD-MPNN.

VOLUME 12, 2024 119541



B. Camajori Tedeschini et al.: SCFL: An Approach for Distributed Training and Inference

Algorithm 3 3-Steps Strategy
1: procedure 3SS(Ni, η) ▷ Run on client i
2: initialize wi,0← client i
3: for each round n = 1, . . . ,N do ▷ Training loop
4: for each message passing iter t = 1, . . . ,T do
5: compute F (t)(wi,n) ▷ Forward-pass
6: broadcast F (t)(wi,n)
7: receive {F (t)(wj,n)}j∈Ni

8: compute ∇L(t)
i,n(wi,n) ▷ Backward-pass

9: broadcast ∇L(t)
i,n(wi,n)

10: receive {∇L(t)
j,n(wj,n)}j∈Ni

11: ∇L(t)
i,n(wi,n)←

∑
j′∈Ni∗

Sj′∇L(t)
j′,n/

∑
j∈Ni∗

Sj

12: wi,n← wi,n − η∇L(t)
i,n(wi,n) ▷ Local SGD

13: end for
14: end for
15: end procedure

For the sake of notation consistency, we adhere to the notation
used in Figure 2, i.e., representing the NN models gv(·),
g(regres)v (·) and ge(·) of client i as wi and the exchange of node
embedding v(t)i,n as F(wi).

In the following, we describe the three proposed SCFL
distributed training strategies, i.e., 3SS, 2SS and D-MPNN,
highlighting their distinct features for the distributed training
of a single epoch. Note that each of them requires T message
passing iterations and a consensus-FL step.

1) 3SS
It is constituted by three operations within each message
passing iterations, i.e., forward-step, a gradient exchange, and
a consensus-FL step, which closely resembles SFL in terms
of logical steps. The distinction with respect to SFL is that,
due to the absence of a PS, each client already holds all the
gradients from its neighbors, without needing an additional
exchange of model parameters. Consequently, during the
consensus-FL step, the back-propagation is computed using
a weighted average of all received gradients, similar to what
occurs in CFA with gradient exchange. A graphical repre-
sentation of the 3SS distributed training strategy for SCFL
is given in Figure 4a, while its pseudo-code is highlighted in
Algorithm 3.

2) 2SS
It consists of two steps to be performed for T iterations,
i.e., a forward-step and a back-propagation step, which are
independently computed by each client after the exchange
of smashed data. If 2SS is halted after the second step,
each client would have distinct model parameters since it
retains different private local data for computing the loss
function. It follows that, to ensure convergence to a single
global model, i.e., identical parameters for gv(·), g

(regres)
v (·),

and ge(·) across all devices, a final step of CFA with model
exchange is performed at the end of each training epoch.

Algorithm 4 2-Steps Strategy
1: procedure 2SS(Ni, η) ▷ Run on client i
2: initialize wi,0← client i
3: for each round n = 1, . . . ,N do ▷ Training loop
4: for each message passing iter t = 1, . . . ,T do
5: compute F (t)(wi,n) ▷ Forward-pass
6: broadcast F (t)(wi,n)
7: receive {F (t)(wj,n)}j∈Ni

8: compute ∇L(t)
i,n(wi,n) ▷ Backward-pass

9: wi,n← wi,n − η∇L(t)
i,n(wi,n) ▷ Local SGD

10: end for
11: broadcast wi,n
12: receive {wj,n}j∈Ni
13: wi,n←

∑
j′∈Ni∗

Sj′wj′,n/
∑

j∈Ni∗
Sj

14: end for
15: end procedure

Algorithm 5 Distributed-MPNN Strategy
1: procedure D-MPNN(Ni, η) ▷ Run on client i
2: initialize wi,0← client i
3: for each round n = 1, . . . ,N do ▷ Training loop
4: for each message passing iter t = 1, . . . ,T do
5: compute F (t)(wi,n) ▷ Forward-pass
6: broadcast F (t)(wi,n)
7: receive {F (t)(wj,n)}j∈Ni
8: end for
9: compute ∇Li,n(wi,n) ▷ Backward-pass
10: wi,n← wi,n − η∇Li,n(wi,n) ▷ Local SGD
11: broadcast wi,n
12: receive {wj,n}j∈Ni
13: wi,n←

∑
j′∈Ni∗

Sj′wj′,n/
∑

j∈Ni∗
Sj

14: end for
15: end procedure

A graphical representation of the 2SS distributed training
strategy for SCFL is given in Figure 4b, while its pseudo-code
is highlighted in Algorithm 4.

3) D-MPNN
This strategy resembles a centralized MPNN training, with
the key innovative aspect that it is constituted by fully-
distributed steps. This is because first it performs T steps
of forward propagation, thus following (5), (6) and (7), and
then back-propagation is computed. The key difference here
is that after T forward propagations, an individual client back-
propagation and a consensus-FL step are executed. Since
these last two steps precisely represent the CFA algorithm,
we are assured that, under specific conditions, the solution
converges to the centralized MPNN outcome, i.e., adopting
the centralized loss in (8). A graphical representation of
the D-MPNN distributed training strategy for SCFL is
given in Figure 4, while its pseudo-code is highlighted in
Algorithm 5.
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D. INNOVATION ASPECTS OF SCFL OVERCOMING
LIMITATIONS OF CURRENT FL ARCHITECTURES
The proposed SCFL framework has different peculiar aspects
that overcome the limitations of existing FL approaches.
First, it embodies the SL paradigm which permits to train
complex DL models within resource-constrained devices by
exploiting a message passing procedure derived fromMPNN.
As a result, the overall bias of the whole derived model is
reduced compared to individual client models, consequently
enhancing its ability to more accurately identify the true
underlying patterns within the data. Second, given theMPNN
properties of scalability with the number of nodes, the SCFL
framework can be trained on whatever number of clients and,
more importantly, can be tested and scaled over complex
network topologies without altering the procedure. Lastly,
the proposed SCFL is the only method that permits to
train DL models in physically separated clients where the
inference procedure of each client is strictly dependent on
the inference of its neighbors. This fully-distributed training
features is of remarkable importance in scenarios where the
information retained by the neighbors is necessary for the
accomplishment of a task, such as CP which is examined in
next section.

IV. SIMULATION EXPERIMENTS
In this section, we first describe a practical application for
the SCFL framework, which consists in a fully-distributed
procedure for CP in a set of connected agents (e.g., vehicles).
Then, we detail the simulated scenario and we present a set
of numerical results.

A. USE CASE: COOPERATIVE POSITIONING
We consider a cooperative localization scenario where a set
of mobile agents aim to estimate their positions (or state)
based on ego-agent location measurements, e.g., noisy agent
position, and inter-agent measurements, e.g., agent pairwise-
distances. Agents cannot rely on a central coordinator (i.e.,
the PS), only on data exchange with neighbors.

The state of agent i at time n is denoted as yi,n.
Note that here, since we consider a dynamic scenario
where the agents move during training and inference,
the index n denotes both the time-step and the epoch
index. Thus, the network graph becomes n-dependent as
Gn = (Vn, En). We define with z(A)i,n = f (A)

(
yi,n,w

(A)
i,n

)
and

z(A2A)j→i,n = f (A2A)
(
yj,n, yi,n,w

(A2A)
i,n

)
, ∀j ∈ Ni,n, the state and

inter-agent measurement, respectively. w(A)
i,n and w(A2A)

i,n are
the state and inter-agent measurement noises, respectively,
while f (A)(·) and f (A2A)(·) are two non-linear functions.
We emphasize that the measurements do not depend on
the message passing index t . This follows the assumption
that each agent has only one measurement per time-step n,
and the time interval between two sub-sequent time-steps is
significantly larger than the one between message passing

iterations. We refer to Figure 5 for a visual representation of
the CP scenario with four agents.

To address this specific CP task, we adopt the following
models. For node and edge initialization, we adopt three NNs,
i.e., g(LSTM)

v (·), g(A)v (·) and g(A2A)e (·), whose parameters and
gradients are never shared across agents since they are unique
and specific for each agent. A Long Short-Term Memory
(LSTM) NN is required to introduce n-dependence relations
between time-consecutive state-predictions. At message
passing iteration t = 0, the initialization and measurement
encoding is as follows:

v(0)i,n = g(LSTM)
v (̂yi,n−1), (12)

zh
(A)
i,n = g(A)v

(
z(A)i,n

)
, (13)

zh
(A2A)
j→i,n = g(A2A)e

(
z(A2A)j→i,n

)
, ∀j ∈ Ni,n. (14)

At n = 0, the inference is initialized as ŷi,n−1 ≜ E[p(yi,0)],
where p(yi,0) is the prior knowledge of the agent position.
On the contrary, the edge and node embedding update are
computed according to:

e(t)j→i,n = ge
(
e(t−1)j→i,n, zh

(A2A)
j→i,n , v

(t−1)
j,n , v(t−1)i,n

)
, ∀j ∈ Ni,n,

(15)

v(t)i,n = gv
(
v(t−1)i,n , v(0)i,n, zh

(A)
i,n , 8

(
{e(t)j→i,n}j ∈ Ni,n

))
. (16)

Finally, after T message passing steps, the state prediction is
performed as in (11).

B. SIMULATION SCENARIO
We consider a 2D localization scenario where In =

16 connected agents move within a 200 m × 200m area for
100 timesteps sampled at 1 s. The agent trajectories create
a spiral shape pattern, starting from the origin and moving
towards the area’s limits as a spiral (see Figure 6). The
graph Gn is fully-connected, i.e., each agent is connected
to all the others. The agent’s state is yi,n = [pTi,nṗ

T
i,n]

T,
where pi,n ∈ R2 and ṗi,n ∈ R2 represent the 2D position
and velocity, respectively. The measurements are defined
as z(A)i,n = yi,n + w(A)

i,n and z(A2A)j→i,n = ∥pj,n − pi,n∥2 + w(A2A)
i,n .

We model the agent kinematics with a constant velocity
motion model, unless stated otherwise, while the state
measurements and inter-agent measurements follow zero-
mean Gaussian distributions, i.e., w(A)

i,n ∼ N
(
04,Cw(A)

)
,

with Cw(A) = diag
(
σ 2
p,w(A) , σ

2
p,w(A) , σ

2
ṗ,w(A) , σ

2
ṗ,w(A)

)
, and

w(A2A)
i,n ∼ N

(
0, σ 2

w(A2A)

)
, with standard deviations σp,w(A) =

5 m, σṗ,w(A) = 1 m/s, and σw(A2A) = 2 m.
The network of agents is trained on 1,000 instances

of constant velocity linear trajectories, with ṗi,n ∈

[−10, 10] m/s, where each instance is composed of In =
16 connected agents. To enhance model convergence and
prevent biases, we standardized all samples by applying a
min-max scaler, ensuring each feature falls within the [0, 1]
range. This is done with prior knowledge of agent position,
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FIGURE 4. Visualization of SCFL distributed training procedure according to three types of strategies. a) 3SS; b) 2SS and c) D-MPNN. The right arrow
highlights the flow of information, i.e., the sequential order of operations to be performed for updating the model parameters during training. Note
that in all the SCFL strategies, the PS is missing, being the training achieved in a fully-distributed manner.

i.e., pi,n ∈ [−100, 100]m, and velocity, i.e., ṗi,n ∈
[−10, 10]m/s.We trained both the centralized and distributed
models for a total of 100 epochs, using a batch size
of 32 samples and randomizing the dataset order at the
beginning of each epoch. Here, a sample refers to a trajectory

instance composed of N = 10 timesteps, i.e., the training
length sequence of the LSTM model.

The LSTM has been modified from [61], employing
only two layers and a hidden output dimension, or node
embeddings, of 16. The NNs of the MPNN model are
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FIGURE 5. CP task with four agents, represented by circles. The
measurements are represented as black dotted arrows, while trajectory
paths are indicated with colored solid arrows. For ease of notation,
we omit the epoch index n.

Multi-Layer Perceptrons (MLPs) with two hidden layers and
a neuron count of [80, 16] with Gaussian Error Linear Units
(GELU) activation functions. The number ofmessage passing
steps is T = 10. Lastly, we consider dimension of 16 for edge
embeddings, state, and inter-agent measurements.

For model training and testing, we used PyTorch version
1.12 and Python version 3.7.11, while simulations were exe-
cuted on a workstation featuring an Intel(R) Xeon(R) Silver
4210R CPU operating at 2.40 GHz, 96 GB of RAM, and a
Quadro RTX 6000 24 GB GPU. Regarding the optimizer,
we employed the Adam optimization algorithm [59] with
an initial learning rate of 0.0001 and momentum values of
0.9 and 0.999 for β1 and β2, respectively.

C. NUMERICAL RESULTS
1) TRAINING
In a first assessment, we compare the performances of the
three proposed SCFL strategies (i.e., 3SS, 2SS andD-MPNN)
with respect to a centralizedMPNN solutionwhere all clients,
i.e., nodes of the graph, lie in a single machine. In Figure 7
we show the Root Mean Square Error (RMSE) of the position
and velocity estimates evaluated on the validation dataset for
each epoch of the training (Figure 7a) and corresponding wall
clock time (Figure 7b).

Observing the results, we note that at corresponding
epoch, the best performances are reached by the distributed
D-MPNN and the centralized solution, followed by 2SS
and 3SS implementations. This result suggests that the
cooperative forwarding pass of the training should be
performed for all message passing iterations in the first stage
of the training (see Figure 4c). In contrast, increasing the
number of operations in message passing, as in 3SS and 2SS,
leads to worse performances.We believe that this is due to the
fact that performing all forwarding iterations at the beginning

FIGURE 6. Example of spiral scenario composed of 16 cooperating agents
represented by different colors.

allows client models to fully exploit the potential of message
passing operations, without interrupting the flow of refined
information within the node and edge embeddings.

An interesting observation is that the proposed SCFL
method with D-MPNN outperforms also the centralized
solution. To explain this behavior, we note in Figure 7b
that the centralized solution completes training in much less
time, and its RMSE is similar to the one of D-MPNN,
only with less machine time spent on training. Therefore,
we assert that the centralized solution and distributed
D-MPNN exhibit practically the same performance with the
same computational resources. The reason why D-MPNN
converges faster in terms of epochs is that step 2 of D-MPNN,
which involves gradient computation and back-propagation,
is performed individually by each client, thereby increasing
the computations linearly with the number of clients. In fully-
distributed networks of agents, this feature can lead a
significant advantage in speeding up the training process.

2) CONVERGENCE
This experiment aims at verifying the convergence of the
three proposed fully-distributed SCFL strategies with respect
to centralized training. In other words, the objective is to
assess whether or not the distributed training among clients
is equivalent or very well approximated to the centralized
architecture in terms of client local model parameters.
To this aim, we studied how much the distributions of
gv(·), g

(regres)
v (·) and ge(·) vary between the centralized and

distributed strategies.
In Figure 8 we show the Kullback-Leibler (KL) divergence

of the model parameter distributions with respect to the
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FIGURE 7. Comparison of the three proposed SCFL strategies with respect to a centralized solution. a) RMSE of position and velocity on the validation
set for each training epoch. b) RMSE of position and velocity on the validation set with respect to the wall clock time of the training.

centralized model parameters for each epoch of training.
We start noticing that, in 3SS (Figure 8a), the KL divergence
seems somehow to diverge from the centralized solution for
all the three local models. This confirms that performing
many operations in a single message passing iteration, i.e.,
a forward-step, a gradient exchange, and a consensus-FL step,
is not beneficial as it does not fully exploit the message
passing elaboration of latent features. On the contrary,
in 2SS (Figure 8b), we observe a neutral behavior with local
parameter distributions that tend to hold the same distance
with respect to the centralized solution. This is due to the fact
that steps 1 and 2 (see Figure 4b) lead to a more biased local
model, since each client adopts its private data to compute the
gradients and perform back-propagation, while step 3 drives
to a common global model which resembles the centralized
solution exactly as in FL. Finally, D-MPNN (Figure 8c),
which holds the best performances, clearly converges to the
centralized approach, as the logical steps of the distributed
algorithm match the classical MPNN training.

3) BASELINE COMPARISON
In this assessment, we compare the proposed D-MPNN
method with the current state-of-the-art D-ML algorithm,

i.e., CFA, both in terms of performances and communication
efficiency. Since in CFA there is no exchange of smashed
data, we train the same NNs present in D-MPNN without
the message passing procedure. We can consider the CFA
as a contraction of D-MPNN, where the T iterations are
performed within each agent and where the cooperation is
only present in the last step of weights exchange.

In Figure 9 we show the validation results of D-MPNN
ad CFA varying the number of training epochs. We also
connect the points in the two curves that correspond to
the same training time, allowing to evaluate the trade-off
between performances and training efficiency. From the
results, we notice that the D-MPNN outperforms CFA at
every epoch, both in terms of convergence speed and achieved
RMSE. This is mainly due to the message passing procedure,
which permits to further elaborate the input measurements
by exploiting the neighbors smashed data. Despite the longer
epoch duration due to the message passing, we observe that,
at the same time instant, the D-MPNN constantly achieves
better performances. This demonstrates that the message
passing procedure can indeed reduce the biases of the simpler
independent models within the agents, in the same way as in
conventional centralized MPNN.
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FIGURE 8. KL divergence, at varying training epochs, of the local model parameter distributions between the centralized and the SCFL distributed training
strategies, i.e., a) 3SS; b) 2SS and c) D-MPNN.

FIGURE 9. Comparison of the proposed SCFL D-MPNN method with
respect to the CFA algorithm in terms of RMSE. The points related to the
same training time are connected by dashed lines.

V. CONCLUSION
This paper addressed the problem of distributed inference and
model training in a network of physically separated clients.
We started by reviewing the parallelism between PS-based
FL, SL and SFL methods which is used as a starting point
for the design of a fully-distributed consensus-based SL,
named SCFL. In this framework, clients have to forward
the smashed data to their neighbors for completing the

inference. We developed three distributed training strategies,
namely 3SS, 2SS and D-MPNN, which take inspiration from
centralized MPNN where the message passing iterations
resemble the split forwarding, while preserving local data
privacy. These strategies mainly differ for the type of
operations within each single message passing iteration, thus
obtaining different performances under the same conditions.
The main advantages are the local data privacy preservation,
as in FL and SL, since only smashed data, gradients
and model parameters are exchanged, and the complete
independence on a centralized entity (i.e., a PS) to perform
the training procedure.

We proved the efficacy of the proposed SCFL paradigm in
a CP use-case where distributed moving clients (i.e., agents)
have to self-localize based on local ego-agent and inter-
agents measurements. For the specific task, we developed a
custom model structure composed of client-specific models,
i.e., encoding NNs and an LSTM model to learn the
agent mobility, and shared models, i.e., edge, node and
regressor NNs. Comparing the three distributed strategies
with respect to a centralized solution, we found that the
distributed strategies highly differ in terms of performance
and convergence capabilities. Specifically, the best learning
strategy, i.e., D-MPNN, is the one that takes the most
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advantage from message passing by first performing the
cooperative inference through node embeddings exchange,
and then applying individual back-propagation with a final
consensus-FL step. This strategy efficiently combines the
computational power of all clients as they were on a single
machine and strives towards the centralizedmodel parameters
at convergence.

We expect distributed training and inference to play a
crucial role in forthcoming years, especially in applications
such as cooperative sensing in connected automated vehicles,
distributed manufacturing control, and autonomous multi-
agent robot systems, where collaboration is requested to
achieve a shared objective. Relevant challenges are rep-
resented by the requirement of fast convergence in time-
sensitive tasks and the management of non-IID data in
heterogeneous settings.
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