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ABSTRACT Origin-Destination (OD) traffic flow estimations from traffic sensor data play an important
role for transportation planning and management. This paper proposes a novel method to compare OD traffic
estimated matrices (using data from traffic sensors). The proposed method uses the estimated OD traffic flow
values together with COVID-19 incidence data in order to build a sequence of temporal graphs that are fed
into a machine learning (ML) model. TheMLmodel uses the input information to estimate/predict one-week
ahead COVID-19 incidence data. A tailored Graph Neural Network (GNN) and Long Short-Term Memory
(LSTM) model is designed adapted to the input information. The paper evaluates the proposed method with
3 different OD estimation alternatives and compares the accuracy achieved by different configurations of the
ML model with a traffic agnostic baseline model. Data from 44 provinces in Spain during 2021 providing
daily COVID-19 incidence data and 635 geo-located traffic sensors providingmonthly traffic counts are used
to evaluate the results. The 3 traffic-aware OD estimation methods were able to outperform the baseline
model, achieving model gains up to 136%. The major application of the results of this paper is a novel
mechanism to validate prior OD traffic matrices.

INDEX TERMS Intelligent systems for traffic prediction, traffic modeling, traffic flow modeling, machine
learning, artificial intelligence, prior OD traffic flow estimation, graph neural network, long short-term
memory recurrent neural network, COVID-19 virus propagation.

I. INTRODUCTION
Traffic sensors on roads are able to capture different data
sources, ranging from simple vehicle counts (using sen-
sors such as loop detectors) to particular vehicle trajectories
based on cameras and Automatic Number Plate Recognition
(ANPR) [1]. Traffic flow data collected by traffic sensing
devices is crucially important for transportation planning and
transportation management [2]. Since the number of traffic
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sensing devices in road networks is normally limited due to
their high installation and maintenance costs [2], alternative
techniques have been proposed in previous research studies
to provide estimations of traffic flows in non-monitored road
links and to estimate origin-destination (OD) traffic matrices
that provide an overall view of the traffic demand in an entire
network.

Cho et al. classified the different methodologies to estimate
OD matrices into survey based, trip distribution models and
non-assignment-based models based on traffic counts [3].
Surveys are expensive to carry out and provide only a fixed
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image in a particular time. Trip distribution models such as
gravity models, provide a theoretical framework to estimate
traffic flows based on underlaying variables that have an
impact on them, such as demographics, traffic generation
models, zone attraction models and travel cost functions.
Several traffic assignment models have been used in order
to map prior calculated OD matrices to traffic flows and
traffic sensors at particular road segments have been used
to generate iterative methods to improve prior OD matrices
based on traffic measured data. Traffic estimation based on
iterative methods tend to require a detailed knowledge of the
road network and the time required to cross each segment of
the network.

Other sensors have also been used to enrich the informa-
tion obtained from traffic count sensors and provide better
estimates for unobserved traffic flows and OD matrices.
Wang et al. [2] used License Plate Recognition (LPR) sensors
and taxi GPS trajectory data to enhance the information from
68 traffic flow sensors which were able to only measure 1.2%
of the entire road network. Liu et al. [4] used Cellphone
Location (CL) and License Plate Recognition (LPR) data for
estimating traffic flows in a large road network using a multi-
source model. Adding more sensors to the road network or
requiring the user of the network to provide personal location
data introduced new challenges both in terms of costs and data
sharing.

Based on traffic data from sensors, a new approach to
estimate traffic flows and OD matrices based on the use of
machine learning models have been explored over the last
years. Machine learning models are able to extract patterns
from sensor data in order to provide estimates for un-observed
data. The algorithms need to be trained with known data
before they can be used for providing estimates for new
data. The majority of the machine learning models used
to estimate traffic flows and OD matrices use a supervised
learning approach for which labeled training data is required.
Pamula et al. [5] proposed a deep learning model based on
the knowledge of the structure of the road network, origin
and destination points of trips, as well as data on traffic
intensity on road network sections recorded by video-sensing
devices, in order to estimate OD matrices. Training data was
synthetically generated using prior OD matrices. Liu et al.
[6] used mobile phone data in order to estimate dynamic OD
matrices.

In this paper, we propose a novel method to evaluate OD
traffic matrix estimations based on traffic count sensors that
does not require a complete knowledge of the topology of
the network and does not require the knowledge of large
training sets of OD trafficmatrices for usingmachine learning
models. The proposed method uses a Graph Neural Network
(GNN) machine learning model to fit the spatial charac-
teristics of a road network and time series of COVID-19
incidence data to get geo-located temporal sequences that
capture the spread of the virus. The output of the GNN (a
temporal sequence of processed graphs) is fed into a Long
Short-Term Memory (LSTM) Recurrent Neural Network

(RNN) to extract temporal patterns from the input data.
The COVID-19 virus is transmitted from human to human
interactions and is therefore affected by OD traffic flows.
The proposed machine learning model receives OD traffic
estimated matrices as input data and uses a graph neural net-
work to optimally estimate the spread of the COVID-19 virus
considering the incubation period and the human mobility
estimations. The idea motivating the proposed methodol-
ogy is that better OD traffic estimations will lead to better
results for COVID-19 spread predictions (the machine learn-
ing model will be able to generate more accurate predictions
when the input data is closer to the un-observed real data).
The model will be validated using real data from 44 provinces
and 635 traffic sensors in road segments in Spain during
the entire 2021. The mutual information between mobil-
ity and COVID-19 incidence data for the escalation and
de-escalation of new COVD-19 cases in Spain for the data
from 2021 is analyzed to support the proposed model.

The major contributions of this paper are:
• Definition of a graph format to combine COVID-19
incidence data, as node information, and OD traffic flow
estimates, as edge information.

• Proposal of a novel GNN-LSTM machine learning
model designed to extract patterns from a COVID-19-
OD-Traffic sequence of graphs.

• Proposal of a novel methodology to evaluate OD traffic
flow estimations that uses the OD estimates to generate
input graphs and evaluates the accuracy achieved by the
GNN-LSTM model.

The primarymotivation of this research is to have amethod
to estimate the accuracy for OD traffic matrices based on traf-
fic sensor information not requiring extensive and expensive
training data but using the already COVID-19 gathered data.
A secondary motivation is to show that the spatial spread of
the COVID-19 virus can be better estimated using traffic data
and mobility estimations.

The paper is organized as follows. Section I, this section,
provides and introduction and motivation of the study.
Section II captures the previous related work to justify the
novelty of the proposed approach. Section III describes the
proposed method. Section IV captures the description of
the datasets used in order to validate the results. The datasets
contain monthly updated data from traffic sensors in sev-
eral roads in Spain and daily COVID-19 reported data per
province in Spain. Section V is dedicated to analyze the
datasets in order to validate the correlation between human
mobility and the COVID-19 spread in Spain in 2021 and to
evaluate if road traffic data could be considered a good proxy
variable for estimating human mobility. Section VI presents
4 different methods, used in this paper to estimate prior OD
matrices. SectionVII captures the results of the validation and
major conclusions are presented in section VIII.

II. RELATED WORK
Traffic counts based on traffic sensors located in sparse
locations of a road network provide not only a direct traffic
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monitoring system but also a data source for methods to
estimate overall traffic flows and OD matrices for the entire
network. Timms [7] performed a review ofmethods published
between 1970 and 2000 to estimate OD matrices based on a
trade-off of available limited traffic link observational data
and models to estimate prior subjective input OD matrices.
Different methods have been used to generate prior OD
matrices such as [8] and [9] and several allocations models
could be used to distribute OD traffic into particular network
links. Observed link counts could then be used to assess if the
calculated data coincides with the observed data and the OD
matrices are adjusted in an iterative process.

In recent years, new models to estimate overall traffic
data from sensors have been proposed based on the use of
additional sensors that are currently available. Wang et al. [2]
proposed a data driven model that expanded the information
of traffic flow sensors with License Plate Recognition (LPR)
data and taxi GPS trajectory data for estimating traffic flow
in large road networks. Sánchez-Cambronero et al. [10] pro-
posed a model for estimating dynamic traffic flows in road
networks by using Automatic Number of Plate Recognition
(ANPR) sensors and a first-in-first-out (FIFO) hypothesis.
ANPR sensors were used to evaluate travel times among
different points in the network in order to better estimate
traffic flows. Yang et al. [11] used probe vehicles to estimate
trajectories in the road network. The estimated trajectory
information was used to complement observed link count
information. The GPS sensors were used on probe vehicles
to estimate their trajectories. The model proposed the use of
the information from probe vehicles and link counts to esti-
mate prior OD matrices and a conventional generalized least
squares (GLS) framework was used to conduct OD correction
using link counts. Cho et al. [3] proposed a method that
used Gibbs sampling and a Kalman filter to avoid requiring
the use of a prior OD matrix. Wu et al. [12] proposed a
four-stage traffic flow prediction method based on the use
of a gravity model to estimate prior OD matrices and a
Dijkstra algorithm to calculate optimal routes. The authors
compared two different assignment methods in a theoretical
way. Hualan et al. [13] proposed a method to estimate the
OD matrix for the particular case of a non-congested ring
expressway by using the information about the topology of
the network, the on-ramp and off-ramp traffic, based on some
basic assumptions about the routes taken by the drivers.

A different approach to estimate traffic flows and OD
matrices from observed sensor data is using machine learning
models. Pamula and Żochowska [5] proposed a method for
OD (Origin–Destination) matrix prediction based on traf-
fic data using Recurrent Neural Networks (RNN) based
on Long Short-Term Memory (LSTM) or autoencoder lay-
ers (DLNa — deep learning networks with autoencoders).
An iterative method was used for estimating OD matrices
over historical data to generate training sequences for the
neural network. Liu et al. [4] proposed a machine learning
model in order to estimate network flow information based on
the use of cellphone location and License Plate Recognition

(LPR) data. Afandizadeh et al. [1] also used a deep machine
learning model to estimate hourly OD traffic matrices. The
model used data extracted from automatic number plate
recognition (ANPR) cameras, smart fare cards, loop detec-
tors at intersections, global positioning systems (GPS) of
navigation software, socio-economic and demographic char-
acteristics as well as land-use features of zones as inputs. The
model was trained based on the knowledge of ground truth
OD matrices for the city of Tehran based on activity-based
data from 2019.

Traffic information has both spatial and temporal com-
ponents. The spatial information in a road network can be
expressed using a directed graph. Liu et al. [6] proposed a
machine learning model-based Graph Convolutional Neural
Network (GCN) to estimate OD traffic flows. OD traffic data
was captured from mobile phone data. The network topology
was divided into city areas and the objective of the machine
learning model was to estimate future temporal values for the
OD traffic matrices based on measured matrices and using a
graph to capture the interconnections among different areas.
Two different graphs architectures were used by considering
OD flows as the nodes or the edges of the graph. Yu et al.
[14] used a Spatio-Temporal Graph Convolutional Network
to predict the time dependent behavior of traffic.

Traffic flows (and OD traffic matrices) capture the move-
ments of people in a region and have an impact on COVID-19
propagation. As a respiratory disease, COVID-19 spreads
based on human to human interactions. Lau et al. [15]
analyzed air traffic data and found a strong linear corre-
lation between domestic COVID-19 cases and passenger
volumes for regions within China and a significant correla-
tion between international COVID-19 cases and passenger
volumes. Sokadjo and Atchadé [16] found similar results for
air traffic using datasets of cases from the Center for Systems
Science and Engineering (CSSE) at Johns Hopkins Univer-
sity and air transport (passengers carried) from the World
Bank. Ayan et al. [17] used cellular network traffic data and
a Markovian model that captures the mobility of individuals
across municipalities of the city and defined a mobility-aware
COVID-19 case prediction model that predicted the number
of cases for the following week. The study showed that
adding estimates for human mobility as input data was able
to improve the accuracy of COVID-19 forecasting models.

This paper presents a new method to compare OD traf-
fic matrix estimations based on the prediction accuracy of
a machine learning model trained to estimate one-week
ahead COVID-19 incidence values. The spatial granularity
of the model will be based on geographic areas. A graph
is used to capture the interactions among different areas.
A machine learning model able to explore graph information
is used to estimate one-week ahead COVID-19 incidence
data. COVID-19 data is also divided into the same geo-
graphical topology. A one-week ahead horizon is used in
order to take the virus incubation time into account. Existing
machine learningmodels to estimate OD trafficmatrices such
as [6] require extensive ground truth data to train the models
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which is not always available. Using the mutual information
between human mobility and the spread of the COVID-19
virus, the model proposed in this paper uses the already gath-
ered information for COVID-19 monitoring in order to assess
the likelihood of different estimations for OD traffic matrices
to coincide with real unknown human mobility flows. The
proposed model generates daily or weekly graphs based on
COVID-19 measured data and OD traffic estimations based
on theoretical models and data from traffic sensors. The
proposed model defines a novel architecture to extract both
the spatial and temporal patterns governing the spread of
the COVID-19 virus. The primary objective is to have a
method to estimate the accuracy for OD traffic estimations
based on traffic sensor information not requiring extensive
and expensive training data but using the already COVID-19
gathered data. A secondary objective is to show that the
spatial spread of the COVID-19 virus can be better estimated
using traffic data and mobility estimations. A limitation of
the proposed model is that it is only applicable to estimate
OD traffic matrices for regions (such as provinces) for which
COVID-19 data is aggregated. This limitation, on the other
hand, alleviates the need for having the exact knowledge of
the road network and is also present in previous studies such
as [6].

III. DEEP GNN MODEL BASED ON O-D TRAFFIC
ESTIMATIONS
This section provides the details for the machine learning
model proposed to evaluate prior OD traffic flow esti-
mates. The model uses a Graph Neural Network (GNN) to
extract mobility aware spatial patterns and a subsequent Long
Short-Term Memory (LSTM) Recurrent Neural Network
(RNN) to extract temporal patterns controlling the spread
of the COVID-19 virus. The model will be used to forecast
one-week ahead COVID-19 incidence values in the different
regions of the graph. The hypothesis is that better OD traffic
flow estimates will provide more accurate input data to the
model and more accurate input data will make it possible to
generatemore accurate predictions (sectionVwill capture the
data analysis to support that hypothesis). If the model is able
to extract the information from the input data it will provide
more accurate estimates for the one-week ahead COVID-19
incidence values.

The first two sub-sections are used to present the basic
equations modeling GNN and LSTM based models. The pro-
posed GNN-LSTM model is the presented in sub-section C.

A. GRAPH NEURAL NETWORKS (GNN)
Graph Neural Networks (GNNs) directly operate on
graph-structured input G = {V ,E,W } [6]. V represents
a set of vertices, E the edges connecting them and W a
weighted adjacency matrix. Several types of GNNs have
been proposed for processing the information in graphs.
Gilmer et al. provide a detailed review over existing graph
neural network models [18] in which different models are
grouped based on the internal graph operations.

Zhou et al. proposed a two phase GNN model called Mes-
sage Passing Neural Network (MPNN) [19]. The first phase
aggregates the information from adjacent nodes using a mes-
sage passing function. The second phase performs an update
of the nodes’ feature vectors based on the previous features
and the messages passed. The basic operations describing a
MPNN are captured in Equation 1.

mt+1
v =

∑
u∈Nv

Mt
(
htv, h

t
u, euv

)
,

ht+1
v = Ut

(
htv,m

t+1
v

)
(1)

where htv is the feature vector in node v at time t , euv represent
the features for the directed edge connecting node uwith node
v, Nv are the neighbor nodes for node v, Mt is the message
function to aggregate the messages mtv for the computation
of the update in the features for node v, and Ut is an update
function to compute the next feature vector for each node
based on the current feature vector and the messages from
the connected nodes.

B. LONG SHORT-TERM MEMORY (LSTM) MODEL
Long Short-Term Memory (LSTM) [20] is a type of
Recurrent Neural Network (RNN) machine learning model
designed to extract patterns in data sequences such as time
series. LSTMs have a state c, and generate an output ot for
each time step based on the input xt , the output of the previous
time step ot−1 and the current state ct information. The model
uses three gates (input int , output out t and forget ft ) to control
the updates for the state ct and the output ot for each time step
following Equation 2.

ft = σg

(
Wf xt +W ′

f ot−1 + bf
)

,

int = σg
(
Winxt +W ′

inot−1 + bin
)
,

out t = σg
(
Woutxt +W ′

outot−1 + bout
)
,

c̃t = σc
(
Wcxt +W ′

cot−1 + bc
)
,

ct = ft∗ct−1 + int ∗ c̃t ,

ot = out t ∗ σh (ct) , (2)

whereWα are weight matrices (for α = f , in, outorc), bα rep-
resent biases, σg, σc and σh are activation functions (sigmoid
for σg, hyperbolic tangent for σc and hyperbolic tangent or
identity for σh), and ∗ is a component wise multiplication
operation.

C. GNN-LSTM MODEL FOR OD TRAFFIC ASSESSMENT
OD traffic matrices capture the movements from each origin
to each destination over a period of time. Depending on the
granularity, each origin and destination can represent a road
intersection, a road link or an entire area in the map. The
information describing the particular features of each origin
and destination, together with the traffic flows among them,
can be captured in a graph structure. This section uses a graph
format to capture both COVID-19 incidence and traffic flow
information data for a set of regions. Each region will be both
a source and a destination for traffic with other regions and
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will be represented as a node in the graph. The COVID-19
incidence data for each region will be stored at each node.
The edges in the graph will contain estimations for the OD
traffic between each pair of regions. The graph will contain
directed edges in which flow estimations does not have to be
symmetric.

A GNN-LSTM machine learning model that extends the
proposal in [21] has been designed in order to predict the
COVID-19 incidence one-week ahead (considering the incu-
bation time of the virus) for each node (region). A graph
is generated with the COVID-19 incidence information per
day. The GNN is used to explore the entire graph and extract
the spatial features which are then fed into an LSTM based
RNN in order to extract the temporal patterns and generate a
prediction for the one-week ahead COVID-19 incidence data.
The model is captured in Figure 1.

FIGURE 1. GNN-LSTM model for OD traffic assessment.

The GNN in the model in Figure 1 defines following
message passing aggregation function for the neighbors as
captured by Equation 3.

Mt
(
htv, h

t
u, euv

)
= k ∗ euv ∗ htu

mtv =
1
Nu

∑
u∈Nu

(
Mt

(
htv, h

t
u, euv

))
(3)

where the edge euv = ODuv, with ODuv being an estimation
of a prior OD traffic flow between the nodes (regions) u
and v [7] and k is a regularization constant that represents
the percentage of the traffic flow that contributes to the
propagation of the virus (based on the transmissibility of the
COVID-19 virus). Each region will spread the virus over con-
nected regions based on the product of the current COVID-19
incidence values and themobility of the population with other
destinations. The aggregated messages for node v from all
neighbors Nu are the average of the messages from each
neighbor.

The update function in the GNN is defined in Equation 4.

Ut
(
htv,m

t
v
)

= concat
(
htv,m

t
v
)

(4)

where the average messages from all the neighbors mtv are
concatenated with the COVID-19 incidence for node v.

The output of the GNN, for each node is then captured in
Equation 5.

ht−outv = concat
(
htv,m

t
v
)

= concat
(
I tv, I

t
Nv

)
(5)

where I tv is the COVID-19 incidence at node v for time t
and I tNv is the averaged incidence of the neighbors at time t
weighted by the estimated OD traffic flows.

The outputs for the GNN neural network will then be fed
into a LSTM model with nc memory units which will be
trained to estimate the one-week ahead COVID-19 incidence
values. A simplified similar model has been successfully used
in order to estimate traffic flows in road links based on the
information of traffic on other links weighted by the distance
between links in [21]. We propose a model that extends
the graph information with COVID-19 data and uses prior
estimates for OD traffic flows as weights in the aggregation
function in Equation 3. Since the COVID-19 virus is prop-
agated based on human to human interactions, good prior
estimates for the OD traffic matrix will help the model in
Figure 1 to achieve better predictions for one-week ahead
COVID-19 incidence values. A similar model combining
a GNN connected to an LSTM for electroencephalography
(EEG) signal classification has been proposed in [22]. The
model used electrodes as nodes in the graph and an adjacency
matrix based on the k nearest neighbors for each electrode
showing that the model offered promising results for emotion
recognition, and motor imagery decoding. Other variants for
the GNN model such as the one proposed in [23] could be
used as a future work. A similar GNN+LSTMmodel has also
been recently used in [24] in order to anticipate COVID-19
incidence data for Brazil, also showing promising results.

IV. DATASETS
The model in Figure 1 has been applied to data in Spain for
the entire 2021, in which data on new COVID-19 infections
for each region (province) was reported every day. Twomajor
datasets have been used to validate the model and apply it to
different prior ODmatrix estimates: the COVID-19 incidence
data from the Carlos III Health Institute [25] and the traffic
flow data on Spanish roads from the Transport Ministry [26].

The COVID-19 incidence data values in [25] are obtained
from the declaration of COVID-19 cases to the National
Epidemiological Surveillance Network (RENAVE) through
the computer platform via Web SiViES (Surveillance System
of Spain) managed by the National Epidemiology Center
(CNE). The dataset contains daily reported cases for different
age ranges and gender, per province. In order to simplify the
model, the data has been aggregated per day and province.
Each node v in the graph will contain a single state vari-
able with the aggregated reported cases for that node (using
desegregated data will be studied as a future work). Only new
reported COVID-19 infections are considered. The dataset
also contains information for hospitalizations and deaths
which could be used to enhance the proposed model as a
future work.
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The traffic data [26] captures the monthly evolution of the
traffic registered in the traffic meters in 635 locations of
the Spanish road network in 44 provinces. The dataset also
contains the estimated total traffic at the end of each year
per traffic meter. The traffic data from 2021 will be used to
generate OD prior matrices to train and validate the model.
Since the temporal granularity of the traffic data is different
from the COVID-19 incidence data, OD prior estimates will
be replicated for all the input graphs for that period.

V. INITIAL DATA ANALYSIS
In this section we analyze the hypothesis that mobility and
COVID-19 incidence data are correlated using datasets con-
taining information for Spain in 2021. The machine learning
models proposed in this paper will use themutual information
among these two variables in order to infer better mobility
estimations based on the ability to learn patterns leading to
better estimates of COVID-19 incidence data.

In this section, we also analyze the limitations of using road
traffic sensors as proxy variables to estimate human mobility.

A. MOBILITY DATA AND COVID-19
COVID-19, as a respiratory virus, spreads based on human
to human interactions (co-located people over a sufficient
amount of time). Human mobility allows infected people
to disseminate the virus. The impact of mobility in the
spread of the virus has been captured in several studies.
Alessandretti [27] provided a review study on the causal
mechanisms that lead to link human travel with close
human interactions capable of spreading the COVID-19
virus. The authors found causal patterns at the beginning
of the COVID-19 pandemic. Similar results were presented
in [28] where origin–destination travel demand and aggregate
mobility inflow at each US county from March 1 to June 9,
2020 were computed, and a positive relationship between
mobility inflow and the number of infections during the
COVID-19 onset was found. The authors in [29] found a
relationship between human mobility and the virus spread in
previous studies although the relationship presented temporal
and spatial heterogeneity. For the particular case of Spain, the
study in [30] confirmed that daily new Coronavirus COVID-
19 cases were directly related to mobility habits 14 days
before for the first months of the pandemic. In this subsection
we study the correlation of mobility and COVID-19 propaga-
tion for the data in 2021 which is the one used in this paper.

In order to assess the impact of mobility on the spread of
the COVID-19 virus, the dataset in [31] has been used. This
dataset analyses mobility data obtained from cellular phone
aggregated flows for the different regions in Spain in 2021.
The mobility data will be analyzed together with the COVID-
19 incidence data for each region in Spain [25]. Data in [25]
shows two major COVID-19 waves of infections in Spain in
2021. The first wave was influenced by the Christmas period
involving mobility patterns that are not captured in [31]. The
second wave of infections has therefore been used in this
section. The Pearson correlation index for the 5 weeks before

and after the peak of infections for the secondwave for mobil-
ity and COVID-19 incidence time series has been calculated
in order to analyze the mutual information both in the case
of the increase and decrease of COVID-19 infections. The
results are presented in Table 1 showing a positive correlation
for mobility patterns and COVID-19 new infections.

TABLE 1. Pearson correlation coefficient.

Instead of using data from cellular phones, we propose a
different approach based on the information obtained from
traffic sensors in this papermaking use of themutual informa-
tion for the mobility and COVID-19 incidence data in Spain
in 2021.

B. TRAFFIC ANALYSIS BY DIFFERENT MEANS OF
TRANSPORTATION
The mobility flows in this paper are obtained from traffic
sensors as a proxy variable to estimate total mobility in Spain.
The data in [32] for 2021 shows that around 90% of the
total mobility for passengers (human mobility) is road traffic
based. Table 2 captures the results.

TABLE 2. Internal mobility in spain by means of transport in 2021
(Billions).

Together with passenger mobility, traffic sensors also cap-
ture freight traffic. The dataset in [26] shows that freight
traffic was below 10% of passenger traffic. In this paper,
we are going to use the outputs for each traffic sensor as a
proxy variable for human mobility considering the majority
of human mobility in Spain in 2021 used road transportation
and that freight traffic is an order of magnitude smaller than
passenger traffic. Amore detailed analysis by means of trans-
port will be done in a future study.

VI. MODELS FOR ESTIMATING PRIOR OD TRAFFIC
MATRICES
Different methods have been used to generate prior ODmatri-
ces such as [8] and [9].

Willumsen [8] defined a gravity model for prior OD esti-
mations based in Equation 6.

Tij = bi ∗ Oi ∗ Dj ∗ c−dij , (6)

where Tij is the estimate for the traffic from origin i to desti-
nation j, Oi represents the traffic from origin i, Dj represents
the traffic to destination j, cij represents the cost for travelling
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from i to j, c−dij represents the traffic attraction and b and d
are constants.

Tsekeris and Stathopoulos [9] presented a dynamic gravity
model in which OD traffic data is optimized based on the
entropy maximization criterion following Equation 7.

Tij = Ai ∗ Õi ∗ Bj ∗ D̃j ∗ e−γ cij , (7)

where Tij is the OD traffic computed based on the estimation
or total traffic from origin Õi and destination D̃j and a travel
cost function cij which leads to a traffic attraction exponential
function e−γ cij . Ai and Bj are balancing parameters.

In this section we describe 3 prior OD matrix estimation
models based on previous studies and a baseline model which
will be used to compare the OD estimation models based on
the results from the GNN-LSTM in Figure 1. The information
from traffic meters described in the previous section will be
used. Each traffic meter is geo-located in a particular location
inside a particular region (province). Each province is a node
in the graph and all the regions generate and attract traffic
from connected provinces.

A. GRAVITY MODEL WITH A TRAFFIC ATTRACTION
FUNCTION BASED ON THE INVERSE OF THE DISTANCE
Each node (province) in the graph may contain several traffic
meters. A modified version of Equation 6 is used, adapted to
regions comprising several traffic meters. Origin and Desti-
nation traffic is computed adding the traffic measured by all
the traffic sensors in the region according to Equation 8 (other
approximations including the population of each region will
be studied in future work).

Oi =

∑
s∈Ni

Ts,Dj =

∑
s∈Nj

Ts, (8)

where Ni represents the number of traffic meters in the origin
region and Nj the number of meters in the destination.
The cost in Equation 6 is used to estimate the attraction for

the traffic between two regions as described in Equation 9.

attractionij = c−dij = dist−1
CiCj (9)

where Ci and Cj represent the ‘‘center’’ of the origin and
destination regions and dist is the Euclidean distance. Since
the majority of the traffic is generated near the capital city
of each region, we have set the traffic ‘‘center’’ for this first
model in the geographic location of the capital.

B. GRAVITY MODEL WITH EXPONENTIAL BASED TRAFFIC
ATTRACTION FUNCTION
The second model analyzed in the current study will use
a similar gravity model as the one in the previous section
but using an exponential attraction function as captured in
Equation 7. The cost for traffic going from region i to region
j is captured in Equation 10.

attractionij = e−γ distCiCj (10)

where Ci and Cj represent the ‘‘center’’ of the origin and
destination regions and dist is the Euclidean distance. The

parameter γ is set to

1

min
(
distCiCj

) .

The traffic ‘‘center’’ for this second model is also located
in the geographic location of the capital city (assuming that
the majority of the traffic for a particular region is based in
the capital city and its surroundings).

C. DIRECTED CENTER OF TRAFFIC MASS MODEL FOR
TRAFFIC FLOWS AMONG DIFFERENT REGIONS
The third model proposed for OD prior matrix estimation
for region to region (province to province) traffic flows will
estimate the amount of traffic by computing the center of
directed ‘‘traffic mass’’ according to Equation 11.

Tij =
1∥∥∥−−−→

CıCȷ

∥∥∥
∑

s∈Ni

Ts
−−→
CıCs ·

−−−→
CıCȷ∥∥∥−−−→

CıCı
∥∥∥ , if

−−→
CıCs ·

−−−→
CıCȷ > 0

(11)

where Ts captures the traffic counted by sensor s,
−−→
CıCs repre-

sents a vector connecting the ‘‘center’’ of the origin province i
and the traffic sensor s and

∥∥∥−−→
CıCs

∥∥∥ its norm,Ni is the number

of traffic sensors in province i,
−−−→
CıCȷ is the vector connecting

the ‘‘centers’’ for provinces i and j,
∥∥∥−−−→
CıCȷ

∥∥∥ its norm and ·

represents the dot product. The capital cities are also selected
for the ‘‘center’’ of each province. Equation 10 only considers
traffic sensors in region i that fulfill that

−−−→
CıCs·

−−−→
CıCȷ > 0,

considering that sensors with
−−−→
CıCs·

−−−→
CıCȷ < 0 are more

likely to capture traffic exchanged with other regions. The dot
product

−−−→
CıCs·

−−−→
CıCȷ is used to project the amount of Ts in the

flow going in the direction form province i to province j.
The OD prior estimation following Equation 10 assigns a

higher probability to traffic from sensors in region (province)
i to flow to region (province) j to those sensors which are
closer to the ‘‘center’’ (considering the capital city as the
traffic center) of region (province) j.

D. BASELINE MODEL
A baseline (traffic agnostic) method is also defined in order
to assess the model gain when using the previous OD traf-
fic matrix estimation methods in order to achieve a better
COVID-19 forecasting accuracy.

The baseline model will assume that the traffic flows from
each region will be equally shared with all neighbor regions
according to Equation 12.

Tij = 1 for neighbour regions

Tij = 0 for non − neighbou regions (12)

All connected regions (provinces) will share the same
amount of normalized traffic volumes with each other and no
traffic with non-connected regions without taking the traffic
sensor data into account.
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VII. RESULTS
This section captures the results when using the GNN-LSTM
machine learning model in Figure 1 to forecast one-week
ahead COVID-19 incidence values for each province in
Spain during the entire 2021 using the datasets described in
section IV. The 4 methods captured in section VI will be
used in order compute the values for the edges of the graph
(euv in Equation 3) as estimates of the Origin-Destination
(OD) flows among different provinces. Better OD flow esti-
mations will provide more accurate input information to the
GNN-LSTMmachine learningmodel so that the output of the
model is able to generate more accurate predictions.

A. NORMALIZED ADJACENCY MATRICES
In order to speed up the training of the machine learning
model in Figure 1, the values for the OD estimates are nor-
malized following Equation 13 when feeding the input values
to the GNN-LSTM model in Figure 1.

eij =
AijTij

max (AabTab) ∀a, b
(13)

where A is an adjacency matrix, Aij each element in the
adjacency matrix and eij captures the estimated OD traffic
between regions i and j. Aij = 1 for connected regions
i and j and Aij= 0 for the non-connected ones. Since the
traffic attraction values used to compute prior OD matrices
in Equations 7 and 9 decrease with the distance, in order to
simplify the graph for the model in Figure 1, only the nearest
(in distance) provinces are considered to be connected with
Aij = 1 (other adjacency matrices will be studied in future
work).

The road sensors in the traffic dataset [26] are deployed
in the Spanish roads are highlighted in Figure 2. The traffic
sensors in Figure 2 are shown inside the different Span-
ish provinces (which will be the nodes in the graph). The
provinces with Aij = 1 for the province of Segovia (as an
example) are captured in Figure 3 (a threshold of 150 km has
been used). A greyscale visualization of the traffic attraction
to the province of Segovia (represented in red) following
Equation 9 is captured in Figure 4. Provinces with Aij= 0
show a low attraction value (darker values).

The estimated OD traffic flows Tij are normalized in
Equation 12 using a min-max scaler function so that the edge
values eij have a maximum value of 1 to improve the conver-
gence of the training of the GNN-LSTM machine learning
model.

B. LEAVE ONE-WAVE-OUT CROSS-VALIDATION
The spatio-temporal spread of the COVID-19 has gener-
ated waves of infections. Figure 5 shows the aggregated
(all provinces, all ages, all genders) reported cases of new
COVID-19 infections in Spain during 2021. Three major
waves are shown: one at the beginning of the year, a second
one around August and a final one by the end of the year. The
latest wave was driven by the Omicron COVID-19 variant

FIGURE 2. Spanish provinces and the location of the traffic sensors.

FIGURE 3. Adjacency example (province of Segovia).

which has a higher infectivity, generating a higher number of
COVID-19 reported cases.

In order to validate the accuracy of the model in Figure 1,
a leave one wave out approach is followed. The data for the
first wave is separated for testing and the rest of the data for
training. The origin of the first wave is the first of January,
2021, and the end has been estimated as February 20, 2021.
The information from February 21 to December 31, 2021 is
used for training. The model will learn the propagation pat-
terns of the COVID-19 virus from the second and third waves
and use the learned patterns to estimate the spread of the first
wave.

For each configuration of the model in Figure 1 (with
different number of memory units in the LSTM cells) and
for each OD matrix estimation method, a total of 10 differ-
ent training optimizations (executions) are performed, using
random shuffling for the data samples in order to train the
model. The average values for the accuracy of the model are
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FIGURE 4. Attractions values for traffic to the province of Segovia.

FIGURE 5. New daily aggregated COVID-19 cases in Spain (2021).

then calculated. This is done to minimize the effect of the
numeral optimization process has on the output of the model.

Two error metrics commonly found in related studies will
be used to validate the accuracy of themodel: theMeanAbso-
lute Error (MAE) and theMean Squared Error (MSE). Taking
the incubation period for the COVID-19 virus into account,
a one-week ahead estimation will be used (the model will try
to predict one-week ahead COVID-19 incidence data). The
model will use the information of the previous 3 weeks to
minimize the one-week ahead estimation error.

C. GNN-LSTM MODEL OPTIMIZATION AND ABLATION
STUDY
The number of memory units in the LSTM layer in the
GNN-LSTM model in Figure 1 is a parameter that can be
used to control the complexity of the model. High complexity
model configurations are able to learn more intricate patterns
in the data reducing the bias in the predictions. Low complex-
ity models are able to learn basic patterns but tend to generate
a higher bias for datasets in which patters are complex.
High complexity models are more likely to generate higher
variances (overfitting) in predicted values. The leave one out
validation approach presented in the previous section will be

used in order to validate that the trained model according to
different numbers of LSTM memory units generalize to new
data (not incurring in overfitting issues).

Figure 6 shows the MAE errors for 5 different values
for the number of memory units in the LSTM layer for the
4 approaches presented in this paper in order to provide OD
prior estimates. Figure 7 captures the values for the MSE
errors for the same configurations for the number of memory
units. In both cases, the baseline model (assuming that all
connected provinces exchange the same amount of normal-
ized traffic) produces an optimal performance for 16 memory
units in the LSTM layer, meaning that low complex config-
urations for the machine learning model are not able to learn
from real traffic data in order to estimate the spread of the
virus among different provinces. For more complex config-
urations of the model (LSTM memory units equal or greater
than 32) the model in Figure 1 is able to extract the infor-
mation from the traffic data and optimize the predictions for
one-week ahead COVID-19 incidence data. Figure 6 shows
that the Mean Absolute Error (MAE) for the directed center
of traffic mass achieves the optimal performance while the
other two methods (the gravity models based on traffic attrac-
tion inversely proportional to distances or using exponential
attraction values) show a similar performance. The directed
center of trafficmassmethod is able to use the available traffic
information in greater detail. The method incorporates the
traffic volumes measured considering the exact location of
the traffic sensor and the relative location within the two clos-
est provinces. It also incorporates a likelihood estimation for
the traffic to cross the border of the two provinces and filters
the traffic that is unlikely to do it. The Mean Square Errors
(MSE) show similar results except for the case of 32 LSTM
memory units and the gravity model based on exponential
costs which achieves the optimal accuracy.

The results in Figure 6 and Figure 7 show that using
the information of the geographical location of traffic meter
sensors in an OD traffic flow estimation method is able to
outperform simpler aggregated methods that add the traffic in
each province. The directed center of traffic mass proposed
in this paper assumes a probability for the traffic measured
at a particular traffic meter to cross the border with a neigh-
bor province based on the distance of the projected sensor
location to the neighbor province. Other probability methods
would be studied as a future work in order to assess other OD
prior matrix computations.

In order to assess the importance of both parts of the model
in Figure 1 (the GNN and the LSTM parts of the model) in
the overall accuracy, an ablation study has been carried out.
The results are shown in Table 3. Both MSE and MAE values
are provided for average executions for all the OD estimation
models and the number of memory units in the LSTM layer as
used in Figures 6 and 7. Table 3 shows that removing theGNN
part of the model has a higher impact on the accuracy of the
model (showing the importance of the information provided
by the traffic flow estimations on the overall performance of
the model).

VOLUME 12, 2024 119011



M. Muñoz-Organero, V. Corcoba-Magaña: Deep Graph Neural Network Approach

FIGURE 6. Average (10 executions) MAE errors for the validation set (first
wave) vs LSTM memory units.

FIGURE 7. Average (10 executions) MSE errors for the validation set (first
wave) vs LSTM memory units.

D. MODEL GAIN BY THE DIFFERENT OD TRAFFIC
ESTIMATIONS
In order to assess the model gain (the increase in the accu-
racy when using the different OD traffic estimation methods
comparedwith the baselinemodel), the accuracy of themodel
in Figure 1 has been averaged for low complexity configura-
tions (up to 16 LSTM memory units) and high complexity
configurations (from 32 to 128 LSTM memory units). The
averaged MAE results are shown in Figure 8. The averaged
MSE values are captured in Figure 9.
For low complex configurations for the machine learning

model in Figure 1, using traffic data from traffic meters
as edge information in the input graph does not provide a
clear gain for the model accuracy (the directed center of
traffic mass estimator shows similar accuracy values as the
baseline model, the gravity model based on inverse distance
attraction values shows a small gain, while the model based
on exponential cost throwsmodel losses instead of gains). For
higher model complexity configurations, using traffic sensor
data and a method to estimate prior OD flows, allows the
model in Figure 1 to optimize its performance. The directed

TABLE 3. Average Accuracy of the Predictions when removing one part of
the model.

center of traffic mass proposed method is able to outperform
aggregated traffic methods for both MAE and MSE error
values.

Table 4 captures the model gains for the different prior
OD traffic flow estimations when using both MAE and MSE
as the accuracy values for the model predictions (COVID-19
incidence values one week ahead). The model gain is defined
as the prediction error achieved the baseline model divided
by the error of the compared model (smaller prediction errors
will lead to gains>1). Themodel gains for theMSE are higher
since the majority of the prediction errors are in the range [−1
1] for which the squares of the values are smaller than the
absolute values (so that the average of the errors tends to be
smaller for the MSE error and the gains are therefore higher).

E. COMPARING RESULTS WITH PREVIOUS STUDIES
The major contribution of this paper is to propose a model,
using the mutual information between human mobility and
COVID-19 new infections, to compare different methods to
compute prior ODmatrices from traffic sensor data. The geo-
graphical information of the area under study is represented
as a graph. The COVID-19 incidence for each node in the
graph is added as an attribute to the node. Each theoretical
method to compute prior ODmatrices from traffic sensor data
will be used to generate mobility estimates for the edges of
the graph. A GNN is then used to extract interaction patterns
from the graph. A time sequence of processed graphs after
each GNN is then applied to a LSTMmodel to try to estimate
one-week ahead COVID-19 incidence for each node (region).
Theoretical models able to better predict OD matrices will
be able to provide graphs which are closer to real data and
therefore to better extract COVID-19 and human mobility
mutual information. Figures 8 and 9 capture the accuracy
results when using 3 different theoretical methods to estimate
ODmatrices as compared to a baseline model. In this section,
we go a step further and validate that adding mobility data,
the accuracy in estimating one-week ahead COVID-19 data
improves. The approach used is to compare results with previ-
ous state of the art models to estimate short-term COVID-19
new cases that do not use mobility data.

Different machine learning models have been used in
order to provide short term estimations for COVID-19
incidence values. An extensive comparison of models pro-
posed in previous research studies is captured in [33]. The
authors in [33] proposed a spatio-temporal model to estimate
one-week ahead COVID-19 new cases and compared the
results with previous studies for similar estimations. The
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FIGURE 8. MAE errors for low and high complexity model.

FIGURE 9. MSE errors for low and high complexity model.

TABLE 4. Model gain for the different od estimation methods.

machine learning models did not consider human mobility
estimations in order to improve results. The best perform-
ing model for one of the Spanish provinces (Community of
Madrid) combined a CNN to process the spatial distribution
on new COVID-19 cases with a subsequent LSTM for time
series estimations. The model achieved an average MSE
value of 3.7 for the different areas inside the Community of
Madrid for the data for 2021. The models proposed in this
paper use a GNN instead of a CNNwhich is able to both adapt
to the irregular geometry of each province and at the same
time to add the mobility information in the edges of the graph.
The optimal MSE for the best performing model in this paper
is 0.6. Adding mobility information is able to provide better
estimations as compared to previous models not using traffic
estimations (aligned with the results in section V, traffic data
provides information about COVID-19 spreading).

VIII. CONCLUSION
This paper has proposed a Graph Neural Network (GNN) to
analyze the traffic exchange estimations among provinces in
Spain. OD traffic flow estimations are used to provide values
for the edges of the graph. The output of the GNN is fed
into a Long Short-Term Memory (LSTM) Recurrent Neural
Network (RNN) in order to analyze temporal patterns of the
output of the processed graph. COVID-19 incidence values
for 44 regions providing new daily reported cases during
2021 and traffic counts from 635 traffic meters in different
road segments have been used to generate daily graphs (using
COVID-19 incidence data as node information and OD traffic
estimations as edge data).

The major contribution of the paper is providing and
evaluating a new methodology for estimating the accuracy
provided by different OD traffic flow estimation methods
based on the use of a GNN-LSTM machine learning model
and the process controlling the spread of the COVID-19
virus. Since COVID-19 virus is mainly propagated from peo-
ple to people interactions, better OD traffic flow estimates
will help the machine learning model to better incorporate
the COVID-19 incidence data from neighbor regions into
one-week ahead COVID-19 incidence estimations. Traffic
and COVID-19 mutual information for the datasets used
in this paper for Spain in 2021 is also analyzed in order
to validate the hypothesis that better OD estimations will
allow the ML model to better predict COVID-19 upcoming
values.

The results for 2 distance base gravity methods to estimate
prior OD traffic flows and a new method based on the com-
putation of the directed center of traffic mass show that the
GNN-LSTM machine learning model improves the results
of a traffic agnostic baseline model when the complexity of
the model is sufficient to take the input information in the
edges of the graph into account. The directed center of traffic
mass method uses a higher detail in the traffic information,
incorporating the geographical location of each traffic sensor
in the OD flow estimations based on a probability estimate
that assigns higher probability values to traffic closer to
the border between two regions (which are more likely to
cross the border). The directed center of traffic mass method
achieves the optimal model gains for both the MAE andMSE
errors.

The major application of the results of this paper
is a novel mechanism to validate prior OD traffic
matrices.

As future work, other OD traffic flow estimation methods
will be used in order to assess the model gains for different
model configurations.

One of the limitations of the research in this paper is that
the proposed model has mainly been used as a validation tool
for different OD traffic flow estimation methods. As a future
work, we will apply the model for improving the estimated
traffic flows based on the optimization of the accuracy of the
model, using the values of the edges of the graph as trainable
variables in the optimization process.
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