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ABSTRACT Gastrointestinal stromal tumor (GIST) is the most common malignant tumor originating from
interstitial cells in the gastrointestinal tract. Different grades require various surgical interventions and
adjuvant treatments, which are closely linked to the patient’s prognosis. The current clinical risk stratification
method relies heavily on the identification and counting of mitotic figures, which serve as important criteria.
However, manual evaluation of pathological slides in clinical practice is often limited by the shortage of
experienced clinicians and the subjectivity in interpreting results. Therefore, in this paper, we propose an
enhanced YOLOv8 network framework for the automatic detection of mitotic cells in GIST. We substituted
the backbone network with VanillaNet, known for its simplified model complexity in feature extraction. This
change facilitated the identification of specific targets and improved network performance. Additionally,
we introduced the Advanced Feature Pyramid Network (AFPN) to further enhance the model’s accuracy.
Experimental results show that the proposed model achieved an accuracy of 0.816, a recall rate of 0.858,
and an F1-score of 0.837 on the test dataset. It demonstrates superior efficacy in identifying mitotic cells,
outperforming the original YOLOv8 model in overall performance. This augmented model has the potential
to significantly reduce reading time while ensuring consistent diagnostic results, thereby greatly improving
diagnostic efficiency. Future large-scale validation is necessary for the clinical adoption of this model.

INDEX TERMS Artificial intelligence, gastrointestinal stromal tumors, mitotic detection, mitotic figures,
YOLOv8.

I. INTRODUCTION
Gastrointestinal stromal tumor (GIST) is a rare tumor orig-
inating from the digestive system and accounts for the
majority of mesenchymal tumors in the digestive tract,
with an estimated global incidence of 1.1-1.5/100,000 [1],
of which approximately 60% occur in the stomach, while
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20-30% are found in the jejunoileum [2]. Various grades of
GIST require different surgical treatments and adjuvant ther-
apeutic approaches. Typically, low-risk GISTs are managed
through complete surgical resection, while intermediate-risk
GISTs undergo surgical intervention with the considera-
tion of targeted therapeutic agents. High-risk GISTs usually
require both surgical resection and targeted therapies, pri-
marily utilizing agents such as imatinib, which have demon-
strated efficacy in enhancing patients’ overall survival (OS)
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and prognosis [3]. Consequently, the precise pathological
diagnosis of GIST assumes paramount significance.

In pathological diagnosis, the 2008 version of the enhanced
National Institutes of Health (NIH) risk grading scheme
(Table 1) is commonly used to evaluate the risk of recurrence
in primary GIST cases [4]. This scheme primarily consid-
ers factors such as primary tumor site, volume and number
of mitotic figures, which reflect different stages of mitotic
activity and are closely related to tumor malignancy and
prognosis. These parameters not only assess the patient’s
risk of recurrence and metastasis but also guide physicians
in selecting candidates who may benefit from postopera-
tive adjuvant therapy, ultimately improving prognosis and
facilitating personalized treatment [5]. Currently, the iden-
tification and counting of mitotic figures are predominantly
carried out by pathologists in clinical settings. This process
is labor-intensive and requires significant human resources
and time investment [6]. Furthermore, manual interpreta-
tion introduces subjectivity, which can result in findings of
questionable reliability and reproducibility. There remains
controversy regarding whether treatment plans guided by the
risk classification derived from pathological diagnosis offer
the utmost benefit to patients. Therefore, there is a compelling
need to explore new methods for more efficient and objective
pathological diagnosis of GIST images.

In recent years, deep learning has found extensive appli-
cations in the field of medical oncology, particularly for
tasks such as segmenting and classification of diverse organs
and tumors, as well as the classification of alterations in
tumor size or texture. Furthermore, it has been employed
for predicting patterns indicative of high-risk and low-risk
scenarios for potential cancer images development [7], [8].
Target detection emerges as a pivotal task within the expan-
sive realm of computer vision, serving to identify and locate
all instances of an object from specified object classes when
present in an image [9]. This is particularly relevant in the
context of mitotic detection in medical, especially in mitotic
figures, where precise identification is crucial [10]. Pan-
tanowitz et al. [11] used 40 times magnification to train
and validate deep learning algorithms by labeling mitotic
figures in Whole Slide Images (WSIs) using hematoxylin
and eosin (H&E) stained slides from 320 cases of invasive
breast cancer. The results showed that with algorithm sup-
port, 21 readers (87.5%) identified an increased number of
mitotic figures, 13 reviewers (54.2%) decreased the incidence
of mislabeled mitosis, and it is worth noting that due to
algorithm support, a 27.8% reduction in overall time was
observed.

Currently, in the field of object detection, several frame-
works have achieved unparalleled performance on various
benchmark datasets [12], including Faster Region-based
Convolutional Neural Network (Faster R-CNN), You Only
Look Once (YOLO), and Real-Time Detection Transformer
(RT-DETR). Faster R-CNN uses a two-step detection strat-
egy, first generating candidate boxes and then classifying and
regressing them, which has high detection accuracy but is

slow and requires several independent steps [13]. The YOLO
series, which includes YOLOv5 and YOLOv8, uses one-step
detection, which treats object detection as a regression prob-
lem, mapping directly from the pixel level to bounding boxes
and category probabilities [14]. This approach achieves fast
detection speed and real-time performance but may compro-
mise detection accuracy. RT-DETR introduces a transformer
mechanism and achieves real-time object detection through
an end-to-end attention mechanism, with good accuracy and
speed [15]. However, it may face challenges when dealing
with small targets and complex scenes.

Therefore, this study comprehensively compared the accu-
racy, recall, and F1 score of Faster R-CNN, YOLOv5,
YOLOv8, and RT-DETR, and selected YOLOv8 as the
basic framework, with the introduction of VanillaNet and
Advanced Feature Pyramid Network (AFPN). The former
simplifies the model complexity in feature extraction, while
the latter constructs a feature pyramid for multi-scale fea-
ture extraction, further improving the accuracy of the model.
In addition, we meticulously identified and annotated GIST
mitotic figures in digital H&E stained pathological slides,
thus creating a dataset of mitotic figures for model training.
The purpose of this study is to enhance the detection per-
formance of mitotic figures in GIST pathological slides by
developing an improved object detection model to evaluate
the risk of GIST. In addition, it will provide valuable insights
for patients, help develop personalized treatment plans,
and introduce new perspectives for clinical diagnosis and
treatment.

In this study, several innovations were undertaken:
(1) Manual annotation and review by pathologists were used
to compile a dataset of mitotic figures of GIST. (2) A new
deep learning framework was proposed for the rapid and
accurate detection of GIST mitotic figures. This framework
includes enhancements to the backbone network replacement
and a multi-scale feature extraction and fusion strategy for

TABLE 1. NIH risk grading scheme(2008 version).
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YOLOv8. (3) Using the proposed model, which was trained
and fine-tuned on the created dataset, it demonstrated the
highest overall performance compared to other commonly
used deep learning object detection models, thus facilitating
risk classification.

II. RELATED WORK
Artificial intelligence methods in the medical field are used
to shorten the time process of clinical decision-making and
improve the accuracy of diagnosis. Frameworks such as
Faster Region-based Convolutional Neural Network (Faster
R-CNN), You Only Look Once (YOLO), and Real-Time
Detection Transformer (RT-DETR) have achieved unpar-
alleled performance on various benchmark datasets. This
success is attributed to the adoption of an end-to-end train-
ing approach within these frameworks [12]. This approach
enables models to directly learn features and target detection
tasks from raw data, thereby enhancing efficiency through
process simplification. These approaches introduce inno-
vative techniques aimed at bolstering model performance.
Specifically, Faster R-CNN integrates the Region Proposal
Network (RPN) for automatic extraction of candidate regions.
The RPN shares identical feature maps with the detection
network, leading to a substantial improvement in process-
ing speed [16]. YOLO introduces the YOLOX-DA data
enhancement technique and an expedited model initializa-
tion method, thereby endowing the model with enhanced
generalization capabilities and expediting convergence [17].
Moreover, RT-DETR [18] combines deformable convolution
and a transformer structure. It utilizes the self-attentionmech-
anism to enable the model to globally model the image,
transcending reliance solely on local information. This archi-
tectural choice contributes to a deeper understanding of
contextual relationships within the image, ultimately leading
to an improvement in target detection accuracy.

With the use of digital images in pathology, deep learn-
ing networks are beginning to provide solutions for object
recognition in medical images. During training, patholo-
gists typically label mitotic cells (enclosed in bounding
boxes) in pathological slides as labels. Previous studies
on mitosis detection have mainly focused on pathological
slides of breast cancer and neuroendocrine tumor tissues.
Li et al. [19] first proposed the use of deep detection
networks to solve the mitosis detection problem. They
designed a multi-stage deep learning framework in the
ICPR 2014 MITOSIS dataset that only provided mitosis
centroid positions. They used a segmentation network to
estimate the annotations of bounding boxes and simultane-
ously applied a verification network to eliminate some false
positives to improve the overall detection performance of the
model. Alom et al. [20] proposed an end-to-end multi-task
learning model called MitosisNet for breast cancer, which
consists of segmentation, detection and classification models
for confirming mitotic regions to improve the overall detec-
tion performance during testing. Wang et al. [21] developed
a Fourier-based algorithm (FMDet) that converts the mitosis

detection task into a semantic segmentation task based on the
MIDOG2021 dataset and uses the attention mechanism to
generate channel-level multi-scale features, achieving accu-
rate mitosis detection in multi-center breast tissue pathology
images. In another study, Topuz et al. [22] used the YOLO
models (YOLOv3, YOLOv5, YOLOv7 and YOLOv8) on
the MIDOG 2022 dataset, which contains 5 different cancer
types to perform the mitotic cell detection task on images and
found that the YOLOv8 architecture provided themore robust
results, achieving a recall value of 89.1%. Yücel et al. [23]
used the YOLOv5 framework combined with the transformer
module to achieve a precision of 0.89 and a recall of 0.68 in
the task of detecting mitosis in neuroendocrine tumor tissue.
Since the mitotic figure morphology of different tumor types
is similar [24], the above discussion shows that similar deep
learning algorithms can be applied to GIST.

In this study, we selected YOLOv8 as the foundational
framework. As shown in Figure 1, the network architecture of
YOLOv8 is comprised of three components: backbone, neck,
and head. The backbone network used in YOLOv8 is CSP-
Darknet [25], which consists of CBS, C2f and SPPFmodules.
Inspired from the VGG [26] architecture, it incorporates a
number of 3 × 3 convolutions, effectively improving the
receptive field of the network through each pooling operation.
Other backbone networks that are commonly used in the field
of target detection include ResNet [27], EfficientNet [28],
SwinTransformer [29], and others. The neck of YOLOv8 uses
the PA-FPN strategy approach, where FPN is a top-down
passing down of strong semantic features from higher lev-
els to augment the whole feature pyramid, but this method
only enhances the semantic information and does not pass
on the localization information, whereas Path Aggregation
Network (PAN) adds a bottom-up pyramid to the back of the
FPN, which complements the FPN with the strong localiza-
tion features from the lower levels and further enhances the
expression of the multiscale features. The head of YOLOv8
has been changed from a coupled head to a decoupled head,
which consists of two CBS convolution modules and one
Conv2d for object recognition and classification respectively,
and finally the Bbox loss and classification loss are calculated
respectively.

III. PROPOSED METHOD
As shown in Figure 2, the input image data will be processed
through three parts of the improved framework we propose.
Initially, the backbone network VanillaNet-6 conducts feature
extraction on the images. Concurrently, the AFPN module
adaptively fuses features extracted at different stages to fully
leverage contextual information. Subsequently, we utilize
the decoupled head from the original YOLOv8 framework
to optimize predictions for object categories and bounding
boxes.

A. UTILIZATION OF THE VANILLANET MODULAR
Current deep learning networks typically rely on a large
number of complex layers to extract high-level features
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FIGURE 1. YOLOv8 network structure.

FIGURE 2. Proposed framework for GIST mitosis detection.

in order to achieve good performance. Convolutional neu-
ral networks, based on shortcuts, remain the mainstream
approach for neural network architecture design. However,
VanillaNet demonstrates that a simple structure, similar
to LeNet and AlexNet, can achieve even higher accu-
racy and faster performance than traditional deep learning
networks. Therefore, we replaced the backbone network
of YOLOv8 with VanillaNet-6 to more effectively extract
image features and reduce computational complexity in this
study.

As shown in Table 2, VanillaNet-6 incorporates a total of
six layers. To begin, the stem utilizes a 4 × 4 × 3 × C
convolutional layer with a stride of 4, which is consistent
with the commonly used configurations in ResNet. This layer
serves the purpose of transforming the input images with
3 channels into feature maps with C channels. In stages 1,
2, and 3, a max-pooling layer with a stride of 2 is used to
reduce the size of the feature maps and increase the number
of channels by 2 simultaneously. In stage 4, the number of
channels remains unchanged, as it follows an average pooling
layer. The final layer consists of a fully connected layer that
produces the classification results. The kernel size for each
convolutional layer is set to 1 × 1, as this choice aims to
minimize computational costs while preserving the informa-
tion containedwithin the featuremaps. An activation function
is applied after each 1 × 1 convolutional layer. To facilitate
the training process of the network, batch normalization is
incorporated after each layer. For VanillaNet with varying
numbers of layers, additional blocks are introduced at each
stage.

TABLE 2. The architecture of the VanillaNet-6.

B. ASYMPTOTIC FEATURE PYRAMID NETWORK
APPLICATION
A common strategy for multiscale feature extraction involves
utilizing classical top-down and bottom-up feature pyramid
networks. However, these methods suffer from the loss or
degradation of feature information, which weakens the fusion
effect of non-neighboring levels. The AFPN is initiated by
fusing two neighboring low-level features and progressively
incorporates high-level features into the fusion process [30],
which helps to reduce the semantic gap between features of
different levels and improves the feature fusion effect [31].

FIGURE 3. The feature fusion process of the AFPN.

As shown in Figure 3, after extracting features from the
backbone, the AFPN can obtain various layers of features for
fusion. Specifically, (1) Bottom-Level Feature Fusion: AFPN
introduces the gradual fusion of bottom-level features, which
firstly fuses bottom-level features, then deep-level features,
and finally integrates top-level features. (2) Adaptive Spatial
Fusion: Adaptive Spatial Fusion Mechanism (ASFF) is intro-
duced, which introduces the changing spatial weights during
multi-level feature fusion to strengthen the importance of the
key level, and at the same time, suppresses the influence of the
contradictory information from different objects. For features
from different levels, corresponding up-sampling or down-
sampling operations are usually performed on the feature
layers to ensure that they have the same spatial dimensions.
Next, the weights of each feature layer are computed using a
convolution operation, normalized by SoftMax, and finally,
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the feature layers are weighted and fused according to the
weights. (3) Alignment of Underlying Features: AFPN incor-
porates the concept of asymptotic fusion, which facilitates the
gradual convergence of features at various levels during the
fusion process, therebyminimizing the semantic gap between
them. Through the implementation of this module, the net-
work’s feature fusion effect is enhanced, allowing the model
to better understand and utilize information across different
levels.

C. LOSS FUNCTION
For the loss function selection in object recognition, we uti-
lize the default CIOU and DFL loss functions in the YOLOv8
model, allowing the network to prioritize the target location
and the distribution of the neighborhood more efficiently.

LossCIoU = 1 − IoU +
ρ2

(
b, bgt

)
c2

+ αv (1)

v =
4
π2 (arctan

wgt

hgt
− arctan

w
h
)
2

(2)

α =
v

(1 − IoU) + v
(3)

DFL(Si, Si+1) = − ((yi+1 − y) log (Si)

+ (y− yi) log (Si+1)) (4)

where IoU denotes the intersection over union of the true and
forecasted bounding boxes; b,w, h and bgt,wgt, hgt represent
the center points, width and height of the forecasted and true
boxes, respectively, and ρ indicates the Euclidean distance
between the two center points; c stands for the diagonal
distance of the smallest enclosing area capable of containing
both the forecasted and true boxes. SI and Si+1 represent the
predicted probabilities of categories i and i+1, while y and
y+1 are their corresponding true label values.

Since the task is the detection of mitotic cells, we use
binary cross entropy as the classification loss function:

BCE =
1
N

∑
i

Li

=
1
N

∑
i

− [yi · log (pi) + (1 − yi) · log (1 − pi)] (5)

where N is the total number of samples, yI represents the true
label of sample i; pI represents the probability of the model
predicting sample i.

IV. EXPERIMENTS
A. DATASET ACQUISITION, PREPROCESSING, AND
LABELING
This study presents a comprehensive dataset from Zhu-
jiang Hospital of Southern Medical University, which was
collected under the supervision of experienced medical pro-
fessionals. The study sample comprised 105 patients whomet
the inclusion and exclusion criteria at Pearl River Hospital
of Southern Medical University between January 2019 and
August 2023.

Adhering to the standardized protocol, the inclusion crite-
ria included: (1) patients undergoing surgery with a patholog-
ical diagnosis of GIST; (2) immunohistochemistry indicating
positive staining of CD117 and Dog-1 in pathological slides;
(3) availability of comprehensive clinical and pathological
data, requiring complete information such as age, gender,
tumor volume, number of mitotic figures, primary tumor site,
and risk classification to ensure dataset accuracy.

Exclusion criteria were defined as follows: (1) patients
with an insufficient amount of tumor tissue on pathology
slides that hindered proper marking for analysis; (2) patients
with discolored or contaminated pathology slides unsuitable
for accurate assessment; (3) patients with torn or defective
pathology slides that could not be fully scanned; (4) patients
with other systemic tumor diseases or conditions of primary
etiology.

Importantly, all pathological assessments were conducted
on H&E stained tissue slides, utilizing standardized his-
tological staining techniques to facilitate precise analysis.
The study underwent thorough review and approval by the
Medical Ethics Committee of Zhujiang Hospital, South-
ern Medical University (approval number: 2024SL0042).
Informed consent was waived due to the non-invasive and
retrospective nature of our study.

FIGURE 4. Dataset construction for GIST mitotic detection.

Figure 4 illustrates the process of data preparation. After
acquiring pathological slides of GIST, the pathologist initi-
ated the process by scanning the slides into WSIs using the
Intemedic (Neo-5x, China), a pathology slide image scan-
ning system. Subsequently, for the purpose of annotation,
pathologists manually annotated the images using QuPath
(v0.4.2, England). To ensure the accuracy of the annotation
results, pathologists also independently reviewed the images
and their corresponding annotations. It is noteworthy that any
discrepancies between the pathologists regarding the afore-
mentioned results led to a collaborative decision to discard the
annotation. Following this, we performed a slicing operation
on pathological slides, obtaining 512 × 512 JPG images.
From these, we selected images containing mitotic cells,
computed, and transformed the annotation coordinates of the
mitotic cells within. Ultimately, we selected 914 images and
corresponding label files for each image. Each file contains
the positions of each annotationwithin the image, represented
by the vector [x, y, height, width]. Here, the coordinate (x, y)
represents the normalized values of the center point of the
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bounding box. The height represents the normalized height
of the bounding box, and the width represents its normalized
width (in pixels).

As depicted in Figure 5, there are some positive signals
regarding the mitosis detection task that can be observed in
the label distribution of this dataset. Firstly, the positions of
the targets to be detected in the image are diverse, which
facilitates the training of a robust detection model. Secondly,
the bounding boxes of most mitotic events have similar sizes
and shapes, making it easier for the model to learn these
dimensional features. Therefore, this dataset can provide rich
and balanced information for the task of mitosis detection.
From the dataset, we divided it into training, validation, and
testing sets in an 8:1:1 ratio, respectively comprising 731,
91, and 92 images. The testing set was completely isolated
from the training and validation sets and was utilized solely
for the final evaluation of the model’s performance. The
validation set was employed as a tool for model tuning,
facilitating the identification and optimization of the model’s
hyperparameters and weights. This approach allows for rig-
orous assessment and fine-tuning of the model prior to its
final evaluation. For data augmentation, we implemented the
online data augmentation technique used in the YOLOv8
network to make the number of images in training set reach
3838, which could improve the detection of smaller targets
and enhance the model’s generalization ability. These tech-
niques include random cropping, which introduces variability
in object sizes and positions within the images. We also
utilized the Mosaic augmentation method, which combines
four different images into one composite image. Notably,
we deactivated theMosaic augmentation in the last 10 epochs
of training to stabilize learning as we fine-tuned the model.
Additionally, we incorporated image flipping, which horizon-
tally mirrors the images.

FIGURE 5. Distribution of annotated values for the mitosis dataset.
(a) Indicates the position distribution of the centers of the detection
boxes. The center points of the detection boxes are relatively evenly
distributed in the image, and there is no obvious central tendency.
(b) shows the height and width distribution of detection boxes in the
data. We can find that most of the label box widths are concentrated in a
small range, and there is an obvious dense area of height and width,
which may indicate that many mitotic events have similar sizes and
shapes.

B. EXPERIMENTAL CONFIGURATION
This paper’s experiments were implemented with PyTorch
version 2.1.2. These experiments are conducted on the
Intel(R) Core(TM) i9-13900 with NVIDIA GeForce RTX
4090 as its hardware configuration. The learning rate is 0.01.
We used the Stochastic Gradient Descent (SGD) optimizer,
set the batch size to 32, and conducted 200 epochs for
training.

C. EVALUATION METRICS OF DETECTION MODEL
There are four possible outcomes in the test set when objec-
tives are identified based on the relationship between actual
and expected values. To be more precise, we define True
Positive (TP) as a target that has a mitotic event and is suc-
cessfully identified by the improved YOLOv8 model. On the
other hand, False Positive (FP) refers to situations in which
themodelmistakenly detects a target as having amitotic event
even while there isn’t one. Furthermore, False Negative (FN)
describes circumstances where a mitotic event occurs but the
model incorrectly classifies it as negative. Table 3 presents
these delineations directly.

TABLE 3. Four possible classification results.

Three critical criteria were used in our tests to assess the
accuracy of mitotic image detection: recall, precision, and F1
score. As stated technically by equation (6), recall measures
the model’s capacity to identify all relevant instances or true
positives. A higher recall is suggestive of the model’s com-
petence in identifying positive examples and reducing false
negatives. Equation (7) expresses accuracy as the ratio of true
positive predictions to all positive predictions, where a greater
precision denotes a lower number of false positives. The F1
score is a useful metric when dealing with scenarios with
uneven class distributions or when both false positives and
false negatives are significant. It is calculated as the harmonic
mean of accuracy and recall, and it finds a balance between
the two metrics. The F1 score ranges from 0 to 1, with
elevated values denoting superior model performance [9],
as precisely delineated in equation (8).

Recall =
TP

TP+ FN
(6)

Precision =
TP

TP+ FP
(7)

F1Score =
2 ∗ Recall ∗ Precision
Recall + Precision

(8)
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V. RESULTS
A. BASIC INFORMATION OF RESEARCH POPULATION
This study included 105 eligible patients with GIST, based on
the exclusion criteria. Among these patients, 52 (49.5%) were
male and 53 (50.5%)were female, with amedian (IQR) age of
60 (46.3-71.6) years. The tumor volume ranged from 0.2 cm
to 16 cm. Among the cases, 43 (40.9%) had a tumor size of
⩽ 2.0 cm, 29 (27.6%) had a tumor size of 2.1-5.0 cm, 30
(28.6%) had a tumor size of 5.1-10.0 cm, and 3 (2.9%) had a
tumor size of>10.0 cm. The count of mitotic figures revealed
that 85 cases (81%) had ⩽ 5/50 HPF, 16 cases (15.2%) had
6-10/50 HPF, and 4 cases (3.8%) had >10/50 HPF. The pri-
mary tumor sites were distributed as follows: 84 cases (80%)
in the stomach, 3 cases (2.9%) in the duodenum, 8 cases
(7.6%) in the jejunum and ileum, 2 cases (1.9%) in the colon,
and 8 cases (7.6%) in other areas. The postoperative patholog-
ical results revealed that 39 cases (37.1%) had an extremely
low risk, 21 cases (20%) had a low risk, 20 cases (19.1%)
had a medium risk, and 25 cases (23.8%) had a high risk.
Table 4 displays the clinical and pathological characteristics
of all patients with GIST in this study.

B. PERFORMANCE EVALUATION OF DETECTION MODEL
In the application case of mitotic figure detection, the two
measures we chose indicate the accuracy of the model and
its ability to prevent missed detections. A high recall rate
indicates that the model can minimise the problem of miss-
ing cells moving through mitosis when identifying mitotic
figures, minimising the loss of important data and providing
support for further analysis and categorisation. High recall
is therefore essential to ensure that the majority of positive
classes (mitotic cells) are accurately identified. Higher accu-
racy reduces the chance of the model incorrectly classifying
cells that are not undergoing mitosis as mitotic cells, resulting
in fewer false positives. Given these two factors, the F1
score becomes a good measure as it is the harmonic mean of
precision and recall, balancing the performance of both and
representing the overall performance of the model.

As shown in Figure 6, we implemented an early stop-
ping strategy during our validation experiments. Training was
halted if there was no significant decrease in loss, indicating
no notable improvement in model performance, within a
predetermined number of epochs. We observed that while
the loss on the training set continued to decrease, the loss on
the validation set had already converged. Continuing training
beyond this point would likely lead to overfitting. The final
loss values on the validation sets signify that the model had
reached its optimal performance without overfitting. Figure 7
illustrates the performance of our model on the validation
set, demonstrating good reliability. We also observed that the
model detected some false positives, which bear significant
similarities to real mitotic cells in color and shape. This
suggests that during the learning process, the model’s strong
representative features include these characteristics, indicat-
ing its learning preference to some extent. This insight into

TABLE 4. Brief summary of clinical characteristics of patients with GIST.

the model’s decision-making process enhances our under-
standing of its interpretability. Based on this, we further
validated the model on the testing set and compared its per-
formance with other models.

In the comparative analysis of model performance,
as shown in Table 5, our proposed model shows a robust bal-
ance across different metrics, demonstrating its effectiveness
in the detection task. From the comparison of experimental
results, the region proposal-based object detection algorithm
Faster R-CNN achieved a precision of 0.820, slightly behind
the highest result of 0.827 from YOLOv8-m, but its recall
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FIGURE 6. Training and validation loss over epochs. This figure shows
that as the number of epochs increases, both training and validation loss
gradually decrease and stabilize, which indicates that the model is
learning effectively and improving its performance on both the training
and validation datasets, demonstrating good convergence.

FIGURE 7. Detection performance of proposed model on the validation
set.

rate is significantly lower than other models; the series of
YOLOv5 models, except for YOLOv5-s and YOLOv5-l,
which achieved recalls of 0.857 and 0.888 respectively, have
generally lower precision, resulting in slightly poorer overall
performance; RT-DETR performed similarly to YOLOv5-n,
lower than other models; while the YOLOv8 series of mod-
els were competitive, showing good recall but overall lower
precision, with YOLOv8-m achieving the highest precision
of 0.827 and a decent recall of 0.816, with an F1 score of
0.822; our model achieved a precision of 0.816 and a recall
of 0.858, as well as the highest F1 score of 0.837, with
precision only behind YOLOv8-m and Faster R-CNN, and
recall only behind YOLOv8-n, YOLOv5-s and YOLOv8-l.
Our model outperforms the standard YOLOv5 series of n,
s, m, RT-DETR and YOLOv8-s in terms of precision and
recall, demonstrating its excellent detection capability. This
is particularly evident when considering the F1 score, where
our model not only outperforms individual YOLOv8 variants,
but also exceeds the performance of the original YOLOv8
framework, indicating that it can identify relevant objects
with high accuracy while maintaining a low miss rate, which
is crucial for practical applications.

This paper uses the original YOLOv8-m, YOLOv8-n mod-
els and our proposed model to test a selection of image data
from the test set to better verify the detection performance of
the proposed algorithm in practical applications of mitosis.
As shown in Figure 8, we find that detection performance of
ourmodel is better than that of YOLOv8-m andYOLOv8-n in
the cases that are easily overlooked or difficult to detect. Both
YOLOv8-m and YOLOv8-n have false detections with low
confidence, unable to classify correctly, while our algorithm
can accurately detect and classify the mitotic targets. This is
mainly due to the use of a new backbone network and the
AFPN strategy in the model, improving detection precision
and expanding the receptive field, thus enhancing the overall
performance.

TABLE 5. Comparison results with other networks.

FIGURE 8. Comparison of the mitosis detection results. (a) Original
labels. (b) YOLOv8-m detection results, no detection boxes indicate that
the confidence is below the set threshold of 0.2. (c) YOLOv8-n detection
results (d) Proposed model detection results.

VI. DISCUSSION
In the clinical diagnosis and management of GIST patients,
the NIH risk classification is frequently used to assess the
likelihood of recurrence andmetastasis, as well as to precisely
guide postoperative adjuvant therapy [4]. Unfortunately, the
widespread use of mitotic figure identification and counting
in clinical practice is constrained by a number of factors,
including a scarcity of experienced pathologists, the high
subjectivity and lack of reproducibility of diagnostic results,
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and the difficulty of applying it to large-scale data analysis
[12]. To our knowledge, this is the first attempt to apply
a deep learning model to investigate GIST mitotic figure
recognition. In this study, we have selected YOLOv8 as
our foundational framework. Based on this, we used Vanil-
laNet in place of the backbone network and enhanced the
model by using the multi-scale feature extraction and fusion
approach known as AFPN. It is pleasing that our suggested
model outperformed the others in mitotic figure detection and
demonstrated the best overall performance.

It is noteworthy that the YOLO series of models are
designed to achieve fast detection while maintaining high
accuracy, which treats the object detection task as a single
regression problem, mapping directly from image pixels to
bounding box coordinates and class probabilities [17]. This
approach reduces error propagation and increases efficiency
compared to traditional methods that decompose the task into
multiple independent steps, such as region proposal extrac-
tion, feature extraction, and classification. The architecture
of YOLOv8 allows for relatively easy customization and
extension, offering flexibility to adapt the model structure
according to specific detection needs, making it suitable for
particular biomedical image analysis tasks [32]. Tasks such as
mitotic detection often involve processing a large volume of
image data, and YOLOv8 is capable of providing real-time or
near-real-time detection speeds, which is particularly crucial
for applications that demand rapid processing and analysis of
a vast amount of biomedical images.

VanillaNet has made numerous innovations, such as refin-
ing the network architecture for higher computing perfor-
mance, to increase the efficiency and precision of feature
extraction compared to the original backbone network used
in YOLOv8 [33]. For instance, VanillaNet uses lightweight
convolution modules, which can lower computational costs
and parameter counts while preserving or enhancing the
representational capability of the network [34], [35]. It also
incorporates a new deep training strategy, which can facil-
itate the training of deeper networks and allow the model
to focus more on relevant features for the detection task
[36]. Therefore, it might be designed to work more effi-
ciently with the specific object classes that are commonly
encountered in targeted detection tasks. The bidirectional
path strategy of AFPN ensures that the model can obtain rich
semantic and detailed information at each scale [31], which
can exploit wider contextual information [37]. It also can
help the model capture key features related to mitotic states,
thereby improving the ability to identify different stages.
And this scale adaptability enhances robustness of the model,
providing more accurate and stable detection results. These
improvements enable the network to process input images
more quickly, allowing for relatively fast inference times.
Additionally, the network can more accurately localize and
classify objects in the image, improving the overall perfor-
mance of the YOLOv8 model.

Based on the experimental results and the refined
approach, this model is anticipated to serve as a robust
assisting tool for medical practitioners, thereby enhancing the
efficiency of diagnosing mitotic figures in GIST. By inte-
grating this model into the risk classification of GIST, it can
function as a secondary diagnostic aid for physicians [38].
This comprehensive and accurate identification offers more
precise suggestions for clinical diagnosis and treatment [39],
[40], [41]. In addition, the model exhibits automatic identi-
fication capabilities, expediting the mitosis detection process
and subsequently reducing diagnosis time. This acceleration
contributes to swift generation of pathological results, pro-
viding robust support for clinical large-scale repetitive and
tedious tasks. It is noteworthy that the rapid advancement
of deep learning in medical image analysis has brought
about a revolutionary shift in disease diagnosis and treatment.
Beyond replicating human subjective evaluation, deep learn-
ing holds immense potential in identifying image features that
are challenging for the human naked eye to detect. In due
course, deep learning may surpass existing diagnostic stan-
dards, adapting more accurate and detailed evaluation models
and standards.

Furthermore, while our implementation focuses on a
specific dataset, it’s important to recognize that recent
advancements in mitotic figure detection have successfully
leveraged deep learning models for extensive data analy-
sis and real-time applications. For instance, Wang et al.
[21] proposed FMDet, which uses Fourier-based data aug-
mentation, pixel-level annotation, and segmentation-based
detection, achieving top ranking in the MIDOG 2021 chal-
lenge and demonstrating generalization across four datasets.
Similarly, Jahanifar et al. [42] developed a two-stage frame-
work for mitotic detection, excelling in both MIDOG21 and
MIDOG22 challenges by applying their model to the largest
publicly available datasets. In actual clinical, pathologists
typically spend an average of several minutes to tens of
minutes reviewing a patient’s pathology images. However,
by using our model in an efficient hardware and optimized
software environment, the inference speed for a single 512×

512 image can be reduced to approximately ten milliseconds,
and processing an entire WSI can be shortened to about
10 minutes. This significantly reduces the workload in clin-
ical settings. Nevertheless, there are still some limitations in
comparing accuracy. The degree of model optimization and
the specific software environment configuration need to be
considered. Additionally, it requires the averaged results of
multiple pathology experts, which necessitates more time to
complete.

In addition, robust data encryption and access control
mechanisms should be implemented to safeguard patient data
throughout the processing pipeline. Furthermore, to address
potential biases in model predictions, diverse and representa-
tive datasets should be established and conduct comprehen-
sive bias assessments to detect and rectify any discrepancies
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in model performance among various demographic groups
promptly.

There are several limitations to this study. Firstly, the
source of the obtained image set is too limited. In future
studies, it is imperative to conduct multi-center investigations
encompassing a broader spectrum of image data from more
diverse patient populations and healthcare systems. We need
to increase the size of the dataset to verify the universality of
the model in different populations and environments, which
aims to enhance the generalizability of the model. Secondly,
the reliability and accuracy of the deep learningmodel signifi-
cantly depend on the establishment of the GISTmitotic image
dataset in the training set. The current dataset has not yet
reached the desired goal. Thirdly, our WSIs digital pathology
images are derived from pathology specimens transformed
by an image scanning system. This process, on one hand,
impacts image quality due to pathology specimen acquisition,
filming, and staining. On the other hand, the image quality
may also be compromised due to the introduction of optical
aberrations or digital noise during the image transformation
process. In addition, current research focuses on the accu-
racy of model detection and lacks exploration of real-time
performance, which is crucial for practical deployment in
clinical environments. Future work should also enhance and
evaluate the real-time capability and computational efficiency
of models, considering the integration with existing clinical
systems to provide efficient support for doctors. Future work
should also focus on enhancing the interpretability of models.
This may involve developing visualization tools to explain the
decision-making process of the model, highlighting the most
influential features for prediction through techniques such as
attention maps in the attention mechanism, and conducting
research to evaluate the clinical utility of these explanations.
These factors have a detrimental effect on the recognition and
analysis of images by automatic image analysis algorithms.

In future work, we will focus on the following aspects:
Firstly, the comparison of detection speed performance is
crucial, as current work primarily emphasizes improving
accuracy while neglecting the speed of detection. Secondly,
enhancing model interpretability is essential. Our study
revealed that the model may bias towards certain features
in target detection, indicating a need for further exploration
to develop interpretability. Machine learning methods (such
as radiomics feature extraction) or visualization of attention
maps within attention mechanisms can be considered for use.
Lastly, addressing data security and privacy protection in
deep learning applications is imperative. Ethical and security
issues arising from data collection and training could poten-
tially be resolved through new technologies such as federated
learning. We plan to conduct a multi-center study to amass a
larger dataset, enhance image quality, and optimize the deep
learning model to rectify these problems.

VII. CONCLUSION
In this paper, we have improved the state-of-the-art
YOLOv8 detection model by employing a backbone network

modification method and a multi-scale feature fusion strategy
to detect mitosis from pathological slides. The model can be
used to detect mitotic figures at different stages. The model
proposed in this paper uses VanillaNet to optimise the net-
work structure of the original YOLOv8model for customised
detection tasks, thereby improving the network performance.
Experimental results show that the model proposed in this
paper has better performance compared toYOLOv8 and other
deep learning models, and adopts the AFPN feature pyramid
network, which is currently a more competitive scale feature
fusion module, leading to further improving the detector’s
performance. Our proposed model is expected to be used for
real-time detection of mitotic figures in pathological slides.
Future work will focus on applying the existing model to
actual clinical tasks. The characteristics and features of dif-
ferent mitotic stages not covered in this work will also be
analysed. In addition, data augmentation methods and detec-
tion models will be optimised to further improve detection
accuracy.
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