
Received 1 July 2024, accepted 12 August 2024, date of publication 20 August 2024, date of current version 30 August 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3446642

Model Compression Method for S4 With Diagonal
State Space Layers Using Balanced Truncation
HARUKA EZOE AND KAZUHIRO SATO , (Member, IEEE)
Department of Mathematical Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 113-8656, Japan

Corresponding author: Kazuhiro Sato (kazuhiro@mist.i.u-tokyo.ac.jp)

This work was supported by Japan Society for the Promotion of Science KAKENHI under Grant 23H03680.

ABSTRACT To implement deep learning models on edge devices, model compression methods have
been widely recognized as useful. However, it remains unclear which model compression methods are
effective for Structured State Space Sequence (S4) models incorporating Diagonal State Space (DSS)
layers, tailored for processing long-sequence data. In this paper, we propose to use the balanced truncation,
a prevalent model reduction technique in control theory, applied specifically to DSS layers in pre-trained
S4 model as a novel model compression method. Moreover, we propose using the reduced model parameters
obtained by the balanced truncation as initial parameters of S4 models with DSS layers during the main
training process. Numerical experiments demonstrate that our trained models combined with the balanced
truncation surpass conventionally trained models with Skew-HiPPO initialization in accuracy, even with
fewer parameters. Furthermore, our observations reveal a positive correlation: higher accuracy in the original
model consistently leads to increased accuracy in models trained using our model compression method,
suggesting that our approach effectively leverages the strengths of the original model.

INDEX TERMS Balanced truncation, deep learning, diagonal state space model, model compression.

I. INTRODUCTION
In recent years, deep learning models have garnered sub-
stantial attention due to their versatility across a range of
applications, including sequence prediction, natural language
translation, speech recognition, and audio generation [1],
[2], [3]. These models’ ability to understand and predict
sequential data underpins their success in these domains.
A critical aspect of these models’ effectiveness is their
capacity to capture dependencies between sequential data
points, a fundamental requirement for achieving high levels
of performance in tasks involving time series or sequential
input. For instance, the Transformer [4] is effective in
capturing short-range dependencies in sequential data, and
achieved a state-of-the-art BLEU score of 41.0 on the
WMT 2014 English-to-French translation task. However, the
Transformer’s ability to capture long-range dependencies in
time series data is limited, leading to the loss of temporal

The associate editor coordinating the review of this manuscript and

approving it for publication was Wei Xu .

information due to its permutation-invariant self-attention
mechanism [5].

Contrary to the limitations observed in the Transformer
model, the Structured State Space Sequence (S4) model,
as introduced in [6], demonstrates exceptional capability in
capturing long-range dependencies within sequential data.
This effectiveness is largely attributed to the innovative use
of HiPPO initialization [7], a technique specifically designed
to enhance model performance by leveraging the principles
of the state space model (SSM) from control theory. Notably,
the S4 model has shown to surpass conventional models,
including the Transformer, in Long Range Arena (LRA)
tasks [8], signifying a substantial advancement in handling
sequential data. Further refinement of the S4 architecture
led to the introduction of the Diagonal State Space (DSS)
layers [9], offering a simplified yet effective version of
the original S4 model, maintaining its high performance
with a more streamlined architecture. In addition to the
original and simplified S4 models, several deep learning
models related to the SSM, such as H3 [10], Hyena [11],
S4D [12], S4ND [13], S5 [14], SSSD [15], and Mamba [16],

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 116415

https://orcid.org/0000-0003-1895-6548
https://orcid.org/0000-0003-0816-6016

H. Ezoe, K. Sato: Model Compression Method for S4 With DSS Layers

FIGURE 1. Edge Intelligence (EI). In EI, data gathered from various devices
is not processed entirely in the cloud but rather locally on each device.
These devices, like sensors in industrial settings, face limitations that
make it difficult to deploy large-scale deep learning models typically
trained in the cloud, due to constraints such as computing resources and
power consumption.

have been proposed. Generally, in tasks requiring long-range
dependency modeling, these deep learning models tend to
perform better with a larger number of parameters.

However, deep learning models, which have a vast number
of parameters, demand considerable computational resources
for inference, thereby limiting their practical and sustainable
use. For example, in Edge Intelligence (EI) [17], [18], data
from individual devices are processed both in the cloud and
locally on each device (Fig. 1). EI devices, such as sensors
in factories, have limited computational resources and power
consumption constraints. This limitation poses a challenge
for performing inference using deep learning models with
numerous parameters. Therefore, it is crucial to achieve
optimal performance usingmodels with fewer parameters and
reduced computational costs in EI applications.

When considering the application of deep learning models
in EI, the implementation of model compression techniques
is essential [19], [20], [21], [22]. For example, the techniques
include:

• Pruning, which reduces the number of parameters in
deep learning models [23], [24].

• Quantization, which reduces the number of bits used to
represent the weights and activations in deep learning
models [25].

• Knowledge distillation, involving training a smaller
student model to replicate a larger teacher model [26],
[27], [28], [29].

However, the effectiveness of these model compression
techniques in deep models that incorporate SSMs remains
unclear.

Thus, our goal is to provide a novel and effective model
compression method tailored for S4 models with DSS layers,
especially for EI scenario deployment. To achieve this,
we leverage SSM’s use in DSS layers to enable the use
of various well-established reduction methods [30], [31],
[32], [33], [34], [35], [36]. In this study, we employ the
balanced truncation method [33], a widely used control
theory approach. To train the original model, we use Skew-
HiPPO initialization [9], [12], consistently outperforming
models started with random initialization.

The contributions of this paper are summarized as follows:
To reduce computational costs during inference, we introduce
a novel model compression method that applies the balanced
truncation technique to DSS layers in pre-trained S4 models.
Moreover, we propose using the reduced model parameters
obtained by the balanced truncation as initial parameters of
S4 models with DSS layers during the main training process.
As demonstrated in Section VI, our trained models combined
with the balanced truncation achieved superior accuracy on
LRA tasks compared to conventionally trained models using
Skew-HiPPO initialization as described in [9] and [12], even
with fewer parameters. While [37] reports minimal impact
from dimension reduction in the MultiHyena variant of the
Hyenamodel on performance, our findings with the S4model
underscore a critical distinction with significant performance
improvement.

The paper is organized as follows. In Section II, we intro-
duce the balanced truncation method for the reduction of
state space models and explain the HiPPO matrix used
in Skew-HiPPO initialization. In Section III, we present a
deep learning model with DSS layers. Section IV describes
existing training methods for this model, and discusses the
model’s computational cost during inference. To address the
issue of computational cost, in Section V, we propose a
model compression method using the balanced truncation
method for SSMs. In Section VI, the results of numerical
experiments are presented. Finally, in Section VII, we discuss
the effectiveness of the proposed method based on the results
of the numerical experiments, clarify the limitations of our
work, and outline future work.
Notation:
• R and C denote the sets of real and complex numbers,
respectively.

• For a ∈ C, |a| denotes the absolute value of a.
• For v = (vi) ∈ CN , ∥v∥ denotes the Euclidean norm of v,

i.e., ∥v∥ :=

√
|v1|2 + · · · + |vN |2.

• A⊤ and A∗ denote the transpose and complex conjugate
transpose of matrix A ∈ Cn×n, respectively.

• f (x) |x≤a denotes the function that coincides with f (x),
a function defined on x ≥ 0, on its domain [0, a].

• deg(f) represents the degree of polynomial f (x).
• i denotes the imaginary unit.
• diag(λ1, · · · , λN) ∈ CN×N is a diagonal matrix with

λ1, · · · , λN ∈ C as diagonal elements.
• Re(α) and Im(α) are the real and imaginary parts of

α ∈ C, respectively.
• a∗b represents the Hadamard product of vectors a and b.

• I[a,b](x) =

{
1 if a ≤ x ≤ b
0 otherwise

• U(a, b) denotes the uniform distribution on (a, b).
• N (µ, σ) is a normal distribution with mean µ and
variance σ .

II. PRELIMINARIES
In this section, we introduce a state space model (SSM),
an important component of the DSS layer. We also present

116416 VOLUME 12, 2024

H. Ezoe, K. Sato: Model Compression Method for S4 With DSS Layers

the balanced truncation method [33], a reduction method
for SSMs employed in our training method. Furthermore,
we explain the HiPPO matrix [6] utilized in Skew-HiPPO
initialization [9], [12], which enhances the performance of
trained models.

A. STATE SPACE MODEL (SSM)
A crucial component of a deep learning model discussed in
our study, as outlined in Section III, is the hidden layer known
as the DSS layer. This layer is defined by using the SSM

dx
dt

(t) = Ax(t) + Bu(t)

y(t) = Cx(t),
(1)

where u(t) ∈ R, y(t) ∈ C, and x(t) ∈ CN denote the input,
output, and state, respectively, and (A,B,C) ∈ CN×N

×

CN×1
×C1×N . The matrix A denotes a state transition matrix,

which describes the internal influence on the time evolution
of the internal state x. The matrix B is an input matrix, which
describes how the external input u affects the internal state x.
ThematrixC serves as an output matrix, which describes how
the internal state x is transformed into the observable output y.
Notably, SSM (1) is a single-input and single-output

system, and the matrices A, B, C , state x(t), and output
y(t) are all complex-valued. Moreover, the state dimension
N is relatively large, unlike the standard setting in control
theory [38].

B. BALANCED TRUNCATION METHOD
To address computational issues arising from the large state
dimension of SSM (1), we consider using the balanced
truncation method [33], a reduction technique. This method
focuses on the controllability and observability of SSM (1)
to derive another SSM with dimension r (≤ N), which gives
almost the same output as (1):

dxr
dt

(t) = Arxr (t) + Bru(t)

yr (t) = Crxr (t),
(2)

where Ar ∈ Cr×r ,Br ∈ Cr×1,Cr ∈ C1×r . Below is a brief
explanation of the balanced truncation method. For more
detailed information, refer to Appendix A.
For SSM (1) with asymptotic stability, where all the

real parts of the eigenvalues of matrix A are negative, the
controllability Gramian P and observability Gramian Q are
defined as

P :=

∫
∞

0
exp(At)BB∗ exp(A∗t)dt,

Q :=

∫
∞

0
exp(A∗t)C∗C exp(At)dt.

These are the unique solutions to the Lyapunov equations

AP+ PA∗
+ BB∗

= 0, (3)

A∗Q+ QA+ C∗C = 0, (4)

as shown in [38, Theorem 4.1].

In the balanced truncation method, the subspace spanned
by eigenvectors corresponding to small eigenvalues of the
controllability Gramian P and the observability Gramian Q
is ignored. The minimum input energy required to achieve
limt→∞ x(t) = xf from the initial condition x(0) = 0 is
expressed using the controllability Gramian P as∫

∞

0
∥u(t)∥2dt = x∗

f P
−1xf .

Thus, eigenvectors corresponding to smaller eigenvalues of
P correspond to directions in the state space that are less
influenced by the input u. On the other hand, when x(0) =

x0 and u(0) = 0, the output energy can be expressed using
the observability Gramian Q as∫

∞

0
∥y(t)∥2dt = x∗

0Qx0.

Thus, eigenvectors corresponding to smaller eigenvalues
of Q correspond to directions in the state space that have less
impact on the output y.

A coordinate transformation x̄(t) = Tx(t) is applied to
SSM (1), obtaining another SSM where the controllability
Gramian and observability Gramian coincide as a diagonal
matrix 6:

dx̄
dt

(t) = TAT−1x̄(t) + TBu(t)

y(t) = CT−1x̄(t).
(5)

SSM (5) is referred to as the balanced realization of SSM (1).
Here, the diagonal elements of 6 are denoted as σ1, · · · , σN ,
which are called the Hankel singular values, satisfying
σ1 ≥ · · · ≥ σN > 0 under the assumption that SSM (1)
is controllable and observable. By partitioning the matrices
TAT−1, TB, CT−1 in SSM (5) as

TAT−1
=

(
A11 A12
A21 A22

)
, (6)

TB =

(
B1
B2

)
, (7)

CT−1
=
(
C1 C2

)
, (8)

we define the parameters (Ar ,Br ,Cr) of reduced model (2)
as

(Ar ,Br ,Cr) = (A11,B1,C1). (9)

The resulting system (2) with (9) can be interpreted as a
reduced SSM of SSM (1), obtained by truncating the state
space associated with the smaller Hankel singular values
σr+1, · · · , σN , which correspond to the subspace spanned
by eigenvectors that are less influenced by the input or
have less influence on the output. Moreover, if SSM (1) is
asymptotically stable, the reduced SSM (2) with (9) is also
asymptotically stable, as shown in [38, Proposition 4.15].

VOLUME 12, 2024 116417

H. Ezoe, K. Sato: Model Compression Method for S4 With DSS Layers

C. HiPPO MATRIX
For the model explained in Section III, the parameters of
the matrices (A,B,C) in the SSM (1) are trained using a
suitable optimization algorithm. The initialization of matrix
A significantly influences the performance of trained models,
as it sets the initial state for the optimization process.
The High-order Polynomial Projection Operators (HiPPO)
matrix [7] is derived from amethod for online compression of
continuous signals using projections onto subspaces spanned
by polynomial bases. The matrix is an effective choice for the
initial A [6], [9], [12].

The derivation of the HiPPO matrix is explained below.
With respect to a measure µ on [0, ∞), let

L2(µ) := {f : [0, ∞) → C
∣∣∣ f is measurable,∫

∞

0
|f (τ)|2dµ(τ) < ∞}.

The inner product and norm on L2(µ) are defined as

⟨f1, f2⟩µ :=

∫
∞

0
f ∗

1 (τ)f2(τ)dµ(τ),

∥f ∥L2(µ) := ⟨f , f ⟩1/2µ ,

respectively.
For an input signal u(t) defined on t ≥ 0, the history

u≤t := u(τ) |τ≤t at each time t > 0 is approximated by
projecting it onto a subspace spanned by polynomial bases,
and the corresponding coefficient vector x(t) represents
the history of input signal. This compression is useful
because storing u≤t requires a significant amount of memory.
Thus, at each time t , x(t) contains sufficient information
to reconstruct u≤t , even though it requires less memory
compared to directly storing u≤t .
The vector x(t) is expressed as the optimal solution to a

convex optimization problem, which is defined by a measure
µ(t) on (−∞, t] and orthogonal polynomial basis of the sub-

space of L2(µ(t)) denoted as {g(t)n }1≤n≤N (i.e. deg(g(t)i) = i
(i = 1, · · · ,N), ⟨g(t)i , g(t)j ⟩µ(t) = 0 (i ̸= j)). The optimization
problem is

min
x(t)∈RN

∥u≤t−g∥2L2(µ(t))

subject to g(τ) =

N∑
k=1

xk (t)g
(t)
k (τ).

If {g(t)n }1≤n≤N is a normalized orthogonal basis, i.e.
∥g(t)i ∥L2(µ(t)) = 1 (i = 1, · · · ,N), the optimal solution is
given by

xk (t) = ⟨u≤t , g
(t)
k ⟩µ(t) . (10)

The vector x(t) defines the approximation g =
∑N

k=1
xk (t)g

(t)
k of u≤t , thus it retains information necessary for

reconstructing the history u≤t of the input u(t) at time t .
This property of memorizing the input history in the
state vector will be useful for modeling long sequential

data, as capturing dependencies in sequential data requires
referencing information from previous inputs to compute
each output at every time step. Moreover, by Equation (10),
the measure µ(t) represents the importance of each time step
when compressing the history u≤t . This x(t) satisfies the
differential equation

dx
dt

(t) = A(t)x(t) + B(t)u(t),

where A(t) ∈ RN×N ,B(t) ∈ RN×1 depend on the
polynomial basis {g(t)n }1≤n≤N and the measure µ(t). Unlike
SSM (1) introduced in Subsection II-A, A(t) and B(t) are
time-dependent.

For HiPPO-LegS that is a variant of HiPPO [7], the
measure µ(t) is defined as the scaled Legendre (LegS)
measure

µ(t)
=

1
t
I[0,t].

This assigns uniform importance to the entire history [0, t] at
each time t . Furthermore, the polynomial basis g(t)n (τ) is the
normalized orthogonal basis

g(t)n (τ) = gn(t, τ) = (2n+ 1)1/2Pn

(
2τ
t

− 1
)

,

where Pn(α) is the Legendre polynomial

Pn(α) =
1

2n · n!
dn

dαn
(α2

− 1)n.

In this case, as shown in [7, Appendix D.3], x(t) satisfies

dx
dt

(t) =
1
t
Ax(t) +

1
t
Bu(t)

Ank = −

(2n+ 1)1/2(2k + 1)1/2 if n > k
n+ 1 if n = k
0 if n < k

Bn = (2n+ 1)1/2. (11)

This matrix A of Equation (11) is called the HiPPO matrix.
For the SSM incorporating the HiPPOmatrix, the state vector
x(t) retains information about the history u≤t of the input u at
each time t [7].

III. DEEP LEARNING MODEL EMPLOYED IN THIS STUDY
The deep learning model employed in this study, proposed
in [9], has the structure illustrated in Fig. 2. In this paper, the
model is referred to as S4 with DSS layers, despite being
named DSS by the authors of [9]. The input layer receives
sequential data and outputs H features as 1-dimensional
sequential data. This conversion adapts data from various
formats to the DSS layer’s input format, as detailed in
Subsection III-A. The term H denotes the hidden size,
representing the count of features processed by the DSS
layer. Finally, the output layer converts the H features of
1-dimensional sequential data into the model’s final output
format. For further details, refer to Appendix B.

116418 VOLUME 12, 2024

H. Ezoe, K. Sato: Model Compression Method for S4 With DSS Layers

FIGURE 2. Deep learning model with DSS layers. This represents the
overall architecture of the deep learning model used in this study, with
the intermediate DSS layer being the most critical component.

A. DIAGONAL STATE SPACE LAYER
The most important component of the deep learning model
illustrated in Fig. 2 is the DSS layer. As shown in Fig. 3, the
DSS layer consists of:

• Independent H DSS models.
• Nonlinear connection blocks.
• Linear combination block.

The details of each of these components are explained below.
By restricting the matrix A ∈ CN×N in (1) to be diagonal,

assuming that the diagonal elements do not lie on the
imaginary axis, the DSS model is defined by the following
discretization for a sample time 1 ∈ R>0:{

xk+1 = Āxk + B̄uk
yk = C̄xk ,

(12)

where Ā = eA1, B̄ = (Ā− I)A−1B, and C̄ = C . The diagonal
elements of the matrix Ā do not lie on the unit circle in the
complex plane, due to the assumption on the matrix A.
The nonlinear connection block receives the input uk and

output yk from the DSS model and outputs 1-dimensional
sequential data

y′k = GELU(Re(yk) + Duk), (13)

where D ∈ R, and GELU [39] is a nonlinear activation
function expressed as

GELU(α) = α8(α).

Here, 8(α) is the cumulative distribution function of the
standard normal distribution. This approach is expected to
enhance the performance of the model. Note that Re(yk) is
used in Equation (13) since yk can be a complex number.
Finally, the H 1-dimensional sequential data (y′(h)k)1≤h≤H

outputted from each nonlinear connection block is mixed
to obtain the final output of the DSS layer, resulting in H
1-dimensional sequential data (u′(h)

k)1≤h≤H . With parameters
of weight Wout ∈ RH×H and bias b ∈ RH , the output is
expressed as

u′(h)
k =

H∑
h′=1

Wout,hh′y′(h
′)

k + bh · 1, (14)

where 1 is a 1-dimensional sequential data of the same length
as y′(h)k with all elements 1.

FIGURE 3. DSS layer, which consists of H DSS models, nonlinear
connection blocks, and a linear combination block.

B. DSSEXP AND DSSSOFTMAX
The output of DSS (12) can be calculated as

yk =

k∑
i=0

hi · uk−i (15)

with hi := C̄ĀiB̄, which is referred to as the impulse response
of DSS (12). Given a sample time 1, hi is determined by
(A,B,C), and different sets of parameters (A,B,C) may
result in the same sequence of impulse responses. In fact,

K̄1,L(A,B,C) := (h0, h1, · · · , hL−1)

are the same for different (A,B,C), as described below [9].
Proposition 1: Suppose that the parameters A =

diag(λ1, · · · , λN),B,C, 1 of DSS (12) are given, and define
K := K̄1,L(A,B,C) ∈ CL . Then, there exist w, w̃ ∈ C1×N

satisfying the following equations:
(a) K = K̄1,L(A, (1)1≤i≤N , w̃)

= w̃ · A−1(eA1
− I) · elementwise-exp(P)

(b) K = K̄1,L(A, ((eLλi1 − 1)−1)1≤i≤N ,w)
= w · A−1

· row-softmax(P)
where

elementwise-exp(P) = (exp(Pik))1≤i≤N ,0≤k<L ,

row-softmax(P) =

(
exp(Pik)

6L−1
r=0 exp(Pir)

)
1≤i≤N ,0≤k<L

,

Pi,k = λik1.

Proposition 1 implies that, under weak assumptions, the
impulse responses h0, h1, · · · , hL−1 of DSS (12) can be
achieved with special structure of (A,B,C). DSS (12) with
(B,C) = ((1)1≤i≤N ,w), as stated in Proposition 1(a),
is referred to as DSSEXP, and DSS (12) with (B,C) =

(((eLλi1 − 1)−1)1≤i≤N ,w), as stated in Proposition 1(b),
is referred to as DSSSOFTMAX [9]. DSSEXP and DSSSOFTMAX
offer different approaches to modeling the impulse responses,
with potential implications for the performance and inter-
pretability of the DSS model. In the following sections,
we utilize DSSEXP or DSSSOFTMAX as DSS (12).

IV. EXISTING TRAINING METHODS AND LIMITATIONS
In the training of deep learning models, the goal is to
minimize the loss function E(W) with respect to the training

VOLUME 12, 2024 116419

H. Ezoe, K. Sato: Model Compression Method for S4 With DSS Layers

dataset {(χi, di)}. Here, (χi, di) represents a pair of input χi
and its desired output di, and W denotes the parameters of
the model. The model’s output for an input χ with parameters
W is denoted as ζ (χ;W). For each input χi, a loss function
Ei(W) is defined to measure the difference between the
desired output di and the model’s output ζ (χi;W). The loss
function for the entire training dataset is expressed asE(W) =

6iEi(W), where the summation is over all training examples.
As an algorithm for minimizing the loss function E(W),
we can consider using AdamW [40].

A. TRAINING PARAMETERS WITHIN THE DIAGONAL
STATE SPACE LAYER
Among the parametersW trained in our deep learning model,
those in the DSS layer include:

• (A,B,C, 1) for each of the H DSS models, as defined
in (12).

• D for each of the H nonlinear connection blocks,
as defined in (13).

• Weight Wout ∈ RH×H and bias b ∈ RH for the linear
combination block, as defined in (14).

For DSSEXP defined in Subsection III-B, the parameters
(A,B,C) are defined as

A = diag(λ1, · · · , λN),

B = (1)1≤i≤N ,

C = w, (16)

where

λi = − exp(3re,i) + i · 3im,i. (17)

For DSSEXP, the parameters 3re, 3im ∈ RN and w ∈ CN are
trained to determine (A,B,C).

For DSSSOFTMAX defined in Subsection III-B, the param-
eters (A,B,C) are defined as:

A = diag(λ1, · · · , λN),

B = ((eLλi1 − 1)−1)1≤i≤N ,

C = w, (18)

where

λi = 3re,i + i · 3im,i. (19)

Similarly to DSSEXP, the parameters3re, 3im ∈ RN and w ∈

CN are trained to determine (A,B,C) for DSSSOFTMAX, with
a different expression for A and B.

B. INITIALIZATION OF THE DSS LAYER
The performance of S4 with DSS layers is sensitive to
initialization of the state matrix A. To obtain an effective
initial value for A, the HiPPO matrix is decomposed into a
normal matrix and a low-rank matrix. This decomposition
allows for a more structured and interpretable initialization of
the state matrix A, which can improve the performance of the
model. The eigenvalues of the normal matrix are employed to
initialize the diagonal elements of A.

In more detail, the HiPPO matrix H ∈ RN ′
×N ′

is defined
as explained in Subsection II-C:

Hnk = −

(2n+ 1)1/2(2k + 1)1/2 if n > k
n+ 1 if n = k
0 if n < k.

For SSM (1) incorporating this HiPPO matrix, the state x(t)
retains information about the history of the input u(t) [7]. The
HiPPOmatrixH can be decomposed into a normalmatrix and
a low-rank matrix as

H = H′
−

1
2
PQ⊤,

whereH′
∈ RN ′

×N ′

,P ∈ RN ′

,Q ∈ RN ′

are defined as

H′
nk = −

(2n+ 1)1/2(2k + 1)1/2/2 if n > k
1/2 if n = k
−(2n+ 1)1/2(2k + 1)1/2/2 if n < k

Pn = (2n+ 1)1/2, Qk = (2k + 1)1/2.

This H′ is a normal matrix. Under the assumption that
N ′

= 2N and µ1, . . . , µN are the eigenvalues of H′
∈

R2N×2N with positive imaginary parts, 3re, 3im ∈ RN are
defined as follows:

• For DSSEXP,

3re,i = log(−Re(µi)), 3im,i = Im(µi).

• For DSSSOFTMAX,

3re,i = Re(µi), 3im,i = Im(µi).

Using 3re and 3im, the matrix A is initialized as
A := diag(λ1, . . . ,λN), where each λi is derived from
Equation (17) for DSSEXP or Equation (19) for DSSSOFTMAX.
This process is known as the Skew-HiPPO initialization [9],
[12]. Other parameters within the DSS are randomly
sampled, as detailed in Section VI. According to [9], models
utilizing Skew-HiPPO initialization demonstrate superior
prediction accuracy compared to those initialized with values
from N (0, 1).

C. COMPUTATIONAL COST OF THE DSS LAYER OUTPUT
When the input is entered one by one or all at once,
reducing H (the hidden size) and N (the state dimension)
facilitates a reduction in the computational cost of the DSS
layer output. In fact, the time and space complexities of the
DSS layer output are as illustrated in Table 1 and Table 2,
respectively, as discussed below. Here, the input length of the
1-dimensional sequence is denoted as L.
In the case where input uk at each time step is entered

one by one into DSS (12), the output yk can be computed
using the previous state vector xk−1 according to (12). The
time and space complexities per step are both O(N). The
time complexity for processing the entire input of length L
is O(NL), and the space complexity involves overwriting at
each step, thus remainingO(N). For the nonlinear connection

116420 VOLUME 12, 2024

H. Ezoe, K. Sato: Model Compression Method for S4 With DSS Layers

TABLE 1. Computational complexities of the DSS layer output when input
of length L is entered one by one.

TABLE 2. Computational complexities of the DSS layer output when input
of length L is entered at once.

block, both the time and space complexities per step
are O(1). The time complexity for processing the entire
input of length L is O(L), and the space complexity involves
overwriting at each step, thus remaining O(1). Regarding
the following linear combination block, the time complexity
per step is O(H2), and the space complexity is O(H). The
time complexity for processing the entire input of length L
is O(H2L), and the space complexity involves overwriting at
each step, thus remainingO(H). Therefore, adding upH DSS,
H nonlinear connection blocks, and one linear combination
block, the time complexity of the DSS layer output when
input is entered one by one is O(HNL) + O(H2L), and the
space complexity is O(HN) (Table 1).
In the case where whole input (uk)0≤k<L is entered all at

once, the output

yk =

L−1∑
i=0

hi · uk−i (20)

can be efficiently computed. In fact, leveraging the fast
Fourier transform [41] implies that the time complexity is
O(L log(L)) and the space complexity is O(L). Furthermore,
the computation is parallelizable. Besides, the impulse
response hi in Equation (20) can be easily computed. In fact,
for a diagonal matrix A ∈ CN×N with diagonal elements λi,
hi can be calculated as

hi = C̄ĀiB̄

= CeA·i1(eA1
− I)A−1B

=

N∑
j=1

Cj · eλj·i1(eλj1 − 1)λ−1
j · Bj.

The computation time for the sequence of impulse responses
(h0, h1, · · · , hL−1) isO(NL). As for the nonlinear connection
block, the time and space complexities are both O(L)
Regarding the following linear combination block, the time
complexity is O(H2L), and the space complexity is O(HL).
Therefore, adding upH DSS,H nonlinear connection blocks,
and one linear combination block, the time complexity of

the DSS layer output when input is entered all at once is
O(HL log(L))+O(H2L), and the space complexity is O(HL)
(Table 2).
Additionally, Equation (20) is an approximation that holds

when DSS (12) is asymptotically stable and L is sufficiently
large. The exact output of DSS (12) is given by (15). However,
when (12) is asymptotically stable and L is sufficiently large,
hi ≈ 0 for i ≥ L, making the approximation in (20) valid.

D. ISSUES FOR PRACTICAL APPLICATIONS
Let us consider the issues that hinder the application of S4
with DSS layers to EI [17], [18], as explained in Section I.
These issues include memory constraints, computational
complexity, and the trade-offs between model performance
and resource efficiency.

The following can be concluded from the arguments of
Subsection IV-C:

• When processing the entire input of large length L at
once, the application of S4 with DSS layers to EI is
challenging, even if H and N of the trained model are
sufficiently small. This is because the space complexity
is O(HL) (Table 2), making it difficult to conduct
inference in devices with small capacity memory (e.g.
sensors set in factories).

• When processing the input one-by-one, which corre-
sponds to L = 1, S4 with DSS layers can be applied
to EI if H and N of the trained model are sufficiently
small. Specifically, the time and space complexities are
those shown in Table 1. That is, when L = 1, the time
complexity isO(HN)+O(H2), and the space complexity
is O(HN). This implies that even for very large input
sequences, inference can be conducted in devices with
small capacity memory.

In summary, to apply S4 with DSS layers to EI, the input
needs to be processed one-by-one, and it is desirable to
keep the values of H and N as small as possible. However,
excessively small values of H and N may limit the model’s
capacity to capture complex patterns in the data, leading to a
deterioration in performance.

V. PROPOSED MODEL COMPRESSION METHOD
In this section, to address the issues discussed in Sub-
section IV-D, we propose an effective model compression
method for S4 with DSS layers aiming to reduce compu-
tational costs during inference by one-by-one processing.
Specifically, this method enables the acquisition of parameter
values that achieve higher accuracy compared to existing
methods when training models with DSS layers of the
same H and N .

The following procedure is our proposed model compres-
sion method.
1) Apply the balanced truncation method, as explained in

Subsection II-B, to a large-scale DSS that is part of a
trained model.

2) Retrain the model using the reduced DSS obtained in
step 1) for improved initialization.

VOLUME 12, 2024 116421

H. Ezoe, K. Sato: Model Compression Method for S4 With DSS Layers

FIGURE 4. Proposed method, which consists of Pre-Training, DSS
Reduction, Parameter Extraction, and Main Training. At DSS Reduction
step, the balanced truncation method is applied.

In more detail, our proposed method consists of the follow-
ing Pre-Training, DSS Reduction, Parameter Extraction, and
Main Training, illustrated in Fig. 4.

1) PRE-TRAINING
The parameters (A,B,C) and 1 of DSS (12) are determined
by training the model with the Skew-HiPPO initialization [9],
as detailed in Section IV-B. For DSSEXP and DSSSOFTMAX,
calculations use (16) and (18), respectively.

2) DSS REDUCTION
The DSS model (12), determined by parameters (A,B,C)
and 1 obtained through Pre-Training, is reduced using the
balanced truncation method described in Subsection II-B and
Appendix A. The state dimension is reduced to r (≤N),
resulting in the reduced SSM (2). Here, the sample time 1

remains unchanged.

3) PARAMETER EXTRACTION
Assuming Ar is diagonalizable, we can transform the reduced
SSM (2) into the DSS (12), as detailed below. There exist
a diagonal matrix M = diag(µ1, · · · , µr) and an invertible
matrix V ∈ Cr×r satisfying Ar = VMV−1. Using a
coordinate transformation x̂ = V−1xr , we obtain the new
SSM

dx̂
dt

(t) = Mx̂(t) + V−1Bru(t)

yr (t) = CrV x̂(t),
(21)

TABLE 3. Text classification (negative).

TABLE 4. Text classification (positive).

which is equivalent to the reduced SSM (2). Consequently,
the transformation allows expressing the reduced SSM (2) in
the explicitly diagonal form of DSS, as shown in (21).

From Proposition 1, the impulse response of DSS (21)
with the state dimension r can also be derived from DSSEXP
or DSSSOFTMAX.

• For DSSEXP, the parameters are determined as

Mre,i = log(−Re(µi)),

Mim,i = Im(µi),

v = (CrV)⊤ ∗ (V−1Br). (22)

• For DSSSOFTMAX, the parameters are determined as

Mre,i = Re(µi),

Mim,i = Im(µi),

v = (CrV)⊤ ∗ (V−1Br) ∗ (eLµi1 − 1)1≤i≤r . (23)

For the vectors of (22) and (23), refer to the proof of
Proposition in [9, Appendix A.1].

4) MAIN TRAINING
As detailed in Subsection IV-A, 3re, 3im ∈ Rr and w ∈ Cr

are training parameters within DSSEXP and DSSSOFTMAX.
Here, (3re, 3im) and w are initialized with (Mre,Mim)
and v obtained by Parameter Extraction, respectively. It is
important to note that the dimension, previously denoted
as N , is adjusted to r for the context of this initialization.
All other parameters maintain their values as obtained from
the Pre-Training phase, ensuring consistency in the model’s
initialization process.

VI. NUMERICAL EXPERIMENTS
To evaluate the proposed method, we employed tasks of
LRA [8], which is available at https://github.com/google-
research/long-range-arena. The benchmark includes sequence
data ranging from 1,000 to 16,000 in length and evaluates
the model’s ability to capture long-range dependencies
required for learning long sequences. In the text classification
task, we classify movie reviews in the Internet Movie
Database (IMDb) review dataset [42] as negative or positive.
Tables 3 and 4 summarize the statistics of the text
classification dataset, including the counts and lengths of the

116422 VOLUME 12, 2024

H. Ezoe, K. Sato: Model Compression Method for S4 With DSS Layers

TABLE 5. Accuracy of models through various training methods (Text
classification, DSSEXP, H = 16).

TABLE 6. Accuracy of models through various training methods (Text
classification, DSSSOFTMAX, H = 16).

raw data sequences. These sequences are truncated or padded
as necessary to ensure consistent input lengths.

The experiments were conducted on a machine running
Windows 10, equipped with 64 GB of memory and an
11th Gen Intel Core i9-11980HK CPU. The model training
and evaluation code was implemented in Python using
PyTorch 1.11.0 and TensorFlow 2.12.0, and executed with the
NVIDIA RTX A3000 Laptop GPU.

A. COMPARISON WITH EXISTING TRAINING METHODS
Table 5 and Table 6 show the accuracy of models obtained
through various training methods, using DSSEXP and
DSSSOFTMAX respectively, where N denotes the dimension
of the state vector of DSS. The number of DSS layers is
4 and the hidden sizeH is 16. The columns labeled ‘‘before’’
and ‘‘after’’ denote the accuracy of the model with the initial
parameter values and the accuracy of the model after training
from that initial state, respectively.

In the ‘‘HiPPO’’ column on the left, the Skew-HiPPO
initialization explained in Subsection IV-B was used to
initialize the state matrix A of each DSS. In the middle
column ‘‘Random’’, the initial values of A were randomly
sampled. For DSSEXP, the real and imaginary parts of the
diagonal elements of matrix A were sampled from U(−1, 0)
and N (0, 1), respectively. For DSSSOFTMAX, the real and
imaginary parts of the diagonal elements were sampled
from N (0, 1). Other parameters within DSS were randomly
sampled for both ‘‘HiPPO’’ and ‘‘Random’’. The real and

imaginary parts of each element in w ∈ CN were sampled
from N (0, 1).
ForDSSSOFTMAX, it has been reported in [9] that ‘‘HiPPO’’

using Skew-HiPPO initialization achieves higher accuracy
after training compared to ‘‘Random’’ using randomly
sampled initial values. The results in Table 6 are cosistent,
where ‘‘HiPPO’’ achieves higher accuracy after training
compared to ‘‘Random’’ for each N , while each accuracy
before training is near. For DSSEXP, the same trend was
observed for almost all N as shown in Table 5.
The ‘‘Proposed Method’’ column on the right describes

our approach, which uses a reduced SSM from the Pre-
Trained models with N = 16 (DSSEXP) and N = 128
(DSSSOFTMAX), obtained through the balanced truncation
method, to initializeMain Training. In Table 5, the ‘‘Proposed
Method’’ entries for N = 32, N = 64, and N = 128
are blank, because the balanced truncation does not permit
expanding the state dimension beyond the original size
of N = 16.
Before Main Training, the accuracy of models using

the ‘‘Proposed Method’’ is comparable to those using
‘‘Random’’ and ‘‘HiPPO’’ for each N excluding N = 16 for
DSSEXP and N = 128 for DSSSOFTMAX. However, after
Main Training, the accuracy of ‘‘Proposed Method’’
exceeded that of ‘‘HiPPO’’ for each N . This result is
noteworthy because the ‘‘Proposed Method’’ tends to
outperform ‘‘HiPPO’’ after Main Training, despite having
similar accuracies before the training.

The following points are particularly noteworthy.

• For DSSEXP shown in Table 5, the highest accuracy after
Main Training with ‘‘Proposed Method’’ was 0.8418
at N = 4. Notably, this exceeded the accuracy after
training with ‘‘HiPPO’’ at N = 16, which was 0.8310,
despite having a smaller N while maintaining the same
hidden size H .

• For DSSSOFTMAX shown in Table 6, the highest accuracy
after training with ‘‘Proposed Method’’ was 0.8412
at N = 8. Notably, this exceeded the accuracy after
training with ‘‘HiPPO’’ at N = 128, which was 0.8216,
despite having a smaller N while maintaining the same
hidden size H .

In summary, the initial parameters obtained by reducing
Pre-Trained DSS of (H ,N) = (16, 16) for DSSEXP and
(H ,N) = (16, 128) for DSSSOFTMAX appear to be effective
in enhancing accuracy of the trained model compared to the
initial parameters by the Skew-HiPPO initialization. Similar
trends are observed in the ListOps task and text retrieval task
of LRA, where our method enhanced the accuracy of the
trained model. For detailed results, refer to Appendix C.

B. RELATIONSHIP BETWEEN ACCURACY OF PRE-TRAINED
MODELS AND MODELS AFTER MAIN TRAINING
Table 7 shows the accuracy of models after Main Train-
ing when initialized with different Pre-Trained models.
We obtained Pre-Trained models with DSS of N = 128

VOLUME 12, 2024 116423

H. Ezoe, K. Sato: Model Compression Method for S4 With DSS Layers

TABLE 7. Accuracy of models initialized using different Pre-Trained
models (DSSSOFTMAX, H = 16).

and N = 80, and utilized the reduced models for impr-
oved initialization of Main Training. The accuracy of the
models after main training is in columns ‘‘Proposed Method
(N = 128)’’ and ‘‘Proposed Method (N = 80)’’. Both
‘‘Proposed Method (N = 128)’’ and ‘‘Proposed Method
(N = 80)’’ followed the trend observed in Subsection VI-A,
where ‘‘Proposed Method’’ achieved higher accuracy than
‘‘HiPPO’’ for each N .
The accuracy of the Pre-Trained models for N = 128

is 0.8216, which is higher than 0.8098 at N = 80. As for
models after Main Training, the accuracy of ‘‘Proposed
Method (N = 128)’’ surpasses that of ‘‘Proposed Method
(N = 80)’’ for each N . This suggests that higher accuracy of
the Pre-Trained model leads to higher accuracy of the model
obtained through Main Training.

C. NON-TRIVIALITY OF THE OBTAINED RESULTS
The Hankel singular values illustrated in Fig. 5 highlight the
non-triviality of the results presented in Tables 5 and 6 from
a system-theoretic perspective. These values were derived
from the SSM parameters (A,B,C) of the Pre-Trained model
using DSSSOFTMAX with N = 128. Specifically, the Hankel
singular values were computed for each SSM in every DSS
layer. The detailed computational method is described in
Appendix A.
As explained in Section II-B and Appendix A, the Hankel

singular values can reveal the important directions in the
state space from the controllability and observability per-
spective. That is, if the Hankel singular values are relatively
large, the corresponding directions are relatively important.
Notably, Fig. 5 shows that almost all directions in the
N = 128 dimensional state space are important, beca-
use there are few significantly small Hankel sigular
values. Therefore, reducing the dimensionality of the
Pre-Trained model from N = 128 is expected to significantly
deteriorate its performance. This expectation is consistent
with the results shown in Table 6. In fact, the accuracy of
the Pre-Trained model with N = 128 was 0.8216, but after
reducing N to 8, the accuracy dropped to 0.5036. Never-
theless, after Main-Training, the accuracy of the reduced
model improved to 0.8412. This improvement in accuracy
is not predicted by the theoretical analysis of balanced
truncation introduced in Appendix A and is a non-trivial
result.

FIGURE 5. Hankel singular values obtained from each SSM for
DSSSOFTMAX with N = 128. These SSMs were part of the Pre-Trained
model initialized using the Skew-HiPPO with N = 128, as shown in
Table 6. Although the hidden size was set to 16, we only presented the
cases for H = 1, 2, 3, and 4 because the results for H = 5, 6, . . . , 16 were
almost identical.

VII. CONCLUSION
We developed a new model compression method specifi-
cally for S4 models with DSS layers, using the balanced
truncation method [33]. This approach not only reduces the
number of parameters but also enhances model performance.
We proposed using the reduced model parameters obtained
by the balanced truncation as initial parameters for the
main training process. Our experiments demonstrated that
the proposed method achieves superior accuracy on Long
Range Arena (LRA) tasks compared to conventionally
trained models using the Skew-HiPPO initialization, even
with fewer parameters. Moreover, we observed a positive
correlation between the accuracy of Pre-Trained models and
their accuracy after Main Training.

The primary limitation of this study lies in the scope
of tasks and datasets used for evaluation. While the
LRA tasks provide a robust benchmark for long-range
dependency modeling, further validation on diverse datasets
and real-world applications is necessary. Additionally, the
underlying principles of the proposedmethod remain unclear,
which limits the understanding of why this approach is
effective.

The following are interesting future directions:
• Future research should investigate the underlying prin-
ciples of the proposed method, aiming to enhance the
development of more effective trainingmethods for deep
learning models with DSS layers.

• Reference [23] has shown that combining various
model compression methods can yield better results.
Investigating whether combining our proposed model
compression method based on the balanced truncation
with other compression techniques can improve per-
formance is an interesting and promising direction for
future work.

116424 VOLUME 12, 2024

H. Ezoe, K. Sato: Model Compression Method for S4 With DSS Layers

• Expanding the scope of evaluation to include real-time
deployment scenarios in EI applications will provide
more comprehensive insights into the method’s practical
viability. This can help demonstrate how the reduced
models can be effectively used in resource-constrained
environments.

• As an extension of our study, applying the proposed
compression techniques to Physics-Informed Neural
Networks (PINNs) can be explored [43], [44]. This
could help to improve the efficiency and performance
of PINNs in modeling physical systems with limited
computational resources.

APPENDIX A
DETAILS OF THE BALANCED TRUNCATION METHOD
As mentioned in Section II-B, the eigenvectors of the con-
trollability and observability Gramians P and Q of SSM (1)
provide important directions in the state space CN from
the perspectives of controllability and observability. Thus,
we can adopt an approach that reduces dimensions along
directions that are not significant. However, the eigenvectors
do not coincide in general. This means that, in general,
it is impossible to uniquely determine the directions to be
ignored based solely on the information from the original
controllability Gramian P and observability Gramian Q.

To overcome this problem, we apply a coordinate transfor-
mation x̄(t) = Tx(t) to SSM (1) to obtain new SSM (5). Then,
the corresponding controllability and observability Gramians
of SSM (5) become TPT ∗ and (T−1)∗QT−1, respectively.
Thus, if we can find T ∈ CN×N satisfying

TPT ∗
= (T−1)∗QT−1, (24)

the controllability and observability Gramians of the trans-
formed SSM (5) will coincide, even if the original Gramians
of SSM (1) do not.
To find T satisfying (24), we perform the eigenvalue

decomposition of the symmetric positive definite matrix
P1/2QP1/2 to obtain

P1/2QP1/2 = U3U∗, (25)

where P1/2 is the square root matrix of P, U is a unitary
matrix, and 3 = diag(λ1, . . . ,λN) is a diagonal matrix
with positive diagonal elements satisfying λ1 ≥ · · · ≥ λN .
Defining

T := 31/4U∗P−1/2, (26)

we get

TPT ∗
= (T−1)∗QT−1

= 31/2
= diag(σ1, . . . , σN).

We call σi =
√

λi (i = 1, . . . ,N) the Hankel singular values
of SSM (1).
Thus, the balanced truncation method consists of the

following procedure:
1) Compute the controllability Gramian P and the observ-

ability Gramian Q of SSM (1) by solving the Lyapunov
equations (3) and (4), respectively.

2) Compute the square root matrix P1/2.
3) Perform the eigenvalue decomposition using (25).
4) Determine the transformation matrix T using (26).
5) Compute (6), (7), and (8) using T , and define

(Ar ,Br ,Cr) of reduced SSM (2) as (9).
The reduced SSM (2) is preferable when it closely

approximates the original large-scale SSM (1) in terms of
the H∞ norm of the difference in their transfer functions.
In fact, the transfer functions G and Gr of original SSM (1)
and reduced SSM (2) are defined by

G(s) := C(sIN − A)−1B, Gr (s) := Cr (sIr − Ar)−1Br ,

respectively. The energy of the difference between original
SSM (1) output y and reduced SSM (2) output yr can be
evaluated by∫

∞

0
∥y(t) − yr (t)∥2dt ≤ ∥G− Gr∥2H∞

∫
∞

0
∥u(t)∥2dt,

where ∥ · ∥H∞ denotes the H∞ norm. That is, if the input
energy

∫
∞

0 ∥u(t)∥2dt and ∥G − Gr∥H∞ are sufficiently
small, the output error energy

∫
∞

0 ∥y(t) − yr (t)∥2dt is
also sufficiently small. Moreover, if we use the balanced
truncation method, ∥G− Gr∥H∞ is bounded by

σr+1 ≤ ∥G− Gr∥H∞ ≤ 2(σr+1 + · · · + σN),

assuming that σr+1 > · · · > σN . Thus, if the Hankel singular
values σr+1, . . . , σN are small, then ∥G − Gr∥H∞ will also
be small. The proofs for the above claims can be found
in [38, Chapter 4].

APPENDIX B
DETAILS OF THE DEEP LEARNING MODEL
In the deep learning model employed in this study, residual
connections [45] and normalization layers are positioned
before and after the DSS layer. In residual connections, a path
bypassing one or more layers is created, as illustrated in Fig. 6
and Fig. 7, and the output of the bypassed layer is added to it.
The normalization layer can be placed before the DSS layer
(Prenorm, Fig. 6) or after the residual connection (Postnorm,
Fig. 7). In the case of prenorm, a normalization layer is
also placed before the output layer. Normalization layers
such as batch normalization [46] or layer normalization [47]

FIGURE 6. Deep learning model with DSS layers (Prenorm). The
normalization layer is placed before the DSS layer and output layer.

VOLUME 12, 2024 116425

H. Ezoe, K. Sato: Model Compression Method for S4 With DSS Layers

FIGURE 7. Deep learning model with DSS layers (Postnorm). The
normalization layer is placed after the residual connection.

are used, which contributes to the stability and acceleration
of training. Additionally, residual connections prevent the
gradient vanishing and exploding problems.

APPENDIX C
OTHER RESULTS
In addition to the text classification task, explained in
Section VI, we confirmed that our proposedmethod improves
performance in the ListOps task and the text retrieval task
of LRA [8], as shown in Table 8 and Table 9, respectively.
Here, the number of DSS layers is 6 and the hidden size H
is 16. In the ListOps task, a numerical expression structured
with operators MAX, MEAN, MEDIAN, SUM_MOD and
parentheses is the input, and its value is the output. For
instance,

INPUT : [MAX 1 2 MIN [3 4] MEDIAN [1 5 9]]

OUTPUT : 5

The maximum length of input is 2000, and the output values
range from 0 to 9. In the text retrieval task, we estimate the
similarity between two papers and determine if there is a
citation link. The length of each paper is 4000, and the total
input length is 8000.

For DSSSOFTMAX, the left column ‘‘HiPPO’’ using the
Skew-HiPPO initialization achieved higher accuracy after
training compared to the middle column ‘‘Random’’ using
randomly sampled initial values. For DSSEXP, the same trend
was observed for almost all N as shown in Table 8 and
Table 9.

TABLE 8. Accuracy of models through various training methods (Listops,
DSSEXP, H = 16).

TABLE 9. Accuracy of models through various training methods (Text
retrieval, DSSEXP, H = 16).

In the ‘‘Proposed Method’’ column on the right, Main
Training was initialized using a reduced model obtained from
Pre-Trained models of (H ,N) = (16, 64). The accuracy
of models before Main Training with ‘‘Proposed Method’’
was comparable to that of ‘‘Random’’ and ‘‘HiPPO’’ for
each N excluding N = 64. However, after the training, the
accuracy of ‘‘Proposed Method’’ exceeded that of ‘‘HiPPO’’
for each N .
The following points are particularly noteworthy.

• For ListOps task, the highest accuracy after Main
Training with ‘‘Proposed Method’’ was 0.5390 at
N = 16. Notably, this exceeded the accuracy after
training with ‘‘HiPPO’’ at N = 64, which was 0.5180,
despite the smaller N and the same hidden size H .

• For text retrieval task, the accuracy after Main Training
with ‘‘Proposed Method’’ was 0.8313 at N = 4, which
exceeded the accuracy after training with ‘‘HiPPO’’ at
N = 64 and N = 32, despite the smaller N and the
same hidden size H .

Consequently, the initial parameters obtained by reducing
Pre-Trained DSS of (H ,N) = (16, 64) appear to be effective
in enhancing accuracy of the trained model compared to the
initial parameters by the Skew-HiPPO initialization.

REFERENCES
[1] B. Lim and S. Zohren, ‘‘Time-series forecasting with deep learning:

A survey,’’ Philos. Trans. Roy. Soc. A, vol. 379, no. 2194, 2021,
Art. no. 20200209.

[2] A. Mehrish, N. Majumder, R. Bharadwaj, R. Mihalcea, and S. Poria,
‘‘A review of deep learning techniques for speech processing,’’ Inf. Fusion,
vol. 99, Nov. 2023, Art. no. 101869.

[3] A. K. Pandey and S. S. Roy, ‘‘Natural language generation using sequential
models: A survey,’’ Neural Process. Lett., vol. 55, no. 6, pp. 7709–7742,
Dec. 2023.

[4] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, ‘‘Attention is all you need,’’ in Proc. Adv.
Neural Inf. Process. Syst., 2017, pp. 1–11.

[5] A. Zeng, M. Chen, L. Zhang, and Q. Xu, ‘‘Are transformers effective for
time series forecasting?’’ in Proc. AAAI Conf. Artif. Intell., 2023, vol. 37,
no. 9, pp. 11121–11128.

[6] A. Gu, K. Goel, and C. Ré, ‘‘Efficiently modeling long sequences with
structured state spaces,’’ in Proc. Int. Conf. Learn. Represent., 2022,
pp. 1–32.

[7] A. Gu, T. Dao, S. Ermon, A. Rudra, and C. Ré, ‘‘Hippo: Recurrent memory
with optimal polynomial projections,’’ in Proc. Adv. Neural Inf. Process.
Syst., 2020, pp. 1474–1487.

116426 VOLUME 12, 2024

H. Ezoe, K. Sato: Model Compression Method for S4 With DSS Layers

[8] Y. Tay,M. Dehghani, S. Abnar, Y. Shen, D. Bahri, P. Pham, J. Rao, L. Yang,
S. Ruder, and D. Metzler, ‘‘Long range arena: A benchmark for efficient
transformers,’’ in Proc. Int. Conf. Learn. Represent., 2021, pp. 1–16.

[9] A. Gupta, A. Gu, and J. Berant, ‘‘Diagonal state spaces are as effective
as structured state spaces,’’ in Proc. Adv. Neural Inf. Process. Syst., 2022,
pp. 22982–22994.

[10] D. Y. Fu, T. Dao, K. K. Saab, A.W. Thomas, A. Rudra, and C. Re, ‘‘Hungry
hungry hippos: Towards language modeling with state space models,’’ in
Proc. 11th Int. Conf. Learn. Represent., 2023, pp. 1–27.

[11] M. Poli, S. Massaroli, E. Nguyen, D. Y. Fu, T. Dao, S. Baccus, Y. Bengio,
S. Ermon, and C. Ré, ‘‘Hyena hierarchy: Towards larger convolutional
language models,’’ 2023, arXiv:2302.10866.

[12] A. Gu, K. Goel, A. Gupta, and C. Ré, ‘‘On the parameterization and
initialization of diagonal state space models,’’ in Proc. Adv. Neural Inf.
Process. Syst., 2022, pp. 35971–35983.

[13] E. Nguyen, K. Goel, A. Gu, G. Downs, P. Shah, T. Dao, S. Baccus,
and C. Ré, ‘‘S4ND: Modeling images and videos as multidimensional
signals with state spaces,’’ in Proc. Adv. Neural Inf. Process. Syst., 2022,
pp. 2846–2861.

[14] J. T. H. Smith, A. Warrington, and S. Linderman, ‘‘Simplified state space
layers for sequence modeling,’’ in Proc. 11th Int. Conf. Learn. Represent.,
2023, pp. 1–35.

[15] J. M. L. Alcaraz and N. Strodthoff, ‘‘Diffusion-based time series
imputation and forecasting with structured state space models,’’ Trans.
Mach. Learn. Res., pp. 1–36, Aug. 2023.

[16] A. Gu and T. Dao, ‘‘Mamba: Linear-time sequencemodeling with selective
state spaces,’’ 2023, arXiv:2312.00752.

[17] K. Cao, Y. Liu, G. Meng, and Q. Sun, ‘‘An overview on edge computing
research,’’ IEEE Access, vol. 8, pp. 85714–85728, 2020.

[18] Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang, ‘‘Edge intelligence:
Paving the last mile of artificial intelligence with edge computing,’’ Proc.
IEEE, vol. 107, no. 8, pp. 1738–1762, Aug. 2019.

[19] T. Choudhary, V. Mishra, A. Goswami, and J. Sarangapani, ‘‘A compre-
hensive survey on model compression and acceleration,’’ Artif. Intell. Rev.,
vol. 53, no. 7, pp. 5113–5155, Oct. 2020.

[20] H. Djigal, J. Xu, L. Liu, and Y. Zhang, ‘‘Machine and deep learning
for resource allocation in multi-access edge computing: A survey,’’ IEEE
Commun. Surveys Tuts., vol. 24, no. 4, pp. 2449–2494, 4th Quart., 2022.

[21] M. G. S. Murshed, C. Murphy, D. Hou, N. Khan, G. Ananthanarayanan,
and F. Hussain, ‘‘Machine learning at the network edge: A survey,’’ ACM
Comput. Surv., vol. 54, no. 8, pp. 1–37, Oct. 2021.

[22] N. Tekin, A. Aris, A. Acar, S. Uluagac, and V. C. Gungor, ‘‘A review of on-
device machine learning for IoT: An energy perspective,’’ Ad Hoc Netw.,
vol. 153, Feb. 2024, Art. no. 103348.

[23] S. Han, H. Mao, and W. J. Dally, ‘‘Deep compression: Compressing deep
neural network with pruning, trained quantization and Huffman coding,’’
in Proc. 4th Int. Conf. Learn. Represent., 2016, pp. 1–14.

[24] Y. LeCun, J. Denker, and S. Solla, ‘‘Optimal brain damage,’’ in Proc. Adv.
Neural Inf. Process. Syst., vol. 2, 1989, pp. 1–8.

[25] A. Gholami, S. Kim, Z. Dong, Z. Yao, M. W. Mahoney, and K. Keutzer,
‘‘A survey of quantization methods for efficient neural network inference,’’
in Low-Power Computer Vision. Boca Raton, FL, USA: CRC Press, 2022,
pp. 291–326.

[26] J. Gou, B. Yu, S. J. Maybank, and D. Tao, ‘‘Knowledge distillation:
A survey,’’ Int. J. Comput. Vis., vol. 129, no. 6, pp. 1789–1819, Jun. 2021.

[27] G. Hinton, O. Vinyals, and J. Dean, ‘‘Distilling the knowledge in a neural
network,’’ 2015, arXiv:1503.02531.

[28] Z. Hao, J. Guo, K. Han, H. Hu, C. Xu, and Y. Wang, ‘‘Revisit the power of
vanilla knowledge distillation: From small scale to large scale,’’ in Proc.
Adv. Neural Inf. Process. Syst., vol. 36, 2023, pp. 1–14.

[29] T. Huang, Y. Zhang, M. Zheng, S. You, F. Wang, C. Qian, and C. Xu,
‘‘Knowledge diffusion for distillation,’’ in Proc. Adv. Neural Inf. Process.
Syst., vol. 36, 2023, pp. 1–18.

[30] A. C. Antoulas, Approximation of Large-Scale Dynamical Systems.
Philadelphia, PA, USA: SIAM, 2005.

[31] A. Astolfi, ‘‘Model reduction bymoment matching for linear and nonlinear
systems,’’ IEEE Trans. Autom. Control, vol. 55, no. 10, pp. 2321–2336,
Oct. 2010.

[32] S. Gugercin, A. C. Antoulas, and C. Beattie, ‘‘H2 model reduction for
large-scale linear dynamical systems,’’ SIAM J.Matrix Anal. Appl., vol. 30,
no. 2, pp. 609–638, 2008.

[33] B. Moore, ‘‘Principal component analysis in linear systems: Controlla-
bility, observability, and model reduction,’’ IEEE Trans. Autom. Control,
vol. AC-26, no. 1, pp. 17–32, Feb. 1981.

[34] K. Sato, ‘‘Riemannian optimal model reduction of linear port-Hamiltonian
systems,’’ Automatica, vol. 93, pp. 428–434, Jul. 2018.

[35] K. Sato, ‘‘Riemannian optimal model reduction of stable linear systems,’’
IEEE Access, vol. 7, pp. 14689–14698, 2019.

[36] K. Sato, ‘‘Reduced model reconstruction method for stable positive
network systems,’’ IEEE Trans. Autom. Control, vol. 68, no. 9, pp. 5616–
5623, Sep. 2023.

[37] S. Massaroli, M. Poli, D. Fu, H. Kumbong, R. Parnichkun, D. Romero,
A. Timalsina, Q. McIntyre, B. Chen, and A. Rudra, ‘‘Laughing hyena
distillery: Extracting compact recurrences from convolutions,’’ in Proc.
Adv. Neural Inf. Process. Syst., 2023, pp. 1–45.

[38] G. E. Dullerud and F. Paganini, A Course in Robust Control Theory:
A Convex Approach. New York, NY, USA: Springer, 2000.

[39] D. Hendrycks and K. Gimpel, ‘‘Gaussian error linear units (GELUs),’’
2016, arXiv:1606.08415.

[40] I. Loshchilov and F. Hutter, ‘‘Decoupled weight decay regularization,’’
2017, arXiv:1711.05101.

[41] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms, 3rd ed., Cambridge, MA, USA: MIT Press, 2009.

[42] A. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts,
‘‘Learning word vectors for sentiment analysis,’’ in Proc. 49th Annu.
Meeting Assoc. Comput. Linguistics, Human Lang. Technol., 2011,
pp. 142–150.

[43] J. Donnelly, A. Daneshkhah, and S. Abolfathi, ‘‘Physics-informed neural
networks as surrogate models of hydrodynamic simulators,’’ Sci. Total
Environ., vol. 912, Feb. 2024, Art. no. 168814.

[44] M. Raissi, P. Perdikaris, and G. E. Karniadakis, ‘‘Physics-informed neural
networks: A deep learning framework for solving forward and inverse
problems involving nonlinear partial differential equations,’’ J. Comput.
Phys., vol. 378, pp. 686–707, Feb. 2019.

[45] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770–778.

[46] S. Ioffe and C. Szegedy, ‘‘Batch normalization: Accelerating deep
network training by reducing internal covariate shift,’’ in Proc. Int. Conf.
Mach. Learn., 2015, pp. 448–456.

[47] J. L. Ba, J. R. Kiros, and G. E. Hinton, ‘‘Layer normalization,’’ 2016,
arXiv:1607.06450.

HARUKA EZOE received the bachelor’s degree
in engineering from The University of Tokyo,
in 2024, where she is currently pursuing the
master’s degree. Her research interest includes
data mining.

KAZUHIRO SATO (Member, IEEE) received
the B.S., M.S., and Ph.D. degrees from Kyoto
University, Japan, in 2009, 2011, and 2014, respec-
tively. From 2014 to 2017, he was a Postdoctoral
Fellow at Kyoto University. From 2017 to 2019,
he was an Assistant Professor at Kitami Institute of
Technology. From 2019 to 2023, he was a Lecturer
at the Department of Mathematical Informatics,
Graduate School of Information Science and Tech-
nology, The University of Tokyo. He is currently

working as an Associate Professor with the Department of Mathematical
Informatics. His research interests include mathematical control theory and
optimization. He is a member of SICE.

VOLUME 12, 2024 116427

