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ABSTRACT Dense multi-view image reconstruction has been a focal point of research for an extended period,
with recent surges in interest. The utilization of multi-view images offers solutions to numerous challenges and
amplifies the effectiveness of various applications including 3D reconstruction, de-occlusion, depth sensing,
saliency detection, and identifying salient objects. This paper introduces an approach to reconstructing
high-density light field (LF) images, addressing the inherent challenge of balancing angular and spatial
resolution caused by limited sensor resolution. We introduce an innovative approach to reconstructing LF
images through a CNN-based network that combines spatial and epipolar features in both initial and deep
feature extraction phases. Our network utilizes angular information during upsampling and employs dual
feature extraction to effectively analyze horizontal and vertical epipolar data. Weight sharing within the
CNN block between horizontal and vertically transposed stacks enhances quality while preserving model
compactness. The outcomes of experiments carried out on real-world and synthetic datasets demonstrate the
effectiveness of our method, showcasing its superior performance in both inference speed and reconstruction
quality when compared to state-of-the-art (SOTA) techniques.

INDEX TERMS Light field reconstruction, based view synthesis, angular super-resolution, convolutional
neural network.

I. INTRODUCTION
Unlike traditional cameras that capture 2D images, light
field (LF) cameras capture multi-view images, preserving
the directions of incoming light rays and 3D geometry
information efficiently [1], [2]. This additional angular
information enhances 3D representation quality, benefiting
applications such as 3D reconstruction and display [3], object
segmentation [4], virtual reality applications [5], image post-
refocus [6], [7], depth inference [8], [9], de-occlusion [10],
reflectance estimation [11], [12].

The associate editor coordinating the review of this manuscript and
approving it for publication was Jenny Mahoney.

Different methodologies exist for acquiring LF images [13].
Early approaches used multi-camera system [14] for
single-shot capture and time-sequential systems [15] with a
computer-controlled gantry and single camera for multiple
shots, but these are complex and expensive. Recently,
plenoptic cameras (e.g., RayTrix [5]) have advanced LF
imaging by using a micro-lens array between the sensor
and primary lens to capture additional angular information.
Plenoptic cameras capture densely sampled LF images in
one shot, but face a trade-off between angular and spatial
resolutions due to limited sensor resolution. Since the product
of these resolutions cannot exceed the sensor resolution,
achieving high spatial resolution in densely sampled LF
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images is costly. This trade-off presents challenges for
practical applications of LF imaging.
To address this problem, some researchers investigate LF

spatial super-resolution [16], aims to generate high-resolution
images from low-resolution inputs, while others explore LF
angular super-resolution [17], [18], [19], [20], [21], [22], [23],
[24], [25], [26], [27], [28], [29], [30], [31], [32], enhancing the
angular resolution by reconstructing densely sampled views
from sparse input views.

Learning-based methods for densely sampled LF construc-
tion are categorized into depth-based [17], [18], [19], [20],
[21], [22], [23] and non-depth-based [24], [25], [26], [27], [28],
[29], [30], [31], [32]. Depth-based methods estimate disparity
maps to synthesize novel views, performing well in regions
with large disparities but struggling with small disparities
and textureless areas. Non-depth-based methods use local LF
information without explicit depth, excelling in small disparity
regions but struggling with large disparities. Success relies
on effectively exploiting intrinsic LF relationships. Various
representations, such as sub-aperture images (SAIs), epipolar-
plane images (EPIs), and macro-pixel images (MacPIs),
contribute to diverse approaches as illustrated in Fig. 1.
LF sampling’s grid-like structure necessitates a deep

exploration of angular information across views. Key
considerations include distinct epipolar information within
the grid, revealing parallax relationships, and complementary
angular domain information that enhances sub-pixel details.
Therefore, we propose a CNN with dual-feature extraction
and macro-pixel upsampling. The initial part of our network
delves into spatio-epipolar information while preserving
the grid-like structure. The subsequent part focuses on
exploring spatio-angular information for angular upsampling.
We encapsulate our contributions in the following manner.

1) Unlike previous methods that use the same LF repre-
sentation for feature extraction and upsampling, we perform
feature extraction on SAIs and upsampling on the MacPI
representation.
2) Our dual feature extraction mechanism captures both

horizontal and vertical epipolar information within a single
CNN block. By reorganizing view stacks to emphasize spatial
information and sharing weights between horizontally and
vertically transposed stacks, we enhance quality and model
compactness.
3) Experiments on real-world and synthetic datasets

demonstrate that our approach outperforms SOTA methods in
reconstruction quality across most datasets.

The subsequent sections are organized as follows: Section II
reviews relevant literature, Section III outlines the proposed
approach, Section IV details experiments and ablation studies,
and Section V concludes the paper.

II. RELATED WORK
Researchers have employed various methods to reconstruct
a densely sampled LF from a limited set of input views,
categorized into depth-based and non-depth-based methods.
Below, we briefly discuss these approaches.

FIGURE 1. Different LF subspaces. (a) Sub-aperture Images (SAIs).
(b) Epipolar-plane Image (EPI). (c) Macro-pixel Images (MacPIs).

A. DEPTH-BASED LF RECONSTRUCTION
Wanner and Goldluecke [17] analyzed 4D LF reconstruction
using EPI to estimate the disparity map, which is then used
to synthesize novel views. Zhang et al. [18] employed a
phase-based approach to reconstruct LF from amicro-baseline
stereo pair, using disparity-assisted phase-based synthesis.
However, this method is susceptible to artifacts in occluded
regions. Expanding upon the patch-based synthesis technique,
Zhang et al. [19] extended patch-based synthesis by repre-
senting LF views as overlapping layers with varying depths.

Recent deep learning approaches use CNNs for LF angular
SR. Typically, these systems comprise two sub-networks: one
for depth estimation and another for view refinement. The
whole process can be described as:

1) Depth estimation:
D(x, u) = fd

(
L(x, u′)

)
Here, D(x, u) represents the depth map estimated using
the function fd from the input LF views L(x, u′).

2) Warping based on estimated depth:
W (x, u, u′) = L

(
x + D(x, u)(u− u′), u′

)
Where W (x, u, u′) denotes a novel view at angular
position u produced by warping an input view at u′.

3) View refinement:
L̂(x, u) = W (x, u, u′) + fr (W (x, u, u′))

The final view L̂(x, u) is obtained by adding the wrapped
view and the refined view using the function fr .

Following this paradigm, Kalantari et al. [20] proposed a
learning-based method that incorporates disparity and color
estimation to reconstruct novel views. However, the quality
of these reconstructed views degrades, especially in occluded
and textureless regions where depth estimation is particularly
challenging. Salem et al. [21] introduced a dual-disparity
vector technique within a two-stage neural network. This
approach enhances the reconstruction quality of Kalantari’s
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FIGURE 2. Dual features extraction mechanism.

method and speeds up the process using a predefined discrete
cosine filter. Jin et al. [22] developed a depth estimator with
a large receptive field and a refinement module to blend
novel views. They later introduced a versatile reconstruction
network that estimates confidence and disparity maps for view
synthesis and image-warping [23].
Depth-based methods rely heavily on accurate depth

estimation, which is challenging in occluded regions, leading
to ghosting artifacts and photo consistency issues between
synthesized views.

B. NON-DEPTH-BASED LF RECONSTRUCTION
Non-depth-based methods bypass explicit depth estimation,
using traditional and CNN-based approaches. Mitra and
Veeraraghavan [24] introduced a patch-based reconstruction
technique, representing patches as a Gaussian Mixture
Model. Shi et al. [25] exploited LF sparsity in the Fourier
domain, using boundary and diagonal viewpoints for LF
reconstruction, though this method requires a specific LF
capture pattern. Vagharshakyan et al. [26] applied a sparse
representation of EPI in the shearlet transform domain, using
an iterative regularization algorithm to reconstruct semi-
transparent scenes.
CNN-based methods have also been developed for LF

reconstruction without depth information.The process can be
described as follows:

L̂(x, u) = f (L(x, u′), θ)
where f represents the function that reconstructs L̂(x, u)
from input LF views L(x, u′) and θ represents the network
parameters learned during training.
Following this paradigm, Yoon et al. [27] generated

new views from two adjacent views using a deep network.
Zhu et al. [28] introduced a CNN-LSTM network to
enhance LF spatial and angular dimensions. Wu et al. [29]
addressed spatial-angular information asymmetry with a

blur-restoration-deblur strategy in the EPI domain, though
this method is challenged by significant disparities. Later,
they improved this approach by merging sheared EPIs [30].
Wang et al. [31] proposed a disentangling mechanism to
separate spatial, angular, and epipolar information for LF
angular SR. Liu et al. [32] achieved ASR using spatial-angular
feature extraction andMacPI upsampling, offering an effective
structure for restoring angular resolution. Salem et al. [33]
simplified the LF reconstruction problem by converting the
4D LF into a 2DMacPI image. This transformation effectively
reduces the complexity from a 4D to a 2D domain.

III. METHODOLOGY
A. PROBLEM FORMULATION
LF is represented as a 4D function, denoted as L(u,v,x,y)∈
RS×T×H×W , where S×T represents the angular resolution, and
H×W represents the spatial resolution, as shown in Fig. 1. Let
ILR ∈ RS×T×H×W denote a sparsely sampled (i.e., low angular
resolution) LF image, comprising S×T sub-aperture images,
each with a spatial resolution ofH×W . Given ILR, the objective
of this research is to reconstruct a high angular resolution
equivalent, IHR ∈ RαS×αT×H×W , where α is the angular scale
factor, withα > 1. After the reconstruction process, the number
of novel views synthesized to increase the angular resolution
is (αU×αV−U×V) views. In this work, we convert LF images
from RGB to the YCbCr color space and operate solely on the
Y channel. The Cb and Cr channels are first upsampled using
bicubic interpolation and then integrated with the Y channel
to generate the final IHR LF image.

B. DUAL FEATURES EXTRACTION
To build an effective feature extraction stage, it’s important
to understand the LF information, which includes angular,
spatial, and epipolar aspects. Our network uses spatial and
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FIGURE 3. An overview of the proposed network framework. The (*) symbol indicates the application of dual feature extraction in the block.

epipolar information during feature extraction and uses
angular information during upsampling.

In our framework, instead of separating the LF information,
we create view image stacks to utilize the combined epipolar
and spatial information. By stacking view images along the
horizontal or vertical angular direction, we obtain view image
stacks V i

u = L(i, :, :, :) ∈ RV×H×W and V i
v = L(:, i, :, :) ∈

RU×H×W . As illustrated in Fig. 2, slicing the view image V i
v

in the w spatial direction results in 2D slices I vw ∈ RU×H ,
which are EPIs. To enhance efficiency, we share parameters
during the extraction process by transposing the vertical stacks
before extraction, making them behave like horizontal stacks,
and then transposing them back after extraction. The feature
extraction process can be described as follows:

1) Horizontal feature extraction:
IHF = FE(ILR(i, :, :, :)), i ∈ {1, . . . , S}

2) Vertical feature extraction:
IVF = FE(ILR(:, j, :, :)), j ∈ {1, . . . ,T }

3) Combining features:
IF = IHF + IVF, IF ∈ RS×T×H×W×C

Here, combining the features ensures that the network
leverages information from both horizontal and vertical
directions. This comprehensive approach capturesmore details
and relationships between different views, leading to improved
accuracy and balanced representation. FE is the initial feature

extraction layer using a 2D convolution with a 3 × 3 kernel,
as shown in Fig. 2.
We apply the same dual feature extraction mechanism to

the Deep-ResBlocks. The input to the first Deep-ResBlock,
IF ∈ RS×T×H×W×C , is arranged into horizontal and vertical
feature stacks, represented as IF(i,:,:,:) ∈ RTC×H×W and IF(:,j,:
,:) ∈ RSC×H×W , respectively. The process is as follows: DFE1
represents the first Deep-ResBlock, as shown in Fig. 3:

1) Horizontal deep feature extraction:
IDHF = DFE1(IF(i, :, :, :)), i ∈ {1, . . . , S}

2) Vertical feature extraction:
IDVF = DFE1(IF(:, j, :, :)), j ∈ {1, . . . ,T }

3) Combining features:
IDF = IDHF + IDVF, IDF ∈ RS×T×H×W×C

In previous work DistgASR [31], the 4D LF was organized
as an H × W array of macro-pixels (MacPIs) with three
separate feature extractors designed for spatial, angular, and
epipolar information. While this approach reduced processing
complexity, it ignored the coupling between spatial, angular,
and epipolar information. In our approach, we process spatial
and epipolar information together to utilize the coupled
information more effectively. While in [32], the angular
dimensions of the extracted features were stacked and
processed by a 3D-UNet, resulting in features with dimensions
(UV ) × C × H ×W . This approach not only ignores the
epipolar information but also makes it difficult for the network
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to decouple spatial and angular information simultaneously.
In our approach, we divide the processing into two steps. First,
we process horizontal and angular information separately, and
then we combine them.

C. NETWORK STRUCTURE
Our network, shown in Fig. 3, is designed to take a sparsely
sampled LF, denoted as ILR ∈ RS×T×H×W as input and
reconstruct a densely sampled LF represented as: IHR ∈

RαS×αT×H×W . The network’s workflow can be divided into
several stages: 1) Initial Feature Extraction (FE): The network
begins with an Initial Feature Extraction layer that processes
the input ILR to produce feature maps IFE ∈ RS×T×H×W×C .
2) Deep Feature Extraction (DFE): Following the initial
extraction, the network uses several Deep-ResBlocks to
further explore and refine the features. These blocks effectively
capture spatial and epipolar information from the input. Both
the Initial Feature Extraction layer and the Deep-ResBlocks
use a dual feature extraction, indicated by the asterisk (*) in
Fig. 3. This means they extract features in both horizontal
and vertical directions, (as shown in Fig. 2). 3) Combining
Features: The features extracted from the FE layer and each
DFE layer are concatenated together and reshaped into a
MacPIs for further processing. 4) Channel Attention and
Fusion: The combined features pass through a Channel
Attention Block (CA), which helps the network focus on the
most important features. A 1×1 convolution layer then merges
this information, preparing it for the next stage. 5) Angular
Upsampling: The upsampling block increases the resolution of
the combined features, resulting in a higher-resolution image
array resulting in IHR ∈ RαS×αT×H×W , which is subsequently
reshaped back into the SAI format IHR ∈ RαS×αT×H×W ,
now with more densely sampled data. 6) Final Output: The
network performs an input replacement step to finalize the
high-resolution output IHR.

D. NETWORK BUILDING BLOCKS
In this subsection, we offer a comprehensive explanation of
the key elements that constitute our network.

1) INITIAL FEATURE EXTRACTION (FE)
Our feature extraction process starts with the initial feature
extraction phase. It takes ILR ∈ RS×T×H×W as input
and produces IFE as output:

IFE = HFE (ILR), IFE ∈ RS×T×H×W×C

Here,HFE represents the 3×3 convolutional layer that extracts
the initial features using the dual feature extraction mechanism
as outlined earlier. This layer captures essential information
from the input data.

2) DEEP FEATURE EXTRACTION (DFE)
In the second phase, the network employs N Deep-ResBlocks
to enhance the feature details. These blocks densely connect
spatial and epipolar information from the input. The
process is as follows:

InDF = Hn
DFE (I

(n−1)
DF ), InDF ∈ RS×T×H×W×C , n ∈ {1, . . . ,N }

Each Deep-ResBlock Hn
DFE refines the features extracted

from the previous block. Both the initial feature extraction
layer and the Deep-ResBlocks use the dual feature extraction
mechanism, capturing information in both horizontal and
vertical directions.

The Deep-ResBlock is constructed using 2D convolutions
with a kernel size of 3 × 3 and LeakyReLU activations with a
negative slope of 0.1, as illustrated in Fig. 3.

3) FEATURE CONCATENATION AND RESHAPING
To strengthen the network’s ability to learn hierarchical
representations, we concatenate features from both the initial
and deep feature extraction stages:

ICAT = HCAT
(
IFE , I1DFE , . . . , INDFE

)
, ICAT ∈ RS×T×H×W×(N+1)C

Here, HCAT denotes the concatenation process. These concate-
nated features are reshaped intoMacPI representation, organiz-
ing spatial and angular information jointly. Following similar
approaches as [31] and [32], we use a PixelShuffle layer to
convert the 4D LF features into the MacPIs representation:

ICAT ∈ RSH×TW×(N+1)C

4) FEATURE ATTENTION AND FUSION
Following [37], we incorporate a channel attention mech-
anism to selectively enhance informative features while
suppressing less relevant ones through adaptive weighting.

ICA = f (WU · δ(WD · AvgPool(ICAT ))) × ICAT
Here, f and δ are sigmoid and ReLU activation functions,
respectively, andWU andWD are 1 × 1 convolution kernels.
This mechanism focuses the network on the most relevant
features. A 1×1 convolution layer then fuses these features:

IFuse ∈ RSH×TW×C

5) ANGULAR UPSAMPLING
We adopt the downsample-upsample approach to perform
angular upsampling [31]. The process involves several steps,
detailed below:

1) Downsampling:
A convolution layer with a kernel size of S × T is used
to downsample the fused features from RSH×TW×C to
RH×W×C .

2) Channel Expansion:
A 1 × 1 convolutional layer is applied to expand the
channels to RH×W×α2STC , where α is the scaling factor.

3) Pixel Shuffling:
A pixel-shuffle operator is employed to rearrange the
expanded features. This step is followed by a 3 × 3
convolutional layer to generate a high-resolution with
dimensions RSH×TW×1.

4) Reshaping and Replacement:
The resulting MacPI image is reshaped back into the
SAI format. The corner images in the output are replaced
with the original input images to maintain consistency.

121628 VOLUME 12, 2024



A. Salem et al.: LF Reconstruction With Dual Features Extraction and Macro-Pixel Upsampling

FIGURE 4. Visual comparison between our proposed approach and SOTA methods for 2 × 2 → 7 × 7 ASR on real-world datasets.

IV. EXPERIMENTS
This section starts with an exploration of the datasets used and
delves into the implementation details of our model. Following
this, we perform a comprehensive comparative analysis
between our proposed model and SOTAmethods, highlighting
key differences and advantages. Next, we present detailed
ablation studies to illustrate the impact of the introduced
modifications on performance, providing insights into the
effectiveness of each component.

A. IMPLEMENTATION DETAILS
Following the approach described in [23], our experiments
include both real-world and synthetic LF datasets. Specifically,
we use the 30scenes [20] and STFlytro [34] datasets for

real-world data, while HCInew [35] and HCIold [36] serve as
our synthetic datasets. The division of training and testing data
aligns with themethod in [23], using 100 real-world scenes and
20 synthetic scenes for training. For testing, we use 30 scenes
from the 30scenes dataset, and 40 scenes from the STFlytro
dataset, divided into 25 and 15 scenes from the Occlusion and
Reflective categories respectively. For the synthetic datasets,
we select 4 scenes from HCInew and 5 scenes from HCIold.

These datasets incorporate several critical factors essential
for evaluating LF reconstruction methods. Specifically, the
synthetic datasets are particularly valuable for assessing the
performance of methods on large-baseline LFs, as evidenced
by their substantial disparity ranges shown in Table 1. These
datasets also feature high-resolution textures, which are crucial

VOLUME 12, 2024 121629



A. Salem et al.: LF Reconstruction With Dual Features Extraction and Macro-Pixel Upsampling

FIGURE 5. Visual comparison between our proposed approach and SOTA methods for 2 × 2 → 7 × 7 ASR on synthetic datasets.

TABLE 1. Details of the used datasets.

for evaluating the methods’ ability to preserve high-frequency
details. To quantify the complexity of textures within these
scenes, we report the texture contrast, calculated on the
center view using the Gray-Level Co-occurrence Matrix [39].
A higher texture contrast indicates scenes with more complex
textures. Conversely, the real-world datasets provide a means
to evaluate performance under natural illumination conditions
and practical camera distortions.
These datasets typically exhibit much smaller disparity

ranges compared to synthetic datasets. However, the porta-
bility of the Lytro camera allows for the capture of diverse

outdoor scenes with intricate real-world textures, the texture
contrast is very high indicating more complex textures as
highlighted in Table 1. By addressing these varied aspects,
these datasets facilitate a comprehensive evaluation of LF
reconstruction methods, ensuring that they are accurately
tested across a wide spectrum of scenarios and challenges.
for simplicity, we employ a 2 × 2 → 7 × 7 ASR setting.

To create training and test samples, we conduct angular
cropping on the central 7 × 7 SAIs and use the 2 × 2 corner
views to rebuild the remaining views. Throughout the training,
each SAI is cropped into 64 × 64 patches. To enhance model
robustness, we use data augmentation techniques such as
vertical flipping, 90-degree rotation, and random horizontal
flipping.

Our network was trained with N = 5 for the number of the
Deep Res-Blocks, a batch size of 4, employing optimization
through the Adammethod [38] setting β1 = 0.9 and β2 = 0.999.
The L1 loss is more effective at reconstructing sharp edges than
the L2 loss [32]. Therefore, we use the L1 loss to constrain the
constructed novel views and the ground truth. For a training
pair {IGT, ILR}, where IGT is the LF ground truth image, ILR
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is the sparsely sampled input, and f represents our proposed
network. The loss function is defined as:

Loss = ∥f (ILR) − IGT∥1

The starting learning rate was configured at 2 × 10−4 and
was reduced by half every 25 epochs. The training process
concluded after 80 epochs. All experiments were conducted
on a PC equipped with Nvidia GeForce RTX 4090 GPU.
For quantitative evaluation, we utilized PSNR and SSIM

values calculated on the Y channel images. Initially, PSNR
and SSIM values were computed for the reconstructed views
(a total of 45 views for 2 × 2 → 7 × 7 ASR) and averaged
these values to get a score for each scene. The overall score
for a dataset was then determined by averaging the scores of
all its scenes.

B. COMPARISON WITH STATE-OF-THE-ART METHODS
We compare the proposedmodel with SOTALF reconstruction
methods, including Kalantari et al. [20], Jin et al. [22], LFASR-
FS-GAF [23], DistgASR [31], and EASR [32]. To assess
performance quantitatively, we employ PSNR and SSIM
metrics. The PSNR and SSIM values for all methods are
computed using the Y channel images from the synthesized
views. To assess performance visually, we employ error maps
between the ground truth Y channel images of different views
and the Y channel images of the synthesized views from all the
methods. The quantitative results of our reconstruction task
(2 × 2 → 7 × 7) are presentedin Table 2. It’s evident that our
model outperforms others on real-world test datasets. While it
ranks second-best behind the depth-based LF reconstruction
method LFASR-FS-GAF [23] on the HCInew test dataset,
our model achieves superior performance on the HCIold
dataset for synthetic datasets. Specifically, compared to the
non-depth-based methods DistgASR [31] and EASR [32],
our model surpasses them on the real-world test dataset by
0.14 dB and 0.37 dB, respectively, on the 30-scenes dataset.
Additionally, it surpasses them by 0.74 dB and 0.40 dB on the
occlusion dataset, and by 0.67 dB and 0.43 dB on the reflective
dataset. Furthermore, our model outperforms both on average
by 0.81 dB and 0.55 dB on the synthetic datasets.

Compared to the depth-based methods Kalantari et al. [20],
Jin et al. [22], LFASR-FS-GAF [23], our model surpasses
them on the real-world test dataset by 2.41 dB, 1.27 dB, and
1.06 dB, respectively, on the 30-scenes dataset. Additionally,
it surpasses them by 2.95 dB, 1.67, and 1.69 dB on the
occlusion dataset, and by 1.69 dB, 1.32, and 1.43 dB on
the reflective dataset. Furthermore, our model outperforms
both Kalantari et al. [20], and Jin et al. [22], on HCInew by
2.78 dB and 1.03 dB respectively. Additionally, it surpasses
them by 4.29 dB and 2.03 dB on the HCIold dataset.
Compared to LFASR-FS-GAF [23], we surpass them by
1.07 dB on the HCIold dataset. Still, because they formulate
plane-sweep volumes (PSVs) for deducing depth, enabling
them to perform better on the large-disparity HCInew dataset,
However, it faces challenges in effectively utilizing sub-pixel
correspondences in scenarios with small disparities as seen

in real-world datasets. Additionally, our model achieves
the best SSIM among all the methods. Our framework
learns occlusion relationships, spatial texture structures, and
geometric consistency among neighboring views implicitly.
By leveraging more information due to dual feature extraction
in LF angular reconstruction, we achieve a higher quality of
reconstruction, particularly in occluded regions.
Our proposed method achieves a model size of 2.08M

parameters, which is smaller compared to other non-depth-
based methods with sizes of 6.44M [32] and 2.74M [31].
Given that our approach and depth-based methods operate
in fundamentally different ways, a direct comparison of
computational complexity may not fully capture the efficiency
of each method. Nevertheless, our model’s smaller size
contributes to its efficiency in terms of memory usage
and processing speed. Additionally, the design of our
CNN-based network supports scalable performance with
reduced computational overhead in real-world applications.

Figures 4 and 5 depict the visual comparison among various
methods. The error maps reveal that our approach produces
views that closely resemble the ground truth, preserving
intricate structures. However, it’s worth noting that for the
HCInew dataset, LFASR-FS-GAF [23] outperforms our
method. The zoomed-in areas demonstrate that our approach
effectively preserves detailed textures during the synthesis of
new views, whereas the compared methods exhibit varying
degrees of blurring or artifacts.

C. ABLATION INVESTIGATION
In this subsection, we conduct multiple experiments to validate
the efficacy of the proposed method. The primary contribution
of this method is dual feature extraction; therefore, we conduct
four variants to demonstrate its effectiveness and the fifth
variant for the Channel Attention layer, as shown in Fig. 6
compared to our proposed method.

1) INTIAL FEATURS FROM EACH SAI IMAGE
Instead of employing dual feature extraction for the initial
features, we developed an alternative approach as our first
variant where the initial features are individually extracted
from each SAI. This is achieved by first applying a shared
weight 3 × 3 convolution to each SAI. Subsequently,
we continue to utilize dual feature extraction within the Deep
ResBlock for further processing, as shown in Fig. 6 (Model
with FE on SAIs). Table 3 demonstrates that the PSNR
values of this variant (SAIs_init) experience a decrease of
0.69 dB, 0.47 dB, and 0.60 dB on the 30-scenes, Occlusions,
and Reflective datasets, respectively, when compared with
our method. This indicates the effectiveness of dual feature
extraction with the initial feature extraction.

2) DEEP FEATURS FROM A SINGLE DIRECTION
We developed the second and third variants by selecting a
single direction, either horizontal or vertical, for extracting
deep features in the Deep ResBlocks instead of employing
dual feature extraction. In the second variant, we stacked
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TABLE 2. Quantitative comparisons (using PSNR/SSIM) between our proposed approach and SOTA methods for 2 × 2 → 7 × 7 ASR. The best results are
bolded while the second-best results are underlined.

TABLE 3. Ablation results on the real-world dataset for (2 × 2 → 7 × 7)
task. The best results are in bold.

the SAIs in the horizontal direction only, as illustrated in
Fig. 6 (Model with Horizontal Deep ResBlocks). For the third
variant, we stacked the SAIs in the vertical direction only,
as depicted in Fig. 6 (Model with Vertical Deep ResBlocks).
Table 3 demonstrates that the PSNR values of the horizontal
variant (H) experience a decrease of 0.36 dB, 0.54 dB, and
0.43 dB on the 30-scenes, Occlusions, and Reflective datasets,
respectively, when compared with our method. Similarly,
for the vertical variant (V), there is also a decrease of
0.39 dB, 0.58 dB, and 0.44 dB. This shows that adding more
information in the reconstruction process helps increase the
quality of the reconstruction.

3) W/O WEIGHT SHARING BETWEEN HORIZONTAL AND
VERTICAL DIRECTIONS
In the dual feature extraction process, we transposed the
vertical stack and applied weight sharing between the
horizontal and transposed vertical stacks. For the fourth
variant, we eliminated weight sharing between the horizontal
and vertical directions and processed each stack separately,
as shown in Fig. 6 (Model with Horizontal & Vertical
Deep ResBlocks). As seen from Table 3, there is a
significant disparity in the number of parameters between
this variant (i.e., w/o WS) and our method, favoring our
approach. Additionally, it experiences a reduction of 0.11 dB,
0.15 dB, and 0.14 dB on the 30-scenes, Occlusions, and
Reflective test sets, respectively, when compared with our
method. This underscores the efficiency of our proposed
approach. It also demonstrates that the weight-sharing
strategy can offer additional regularization for our dual
features, aiding them in better conforming to the LF parallax
structure.

FIGURE 6. Different variants validate the efficacy of the proposed model.
The (*) symbol indicates the application of dual feature extraction in the
block.

4) CHANNEL ATTENTION LAYER
The final part of our ablation study was conducted to
demonstrate the effectiveness of the Attention layer. For this
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purpose, we removed the Attention layer and directly fused
the features of the Deep ResBlocks, as shown in Fig. 6 (Model
without Channel Attention). In this variant (i.e., w/o CA),
the PSNR values experienced decreases of 0.34 dB, 0.39 dB,
and 0.52 dB on the 30-scenes, Occlusions, and Reflective
datasets, respectively, compared to our method, as shown in
Table 3. This illustrates the model’s capability to selectively
enhance informative features while suppressing less relevant
ones through adaptive weighting.
In summary, our framework, unlike previous variants,

offers several benefits, including the addition of extra
information for reconstruction, reduction in size complexity,
preservation of the parallax structure, and enhancement of
angular reconstruction quality.

V. CONCLUSION
In this paper, we introduce a novel LF reconstruction method
by designing a CNN-based network that integrates spatial
and epipolar features during both the initial and deep feature
extraction stages, while leveraging angular information during
the upsampling stage. Our key contributions include a
dual feature extraction method that combines epipolar and
spatial information and a parameter-sharing mechanism that
maintains model efficiency and compactness. Together, these
components contribute to our SOTA performance, as validated
by extensive experiments demonstrating superior numerical
and visual results.
In future work, we aim to advance the network by inte-

grating diagonal processing alongside traditional horizontal
and vertical processing. Diagonal processing is intended to
capture patterns and relationships that extend beyond the
constraints of these axes, thereby enhancing the handling
of complex data relationships and contributing to more
accurate and robust results. Additionally, we will implement
shearing techniques to address challenges related to occlusions,
reflections, and reconstructions involving larger disparity
ranges. LF shearing entails applying a shear transformation to
EPIs to mitigate disparities between views and reduce angular
aliasing. This technique has the potential to improve the quality
of reconstructed views and diminish ghosting effects, resulting
in clearer and more detailed reconstructions. Lastly, we will
address the current lack of statistical analysis by incorporating
confidence intervals, p-values, and other statistical measures
to rigorously validate our results and substantiate the claims
of performance improvements.
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