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ABSTRACT The development of measurement matrices remains a pivotal focus within the domain of
compressed sensing theory. This paper introduces an innovative methodology for the construction of a
deterministic binary measurement matrix, harnessing the properties of chaotic sequences. This approach
streamlines the process and only requires a fixed number of initial variables for matrix construction. The
construction method of the measurement matrix is divided into two distinct stages. Initially, the matrix
elements are extracted through gapless sampling of chaotic sequences. Recognizing the inherent correlation
among chaotic sequence elements due to gapless sampling, this paper introduces a novel nonlinear
binary transformation. This innovative approach effectively mitigates the correlation and concurrently
addresses storage limitations. Thereafter, the entries are integrated into a Toeplitz matrix, leveraging its
structured row and columnar properties to augment storage efficiency. In subsequent steps, the approach
integrates the Householder transformation to generate an orthogonal basis, thereby enhancing the matrix’s
performance. Additionally, an XOR operation is employed to optimize the distribution of entries across
each column vector. The research substantiates that the resultant matrix exhibits low correlation, is facile in
generation, and amenable to reconstruction. Comprehensive experimental data corroborate the efficacy of
the constructed measurement matrix in processing both one-dimensional and two-dimensional signals. The
matrix demonstrates a strong potential to meet the Restricted Isometry Property (RIP), thereby underscoring
its substantial advantages across a myriad of considerations.

INDEX TERMS Compressed sensing, deterministic measurement matrix, chaotic sequences, restricted
isometry property.

I. INTRODUCTION

Compressed Sensing (CS), pioneered by Donoho et al.
[1], represents an innovative paradigm in signal sampling.
The CS framework encompasses sampling, compression,
and signal reconstruction phases. Pivotal areas of research
within this domain are the selection of sparse matrices,
the crafting of measurement matrices, and the refinement
of signal reconstruction algorithms. CS is predicated on
the principle that signals which are sparse in their original
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form or within a transformed domain can be accurately
recovered from a subset of measurements. The construction
of the measurement matrix stands as a cornerstone of
CS theory, exerting a profound impact on the fidelity
of both signal acquisition and reconstruction. The broad
applicability of CS is becoming increasingly apparent, with
its utility extending to a spectrum of disciplines and practical
applications. In the context of vibration signal acquisition,
sensor failures and transmission issues can cause data loss,
which is treated as a stochastic CS scenario. Utilizing CS
reconstruction algorithms enables the recovery of the original
signal from incomplete data, addressing data recovery.

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

VOLUME 12, 2024

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

116135


https://orcid.org/0009-0008-4350-7887
https://orcid.org/0000-0003-1495-3171
https://orcid.org/0000-0003-3575-5086

IEEE Access

X. Zhang, H. Yu: Construction of a Deterministic Binary Chaotic CS Measurement Matrix

Moreover, CS techniques aid in the swift identification
of sensor malfunctions and curtail network communication
loads by extracting system status from a constrained set
of sensor readings. Notable other examples include the
processing of electrocardiogram (ECG) signals [2], the
reconstruction of video data via compressive sensing tech-
niques [3], and SAR image reconstruction via CS incremental
imaging [4].

To evaluate the suitability of measurement matrices,
Candes and Tao introduced the seminal Restricted Isometry
Property (RIP) [5], a criterion that certifies a matrix’s
ability to faithfully reconstruct original signals from their
low-dimensional projections. Measurement matrices are
traditionally classified into two categories: random and
deterministic. Initially, CS research predominantly utilized
random matrices, such as Gaussian [6] and Bernoulli [7]
matrices, which, despite fulfilling the RIP conditions, present
significant challenges due to their inherent lack of structure.
This results in high demands for storage and computational
resources. In response, deterministic matrices have risen in
prominence, providing structured alternatives including the
Fourier matrix [8]; matrices derived from optimal codebooks
and codes [9]; and low-coherence explicit matrix based on
algebraic geometry coding [10].

Chaotic sequences, endowed with inherent randomness
and nonlinearity, have risen as auspicious contenders for
the construction of compressed sensing measurement matri-
ces [11]. Recognizing their desirable attributes, researchers
have advocated for their utilization in the formulation of
such matrices, exemplified by the development of a dynamic
sparse circulant measurement matrix leveraging a novel
compound Sine chaotic map [12]; matrices predicated on
Chebyshev chaotic sequences [13]; and matrices generated
through a 2D-SLIM mapping technique [14]. Additionally,
an orthogonal matrix, underpinned by a nonlinear chaotic
system, has been introduced for compressive sensing appli-
cations [15]. However, traditional approaches to constructing
measurement matrices from chaotic sequences necessitate
meticulous attention to sampling intervals to mitigate
cross-correlation among data points, a requirement that can
engender data redundancy. To ameliorate the efficiency of
signal processing, the present study introduces an enhanced
methodology that integrates a variety of chaotic sequences,
culminating in the advancement of a superior measurement
matrix.

The primary contributions of this paper are as follows:

1. The paper introduces an innovative methodology for
constructing deterministic binary measurement matrices,
employing a variety of chaotic maps. Rigorous validation has
established that this novel approach not only adheres to the
RIP but also excels in performance compared to conventional
measurement matrices.

2. The paper presents a novel nonlinear binary transforma-
tion and a method for the selection of high-quality orthogonal
bases via Householder transformation, both of which serve to
augment matrix performance.
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3. This study achieves a substantial reduction in the length
of initial variables and the storage space requisite for the
generation of the measurement matrix. This reduction in
resource demands facilitates cost savings and enhances the
efficiency of resource utilization.

Il. CAMPRESSED SENSING THEORY

Compressed sensing theory represents a breakthrough from
the constraints of the Nyquist-Shannon sampling theorem,
alleviating data sampling, storage, transmission, and analysis
burdens significantly. If a one-dimensional signal x €
RN contains k non-zero elements (where k <« N), it is
considered sparse. While most time domain signals lack
inherent sparsity, they can be represented sparsely under an
orthogonal basis set as expressed by the equation:

x =Va (1)

Here, ¥ € RV*N represents a sparse matrix, o € RY denotes
a sparse coefficient, and the sparse coefficient exhibits
sparsity. For a sparse signal x € R, compression and
sampling are achieved using a measurement matrix ¢ €
RM*N(M <« N) to derive the observation value y € RM,
formulated as:

y=®dVqu 2)

The RIP enforces a Restricted Isometry Constant (RIC) §; €
(0, 1), ensuring:

I=8llxB<lox3<A+8lxl3 (3

Under this property, the £y norm can be utilized to compute
o [16]. As the £p norm optimization is non-deterministic
polynomial (NP) problem, the £; norm serves as a convex
approximation [17], yielding the following formulation:

min|| & g, s.t.y = dWVa. “4)

Verifying the RIP property directly may be challenging in
practical scenarios, prompting the examination of alternative
characteristics. Baraniuk and collaborators established that
RIP equivalence corresponds to the requirement that the
measurement matrix ® be uncorrelated with the sparse matrix
W. Matrix incoherence measures the extent of correlation
between any rows and columns of two matrices in incoherent
measurements, ensuring that rows of & cannot depict
columns of W sparsely. The mutual coherence [18] is defined
as:

1 (@, W) = v/Nmax |, | )

Here, k¥ € [I,M] and j € [1,N]. A lower u
value indicates decreased correlation between ¢ and W,
implying greater direction distinction post-transformation—
resulting in diminished measurement requirements for accu-
rate restoration from low-dimensional samples of the initial
information.

VOLUME 12, 2024



X. Zhang, H. Yu: Construction of a Deterministic Binary Chaotic CS Measurement Matrix

IEEE Access

IIl. MEASUREMENT MATRIX CONSTRUCTION
A. NONLINEAR BINARY TRANSFORMATION
Chaotic sequences are distinguished by a suite of attributes,
including superior pseudo-random characteristics, the unpre-
dictability of their orbital patterns, and a pronounced sen-
sitivity to initial conditions and regulatory parameters [19].
In this paper, we propose a synthesis of orthonormal matrices
with chaotic sequences, aimed at fabricating a deterministic
measurement matrix that boasts heightened performance. The
deterministic nature of the Toeplitz matrix is underscored by
its structured statistical correlations across both its rows and
columns—a feature derived from the convolution inherent in
linear system identification [20]. This matrix’s generation,
predicated on a set of predefined instances, optimizes
storage efficiency. Furthermore, the orthonormal matrix plays
a pivotal role in dispersing the informational content of
signal samples across all measurement points within the
compression and measurement phase [21].

For a map, the generation of a sequence is governed by the
following equation:

f@)=f(z0),iez" (©)

Here, 7z represents the initial condition of the chaotic map,
i represents the number of iterations and the selection of
appropriate system parameters is also essential. Once the
initial value and parameters are specified, the iterative process
of the chaotic map yields a sequence of the desired length.
This sequence, while deterministic in nature, is entirely
dictated by the mapping function, the system parameters, and
the initial conditions of the underlying nonlinear dynamical
system. The reproducibility of the entire sequence, given
identical system parameters and initial conditions, forms the
foundational principle for the construction of a deterministic
measurement matrix.

Given that the total length of the generated chaotic
sequence is denoted by 2Ny, where Ny represents a specific
positive integer, the sequence is partitioned into two distinct
segments. These segments are designated for subsequent
processing:

. No
zi={f' @)}

. 2Ny (7)
z={rw} .,

Let the sequence Z’' be an element of the interval (a, b).
We apply the subsequent transformation to the elements of Z:
2 (Z f— a)
b—a
At this juncture, the elements of the sequence Z are
symmetrically distributed about an interval centered at zero.

Lemma 1 ([22]): Suppose there exist independent random
variables Z; and Z,.

Ui =+ —2In(Zy) x cos (2nZ») ©)
Uy = +/—2In(Zy) x sin 2w Z>)

Z = (8
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The resulting U; and U; are also independent random
variables.

According to the above formula, the following relationship
can be obtained:

(172 2
)= exp(—(Ul;r UZ)) w0

1 2
ZHr = ——arctan—
2 Uy
The joint probability density of U; and U; can be obtained
as:

1 — (U U
[ (W U = 5 e ((‘f”)

1 (-3 (-3
=z\ 2 ) e\ 2
=fUnf(U2) (11)

It can be observed from the above formula that the
probability density of f (Up, U,) is constant on a circle
with a square radius of U12 + UZ?, which means that the
range of arctan U; / U, is evenly distributed in the interval
(0,27). —2In (Z;) or —2In (Z;) follows a Chi-square
distribution with two degrees of freedom. This approach can
be viewed as a method for generating random variables from
a pseudo-random sequence. The sequences U; and U, are
transformed into binary sequences Wi and W», respectively,
by employing the sign function. In a random sequence, each
datum is independent, exhibiting stochastic variability, and is
unaffected by other data points. Consequently, the correlation
between data points is inherently random, both in the original
and the binary sequences obtained post-conversion. The
application of the sign function for conversion preserves the
mutual independence and the stochastic nature of the data
points. Thus, for random sequences, the transformation to a
binary format via the sign function does not alter the inherent
randomness and decorrelation among the sequences.

A chaotic sequence generated by a single map may
encounter limitations, such as an uneven distribution when
the parameter range is narrow during the full mapping of the
Logistic map, or a tendency to enter a periodic loop state after
a certain number of iterations of the Chebyshev sequence
due to finite accuracy constraints. Additionally, limited
computational resources may hinder the sequence from
achieving desirable pseudo-random qualities. Recognizing
that the measurement matrix’s performance is contingent
upon the properties of the chaotic sequence. Therefore,
this paper introduces a hybrid chaotic mapping array to
optimize the distribution of entries in the column vector of
the measurement matrix.

B. MATRIX CONSTRUCTION STEPS

The procedure for constructing a deterministic matrix based
on chaotic sequences (assuming the matrix dimension is
M x N.) comprises the following steps:
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Step (1): Employ equation (6) to generate a chaotic
sequence with a length of 2N. Subsequently, partition this
sequence into two equal subsequences, X1 and Xp, each of
length N. Employ equation (8) to transform the sequences X
and X; into X{= {x; }ﬁ\; ,and X} = {x,}%iVN 41> Tespectively,
such that they exhibit a symmetric distribution about the
origin.

Step (2): Utilize the formula below to convert them
into binary sequences W; and W,, which are relatively

independent:
Wy = sign (,/—2ln(X{) X COS (ZnXé))
(12)
Wy = sign (,/—21n(X{) X sin (ZnXé))

The procedure retains the real component of W and W», and
subsequently transforms it into a binary sequence.

Step (3): Enter the entries of Wi = {u; }Ilv and W) = {r; }11\'
into the Toeplitz matrix. Construct the N x N Toeplitz matrix
T as follows:

up r n
uy ui IN—1
T= : .o (13)
UN—1 UN—-2 12
uy UN-1 ui

Algorithm 1 Measurement Matrix Construction Algorithm

Input: Chaotic map f (z;) = f* (z0) . zi € (a.b).
Output: Measurement matrix ©
Forj=1,2,3,.-- 2N

) N
2(f7 (xg)—a)
X{ = { b—a - l}

j=1
i (xg)—
Xé: {720()‘_()) a _ 1}
J=N+1

2N
Wl = sign (,/—ZIn (X{) x cos 2nX ) {u,}llv
Wy = sign (‘/—2ln X[ X s1n 27TX ) = {rr}llv

Fori=1,2,3,---,N
NV =Wy © W) = (),
T
i = [risrifl,""'2,M13142,"',”N—i+1]
T=lt,1, - iN]
End

Fork=1,2,3,--- ,N—1
Setx =1t (), i=k,k+1,---,N,e; =[1,0,---0]"
Ok =t + sign (fx (1)) ll#x |l eq
Zr = [te (), trge1 G) -ty (D]
Zr =7 — 20 (9] Z)
Vk = [V[(,Vk+l,"'VN]
Vi = Vi —2(Viop) 9
= [vi,v2, - wN]

End

Fori=1,2,---,N
Ifny; == —1
Vi = —V;

End

End
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Obtain a set of orthogonal basis vectors for the matrix T
through Householder transformation, and transform it into
binary using the symbol function, get matrix V. e RV*VN.
Select the first M rows of the standardized matrix V =
[v1, v2, - - - vi] as the optimized orthogonal basis.

Step (4): Apply the XOR operation to the random
sequences Wi and W, to derive a column vector of
flip coefficients that are uniformly distributed and exhibit
stochastic independence.

NV = {nvr} 1 =Wiew (14)

Among them nv; € {—1, 1}. When nv;, = —1, select the t-th
column vector v; from the orthogonal basis V to perform a
negation operation.

Follow the steps above, the construction method of the
measurement matrix is summarized as Algorithm 1:

IV. RIP CONDITION ANALYSIS

For the sequence X{ = {x; }ﬁ\': , and X) = {xr}iz;VN +1» the
chaotic sequence is generated through an iterative process.
Consequently, the following relationship holds:

X =Y (x))] (15)
Consequently, within the scope of this methodology, the
value indicated by equation (9) is determined by the initial
condition xq of the chaotic sequence:
N

(=2 7o) cos (27" [ ]) |

i=1
N

[\/m « sin (2an [ff (xo)])]_

=

(16)

The binary conversion method can be encapsulated within
the following process, which employs a specific transforma-
tion function, denoted as 7T'(+):

; |1 forU=>0
T (f () = { L v (17)

This function orchestrates the conversion of input data
into a binary format. Given the sequences X| and X),
which are generated under identical initial conditions and
system parameters, they exhibit the same probability density
function. This property is expressed as follows: p (X{) =
p (X}). Consequently, W; and W, are characterized by
an identical probability distribution. The chaotic sequence
exhibits a binary distribution, where T (x;) = T [f' (xo)]
a state set S exists, which is defined as follows:

S={ge1=Tx1),e2=Tx),---g =T @)} (18)

where {g1, g2, --- g1} € {—1, 1}.

Lemma 2 ([23]): If a Perron-Frobenius operator P acts on
a function F(x) with bounded variation of G(x), then the
resulting operation satisfies:

=1’

d
Pt =5 [ F(y)dy—z‘ (6w ‘F(y) (19)
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When F (x) =T (x) - p (x), there exists:

PAT (x) p ()} = Erp (x) (20)

Among them:

Er = ZT (x)) - Pro{S} (1)

Theorem 1: For binary sequences T (x;) of different
lengths, there exists: E [T (x,) T (x,)] = E|[T (x)]
E [T (xll)]'

Proof: According to the Perron-Frobenius operator in
Lemma 1, we can obtain:

E[T () T (x)]

= /P{T (xll) P (x)} ’ {T (xlz)}dx
—E[T ()] / p ()T (x;) } dx

— E[T ()] E[T (3] @

The Quantile-Quantile (Q-Q) plot is a statistical chart
method used to assess if data adheres to a particular
distribution. In the Q-Q plot, the quantiles of one data set
are juxtaposed with the theoretical quantiles of another data
set with the identical distribution [24], typically shown as
a straight line or curve. When the data aligns well with
the designated distribution, the points will roughly fall on
the diagonal line. Here we test whether the entries of the
U, and U, satisfy the normal distribution and obtain the
Q-Q plot as shown in Fig. 1. Analysis of the figure reveals
that the sequences U; and Uj are approximately Gaussian
distributed. Consequently, the elements within the sequences
W1 and W, exhibit characteristics that are consistent with this
distributional assumption.

(@) i ‘ (b)

- o
o

o
o

IS
&

Quantiles of the measurement matrix
EN o

Quantiles of the measurement matrix
)

3
3

A 0 1 R 0 1
Quantiles of Normal distribution Quantiles of Normal distribution

FIGURE 1. Q-Q plots comparing the distribution of entries of U, U, and
Gaussian distribution. (a) Q-Q plot for U,. (b) Q-Q plot for U,.

Upon analysis, it is evident that the elements within
the sequences W; and W) adhere to the property of
independent and identical distribution, characterized by
their stochastic independence. Since each column of the
constructed Toeplitz matrix T is linearly independent, this
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implies that the rank of matrix T is rank(T) = N.
Consequently, the matrix T is proven to be invertible,
a property that is fundamental in the context of linear algebra.
The Householder transformation [25], a prevalent method
for matrix manipulation, serves to convert a matrix into its
orthogonal counterpart. This transformation is widely applied
across various domains, including QR decomposition, the
computation of eigenvalues, and the orthogonalization of
matrices. Since matrix T is a real-valued matrix, each column
vector of this matrix is an eigenvector of T'T. Fora N x N
matrix T, let G = T'T, where the diagonal elements are given
by Gi = >0 %, with 0 < 2 < c,c > 1. According
to the properties of the Toeplitz matrix [20], if matrix T
satisfies the K-order isometry constraint and 6x¢ € (0, 1),
when K > 1, if there exist positive numbers 81 and 8, such
that 8; + 8> = Ik, then each diagonal element in matrix
G satisfies |Gj; — 1| < 81, and the non-diagonal elements
satisfy Gj; < (62 / K ) The RIP describes the conditions
under which a nonlinear measurement sequence possesses
a feasible sparse solution. The lower the correlation, the
better the reconstruction effect. In this context, Householder
transformation is utilized to obtain an orthogonal matrix with
low correlation.

In this context, it is imperative to verify that the elements
within the rows or columns of the orthogonal matrix are not
entirely equivalent, thereby employing the process of random
column inversion to preclude the matrix from degrading
to a certain value. Consequently, a symbol sequence NV,
characterized by its superior randomness, is generated. This
sequence is derived from the XOR operation applied to
Wi and W,. The operation imparts an enhanced random
distribution to the resultant binary sequence without altering
the distribution state of its elements. The NIST’s standard
method for pseudo-random number testing is utilized for
verification [26], subjecting the symbol sequence NV to
fifteen distinct tests. With a test sequence length of 1e7,
exceeding the minimum length recommended for NIST
testing, a test is considered passed if the P, exceeds 0.01.
The test is conducted one hundred times to ascertain the
pass rate, denoted as P,y.. The outcomes are presented in
Table 1. Examination of the table reveals that the column
flip sign vector possesses desirable random properties, with
the probabilities P (nv; = 1) and P (nv; = —1) each equating
to 1 / 2. Consequently, this ensures that the robustness of the
matrix is maximized.

Theorem 2 ([27]): Let g € R™ be a vector with a finite p-
norm, i.e., ||q|| p < 0. When the chaotic orthogonal binary
matrix, referred to as VCM and developed ir% this paper,
is utilized, there exists: k; ||g]I% < )Z/’.":l<q, 9j>( < ko lqll2,
0 <k <ky <o0.

Proof: If ®T® = VX VT, The j-th eigenvalue of X is
expressed as: X = 1}, it gives:

2

D g0 =g, VEV q) =(VTg, D> Vig)  (23)
j=1
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TABLE 1. NIST testing results.

Statistical tests Poaive Prate
FT 0.798139 0.99
BFT 0.955835 1.00
CST 0.474986 0.99
RT 0.897763 0.99
LROT 0.964295 1.00
MRT 0.013569 0.99
SPT 0.739918 1.00
NTMT 0.935716 0.99
OTMT 0.162606 0.98
MUST 0.739918 1.00
AET 0.191687 1.00
RET 0.492448 0.98
REVT 0.806258 0.97
ST 0.437274 0.99
LCT 0.020548 0.97

Since V is an orthogonal matrix, there exists: g’ VV7q =
qTq, o= VTq, therefore:
2

m
Z Vvig, =vTg)

We can obtain:

m 2
- Z 9; || (24)
j=1

m
Inin 1913 < D 07 |eg* < Omar 1g13 (25)
j=1
LetS = VW = {s;,s2,---sn}, ¥ = {1, 92, - ¥n} be

a sparse matrix with orthogonal column vectors. The order
of magnitude of ¥ is approximately O(logN /N), close to
O(1/+/N). In this context, we can express:

sij = (hiv) = Zvlkwk, (26)

Hence, the expectation of s; is:

E (s;) (Z Vik wk,) 27)

Then the variance of s;; is:

0> =E (s?.) - Ez(sij) = E(s3)

(z 2SS vlkv,k/) S

k=1 k=1k'=1
N N

(X)) o
k=1 k=1

Lemma 3 ([28]): The Central Limit Theorem(CLT): If
there are independent and identically distributed random
variables z1, z2, - -, zy, there is an expectation E(zx) =
Otk =1,2,3,---,N), and the variance 1s cr , then for The
sum of random variables z = Zk:l %k, O Zk:l Var(zy).
If a given constant ¢ > 0 and N is large enough, z
approximately obeys (0, No;), and the following inequality
exists: ozz < eo’.

In describing the N-order orthogonal matrices V and W,
the order of magnitude of the maximum absolute value of all
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elements in the matrix is O(1 / ~/N). For vjxry;, there exist
positive constants ¢; and ¢3 (¢ < ¢2), such that:

Ccl 2
NV < VarGig) < S (29)

Hence, for s;;:

5= Zwk,w _NZwk, (30)

According to the CLT: for independent random variables
and s;; with E(s;j)) = 0, it converges to a normal distribu-
tion N (0, o2) and follows a Gaussian asymptotic distribution.
NV is a random sequence satisfying Bernoulli distribution,
preventing VW from degenerating into a specific value. For
the measurement matrix ¢ = V, if the maximum absolute
value of all elements in the sparse matrix W is of the
order of magnitude O(1/+/N), the mutual interference u =
maxi<jj<n ]s,-j| is derived by randomly selecting the highest
value of the sequence and the union:

2 17
Pr (maxlfi_ij |s,J| < tl) > 1—2N~exp — 31D
20

where § € (0,1), when 1; = /202log (N2/3), the above

formula can be transformed into:

L, (2N?
Pr maxlfi,j§N|s,‘j|§ 20 log T >1-65 (32)

= Zivzl Var (vl.zkw,fj), and there
exists a constant cg such that:

co N
< Z (33)

where the variance is o2

1
where 0 < co <N, co € Z, 19 = [2 (co/N) log (N?/5)] R,
the upper bound of t]he coherence of the matrices ® and W is
(log (N /8) /N) ) which i closest to the optimal value

except for the logN factor.

Theorem 3: If there are constants c3, c4, if M >
(C3 -n-log (N / n)), where n < N, the probability that VCM
satisfies RIP is 1 — 2exp(—caM).

Proof: For each n-dimensional space, there are the
following probabilities [29]:

P<2 (%)n . exp (—c (%) M) (34)

where 0 < o < 1, Since VCM has
probability that VCM satisfies RIP should be:

r2(N)(2) ew (e (3)m)

N 12
< 2exp |:—c ( )M +n (loge— + log—):| (35)
2 n o

sub-matrices, the
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V. PERFORMANCE ANALYSIS

To facilitate the measurement of the performance of the
constructed measurement matrix, it is compared with other
matrices, evaluate matrix performance by calculating metrics
such as correlation coefficients and complexity. The selected
matrices are shown in Table 2.

TABLE 2. Measurement matrices.

Abbreviation Full name
GM Gaussian Matrix

MCBM [30] Mixed Chaotic Bernoulli Matrix
BM-C [31] Chaotic Bipolar Measurement Matrix
SBM [32] Symbolic Bernoulli Matrix
COM [15] Chaotic Orthogonal Matrix
LTSBM [33] Logistic-Tent-Sine Bernoulli Matrix
VCM Proposed in this paper

A. CORRELATION ANALYSIS
1) THE GM
GM can generate random numbers distributed between

(=1, 0. Ry = (¢, w]) = X0, duc ¥l since E (¢a) = 0,
so for z; = ¢ik1//ij exists E (zx) = 0.

Lemma 4 ([34]): The Hoeffding Inequality: If there are
independent random variables z1, z2, - -+, 2y, if cxp < 7z <
ex(k=1,2---,N), then there is 1 > 0 such that:

b))

k=1

> 1 — 2exp _m (36)
B S (e — ex)?

Since —1 < ¢y < 1, and E (z) = 0, then:

Pr(maxlf,-,jgv

2N

/ 2
uwem > /2N log (5) (38)
2) THE COM

The COM exists My = > r_, hia, Similar to the method
in the previous section, the mutual interference of this matrix
is:

)
Pr (maxlf,-’jsN |Rl]’ > l]) < 2exp( fi ) 37

Therefore:

2loe (2N2 /8
jcom = %/) (39)

3) THE LTSBM, SBM, AND MCBM
For LTSBM and SBM, there exists —1 < ¢ < 1,
and E (¢ix) = 0. According to Lemma 4, when #; =

[2N log (2/3)] 2 there exists:

| 2
Pr(maxk,;jw |Bij| = /2N log (E)) <$é (40)
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Therefore:

2
WLTSBM = ILsBM = AMcBM = ,| 2N log (5) (41)

Given that the XOR operation preserves the distribution of
sequences, in the context of the MCBM, the resultant matrix
entries adhere to a Bernoulli distribution. This is achieved
through the XOR operation between the Logistic and
Chebyshev symbol sequences, they have similar correlation
coefficients.

4) THE BM-C

Lemma 5 ([31]): If there exists a BM-C Q € RM*N,
an arbitrary unit vector [ € RN for0 < y < 1 and a constant
b(y) such that:

y: oy
Pr(lQ Pz 1+y) <ew (— (7 - ?) M) 42)
The BM-C also meets the above conditions of LTSBM and
SBM.
According to the above analysis, we can get: ugy >

~

KLTSBM = MSBM = MKMCBM 7~ WUBM—-C > HVCM =
com- The lower the correlation of the matrix, the greater
the possibility of satisfying RIP [35]. Gaussian random
measurement matrices satisfy RIP with high probability, and
the VCM constructed in this paper have lower correlation
than Gaussian random measurement matrix of the same
size. Therefore, VCM can better satisfy RIP, and compared
with other five measurement matrices, VCM has stronger
reconstruction performance. The MCBM, LTSBM, SBM,
and BM-C have similar probabilities of satisfying the RIP
condition, and the probabilities are all greater than those of
the GM, but smaller than those of the VCM and the COM.

B. COMPLEXITY ANALYSIS

If it is necessary to construct an N X N measurement matrix,
the construction method outlined in this paper only requires
generating a chaotic sequence with a total length of 2N. This
approach avoids the issue of sequence irrelevance, which
is typically encountered when using chaotic sequences that
require sampling distance to ensure correlation. Additionally,
a structured Toeplitz matrix is utilized to conserve storage
resources. This matrix is generated line by line according to
a predetermined optimal order. For v;, where NV is obtained
through XOR operation. Following the basic concept of
Householder transformation, we can obtain v;. Using a
vector to store the orthonormal matrix based on Householder
transformation is a more efficient approach, requiring only
N + Nlog,N bits for storage. Among them, the orthonormal
matrix V requires Nlog,N bits, while the mixed chaotic
sequence NV requires N bits. For the GM, storage of nN?2
bits are necessary. Here, n represents the number of non-
integer bits. The GM is non-deterministic, requiring more
memory space in practical applications. On the other hand,
the assembly of the MCBM necessitates the utilization of two
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distinct chaotic sequences in the matrix formation process.
This requirement implies a heightened demand for initial
variable allocation. MCBM, BM-C, SBM, COM and LTSBM
all require generating N initial variables for constructing
the measurement matrix. Since the elements constituting the
matrix are either {—1, 1} or {—1,0, 1}, only N2 bits are
needed to store the measurement matrix. Table 3 summarizes
the complexity of these types of measurement matrices.

TABLE 3. Memory requirements and complexity.

Matrices Variable Storage
VCM 2N N + Nlog,N
GM N? nN?
MCBM 2N? N?
SBM N? N?
COM N? N?
LTSBM N? N?
BM-C N? N?

The time complexity of the measurement matrix construc-
tion algorithm presented in this paper is analyzed based
on its dimensionality, which is N x N. Given that the
sequence length necessary for matrix generation is only 2N,
the algorithm, despite involving multiple loops, does not
contain nested loops. Consequently, the time complexity can
be expressed as O2N) + O(N) + O(N — 1) + O(N). The
first term corresponds to the loop for generating the initial
binary pseudo-random sequence. The second term represents
the complexity of the XOR operation loop, the third term
pertains to the Householder transformation, and the final term
is associated with the random column inversion operation.
Itis evident that the dominant term in this complexity is O(N).
In contrast, matrices such as GM, COM, SBM, LTSBM, and
BM-C require up to N2 loops during their construction, and
MCBM necessitates two rounds of N2 loops. This results in a
time complexity of O(N 2 for these matrices, which is higher
than the time complexity of our proposed algorithm. Regard-
ing memory usage, the program’s memory consumption
primarily stems from storing the initial sequence for matrix
construction, the binary Toeplitz matrix, the N-dimensional
orthogonal matrix post-Householder transformation and sign
function processing, the inverted coefficients, and the final
measurement matrix. Thus, the memory requirement is
3N + 3N? bytes.

VI. SIMULATION EXPERIMENTS AND PERFORMANCE
EVALUATION
A. EVALUATION INDICATORS
This paper uses Compression Ratio (CR), Percent root means
square difference (PRD), Signal-to-Noise Ratio (SNR) and
Reconstruction rate as performance evaluation indicators. For
the original signal with length N, and M observation points.
CR is the ratio of the length of the compressed signal
to the length of the original signal. A higher CR makes
reconstruction more challenging. The calculation formula is
as follows:

N
CR =

-M
x 100% (43)
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PRD measures the difference between the reconstructed

signal x, and the original signal x,. The calculation formula

is as follows:

lxo — xr ”2
lIxo112

PRD = x100% (44)
SNR is crucial for assessing signal quality. It represents
the ratio of the relative strength or power of the signal to
noise. A higher SNR indicates better signal quality. SNR is
calculated as follows:

llxo112 ) (45)

lxo — xr1l2

SNR = 20log (

Reconstruction rate signifies the probability of accurately
restoring the target signal in multiple signal reconstruction
experiments. The mathematical expression for Reconstruc-
tion rate is:

Success times
Rt = ———— x100% (46)
Total times

B. CHAOTIC MAPS TEST

To investigate the impact of chaotic map selection on
matrix performance, this section’s experiments utilize various
chaotic mappings to construct the VCM, including the
Logistic map, Chebyshev map, Bernoulli map, PWLCM map,
Circle map, Iterative map, Cubic map, Fuch map, Singer
map, Sine map, Tent map, Henon map, 2D-Logistic map, and
Duffing map. A sparse test signal of length N = 256 and
sparsity K = 15 is selected, where the positions of non-zero
values are randomly determined and their magnitudes follow
a normal distribution. During the statistical evaluation
with observation points M ranging from 30 to 100, the
performance variations of VCMs constructed using different
chaotic maps are analyzed. The Orthogonal Matching Pursuit
(OMP) algorithm [36] is chosen for signal recovery, and
the experiment is repeated 1000 times. The success rate of
reconstruction is statistically assessed. Fig. 2 illustrates that
there is no significant difference in the performance of VCMs
constructed using common chaotic maps. This outcome is
attributed to the reliance on the chaotic sequence’s superior
properties during construction, rather than the specific
values.

C. INITIAL CONDITION SENSITIVITY TEST

To investigate the impact of the initial state of the chaotic
map on the measurement matrix’s performance, 12 different
combinations of initial values are randomly chosen for exper-
imentation. The specific parameters selected are detailed in
Table 4. Simultaneously, the observation point is set at M =
120 with a length of 256. Adjust the sparsity level K from
a value of 10 to 80. A total of 1000 repeated experiments
are conducted on the measurement matrices created under
the 12 different initial value conditions. The Reconstruction
rates of the various matrices under different sparsity are
statistically analyzed. The outcomes are illustrated in Fig. 3.
The figure demonstrates that variations in the initial value
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FIGURE 2. Performance of VCM based on different maps.

TABLE 4. Initial value selection for chaotic maps.

Group Initial values Group Initial values
A 0.12 G -0.57
B -0.35 H -0.6
C -0.52 1 0.15
D 0.7 J -0.2
E 0.3 K 0.68
F 0.8 L -0.84

do not impact the reconstruction performance, with the
measurement matrix performing consistently well across
different initial values.

100 4

—B8—A |
——8B
—S—C|]
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70
60 [ —=—H|]
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Reconstruction rate(%)
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Sparsity level K

FIGURE 3. Reconstruction rate of chaotic map under different initial values,
where M = 120, N = 256, and matrix = VCM.

D. SIGNAL RECOVERY EXPERIMENT

1) NOISE-FREE SIGNAL TESTING EXPERIMENT

In order to comprehensively evaluate the performance of the
measurement matrix constructed in this paper, comparative
experiments were conducted using the GM as the benchmark
against the COM, SBM, LTSBM, MCBM and BM-C. In each
experiment round, a random sequence of length N =
256 with sparsity K = 20 is generated. This implies that
the signal contains 20 non-zero random values distributed
according to a Gaussian distribution, with random positions.
The signal exhibits sparsity under common transformations.
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The OMP algorithm is employed to recover the signal
after compression sampling using the different measurement
matrices where the sparsity level is set to M. A successful
recovery is defined as when the positions of non-zero
elements in the restored sparse vector x, exactly match those
in the original signal x,, ensuring that the PRD is within
the machine’s acceptable precision range, that is, PRD <
1075, and simultaneously guaranteeing SNR > 60dB.
If both requirements are met simultaneously, the recovery
is deemed successful. Through 1000 iterations, this study
records the probability of successfully reconstructing the
signal using different measurement matrices. Subsequently,
the reconstruction efficacy of each matrix is compared.

The simulation experiment is conducted to generate
Fig. 4. As illustrated by the results graph, the reconstruction
capability of the matrix constructed in this paper consistently
outperforms that of other measurement matrices across
varying measurement values. Specifically, MCBM, SBM and
LTSBM exhibit similar and superior effects compared to the
GM, and VCM also outperform the COM when the number
of observation points is limited. The VCM demonstrates
effective sampling and reconstruction due to its low mutual
coherence, aligning with the stringent mutual coherence
boundaries calculated for each matrix in the previous section.
The low correlation of the VCM ensures high-quality signal
reconstruction.

100

90 [

80 [

70

60 -

50 -

--8--GM

--9--com

--©--SBM

—%—VCM

—A—BM-C

—%—LTSBM | -
MCBM
I

Reconstruction rate(%)

40 50 60 70 80 90 100 110 120
Measurement M

FIGURE 4. Reconstruction rate under different M, where K = 20, N = 256.

In order to thoroughly compare matrix performance, along
with the aforementioned experiments, we chose a signal with
a fixed length of N = 256 and M = 40 observation
points. By varying the sparsity K from 2 to 22, we computed
the reconstruction rate for different levels of sparsity. After
conducting 1000 repeated experiments, the outcomes are
illustrated in Fig. 5. With the same number of observation
points and sparsity, VCM consistently exhibits a higher
reconstruction rate. The six measurement matrices share a
common trait: they all exhibit nearly perfect reconstruction
rates when K = 2, but lose this ability completely when K =
22. However, in contrast to the previous experiment, SBM,
BM-C, and MCBM perform slightly better than LTSBM. Due
to their similar correlations, these three types of matrices still
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demonstrate comparable performance. In this comparative
experiment, the VCM continues to display exceptional per-
formance. Under conditions of low sparsity, the performance
of the VCM surpasses that of the COM. However, as the
value of K escalates, the performance characteristics of both
matrices converge, yet they consistently outperform other
matrices.

1008=— ' ,
--B8--GM
90 - --9--com
--©--SBM
80 - —%—VCM
—A—BM-C
§ 70 - —%—LTSBM | |
5 MCBM
S 60
c
S
3 50F
2
2 40f
[*]
3
x 30f
20 +
10 R
0 | | | L | | B--W Y
2 4 6 8 10 12 14 16 18 20 22

Sparsity level K

FIGURE 5. Reconstruction rate under different sparsity level K, where
M =40, N = 256.

PRD(%)

CR(%)
FIGURE 6. PRD under different CR, where K = 20, N = 256.

Simultaneously, the PRD for different measurement matri-
ces at various CRs is calculated. Through 1000 iterations of
experiments, the mean PRD is considered as the key metric,
and the statistical results are presented in Fig. 6. The PRD
serves as an indicator of the signal reconstruction accuracy.
At lower CRs, all matrices exhibit the ability to compress and
reconstruct the signal with minimal error and a high success
rate. As the CR increases, the VCM and COM maintains a
lower PRD compared to the other matrices. This observation
highlights the favorable performance of the measurement
matrix constructed in this paper even with a relatively low
number of observations.

2) NOISE SIGNAL TESTING EXPERIMENT
In the simulation experiment of this section, we examine
the model of a noisy signal y = &x 4+ o, where
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y represents the observed signal with Gaussian white noise,
x is the original signal, and @ is Gaussian white noise.
This experiment generates a test signal with a length of
256 and a sparsity of 10, a fixed observation value M =
50, and varies the SNR value from 10dB to 40dB. The
PRD under different SNR is recorded. The simulation results
are depicted in Fig. 7. As the SNR increases, the PRD
decreases, and the VCM developed in this paper consistently
exhibits a lower PRD. When the SNR is low, the recovery
performance of SRM surpasses that of SBM, BM-C, and
LTSBM. With increasing SNR, the recovery performances
of these matrices become more comparable. In conclusion,
the VCM established demonstrates superior stability and
recovery performance in the presence of external noise
interference. COM can also achieve similar performance.

035 \

03
o
o 0.25
o

0.2

10 15 20 25 30 35 40
SNR(dB)
FIGURE 7. PRD under different SNR, where K = 10, N = 256, M = 50.

3) RECOVERY ALGORITHM TEST

There are various types of recovery algorithms for com-
pressed sensing, and their effects vary. This study compares
OMP, Basis Pursuit (BP) [37], Regularized Orthogonal
Matching Pursuit (ROMP) [38], generalized Orthogonal
Matching Pursuit (gOMP) [39], and Subspace Pursuit (SP)
algorithms [40] through experiments. Keeping the number of
observation points fixed at M = 128, the sparsity K is varied
from 10 to 90. The results are depicted in Fig. 8, showing
that gOMP yields the best results. gOMP, a generalization
of OMP, differs in that it selects multiple maximum
values at each step instead of just one with the largest
correlation with the residual. This approach leads to a quicker
reconstruction time by selecting multiple atomic times at
fixed positions. By incorporating a regularization process
based on OMP, gOMP significantly reduces complexity.
Similarly, ROMP selects multiple column vectors most
relevant to the residuals in each iteration. SP, an optimization
algorithm of CoSaMP, demonstrates higher calculation
efficiency. The figure illustrates that SP outperforms OMP
but lags behind gOMP. Another significant category of CS
reconstruction algorithms involves convex optimization or
optimal approximation methods. These methods approximate
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the signal by transforming non-convex problems into convex
ones. Among these, the BP algorithm is the most commonly
utilized. Despite its high complexity and long running time,
it outperforms the OMP algorithm when dealing with a small
number of observation points.

At the same time, the time taken for each recovery
algorithm to conduct 100 rounds of experiments is calculated,
and the outcomes are displayed in Fig. 9. The execution
time of the BP algorithm significantly surpasses that of other
recovery algorithms. The recovery duration of the OMP and
gOMP algorithms steadily rises with the growth of sparsity,
whereas the execution time of the ROMP algorithm remains
relatively constant with minimal fluctuations.

Reconstruction rate(%)

. . o a—o
10 20 30 40 50 60 70 80 90
Sparsity level K

FIGURE 8. Reconstruction rate of different reconstruction algorithms,
where M = 128, N = 256, and matrix = VCM.

Run Time(s)
w

0.5 =

10 20 30 40 50 60 70 80 90
Sparsity level K

FIGURE 9. Run Time of different reconstruction algorithms, where
M = 128, N = 256, and matrix = VCM.

To investigate the convergence properties of the measure-
ment matrix developed in this study when reconstructed using
various algorithms under both ideal and noisy conditions,
experiments are conducted with a generation length of 256,
sparsity level of 30, 80 observation points, and iteration
counts ranging from 1 to 30. Each experiment is repeated
1000 times to calculate the PRD between the reconstructed
and original signals for different iteration counts. The average
PRD from 1000 trials is recorded. In an ideal noise-free
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environment, the discrepancy between the reconstructed
signal and the original, using the matrix constructed herein
across different algorithms and iteration counts, is assessed.
Results, presented in Fig. 10, indicate that as the number
of iterations increases, the error diminishes and stabilizes
for Sparsity Adaptive Matching Pursuit (SAMP), OMP, SP,
and gOMP. With the ROMP algorithm, the matrix fails to
reconstruct the signal under these conditions, resulting in a
PRD consistently at 1. The convergence of the measurement
matrix, when generated by the proposed algorithm and
utilized in the SAMP reconstruction algorithm, exhibits
less sensitivity to variations in the number of iterations
compared to other algorithms. There will be instances where
similar effects arise at varying numbers of iterations. Overall,
the algorithm exhibits commendable convergence when
employing the gOMP algorithm for signal reconstruction.

In subsequent experiments, conditions are adjusted to
incorporate noise, specifically at a SNR of 20dB, while
other parameters remained constant. The outcomes of these
experiments are depicted in Fig. 11. Similar to the noise-
free scenario, the error decreases and stabilizes for both
OMP and gOMP as iterations increase. However, the
performance of the measurement matrix shifts from stable to
unstable when using the SP algorithm. Likewise, the ROMP
algorithm proves ineffective for reconstruction under these
noisy conditions. The convergence behavior of the SAMP
algorithm under noisy conditions varies significantly with
the number of iterations, which is markedly different from
the convergence under noise-free conditions. As the number
of iterations increases, the performance of SAMP tends to
outperform that of other algorithms.

2 vy
0 5 10 15 20 25 30
Iteration t

FIGURE 10. PRD of different Iterations t, where M = 80, N = 256, K = 30
and matrix = VCM.

4) RUN TIME TEST

In this study, a random signal of length N = 256 and
K = 20 is generated, and the observation value M is varied
from 40 to 100. The experiment is conducted 1000 times
for each observation point, and the total time required is
recorded as the outcome. GM is a non-deterministic matrix,
necessitating the generation of random numbers for each
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FIGURE 11. PRD of different Iterations t, where M = 80, N = 256, K = 30,
SNR = 20dB and matrix = VCM.

iteration of the experiment. Consequently, as the number
of experiments grows, the runtime also increases. Similarly,
for SBM, it is essential to randomly select rows of the
acquisition matrix in each experiment round to create the
measurement matrix, leading to an increase in runtime. With
an increase in the observation value, the number of matrix
elements of BM-C and LTSBM rises, indicating that a longer
chaotic sequence is needed to construct the matrix, resulting
in a longer runtime. The complexity of generating BM-C
is lower than that of LTSBM, leading to a shorter runtime.
As VCM is a deterministic matrix, the initial value selection
does not impact matrix performance in the experimental
validation of the aforementioned sections. Once the initial
value of the chaotic map is set, the matrix is fixed, requir-
ing fewer initial variables. With high observation values,
matrix construction and compression reconstruction can be
accomplished more quickly. However, compared to other
deterministic matrices, the speed difference in construction
with VCM is at the millisecond level. The MCBM matrix
offers the benefit of reducing power consumption while
maintaining performance, effectively decreasing runtime.
The simulation results are depicted in Fig. 12. Adjusting the
matrix dimension significantly influences the computational
complexity of the matrix construction algorithm, which in
turn directly impacts the execution time. Consequently, the
VCM approach enhances the matrix construction technique,
preserving matrix performance while achieving increased
efficiency.

Concurrently, a control experiment has been implemented
to assess the impact of sparsity on reconstruction time. With
the matrix dimension M = 100 held constant, the sparsity
K of the test sequence is systematically varied, and the time
expenditure for 100 iterations of the experiment is recorded.
Fig. 13 illustrates the findings. At lower sparsity levels,
the VCM exhibits a comparatively longer reconstruction
time. However, as sparsity K escalates, the reconstruction
velocity of VCM surpasses that of COM, GM, and SBM,
and it remains closely competitive with BM-C, LTSBM,
and MCBM, demonstrating a minimal performance gap.
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FIGURE 12. Run Time under different measurement M, where
K =20,N = 256.
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FIGURE 13. Run Time under different sparsity level K, where
M = 100, N = 256.

In conclusion, VCM effectively reconciles the trade-off
between performance and efficiency.

5) IMAGE RECONSTRUCTION EXPERIMENT
Similar to the one-dimensional signal reconstruction exper-
iment, this section primarily assesses the reconstruction
performance of the measurement matrix constructed in
this article for two-dimensional images. The non-sparse
images Cameraman, Goldhill, and Peppers are chosen
as representatives, all with sizes of 256 x 256. When
conducting sparse representation, different function spaces
such as Fourier transform, wavelet transform, or multi-
scale geometric analysis are typically utilized to analyze
the signal. The SLO algorithm for CS reconstruction utilizes
a smooth £p norm and introduces a series of smooth
functions to approximate the £y norm [41]. Reference [42]
introduces an optimization algorithm MSLO based on the
SLO algorithm. This approach incorporates a hard threshold
operator to prevent local minima and expedite conver-
gence. The paper adopts MSLO as the image restoration
algorithm.

The Peak Signal-to-Noise Ratio (PSNR) of the two-
dimensional image is employed to assess the quality of
the reconstructed image [43]. The calculation formula is as
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follows:
255

(/M) G S (i) — 3G P
)

PSNR = 20log

In this experiment, we use Discrete Wavelet Transform
(DWT) [44] to apply sparse processing to the image, aiming
to more intuitively demonstrate the quality of each image
after VCM compression and reconstruction at different CRs.
Fig. 14 depicts the reconstruction effect. When CR > 50%,
the quality of the image restoration effect is higher.

Structural Similarity (SSIM) models distortion in images
by considering brightness, contrast, and structure as key
factors [45]. Brightness is estimated using the mean, contrast
using the standard deviation, and structural similarity using
the covariance. The values of SSIM are in the interval [0, 1],
with higher values indicating less difference between images.
Calculated as follows:

(2l/«x0/1«x, + Cl)(zaxoxr +c2)

SSIM =
(13, + 43, 1) (02 +0f + )

(48)

The calculation involves p,, and p,, as the mean values of x,
and x,, oy, oy, and oy, ,, as the variances of x, and x, along
with their covariance, and constants c1, ¢, for stability. In this
study, we counted the SSIM values of the restored image
and the original image under different CRs, and the DCT
matrix is used as a sparse matrix, with the MSLO restoration
algorithm. By adjusting the CR value, SSIM values under
different conditions were recorded. The statistical findings
are presented in Table 5. Goldhill exhibited the best sparsity
characteristics after the sparse process, followed by Peppers,
while Cameraman still showed poor sparsity. For images
with better sparsity like Peppers and Goldhill, all six
matrices showed improved reconstruction quality, yet the
VCM consistently yielded the best SSIM values. In the
case of the Cameraman image with poor sparsity, the VCM
demonstrated significantly enhanced processing performance
compared to other matrices. As CR increases, the number
of observation points gradually decreases, and the SSIM
value also decreases. This trend is due to the fact that fewer
sampling points lose more information about the image,
resulting in poor recovery. When CR is low, the measurement
matrices effectively restore the images. As the CR increases,
the VCM effect outperforms other measurement matrices.
At the same time, the recovery algorithm is switched
to the OMP algorithm, and the experiment is repeated.
The results are displayed in Table 6. It is evident that
under identical conditions, the recovery performance of
the MSLO algorithm surpasses that of the OMP algorithm,
aligning with the findings of the prior study. Nevertheless,
the OMP algorithm exhibits a shorter runtime compared
to the MSLO algorithm. Similar to the restoration using
the MLSO algorithm, as the CR increases, the restoration
effect of each measurement matrix worsens, especially when
processing images with lower sparsity like Cameraman.
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FIGURE 14. Cameraman, Goldhill and Peppers images reconstructed
through VCM.

When employing the OMP algorithm for image restoration,
the VCM presented in this study demonstrates a significantly
superior effect compared to GM, SBM, BM-C, MCBM,
and LTSBM, and slightly outperforms COM. However, this
advantage is less pronounced when utilizing the MLSO
algorithm for restoration.
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TABLE 5. SSIM values for different measurement matrices based on
MLSO.

Images Matrices CR=25% CR=50% CR=75%
GM 0.4419 0.2979 0.1509
COM 0.4396 0.2997 0.1552
SBM 0.4401 0.3005 0.1553
Cameraman VCM 0.4455 0.3052 0.1608
BM-C 0.4432 0.2993 0.1580
LTSBM 0.4424 0.2998 0.1518
MCBM 0.4409 0.2989 0.1576
GM 0.7176 0.4999 0.2707
COM 0.7169 0.5074 0.2756
SBM 0.7198 0.5084 0.2702
Goldhill VCM 0.7211 0.5109 0.2711
BM-C 0.7158 0.5075 0.2620
LTSBM 0.7199 0.4970 0.2731
MCBM 0.7244 0.5000 0.2701
GM 0.6487 0.4660 0.2175
COM 0.6546 0.4623 0.2252
SBM 0.6547 0.4672 0.2224
Peppers VCM 0.6590 0.4704 0.2334
BM-C 0.6585 0.4693 0.2298
LTSBM 0.6556 0.4685 0.2299
MCBM 0.6583 0.4679 0.2263

TABLE 6. SSIM values for different measurement matrices based on OMP.

Images Matrices CR=25% CR=50% CR=75%
GM 0.3202 0.2290 0.1101
COM 0.3533 0.2331 0.1141
SBM 0.3244 0.2282 0.1138
Cameraman VCM 0.3572 0.2430 0.1168
BM-C 0.3247 0.2253 0.1140
LTSBM 0.3258 0.2228 0.1113
MCBM 0.3208 0.2252 0.1118
GM 0.5443 0.3928 0.1773
COM 0.5889 0.4102 0.2084
SBM 0.5410 0.3721 0.2042
Goldhill VCM 0.5960 0.4209 0.2051
BM-C 0.5408 0.3810 0.2013
LTSBM 0.5444 0.3851 0.1899
MCBM 0.5377 0.3955 0.1888
GM 0.5065 0.3560 0.1589
COM 0.5596 0.3991 0.1630
SBM 0.5106 0.3672 0.1716
Peppers VCM 0.5602 0.3970 0.1745
BM-C 0.5025 0.3704 0.1651
LTSBM 0.5059 0.3613 0.1581
MCBM 0.5080 0.3693 0.1574

VII. CONCLUSION

This paper addresses key challenges associated with tradi-
tional matrices in compressed sensing, including suboptimal
compression performance under non-ideal sparsity condi-
tions, the complexities inherent in the hardware implemen-
tation of random measurement matrices, and the substantial
storage space requirements. To this end, we introduce a
novel method for constructing a deterministic measure-
ment matrix predicated on chaotic sequences. Specifically,
a nonlinear binary sequence transformation method is used,
and the Householder transformation is employed in matrix
construction, yielding a matrix that fulfills the Restricted
Isometry Property (RIP). The proposed method offers
numerous benefits: (1) It leverages chaotic sequences with
high complexity and robust randomness, thereby mitigating
storage inefficiencies associated with sampling intervals
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in conventional matrices. (2) It surmounts the stringent
system requirements for random number generation and the
storage and transmission of measurement matrices during
the compression and reconstruction phases. (3) The proposed
deterministic matrix exhibits a higher likelihood of satisfying
the RIP criteria compared to matrices such as Gaussian ran-
dom matrices. Empirical results substantiate that the matrix
can achieve a higher success rate in signal reconstruction,
even under conditions of low sparsity or limited observation
points, coupled with reduced processing time and enhanced
reconstruction quality. (4) The matrix excels not only in
signal reconstruction but also in image compression and
reconstruction, significantly improving the PSNR and SSIM
metrics of reconstructed images, particularly in scenarios
characterized by poor sparsity. (5) The performance of the
matrix is invariant to the initial value, rendering it apt for
cryptographic key generation. Additionally, its application
in various signal processing domains is promising, and
further research into the hardware implementation of these
pseudo-random chaotic matrices is warranted.
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