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ABSTRACT This study addresses the pressing issue of student dropout in higher education institutions
and explores the potential of artificial intelligence (AI) to mitigate this challenge. Student dropout is a
complex phenomenon influenced by diverse factors, including internal and external, student characteristics
and skills. To enhance retention strategies, it is crucial to identify the nuanced reasons behind dropout
decisions, which often go unnoticed by university staff. Therefore, this study investigates the integration
of metaheuristic optimization techniques with Adaptive Boosting (AdaBoost) and eXtreme Gradient
Boosting (XGBoost) machine learning (ML) models for student dropout identification. By leveraging these
well-known ML techniques, the goal is to enhance the accuracy and reliability of dropout predictions in
terms of standard classification metrics. Further, by harnessing the exploration and exploitation capabilities
of metaheuristics, the study aims to fine-tune both models, thereby increasing their accuracy and robustness
in identifying at-risk students. Additionally, to address limitations of existing metaheuristics, a modified
version of recently proposed Sinh Cosh Optimizer (SCHO) was developed, that manages to generate
well-performing XGBoost and AdaBoost models for students dropout prediction. The study demonstrates
that both tuned models can effectively identify at-risk students, providing valuable insights for targeted
educational support initiatives. Three experimental evaluations, two with binary and one with multi-class
student dropout classification, are conducted on real-world datasets along with rigid comparative analysis and
statistical validation with other cutting-edge metaheuristics. According to experimental outcomes, proposed
methodology outscores significantly other approaches in terms of performance. Finally, a comprehensive
analysis of influential factors was performed using SHapley Additive exPlanations (SHAP) and Shapley
Additive Global importancE (SAGE) explainable Al techniques on the best generated models to identify
the factors that most significantly influence dropout decisions. This work contributes to advancing Al
applications in higher education, providing insights for policymakers and institutions to design targeted
interventions for student retention, ultimately enhancing the overall success and effectiveness of higher
education systems.
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I. INTRODUCTION

Higher education institutions collect and store vast amounts
of data related to students and the educational process itself.
By analyzing this data and extracting valuable insights,
various business segments can be improved, including
addressing the issue of student dropout. Student dropout
is one of the most challenging problems faced by higher
education institutions. It is a complex process, with students
having diverse motivations for leaving university. Previous
research indicates that the decision to drop out is influenced
by a variety of factors [1].

Students decide to drop out mainly due to four main
reasons: internal reasons, external reasons, student charac-
teristics, and student skills [2]. These reasons include many
sub-factors such as academic integration, social integration,
financial status, and personal reasons. University employees,
instructors, and support staff are usually unaware of the
reasons for the student dropout. The challenge for higher
education institutions is to design and improve policies
to increase student retention, especially within the first
years [3]. Researchers have examined changes in student
motivation and explored strategies universities can employ to
maintain high levels of motivation among students [4]. Their
findings suggest that perceived support from lecturers helps
mitigate the decline in course interest.

Dropping out has severe consequences for individu-
als, educational institutions, and society as a whole [5].
Analyzing the phenomenon of dropping out of studies is
complex, given the various social, family, individual, and
institutional factors that come into play, and many are also
related to socio-demographic and motivational reasons that
influence students’ decision to drop out of studies [6]. Several
factors influencing decisions to leave higher education
include having to leave work or other activities to complete
studies, the challenge of returning to learning activities after
education has been interrupted, and family obligations that
are more difficult to accommodate compared to student
days. Additional challenges arise from difficulties with
re-enrollment and the recognition of previously passed
exams, as well as the need to re-attend some courses. Personal
problems and motivation to complete studies also contribute
to the complexities of the decision.

Higher education institutions are also at a loss due to a part
of students dropping out. One of the criteria for evaluating
the success of higher education institutions is the number of
graduated students, by generation and enrolled program [7].
Dropping out of studies primarily reduces the number of
students enrolled in the next year of study and the success of
studies itself. Administrative activities become more complex
with students returning to studies after a break. This includes
verifying eligibility, re-enrollment, recognition of exams, and
other related tasks.
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Given the importance and complexity of student dropout, this
work aims to explore the potential of Artificial Intelligence
(AD) in addressing the challenges associated with this issue.
Due to the large amount of students’ data available at
universities and other higher education institutions (HEI)
around the world, and considering that machine learning
(ML) can identify patterns in historical data that humans
cannot, the research proposed in this manuscript goals to
improve the detection of students who are likely to drop out
by using ML, and to identify the factors that significantly
influence student dropout.

It is important to highlight that through a survey of
current literature, provided in Section II, a noticeable gap
in the application of ML for predicting student dropout
exists. Specifically, there is a gap in the application of
simpler, less computationally demanding ML models for
student dropout prediction. Moreover, the optimization of
hyper-parameters for these models in this context has not
been thoroughly explored. This proposed work aims to
address this research gap by evaluating contemporary opti-
mizers for hyper-parameters’ tuning using metaheuristics.
Additionally, it seeks to provide insights into the potential
benefits of incorporating these optimizers into dropout pre-
diction models and introduce a modified algorithm tailored
to the needs of this study.

To accomplish this, proposed study investigates the
integration of metaheuristic optimization techniques with
Adaptive Boosting (AdaBoost) and eXtreme Gradient Boost-
ing (XGBoost) ML models for student dropout identification.
By leveraging these well-known ML techniques, the goal is
to enhance the accuracy and reliability of dropout predictions
in terms of standard classification metrics. However, since
the performance of ML algorithms is closely tied to hyper-
parameter choices, metaheuristic algorithms are employed to
enhance ML performance for this task. By leveraging the
exploration and exploitation capabilities of metaheuristics,
both models are fine-tuned, resulting in increased accuracy
and robustness in identifying at-risk students.

Furthermore, to address the limitations of existing meta-
heuristics, a modified version of the recently proposed Sinh
Cosh Optimizer (SCHO) [8] was developed. This improved
version overcomes the shortcomings of the original approach
and successfully designs well-performing AdaBoost and
XGBoost models for predicting student dropout. The pro-
posed methodology is integrated into a hybrid metaheuristics
and ML framework for student dropout prediction and
evaluated on a publicly available real-world dataset through
a series of three experiments. The first two simulations focus
on identifying which students are more likely to drop out and
which ones are likely to continue their studies by applying
metaheuristics-tuned AdaBoost and XGBoost algorithms
as binary classification approach. The third experiment
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aims to distinguish between dropout, enrolled, and graduate
students using only tuned XGBoost approach (multi-class
classification).

To prove robustness of proposed methodology, rigid com-
parative analysis, as well as statistical validation with other
contemporary metaheuristics were performed. According to
experimental outcomes, proposed methodology outscores
significantly other approaches in terms of standard clas-
sification metrics. Finally, a comprehensive analysis of
influential factors was performed using SHapley Additive
exPlanations (SHAP) [9] and Shapley Additive Global
importancE (SAGE) [10] explainable Al techniques on the
best generated models to identify the factors that most
significantly influence dropout decisions.

Besides all mentioned, this work contributes to advancing
Al applications in higher education, providing insights for
policymakers and institutions to design targeted interventions
for student retention, ultimately enhancing the overall success
and effectiveness of higher education systems.

The main contributions of this work can be summarized as
follows:

« An investigation into the potential of AdaBoost and
XGBoost classifiers for detecting and identifying stu-
dent dropout using a data-driven approach, filling the
gap in the current literature in this area;

o Proposing an enhanced version of the recently intro-
duced SCHO metaheuristic optimizer, specifically
crafted to fine-tune hyper-parameters of AdaBoost and
XGBoost models for students dropout detection tasks;

o The application of explainable Al techniques to better
understand the reasons that drive students to leave
education and

o Applying ML in higher education to provide insights
for policymakers and institutions, enabling targeted
interventions for student retention, and enhancing the
overall success and effectiveness of higher education
systems.

Rest of the manuscript is structured as follows: Section II
presents essential preliminaries for readers to understand the
employed methodology and includes a review of relevant
literature. The proposed methodology is explained in detail
in Section III. Section IV provides experimental setup
insights regarding all three conducted simulations, so that
the simulations could be reproduced by other researchers,
experimental outcomes, comparative analysis and discussion
are given in Section V, statistical validation of comparative
analysis results, best models interpretation and proposed
approach implementation strategy in real-world environment
is shown in Section VI, while final remarks, as well as future
research directions, are provided in Section VII.

Il. RELATED WORKS AND PRELIMINARIES

Student dropout presents a prevalent open problem in
academia. Many factors influence students’ decisions to leave
education, while some of them are social and economic
pressure and cultural expectations. Studies suggest [11] that
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around 14.8% of students resign in the first year, while a
further 21.6% resign by the third year of studies. The authors
also suggest that swift action, within the first year of studies
is needed to improve students outlook. Other factors such
as bullying can include students abandoning education, with
a study [12] suggesting that between 10.8% and 16.5% of
dropouts can be associated with bullying. Further works [13],
[14] advocate that academic challenges can be a leading cause
of student dropouts. Nevertheless, many factors influence the
decision of students to abandon academia, making dropout
detection a challenging problem.

The applications of ML and the development of prediction
models in the higher education sector have been an active
field of research for many years. The topic of predicting
dropout and determining the reasons why it happens has been
extensively covered in the available literature. This section
presents recent publications dealing with the prediction
of dropping out of higher education. According to the
type of problem addressed, two groups of papers can be
observed, those dealing with students’ performance [15] and
those dealing with students’ dropout [16]. The topic related
to online education or e-learning systems was specially
addressed [17], and prediction methods based on online
attendance have also been proposed [18].

Research has been done that aims to evaluate the effec-
tiveness of different ML algorithms in predicting student
dropout and academic success [19]. A novel stacking
ensemble model based on a hybrid between the random
forest, XGBoost [20], gradient boosting, and feed-forward
neural networks is also proposed to predict students dropout
in university classes [21]. The AdaBoost [22] algorithm to
combine regression analysis, neural networks, and decision
trees is also employed to predict student dropout [23]. While
these works show promising outcomes, the further potential
of these methods could be unlocked through a process of
hyper-parameter tuning by applying appropriate optimizers.

Research has been done to identify students at risk and
predict student dropout of university programs based on the
data available at the time of enrollment such as secondary
school performance and personal data [11], as well as
research where academic data from the first year of study
has been processed. One of the indicators for assessing the
quality of university careers is the dropout rate between the
first and second years. Understanding learning patterns is
crucial for predicting student dropout, offering insights into
students’ behaviors and motivations. Additionally, research
has explored how Al and ML can aid in preventing dropout
and improving student retention by identifying learning
patterns [24].

Recent works have focused on challenges associated with
data availability [25], exploring the potential of data aug-
mentation to improve model training with neural networks
demonstrating the best outcomes in comparative analysis.
Factorization machines have also been effectively combined
with deep neural networks for dropout forecasting [26]
reporting good results. However, neural networks often suffer
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from slow convergence rates and demanding computational
requirements and the potential of simpler models has yet to
be explored in the literature.

While several algorithms have been applied to predict
dropout, the application of emerging optimizers has yet
to be explored to boost performance. Several promising
contenders exist in the literature, with evolutionary algo-
rithms such as differential evolution (DE) [27] and genetic
algorithm (GA) [28] have shown impressive outcomes in
practical applications, emerging optimizers such as the
SCHO algorithm have yet to be fully explored. Promising
reported outcomes on Congress on Evolutionary Computa-
tion (CEC) [8] testing suggest that further improvements are
also possible.

Based on the literature review, it can be concluded
that there is a gap in the application of simpler ML
models, which are less computationally demanding, for
student dropout prediction. Additionally, the optimization
of hyper-parameters for such models for this challenge
has not been sufficiently explored. Therefore, proposed
work seeks to address this research gap by evaluating
contemporary optimizers for the task of hyper-parameter
tuning via metaheuristics. Additionally, the aim is to provide
insights into the potential advantages of integrating these
optimizers into dropout prediction models and introduce
a modified algorithm specifically for the needs of this
work.

A. THE AdaBoost MODEL

The AdaBoost [22] uses an iterative technique to combine
simpler classifiers. This is achieved by combining several
weaker classifiers. Using an unweighted sample as a starting
point, this technique builds a set of classifiers to train
the model. When a classifier classifies well, its weights
are increased; when it classifies incorrectly, its weights
are decreased. The error of a weak classifier, €;,, may be
calculated with Eq. (1).

N . . . .
¢ = 2im Wl,tNI(ht(xl) i yz)’ )
Dt Wi

where the number of training samples is denoted by N, and
the weighted error of the weak learner in the ¢-th iteration
is represented by ;. The term w;, indicates the weight
of the i-th occurrence in the 7-th iteration. The expression
h;(x;) represents the weak learner’s prediction for the i-th
occurrence in the ¢-th iteration. The variable y; denotes the
true label of the i-th occurrence. In addition, the function I(-)
yields 1 in the absence of parenthesis and O in the case of a
false instance.

Further classifiers are built and the weight modification
process is repeated based on the acquired weights. Large
groups of classifiers are frequently built in order to develop
accurate models. A linear model is produced by adding the
scores of each of these sub-models. The classifier weight for
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the ensemble can be determined using Eq. (2).

1 1 1-— € (2)
oy = —In ,
! 2 €1

where each weak learner in the final ensemble is assigned a

weight o, according to its performance, while the weighted

error €; determines the weak learner’s contribution to the

overall model output. The /n denotes the natural logarithm.
The Eq. shown below is used to update the weights:

Wit+1 = Wi - EXp (—ay - yi - hi(xi)) 3)

where exp stands for the exponential function.

The AdaBoost method is effective for binary classification
problems. It does, however, struggle with problems related
to multi-class classification. One of the challenges tackled
in this research is framed as a binary classification problem,
which is why this model was chosen for optimization.

B. THE XGBoost MODEL

The XGBoost is a popular ML approach due to its effi-
cacy [20]. To obtain the best performance levels, the XGBoost
settings have to be adjusted. The XGBoost aims to combine
many subpar models to produce an accurate prediction
model. Notable performance benefits are obtained when
the aforesaid optimization is combined with regularization
and gradient boosting. The model makes predictions to
understand complex interactions between the target and
inputs based on the patterns it has identified.

Due to the numerous hyper-parameters of XGBoost,
each with large value ranges, trial-and-error approach is
impractical. In such complex scenarios, optimization offers a
reliable solution. The XGBoost optimization process focuses
on three objectives: enhancing generalization, accuracy, and
speed.

For XGBoost to achieve the best results an iterative
approach is required [20], that tries to optimize the objective
function. The XGBoost objective function is given by Eq. (4).

0bj(®) = L(O) + Q(O), (4)

where objective function obj(f) is determined as an
intersection between the loss and regular functions. The
regularization term 2(®), the loss function L(®), and the set
of hyperparameters ® control the complexity of the model.

The mean square error (MSE) is used to compute the loss
function L(#), as shown in Eq. (5).

L®) = > i — W )

where y; and y; indicate target and predicted values,
respectively for each iteration i.

Finally, the Eq. (6) describes the process of differentiation
between the actual and predicted values. The minimization of
the overall loss function results in an increase of classification
accuracy.

L©) = > [yin(l+e7) + (1-y)In(1+eN] (6)

1
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C. METAHEURISTIC OPTIMIZATION

It has been demonstrated that metaheuristic algorithms are
effective for tackling non-deterministic polynomial-time hard
(NP-hard) problems. These algorithms are intriguing because
they can handle such challenges with a minimal set of rules
applied to a population of candidate solutions. By following
these rules, global behaviors emerge that guide the algorithm
towards promising areas of the search space, leading to
optimal solutions.

When considering optimization algorithms, it is important
to note the “No Free Lunch” (NFL) theorem [29], which
states that no single algorithm performs the best for all test
cases. Therefore, empirical testing is required to determine
a suitable approach for a given optimization task. Due to
this, several optimizers have been developed to address
challenges using a wide range of strategies. Some of notable
examples that draw inspiration from nature include the firefly
algorithm (FA) [30] and GA [31]. While both optimizers
show impressive performance, the FA is well known for its
powerful exploitation potential. This can in practice lead
to premature convergence and lack of exploration needed
to locate better solutions. Similarly, the GA has a major
advantage in its simple solutions’ encoding scheme and
implementation. However, a good balance between mutation
and crossover operators is often difficult to determine, and
that can hinder performance in practical applications.

A more abstract approach is taken by the Particle
Swarm Optimization (PSO) [32], Variable Neighborhood
Search (VNS) [33] and COLSHADE [34] algorithms draw-
ing inspiration from several sources to formulate a search
strategy. While the PSO draws inspiration from a flock
of birds, or school of fish behavior, the search space
exploitation mechanisms are enforced by velocity and speed
rules adopted from physics. Although the PSO is able to
strike a good balance between exploration and exploitation,
more adaptive approaches have emerged that often overcome
some of observed drawbacks of the original optimizer [35],
[36]. Besides those mentioned, some more recent addi-
tions to metaheuristics family include the Reptile Search
Algorithm (RSA) [37] and Elk Heard Optimizer (EHO) [38].
The potential of those algorithms is yet to be fully explored
in literature. However, the reported outcomes on the CEC
benchmarking suite [39] suggest its decent potential.

Hybrid metaheuristic algorithms have demonstrated
exceptional performance across various real-world problems.
For instance, in the healthcare industry, notable examples
have been documented [40], [41]. Furthermore, hybrid
algorithms have enhanced methodologies in fields such as
computer security [42], time series forecasting including oil
production [43] and stock prices [44], [45]. They have also
been applied effectively in anomaly detection [46].

lll. PROPOSED METHODOLOGY

This section first describes the original SCHO optimizer used
as a baseline for the modified version of this algorithm. Once
the core optimizer is explained, some of its shortcomings are
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highlighted. Finally, modifications and the pseudo-code of
the introduced modified approach are provided at the end of
this section.

A. ORIGINAL SINH COSH OPTIMIZER
The SCHO algorithm, introduced by [8], is a relatively
new metaheuristics approach. It is technically founded and
inspired by the characteristics of sinh and cosh, two basic
hyperbolic functions. The metaheuristic leverages two salient
features of sinh and cosh. To begin with, the constant values of
cosh greater than one serve as an important boundary between
exploration and exploitation. Second, qualities related to
exploration and exploitation are enhanced when sinh values
in the interval [—1, 1] are near zero.

With a high-chaotic initial population, the mathematical
formulation of population (P) of this metaheuristics is shown
in Eq (7):

Apr...Aj.. . Aip
P= |:AL2“'A2J.“A2’Di| 7)
ANn1...ANj...AND

where the location of each agent A is determined by its
position in the P and value of its parameters’, e.g. notation
A ;j denotes j-th parameter of the 2nd agent. All agents are
initialized by Eq. (8).

A =rmd(N,D) x (ub—1b) + Ib, ®)

where rnd represents an arbitrary uniform value within the
range [0, 1], ub and Ib represent the upper and lower limits
of the search domain, while variables D and N denote the
number of dimensions in the search space and the total
number of solutions, respectively.

Once initialized, the algorithm has to find a balance
between exploration and exploitation to guide solutions
toward regions of interest in the search space. This equilib-
rium is governed by Eq. (9), where S splits exploration into
two strategies (phases):

T
S =ﬂ007(5) ©))

where T signifies the maximum count of rounds, and ct
represents a control parameter, empirically determined to
have a value of 3.6 [8] and floor() function rounds down
results.

In the first exploration phase, solutions are updated as
defined by Eq (10):
A+ [A(b’;st +r x W) x Aéi’j) rn > 0.5 (10)
() AW

best

—r x Wy x Aéi’j) rn < 0.5,

where the current iteration number is ¢, A’+1(i, J) describes
the j-th dimension of the i-th agent in the subsequent
iteration # + 1, and ADbesr denotes the best agent in the j
dimension. Unifrom pseudo-random values are chosen for
r1 and rp from the range [0, 1]. The weighted coefficient for
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the specific agent, represented as Wy, is calculated according
to expression (11).

Wi =r3 x by x (cosh - ra+ pu x sinh-r4 — 1), (11)

where parameter b; is progressively reduced over the
iterations, and random selections of r3 and r4 are made
uniformly between 0 and 1. In addition, a sensitivity
coefficient u controls the exploration accuracy and according
to the findings from [8],its value is hard-coded to 0.388.

The Eq (12) models the second phase of exploration, where
the best generated solution does not affect the agents.

t+1 _ [Aggst +le x W x A}(;Igst _Aft/)| rs > 0.5

@D A, —le x Wy x AL — AT s <05,

12)

where, the purpose of parameter € is to weaken influence of
the current best solution on the agents, therefore its value
is hard-coded and set to 0.003 [8]. The r; again denotes
pseudo-random number drawn from uniform distribution
between 0 and 1. The weight coefficient W5 is calculated as
follows:

Wy =rg X ba, (13)

where a uniformly randomly chosen number from [0, 1] is
denoted by rg, while a steadily declining value is indicated
by by, calculated as shown in Eq. (14).

m=2m—%+m, (14)

where n is sensitive coefficient which guides the exploration
process in the second phase.

Exploitation is a crucial stage in optimization process,
focusing solutions on promising areas of the search space to
come closer to the ideal state. Again, the SCHO performs
exploitation by conducting two phases. In the first stage
Eq. (15) is used.

0
4t [A,m, +rr X W3 x Al rg > 05 as)

GV Aggst — 17 x W3 x Aéi’j) rg < 0.5
the parameters r7 and rg are uniformly selected within limits
[0, 1], while the weighted coefficient W3 is established as

follows:
W3 =r9 x by x (cosh - rig + i X sinh - rp), (16)

where r9 and rjg denote again uniformly arbitrarily chosen
values within [0, 1]. The same parameter w, fixed to the value
of 0.388, is employed as in the exploitation phase [8].

The second exploitation strategy relies is modeled by the
Eq (17):

sinh - ri2 '

Al Wa x Ap — ALl (17)

'Y
(U A(i’j) trx cosh - r12
where ri; and rjp are uniformly chosen pseudo-random
numbers from the [0, 1] range.
More details regarding the baseline SCHO approach can

be retrieved from [8].
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B. INTRODUCED ADAPTIVE GUIDED BEST SCHO

While the original SCHO algorithm showcases impres-
sive results when evaluated on Congress on Evolutionary
Computation (CEC) [39] functions, as one of a recently
introduced algorithms, its potential is yet to be fully
explored when applied to real-world problems. Through
supplementary extensive empirical simulations using basic
SCHO on standard CEC constrained and bound-constrained
challenges, it was concluded that there exists significant
potential for SCHO’s improvements.

Specifically, while the baseline SCHO performs well in
diversification, it falls short in exploitation, particularly in the
later iterations of the algorithm’s execution. When the search
process is assumed to have converged towards an optimum
after some number of iterations, more intensified exploitation
is required. Furthermore, it was also noticed that the agents’
diversity in initial population could be better. Therefore,
modified SCHO approach introduced for the purpose of this
study aims towards enhancing baseline SCHO’s performance
by incorporating three mechanisms.

The first introduced modification is quasi-reflection learn-
ing (QRL) procedure into the algorithm’s initialization stages
with the goal of establishing better coverage of the search
space. The initial 50% agents in the population P are
initialized using standard SCHO procedure, shown for agent
A and parameter j in Eq. (18), while the latter half is
generated as QRL counterparts of the initially generated
agents. As no additional fitness function evaluations are
performed, algorithm complexity remains consistent with the
original.

Aj = Ibj + (ubj — Ib)) - ¢, (18)

where, ¢ denotes pseudo-random number generated from
uniform distribution between 0 and 1, while Ib; and ub;
represent lower and upper search space constraints for the
agent’s parameter j.

The generation of agents using the QRL procedure is
handled as per Eq (19), where as an example the j-th
parameter of agent A is created:

Ib; + ub;
AT = rnd(—j—;u J,Aj), (19)

where, A7" is QRL counterpart of agent’s A j-th parameter
and rnd denotes a pseudo-random number drawn from the
1b; + ub;j
2 Y

Secondly, a balancing operator is introduced, which
is used to alternate between the SCHO and FA search
mechanisms. The FA search expression is chosen since it
exhibits outstanding exploitation abilities [47]. Incorporated
balancing parameter 6 is dynamically updated throughout one
algorithm’s run to maintain the ratio between exploitation and
exploration. Therefore, the firefly search (FS) mechanism,
described in Eq (20) [30], is integrated into the baseline
SCHO in order to boost exploitation.

At + 1) = Al) + Be VTR (A(1) — AdD) + &), (20)

interval
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where A; and A are two agents from population, with
indexes i and k, respectively, ¢ and ¢ + 1 represent current
and subsequent iteration, respectively, B (agent attraction
coefficient) signifies the separation between agents, serving
as a metric for their mutual attraction, rfk is square of
Euclidean distance between individuals i and k, y denotes
the light absorption coefficient, o controls the degree of
randomness, and €;(¢) represents a stochastic vector.

However, Eq. (20) is commonly swapped with Eq. (21) to
improve computational performance [30].

pn=1 Fo

—_— 21
1+yxr2) @h

where S represents the attractiveness at r = 0.

More details about the FA approach can be captured
from [30].

To avoid premature convergence resulting from the excep-
tional FS abilities, the 6 parameter is dynamically adjusted
to promote exploration in the early stages and exploitation in
the later stages. At the end of each iteration, the 6 value is
updated in accordance with Eq (22):

o=1- <%>, (22)

with T denoting the maximum number of iterations in a run.

To alternate execution between the FA search and basic
SCHO expression, in each iteration, a uniform random value
rndy is selected from the range [0,1]. If this value exceeds
0, the FS is used to update the agents’ positions. Otherwise,
SCHO search mechanisms are employed for the solutions’
update. This approach ensures that exploitation is prioritized
in later iterations as the probability of utilizing the FS
mechanisms increases.

Finally, third alternation refers to introduction of additional
control parameter i, that also promotes intensification in
later phases of algorithm’s execution with the goal of
generating high quality solutions, when the search process
has already converged towards optimum regions. Similarly
to the previous approach, this parameter is updated at the end
of every iteration, as per Eq (23).

t
v=1-(3) (23)

Following each iteration, an arbitrary uniformly distributed
value rnd, is selected from a range [0, 1]. Should this value
exceeds Y, a new solution (A,) is generated by applying
a uniform genetic crossover operator (smilary as in [48])
between the two best solutions from the population (Apes; 1
and Apes: 2). The crossover probability (p.) was empirically
determined and hard-coded to the value of 0.1. The worst
solution is then replaced with the new one. No further
evaluations are conducted on the new solution and thus
computational complexity is maintained.

In summary, the QRL population initialization enhances
the diversity of the starting population and expands the
coverage of the search space. This mechanism also improves
diversification in early stages. The two introduced dynamic
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control parameters (operators) address the issue of an
inadequate exploitation-exploration trade-off by promot-
ing exploitation in the later iterations, leading to higher
quality solutions. Notably, the computational complexity
of the introduced algorithm remains consistent with the
original SCHO algorithm, as no additional evaluations are
introduced.

The described algorithm is named the adaptive guided
best SCHO (AGbSCHO) algorithm. The pseudo-code for this
algorithm is presented in Algorithm 1.

Algorithm 1 The AGbSCHO Algorithm Pseudo-Code

Initialize parameters 6 = 1 and ¢ = 1
Set population size N, maximum number of iterations 7',
current iteration counter ¢+ = 0, and genetic crossover
probability p, = 0.1
Initialize SCHO [8] and FA [30] control parameters to
values suggested in original versions
Generate % of population P using Eq. (18)
Generate the rest of the population by applying the QRL
(Eq.(19))
while r < T do
for all Agents A in P do
Assess A based on objective function
Assign fitness value to A
end for
Rank agents based on fitness
Acquire random value rnd; drawn from uniform distri-
bution within the range [0, 1]
if rnd, > 0 then
for all Agents A in P do
Update A’s position using FS mechanism
end for
else
for all Agents A in P do
Update A’s position using SCHO mechanism
end for
end if
Acquire random value rnd, drawn from uniform distri-
bution within the range [0, 1]
if rndy > i then
Generate a new solution A,,,, by applying uniform
crossover operator between Apyg; 1 and Apegr 2
Replace worst agent A, With Ajey
end if
Update 6 according to Eq. (22)
Update ¢ according to Eq. (23)
end while

As previously stated, in this research, proposed modified
SCHO algorithm, alongside the original optimizer, as well as
several other well-established optimizers, have been applied
to hyper-parameters optimization of XGBoost and AdaBoost
models. Each agents’ (solutions’) parameter represents
one hyper-parameter that was tuned. The specifics of the
experimental setup are provided in the following section.
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IV. EXPERIMENTAL SETUP

To assess the proposed approach, a publicly available
students’ dropout dataset, provided by the UC Irvine
ML repository! is used. This dataset contains details
available at the point of student registration, encompassing
academic trajectory, demographic information, and socio-
economic factors. Each instance in the dataset represents
one particular student. All students (instances) are divided
into three categories with the following class labels:
dropout, enrolled, and graduate. It is noted that the used
dataset is imbalanced, containing different number of
observations per each class. For more details, please refer
to  https://archive.ics.uci.edu/dataset/697/predict+students
+dropout+and+academic+success.

Three experiments are carried out in this research. The
first two experiments apply AdaBoost and XGBoost to
determine the difference between students who will drop
out and those who are currently enrolled or have graduated
(binary classification). Minimal pre-processing is required as
the dataset is fairly well formatted, with no missing values
and relevant categorical values already integer-encoded.
These integer-encoded categorical values are then one-hot
encoded. In the simulation outcomes section, graduate and
currently enrolled students are grouped together under the
label student. Conversely to first two simulations, the third
experiment utilized XGBoost for a three-class (multi-class)
classification task, according to the groups described above
(dropout, enrolled and graduate). In each experiment, 70% of
the available data is used to train models, while the latter 30%
is used to evaluate the models.

In each simulation, several metaheuristic algorithms are
applied to optimize model outcomes. Alongside introduced
AGbSCHO algorithm, the original SCHO [8] is tested to
provide a baseline for evaluations. Also, a set of other
cutting-edge contemporary optimizes is also included in
the comparison: FA [30], GA [31], PSO [32], VNS [33],
RSA [37], EHO [38], and COLSHADE [34]. These algo-
rithms are independently implemented for the conducted
experiments. The parameter settings used for each algorithm
are based on the suggestions provided in the original works,
that introduced each respective algorithm. Simulations are
carried out under identical conditions with 10 agents in
population (N = 10), that try to iterative improve
performance over 15 iterations (77 = 15). Finally to
account for randomness associated with heuristic algorithms
experimentation is carried out over 30 independent runs
(runtime = 30). Specific SCHO and FA control parameters
in the proposed AGbSCHO approach were set according to
suggestions from original papers [8], [30].

Optimizers are utilized to determine optimal (sub-optimal)
hyper-parameters for AdaBoost and XGBoost classifiers. The
selection of specific hyper-parameters for optimization is
based on their significant impact on algorithm performance,

1 https://archive.ics.uci.edu/dataset/697/predict+students+dropout+and+
academic+success (last accessed on 15.02.2023.)
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FIGURE 1. Agent solution encoding for XGBoost optimization.

and their respective ranges are determined through extensive
empirical testing. Hyper-parameters and their corresponding
ranges are outlined in Table 1 and Table 2 for the XGBoost
and AdaBoost classifiers, respectively.

TABLE 1. The AdaBoost tuned hyper-parameters with respective ranges.

Parameter Lower Bound  Upper bound
Learning rate 0.1 2

Estimators count 10 50

Depth 1 10

TABLE 2. The XGBoost tuned hyper-parameters with respective ranges.

Parameter Lower Bound  Upper Bound
Learning Rate 0.1 0.9
Minimum child weight 1 10
Subsample 0.01 1

Col sample by tree 0.01 1

Max depth 3 10

¥ 0 0.8

To facilitate optimization, the hyper-parameters of
XGBoost and AdaBoost are encoded as agent parameters,
which are then optimized by each evaluated metaheuristics in
an iterative process. Solution encoding schemes for XGBoost
and AdaBoost are shown in figures 1 and 2 respectively.

Agent

Agent Paramaters:

Mumber of

Learning rate .
g estimators

Depth

FIGURE 2. Agent solution encoding for AdaBoost optimization.

To evaluate the classification performance of each opti-
mized model, a set of standard metrics is selected. Utilized
metrics include accuracy given by Eq. (24), precision shown
in Eq. (25), recall calculated as in Eq. (26), and fl-score
defined by Eq. 27.

Accuracy = P+ 1IN (24)
YZTPYIN fFP1 FN
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. P
Precision = ——— (25)
FP+TP
TP
Recall = ——— (26)
FN +TP
(Precision x Recall)
F1 — Score =2 x — , 27
(Precision + Recall)

where 7P and TN indicate true positives and negatives,
while FP and FN mark false positives and negatives.
A supplementary metric used in this research is Cohen’s
Kappa defined by Eq. (28), as it is able to deal with
imbalanced data. Cohen’s Kappa is a common choice where
inter-rater reliability is important, as it can evaluate the
consistency between several observers.

Pops — Pexp
1 — Py

K= , (28)

where the predicted agreement values are given as:

P_obs=[(TP + FN)x (TP + FP)(FP + TN) x (FN + TN)],
(29)

the observed agreement values (TP + TN) are represented as
P_obs. The P_exp is used to denote the Cohen’s coefficient
K which falls between [0, 1], with a value nearer to 0 denotes
less agreement.

Due to its ability to account for class imbalance present in
the dataset used, Cohen’s Kappa coefficient was selected as
the objective function for the experiments. Besides, in each
iteration, the classification error rate (1 — accuracy) was
also captured and it is referred in this research as an
indicator function. The XGBoost and AdaBoost challenge is
formulated as a maximization problem aimed at maximizing
the Cohen’s Kappa score to establish a higher agreement rate
between different classes.

Besides all mentioned metrics taken into account in this
study, the Matthew’s correlation coefficient (MCC) is also
included to evaluate the classification potential of the best-
constructed models. The MCC is calculated as described in
Eq. (30).

TP x FN—FP x FN

~ /(TP + FP)(TP + EN)(IN + FP)(IN t FN)
(30)

Mcc

Finally, to make the process of tuning XGBoost and
AdaBoost for this specific challenge more comprehensible
for the readers, a flowchart summarizing the utilization of
the introduced optimizer, along with other evaluated meta-
heuristics within the experimental framework, is provided in
Figure 3.

V. SIMULATION OUTCOMES

The following section presents the results of three conducted
experiments: AdaBoost for binary, XGBoost for binary and
XGBoost for multi-class dropout classification. Outcomes
are compared using various indicator and objective functions.
Convergence rates are monitored throughout the optimization
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FIGURE 3. The flowchart of proposed framework used in simulations.

process and displayed, while outcome distributions are
logged to evaluate the reliability of the algorithms. Detailed
comparisons between the best models, as generated by each
optimizer in terms of the classification metrics mentioned
in the previous section, are provided. Finally, to ensure the
repeatability of the experiments by other researchers, the
hyper-parameters’ selections for the best-performing models
are also included.

It is noted that in all results’ tables, the best achieved result
is marked with bold style. Also, to make clear distinguishing
between the AdaBoost and XGBoost experiments, prefix
‘AB’ for AdaBoost and ‘XG’ for XGBoost was included
before methods’ names.

A. EXPERIMENT I - ADABOOST BINARY CLASSIFICATION

Comparison for dropout detection between the best con-
structed AdaBoost classifiers by each metaheuristics for
binary classification challenge is presented in Table 3,
in terms of objective, and in Table 4, in terms of indicator
function for the best worst mean, median, variance (var) and
standard deviation (std) metrics, throughout the course of
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Objective

on ?
o < i
g B

°
&
&
S ¥
&

o o > o s
& S & 5 S
< B & &

14 K

9

%,

Algorithm

Students dropout - error box plot diagram

0.1350

01325

0.1300

01275

error

0.1250

01225

0.1200

©
S
& &
&
o
@

Algorithm

FIGURE 4. Experiment I - tuned AdaBoost objective and indicator
function distribution plots for binary dropout classification.

30 independent runs. The models optimized by the introduced
AGbSCHO algorithm demonstrate the highest scores in all
cases attaining the best objective function (Cohen Kappa)
rating of 0.719355 and mean, worst and median results of
0.714342, 0.708068 and 0.715080 respectively. The EHO
metaheuristics exhibits the best stability, achieving the best
values for std and var metrics.

Similar outcomes are presented in terms of the indi-
cator function (classification error rate), with AGbSCHO
showing the best performance for the mean, worst, median,
standard deviation, and variance metrics, obtaining values
of 0.120231, 0.122741, 0.119729, 0.001188, and 0.000141,
respectively. However, it is important to note that the original
SCHO and the introduced algorithm are tied for the best
model in terms of the indicator function. While the EHO
and other approaches did not achieve the best results, their
demonstrated stability is commendable.

By observing distribution plots a insight in to the
repeatability of optimization conducted by a single optimizer
can be discerned. A more diapered distribution suggests a
lower stability, and therefore results of a single optimization
can vary to a greater degree. A more condensed distribution
suggests a higher algorithm stability, meaning that the

122386

Students dropout - objective convergence graphs

0720 - -+ AB-AGbSCHO

- - - - - - - - - - - - - - ~— AB-SCHO
4 —— ABFA
ors AB-GA
/ AB-PSO
/ —— ABWNS
/. / AB-RSA
o710 /s
Y/, AB-EHO
/’/ AB-COLSHADE
0705 /
E /
3 ,
o _ /]
gomo
7
o0ess /
069
085
0 2 4 s 3 10 2 14
Iterations
Students dropout - error convergence graphs
rrrrr AB-AGbSCHO
0432 —— AB-SCHO
- ABFA
AB-GA
AB-PSO
0.130 —— AB-UNS
AB-RSA
AB-EHO
0128 AB-COLSHADE

0.122

0.120

0 2 4 6 8 10 12 14
Iterations

FIGURE 5. Experiment I - tuned AdaBoost objective and indicator function
convergence graphs in the best run for binary dropout classification.

optimization outcomes are more repeatable. Distribution
outcomes for objective and indicator function, visualized as
violin plots and box plots, respectively, can be observed from
Figure 4. The presented figure clearly shows improvements
made by the introduced algorithm over other approaches,
demonstrating better grouping of outcomes compared to the
original algorithm.

Algorithms convergence can help highlight some of the
advantages and disadvantages of the optimizers. A high rate
of convergence suggests that an algorithm has a powerfully
exploitation mechanisms, at the other side, a premature
convergence towards a sub-optimal region may suggest a lack
of exploration. Comparing optimizers considering conver-
gence rates also provides valuable information regarding the
balance between exploration and exploitation. Comparisons
of convergence rates for objective and indicator function in
the best run over 15 iterations is shown in Figure 5.

The provided figure illustrates that the QRL mechanism
of the introduced AGbSCHO allows the metaheuristic to
identify the optimal part of the search space immediately
after initialization. Furthermore, the steep ascent after a few
iterations demonstrates AGbSCHO’s exceptional exploita-
tion abilities, outperforming all other methods in terms of
convergence speed. The graphs also show that the AGbSCHO
efficiently avoids the challenge of trapping in local optima
by converging immediately towards promising regions of the
search space. In contrast, for example, the RSA metaheuristic
stagnates for many iterations before it converges, indicating
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TABLE 3. Experiment | - objective function comparative analysis outcomes of tuned AdaBoost for binary dropout classification.

Method Best Worst Mean Median Std Var

AB-AGbSCHO 0.719355  0.708068 0.714342  0.715080 0.003670  1.35E-05
AB-SCHO 0.718284  0.683489  0.702859  0.705145 0.010543 1.11E-04
AB-FA 0.714354  0.682692  0.702233  0.703816  0.009205  8.47E-05
AB-GA 0.713845 0.687774  0.703215 0.703816  0.005945  3.53E-05
AB-PSO 0.714136  0.695375  0.708091  0.708068  0.004284  1.84E-05
AB-VNS 0.716681  0.698203  0.709531 0.708813  0.005345  2.86E-05
AB-RSA 0.715232  0.697322  0.709000 0.708441  0.004495  2.02E-05
AB-EHO 0.712250  0.703557  0.708993  0.709435  0.002355  5.55E-06
AB-COLSHADE 0.717041  0.703816  0.710382  0.710414  0.004188  1.75E-05

TABLE 4. Experiment I - indicator function comparative analysis of tuned AdaBoost for binary dropout classification.

Method Best Worst Mean Median Std Var

AB-AGbSCHO 0.118976  0.122741  0.120231  0.119729 0.001188 1.41E-06
AB-SCHO 0.118976  0.135542  0.125301  0.124247  0.004632  2.15E-05
AB-FA 0.120482  0.135542  0.125803  0.125000  0.004192  1.76E-05
AB-GA 0.121235  0.131777  0.124950  0.124247  0.002482  6.16E-06
AB-PSO 0.119729  0.127259  0.122892  0.122741  0.001765  3.11E-06
AB-VNS 0.119729  0.125753  0.122189  0.121988  0.002066  4.27E-06
AB-RSA 0.119729  0.127259  0.122490  0.122741  0.001957  3.83E-06
AB-EHO 0.121988  0.125753  0.122691  0.122741  0.001213  1.47E-06
AB-COLSHADE  0.119729  0.123494  0.121837  0.121235 0.001584  2.51E-06

AB-AGbSCHO Students dropout - PR curve
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FIGURE 6. Experiment | - the best performing tuned AdaBoost model
(AB-AGbSCHO) for binary dropout classification PR curve.

that its search process frequently encounters local minima
within the search area.

Detailed evaluations and outcomes for the best-performing
models generated by each metaheuristics are provided in
Table 5. The introduced algorithm exhibits clear dominance,
demonstrating superior outcomes across several metrics
for both classes. However, the overall accuracy is com-
parable to the original SCHO algorithm. The PSO also
presents interesting results, with a high rate of recall,
Fl-score, and precision for dropout detection. This aligns
with expectations and serves to further reinforce the NFL
theorem.

The precision recall (PR) curve is a valuable tool for
understanding the trade-offs between precision and recall
at various threshold levels, while a confusion matrix is
used to evaluate the performance of a classification model
by summarizing the predictions compared to the actual
outcomes. The PR curves and confusion matrix for the best
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FIGURE 7. Experiment I - the best performing AdaBoost model
(AB-AGbSCHO) for binary dropout classification confusion matrix.

performing model (in this case ones generated by introduced
AGbSCHO metaheuristics) are provided in figures 6 and 7
respectively, followed by the parameter selections of the
best performing models optimized by each algorithm in
Table 6.

From the presented PR curve (Figure 6) can be seen
that the AB-AGbSCHO obtained micro average precision,
that takes into account number of instances per each class,
of 0.927, which is relatively promising result. This result
can be validated from confusion matrix (Figure 7), where
the AB-AGbSCHO misclassified only 6.2% and 23.9%
of student and dropout classes, respectively. Since the
dropout is minority class in the used dataset, this observed
misclassification difference is expected.
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TABLE 5. Experiment | - detailed metrics for the best-constructed models by tuned AdaBoost for binary dropout classification.

Methods Metrics Student Dropout Macro avg ~ Weighted avg
AB-AGbSCHO precision  0.892291  0.853018  0.872655 0.879664 - -
recall 0.937847  0.761124  0.849485 0.881024 - -
f1-score 0.914502  0.804455  0.859479 0.879118 - -
accuracy - - - - 0.881024 -
MCC - - - - - 0.721769
AB-SCHO precision  0.889822  0.858667  0.874244 0.879804 - -
recall 0.941176  0.754098  0.847637 0.881024 - -
f1-score 0.914779  0.802993  0.858886 0.878836 - -
accuracy - - - - 0.881024 -
MCC - - - - - 0.721391
AB-FA precision  0.887958  0.857909  0.872933 0.878296 - -
recall 0.941176  0.749415  0.845295 0.879518 - -
f1-score 0.913793  0.800000  0.856897 0.877205 - -
accuracy - - - - 0.879518 -
MCC - - - - - 0.7176970
AB-GA precision  0.890295  0.850000  0.870148 0.877339 - -
recall 0.936737  0.756440  0.846589 0.878765 - -
f1-score 0.912926  0.800496  0.856711 0.876776 - -
accuracy - - - - 0.878765 -
MCC - - - - - 0.716349
AB-PSO precision ~ 0.884058  0.870166  0.877112 0.879591 - -
recall 0.947836  0.737705  0.842770 0.880271 - -
fl-score 0.914837  0.798479  0.856658 0.877423 - -
accuracy - - - - 0.880271 -
MCC - - - - - 0.719063
AB-VNS precision  0.889706  0.856383  0.873044 0.878991 - -
recall 0.940067  0.754098  0.847082 0.880271 - -
f1-score 0.914193  0.801993  0.858093 0.878117 - -
accuracy - - - - 0.880271 -
MCC - - - - - 0.719659
AB-RSA precision  0.886458  0.864130  0.875294 0.879279 - -
recall 0.944506  0.744731  0.844618 0.880271 - -
f1-score 0.914562  0.800000  0.857281 0.877726 - -
accuracy - - - - 0.880271 -
MCC - - - - - 0.719259
AB-EHO precision  0.890180  0.847769  0.868974 0.876543 - -
recall 0.935627  0.756440  0.846034 0.878012 - -
f1-score 0.912338  0.799505  0.855921 0.876058 - -
accuracy - - - - 0.878012 -
MCC - - - - - 0.714640
AB-COLSHADE  precision  0.890526  0.854497  0.872512 0.878942 - -
recall 0.938957  0.756440  0.847698 0.880271 - -
fl-score 0.914100  0.802484  0.858292 0.878212 - -
accuracy - - - - 0.880271 -
MCC - - - - - 0.719783
support 901 427

TABLE 6. Experiment I - the best constructed AdaBoost model
parameters’ selected by each optimizer for binary dropout classification.

Method Number of estimators ~ Depth ~ Learning rate
AB-AGbSCHO 20 3 0.384179
AB-SCHO 16 3 0.385072
AB-FA 15 3 0.358660
AB-GA 18 3 0.565506
AB-PSO 14 3 0.303599
AB-VNS 17 3 0.316245
AB-RSA 18 3 0.250498
AB-EHO 13 3 0.560980
AB-COLSHADE 20 3 0.316954

B. EXPERIMENT Il - XGBOOST BINARY CLASSIFICATION

Comparisons for binary dropout detection between the best
constructed XGBoost classifiers optimized by each algorithm
are presented in tables 7 and 8§ in terms of objective and
indicator function, respectively for the best, worst, mean,
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median, variance (var) and standard deviation (std) metrics
for 30 executions, each starting from its own pseudo-random
number seed.

Generated models by introduced AGbSCHO algorithm
demonstrate the highest scores in all cases attaining a best
objective function rating of 0.736784 and a mean and median
results of 0.725798 and 0.724569 respectively (Table 7).
The worst performing model by proposed method is also
better than worst models generated by other approaches with
objective function value of 0.717565. However, the PSO
algorithm demonstrates superior stability, achieving the best
values for the std and var metrics.

Similar results are highlighted in terms of the indicator
function (Table 8), with the AGbSCHO producing the top
model achieving a score of 0.111446. The mean and median
scores across 30 runs were 0.116165 and 0.116717, respec-
tively. Similar to the objective function comparison, even

VOLUME 12, 2024



R. Goran et al.: Identifying and Understanding Student Dropouts Using Metaheuristic Optimized Classifiers

IEEE Access

TABLE 7. Experiment Il - objective function comparative analysis of tuned XGBoost for binary dropout classification.

Method Best Worst Mean Median Std Var

XG-AGbSCHO 0.736784  0.717565  0.725798  0.724569 0.004876  2.38E-05
XG-SCHO 0.720065  0.707157  0.715174  0.716522  0.003407  1.16E-05
XG-FA 0.726935  0.706633  0.715801 0.716721  0.004480  2.01E-05
XG-GA 0.725066  0.707478  0.714957  0.714208  0.004668  2.18E-05
XG-PSO 0.721661  0.709302  0.717200 0.717925  0.003333 1.11E-05
XG-VNS 0.725207  0.712752  0.718129 0.718472  0.003440  1.18E-05
XG-RSA 0.725841  0.710658  0.717867  0.717925 0.004139  1.71E-05
XG-EHO 0.724306  0.711152  0.718050 0.718472  0.003959  1.57E-05
XG-COLSHADE  0.729905 0.710784  0.718859  0.717237  0.005785  3.35E-05

TABLE 8. Experiment Il - indicator function comparative analysis of tuned XGBoost for binary dropout classification.
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C me]

-+ XG-AGbSCHO

—— XG-SCHO

— XGFA
XG-GA
XG-PSO

— XG-UNS

XG-EHO
XG-COLSHADE

Method Best Worst Mean Median Std Var
XG-AGbSCHO 0.111446  0.118976 0.116165 0.116717 0.002066  4.27E-06
XG-SCHO 0.118976  0.121235 0.120984  0.121235 0.001053  1.11E-06
XG-FA 0.116717  0.125000  0.121285 0.121235 0.001813  3.29E-06
XG-GA 0.115964  0.124247  0.120984  0.121235 0.002106  4.44E-06
XG-PSO 0.118223  0.121988 0.119528 0.118976  0.001388 1.93E-06
XG-VNS 0.116717  0.121235 0.119327 0.119729 0.001503  2.26E-06
XG-RSA 0.114458  0.122741  0.119277 0.119729 0.002108  4.45E-06
XG-EHO 0.117470  0.121988  0.119227 0.118976  0.001523  2.32E-06
XG-COLSHADE  0.113705 0.121988 0.119076  0.119729  0.002592  6.72E-06
Students dropout - objective violin plot diagram Students dropout - objective convergence graphs
e
3 / /
/

Algorithm
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distribution plots for binary dropout classification.

the worst-performing model by AGbSCHO outperformed
the best models generated by some metaheuristics. Although
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FIGURE 9. Experiment Il - tuned XGBoost objective and indicator function
convergence graphs in the best run for binary dropout classification.

PSO did not achieve the best results, its demonstrated stability

is commendable.

Similar to the previous experiment (AdaBoost tuning),
the stability of the optimizer over 30 runs can be clearly
visualized in the distribution plots, such as box and whisker
diagrams and violin plots. Distribution outcomes for objec-
tive and indicator functions can be observed in Figure 8.
The figure shows that AGbSCHO exhibits relatively good
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TABLE 9. Experiment Il - detailed metrics for the best-constructed models by tuned XGBoost for binary dropout classification.

Methods Metrics Student Dropout Macro avg ~ Weighted avg
XG-AGbSCHO precision  0.896733  0.868074  0.882404 0.887518 - -
recall 0.944506  0.770492  0.857499 0.888554 - -
fl-score 0.920000 0.888554  0.868189 0.886682 - -
accuracy - - - - 0.888554 -
MCC - - - - - 0.739483
XG-SCHO precision  0.893955  0.849351  0.871653 0.879613 - -
recall 0.935627  0.765808  0.850718 0.881024 - -
fl-score 0914317  0.805419  0.859868 0.879302 - -
accuracy - - - - 0.881024 -
MCC - - - - - 0.722067
XG-FA precision  0.899358  0.845178  0.872268 0.881937 - -
recall 0.932297  0.779859  0.856078 0.883283 - -
fl-score 0.915531  0.811206  0.863369 0.881987 - -
accuracy - - - - 0.883283 -
MCC - - - - - 0.728166
XG-GA precision  0.891099  0.865952  0.878526 0.883014 - -
recall 0.944506  0.756440  0.850473 0.884036 - -
fl-score 0.917026  0.807500  0.862263 0.881809 - -
accuracy - - - - 0.884036 -
MCC - - - - - 0.728459
XG-PSO precision  0.894068  0.851563  0.872815 0.880401 - -
recall 0.936737  0.765808  0.851272 0.881777 - -
fl-score 0.914905  0.806412  0.860658 0.880021 - -
accuracy - - - - 0.881777 -
MCC - - - - - 0.723767
XG-VNS precision  0.895127  0.854167  0.874647 0.881957 - -
recall 0.937847  0.768150  0.852998 0.883283 - -
f1-score 0.915989  0.808878  0.862434 0.881549 - -
accuracy - - - - 0.883283 -
MCC - - - - - 0.727323
XG-RSA precision  0.885685  0.885154  (0.885419 0.885514 - -
recall 0.954495  0.740047  0.847271 0.885542 - -
fl-score 0.918803  0.806122  0.862463 0.882572 - -
accuracy - - - - 0.885542 -
MCC - - - - - 0.731697
XG-EHO precision  0.896699  0.848329  0.872514 0.881146 - -
recall 0.934517  0.772834  0.853675 0.882530 - -
f1-score 0.915217  0.808824  0.862020 0.881008 - -
accuracy - - - - 0.882530 -
MCC - - - - - 0.725945
XG-COLSHADE  precision  0.891441  0.872973  0.882207 0.885503 - -
recall 0.947836  0.756440  0.852138 0.886295 - -
fl-score 0918774  0.810540  0.864657 0.883972 - -
accuracy - - - - 0.886295 -
MCC - - - - - 0.733729
support 901 427

stability, achieving consistent results across all 30 runs.
Similar conclusions can be drawn for the VNS, PSO, EHO,
and COLSHADE metaheuristics. Conversely, FA and GA
demonstrate poor stability with scattered results in different
runs. The RSA approach is relatively stable, but clearly
visible outliers in some executions.

As noted previously, algorithm convergence can help
highlight the advantages and disadvantages of optimizers.
A high rate of convergence may indicate that an algorithm
has strong exploitation mechanisms; however, premature
convergence to a suboptimal region can suggest a lack of
exploration. Comparing optimizers based on their conver-
gence rates provides valuable information about the balance
between exploration and exploitation. The Figure 9 illustrates
the comparisons of convergence rates for the objective and
indicator functions in the best run. While many optimizers
tend to focus on sub-optimal regions of the search space, the
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modifications to the SCHO algorithm enable it to overcome
local traps and focus on more promising regions within the
search space. With the assistance of dynamic parameters,
AGbSCHO converges slowly yet steadily towards the best
results, surpassing all other metaheuristics.

Detailed evaluations and outcomes for the best-performing
models are provided in Table 9. The introduced algorithm
shows clear dominance, delivering superior results across
several metrics. Unlike the previous experiment, the over-
all accuracy is significantly better than that achieved by
the baseline SCHO algorithm. The RSA also presents
notable results, with a high rate of recall and preci-
sion for some classes, closely followed by FA. Once
again, this outcome is expected and further reinforces the
NFL theorem.

The PR curves and confusion matrix for the best perform-
ing model (in this case the one obtained by the AGbSCHO
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TABLE 10. Experiment Il - the best constructed XGBoost model parameters’ selected by each optimizer for binary dropout classification.

Methods Learning rate Min child W.  Subsample  Col by tree =~ Max depth ~ Gamma

XG-AGbSCHO 0.515965 3.621653 0.907950 0.863299 6 0.000000
XG-SCHO 0.769270 9.930883 0.772600 1.000000 6 0.800000
XG-FA 0.590572 6.973637 0.842200 1.000000 8 0.157791
XG-GA 0.900000 10.000000 0.927848 0.372662 5 0.000000
XG-PSO 0.900000 1.000000 0.653400 0.694760 3 0.082121
XG-VNS 0.552244 5.409314 0.912545 1.000000 8 0.102573
XG-RSA 0.606682 1.000000 1.000000 0.261665 4 0.003928
XG-EHO 0.482289 6.758533 0.653890 0.999295 10 0.083886
XG-COLSHADE  0.483608 6.587873 0.765078 0.936913 10 0.374648

XG-AGbSCHO Students dropout - PR curve
—— student AP:0.955

o T dropout AP:0.883
| — microAP:0.939

precision

03 04 0s 06 o7 08 09 10
recall

FIGURE 10. Experiment Il - the best performing tuned XGBoost model
(XG-AGbSCHO) for binary dropout classification PR curve.

metaheuristics) are provided in Figure 10 and Figure 11
respectively. The achieved average precision for student and
dropout classes of 0.955 and 0.883, respectively, along with a
micro-averaged precision of 0.939, suggests that the proposed
AGbSCHO algorithm can be highly effective in practical
dropout detection challenges. These results are supported
by the confusion matrix, where AGbSCHO achieves a true
positive (TP) rate of 77% for the dropout class and 94.5% for
the student class. As previously noted, given that the dropout
class has significantly fewer observations than the student
class in the used dataset, a higher TP rate for the student class
is expected.

Finally, to enable reproducibility of the simulations
by other researchers, the parameter selections for the
best-performing models optimized by each algorithm are
shown in Table 10.

C. EXPERIMENT IIl - XGBOOOST MULTI-CLASS
CLASSIFICATION

Oppositely to first two simulations, the third experiment uti-
lizes XGBoost for a multi-class classification task, according
to the class labels described previously: dropout, enrolled and
graduate.

Comparisons for multi-class classification among the
best XGBoost classifiers optimized by each algorithm are
presented in Table 11 for objective functions and in Table 12
for indicator functions, covering metrics such as best, worst,
mean, median, variance (var), and standard deviation (std)
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FIGURE 11. Experiment Il - the best performing XGBoost model
(XG-AGbSCHO) for binary dropout classification confusion matrix.

calculated over 30 runs. The models optimized by the
AGbSCHO algorithm consistently achieve the highest scores
across almost all metrics. Specifically, they achieve a best
objective function score of 0.666221, with mean and median
results of 0.651079 and 0.650129, respectively. Additionally,
even the worst metric outperforms those established by
all other included approaches. Similar to the previous
simulations, in this case, the GA method exhibits the best std
and var metrics.

Similar outcomes are demonstrated in terms of the
indicator function, where AGbSCHO outperformed all other
methods with a best score of 0.199548, and mean and median
scores of 0.208183 and 0.208584, respectively. While GA did
not achieve the best outcomes, its demonstrated stability is
commendable.

The distribution outcomes of objective and indicator
functions can be observed in Figure 12. Unlike previous
experiments, while the proposed AGbSCHO outperforms all
other state-of-the-art metaheuristics in the best run for the
multi-class experiment, overall stability is not as strong as
in the binary simulations. From the figure, both violin plots
(objective function) and box and whisker plots (indicator
function) clearly show an outlier representing the best run.
The FA, VNS, and GA perform similarly to the proposed

122391



IEEE Access

R. Goran et al.: Identifying and Understanding Student Dropouts Using Metaheuristic Optimized Classifiers

TABLE 11. Experiment Ill - objective function comparative analysis outcomes of tuned XGBoost for multi-class dropout classification.

Method Best Worst Mean Median Std Var

XG-AGbSCHO 0.666221  0.645646  0.651079  0.650129  0.004551  2.07E-05
XG-SCHO 0.653408  0.640276  0.647694  0.648351  0.003593  1.29E-05
XG-FA 0.658901  0.644092  0.648294  0.647296  0.003918  1.54E-05
XG-GA 0.655117  0.643851  0.647384  0.647138  0.002875  8.26E-06
XG-PSO 0.653424  0.637195  0.644810  0.644092  0.004770  2.28E-05
XG-VNS 0.655538  0.637851  0.646013  0.645443  0.004293  1.84E-05
XG-RSA 0.652273  0.635535  0.644102  0.643532  0.004799  2.30E-05
XG-EHO 0.654193  0.635383  0.644569  0.643022  0.005766  3.32E-05
XG-COLSHADE  0.653780  0.633860  0.645138  0.645417  0.005479  3.00E-05

TABLE 12. Experiment IlI - indicator function comparative analysis of tuned XGBoost for multi-class dropout classification.

Method Best Worst Mean Median Std Var

XG-AGbSCHO 0.199548  0.210843  0.208183  0.208584  0.002577  6.64E-06
XG-SCHO 0.207078  0.213855  0.210492  0.210843  0.001800  3.24E-06
XG-FA 0.204819  0.211596  0.210442  0.210843  0.002073  4.30E-06
XG-GA 0206325  0.211596  0.210843  0.210843  0.001673  2.80E-06
XG-PSO 0.207078  0.214608  0.211898  0.212349  0.002620  6.86E-06
XG-VNS 0.204819  0.216867 0.211044  0.211596  0.002715  7.37E-06
XG-RSA 0.207831  0.217620  0.212450  0.212349  0.003133  9.82E-06
XG-EHO 0.207831  0.219127  0.212248  0.211596  0.003907  1.53E-05
XG-COLSHADE  0.207078  0.217620  0.211998  0.211596  0.003181  1.01E-05
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FIGURE 12. Experiment Il - tuned XGBoost objective and indicator
function distribution plots for multi-class dropout classification.

method, with even more observed outliers. Oppositely, in this
case, PSO, RSA, EHO, and COLSHADE exhibit the best
stability across 30 runs.
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The comparison of convergence speed in the best run for
all metaheuristics is illustrated in Figure 13. In this case,
the AGbSCHO’s QRL initialization did not facilitate rapid
convergence towards an optimum at the beginning of the
run. However, dynamic parameters 6 and v, which gradu-
ally enhance exploitation and intensification-diversification
trade-off throughout the run, enabled the algorithm to
converge slowly but steadily towards the best solution.
Notably, around the 7-th iteration, a significant improvement
in result quality becomes apparent. Other methods, with
the exception of FA, exhibited average convergence rate
performance. FA successfully generated an initial population
with satisfactory solution quality, but it did not converge over
the course of all 15 iterations.

Detailed evaluations and outcomes for the top-performing
models are presented in Table 13. The introduced algorithm
shows clear superiority, achieving excellent results across
various metrics. Notably, AGbSCHO excels in macro and
weighted averages, as well as accuracy. However, for
specific metrics such as precision, recall, and fl-score for
certain classes, FA, GA, PSO, VNS, and EHO algorithms
outperform the modified proposed algorithm. This once again
illustrates the nuances highlighted by the NFL theorem.

The PR curves and confusion matrix for the best per-
forming models are provided in Figure 14 and Figure 15
respectively, while the parameter selections for the best
performing models optimized by each algorithm are shown
in Table 14 to facilitate repeatability of experiments.

With a micro average precision of 0.864, as observed in
Figure 14, it can be concluded that XG-AGbSCHO may be
applied for real-world multi-class student dropout challenges.
The best model achieves the highest average precision for
the graduate class and the lowest for the enrolled class,
with values of 0.901 and 0.564, respectively. Once again,
as seen in previous simulations, this can be verified by the
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TABLE 13. Experiment Il - detailed metrics for the best-constructed models by tuned XGBoost for multi-class dropout classification.

Methods Metric Graduate  Student Dropout Macro avg ~ Weighted avg
XG-AGbSCHO precision  0.817089  0.639344  0.843434  0.766623 0.793705 - -
recall 0.923077  0.491597  0.782201  0.732292 0.800452 - -
fl-score 0.866856  0.555819  0.811665  0.744780 0.793367 - -
accuracy - - - - - 0.800452 -
MCC - - - - - - 0.723010
XG-SCHO precision  0.811245  0.621469  0.834158  0.755624 0.784601 - -
recall 0.914027  0.462185  0.789227  0.721813 0.792922 - -
f1-score 0.859574  0.530120 0.811071  0.733589 0.784935 - -
accuracy - - - - - 0.792922 -
MCC - - - - - - 0.707546
XG-FA precision  0.821769  0.631579  0.823821  0.759056 0.788343 - -
recall 0911011  0.504202 0.777518  0.730910 0.795181 - -
f1-score 0.864092  0.560748  0.800000  0.741613 0.789119 - -
accuracy - - - - - 0.795181 -
MCC - - - - - - 0.718134
XG-GA precision  0.809651  0.606557  0.849624  0.755278 0.786106 - -
recall 0911011  0.466387  0.793911  0.723769 0.793675 - -
fl-score 0.857346  0.527316  0.820823  0.735162 0.786455 - -
accuracy - - - - - 0.793675 -
MCC - - - - - - 0.702856
XG-PSO precision  0.808311  0.642045  0.830049  0.760135 0.785503 - -
recall 0.909502  0.474790  0.789227  0.724506 0.792922 - -
fl-score 0.855926  0.545894  0.809124  0.736981 0.785314 - -
accuracy - - - - - 0.792922 -
MCC - - - - - - 0.699821
XG-VNS precision  0.813648  0.639053  0.826196  0.759633 0.786393 - -
recall 0.935143  0.453782  0.768150  0.719025 0.795181 - -
f1-score 0.870175  0.530713  0.796117  0.732335 0.785525 - -
accuracy - - - - - 0.795181 -
MCC - - - - - - 0.729599
XG-RSA precision  0.808568  0.614525  0.840796  0.754630 0.784155 - -
recall 0911011  0.462185 0.791569  0.721588 0.792169 - -
f1-score 0.856738  0.527578  0.815440  0.733252 0.784468 - -
accuracy - - - - - 0.792169 -
MCC - - - - - - 0.701474
XG-EHO precision  0.823529  0.600000  0.825553  0.749694 0.784120 - -
recall 0.907994  0.478992  0.786885  0.724624 0.792169 - -
f1-score 0.863702  0.532710  0.805755  0.734056 0.785751 - -
accuracy - - - - - 0.792169 -
MCC - - - - - - 0.717671
XG-COLSHADE  precision  0.816958  0.612360  0.828010  0.752443 0.783844 - -
recall 0.915535  0.457983  0.789227  0.720915 0.792922 - -
fl-score 0.863442  0.524038  0.808153  0.731878 0.784838 - -
accuracy - - - - - 0.792922 -
MCC - - - - - - 0.716110
support 663 238 427

confusion matrix (Figure 15), where the best-performing XG-
AGbSCHO model achieves TP rates of 92.3

VI. OUTCOMES VALIDATION AND INTERPRETATION
Relying solely on results may be insufficient to reach
a conclusive solution. Modern computer science demands
rigorous validation of outcomes through statistical methods
to substantiate their reliability. Moreover, understanding the
reasons behind model decisions is often as critical as the deci-
sions themselves. Therefore, this section presents the results
of statistical analysis followed by model interpretations using
explainable Al techniques.

A. STATISTICAL VALIDATION

In recent years, computer scientists must assess the statistical
significance of proposed enhancements since experimental
data is not always sufficient to demonstrate that one algorithm
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is superior to its competitors. According to the literature
recommendations, it is suggested by [49] that in these kinds
of situations, statistical testing should involve building a
representative set of results for every validated method.
However, when dealing with outliers from a non-normal
distribution, this strategy could be ineffective, yielding
erroneous results. Also, according to [49], the question of
whether or not to use the mean of objective function value
across multiple runs in statistical tests when comparing
stochastic techniques is still up for dispute.

To proceede with statistical validation, first a decision
whether to use parametric, or non-parametric statistical
tests should be made. For this purpose, a well-known
Shapiro-Wilk test [S0] for single-problem analysis was
employed. For every conceivable combination of method
and challenge (experiment), the related p-values were deter-
mined by aggregating the objective function outcomes of

122393



IEEE Access

R. Goran et al.: Identifying and Understanding Student Dropouts Using Metaheuristic Optimized Classifiers

TABLE 14. Experiment Il - the best constructed XGBoost model parameters’ selected by each optimizer for multi-class dropout classification.

0033

Methods Learning rate  Min child W.  Subsample  Col by tree =~ Max depth ~ Gamma

XG-AGbSCHO 0.695428 8.728771 1.000000 1.000000 8 0.428350
XG-SCHO 0.779573 4.564434 1.000000 1.000000 6 0.800000
XG-FA 0.900000 9.474133 1.000000 1.000000 9 0.800000
XG-GA 0.683497 7.964178 1.000000 1.000000 8 0.800000
XG-PSO 0.672647 1.000000 1.000000 1.000000 7 0.800000
XG-VNS 0.900000 7.108702 0.673425 1.000000 3 0.123549
XG-RSA 0.900000 4.622149 1.000000 0.993888 7 0.201291
XG-EHO 0.900000 8.793894 1.000000 0.719597 7 0.800000
XG-COLSHADE  0.658740 4.674254 0.942203 0.904612 7 0.800000
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FIGURE 13. Experiment Il - tuned XGBoost objective and indicator
function convergence graphs in the best run for multi-class dropout
classification.
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FIGURE 14. Experiment IlI - the best performing tuned XGBoost model
(XG-AGbSCHO) for multi-class dropout classification PR curve.

each run to form a data sample for each algorithm and
problem pair. The p-values derived as a result are shown in
Table 15.
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FIGURE 15. Experiment Il - the best performing XGBoost model
(XG-AGbSCHO) for multi-class dropout classification confusion matrix.

TABLE 15. The Shapiro-Wilk test scores for the single-problem analysis.

Algorithm AdaBoost Binary ~ XGBoost Binary ~ XGBoost Multiclass
AGbSCHO 0.022 0.020 0.021
SCHO 0.024 0.023 0.026
FA 0.020 0.020 0.019
GA 0.018 0.022 0.033
PSO 0.026 0.029 0.032
VNS 0.030 0.019 0.023
RSA 0.033 0.022 0.030
EHO 0.020 0.021 0.022
COLSHADE 0.021 0.022 0.029

The null hypothesis, which states that results originate
from normal distribution, is suitably rejected, since every p-
value in Table 15 is less than the predetermined significance
level, «, which is set to 0.05. Therefore, since not all solution
data samples conform to a Gaussian distribution, using the
average objective value in the upcoming statistical tests is not
appropriate. Consequently, the best objective function results
from the study were selected for more statistical analysis.
Additionally, the conclusion that parametric testing was
improper was based on the non-met normality assumption.

These findings are further supported by kernel density
estimate (KDE) plots shown in Figure 16, illustrating
the distributions of objective function outcomes for each
optimizer across 30 independent runs for all three conducted
simulations.
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FIGURE 16. Objective function KDE plots for each experiment.

Subsequently, the Wilcoxon signed-rank test [51] was
employed as a non-parametric method. Initially, the con-
trol algorithm, AGbSCHO in this case, was selected for
comparison with all others based on the best objective
function result in each run. The objective was to determine
whether the improvements achieved by the proposed method
were statistically significant. The computed p-values for
each of the three experiments conducted were all below
the threshold of 0.05, when AGbSCHO was compared
to each other metaheuristic. These results indicate that
the innovative algorithm significantly outperformed all
others at the significance level of 0.05 (« 0.05).
Table 16 presents the findings from the Wilcoxon signed-rank
test.

The Wilcoxon signed-rank test revealed that the developed
technique (AGbSCHO) outperformed the other algorithms
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statistically significantly under all three test cases. The
p-values for each comparison were less than 0.05, which
is far less than the other commonly used significance level
of 0.1. As a conclusion, the consistency across multiple
datasets demonstrates that the AGbSCHO approach consis-
tently outperforms the other algorithms examined in this
study.

TABLE 16. Outcomes of Wilcoxon signed-rank test (AGbSCHO vs. others).

Algorithm AdaBoost Binary ~ XGBoost Binary ~ XGBoost Multiclass
SCHO 0.033 0.031 0.032
FA 0.016 0.016 0.017
GA 0.030 0.010 0.001
PSO 0.042 0.032 0.036
VNS 0.030 0.020 0.029
RSA 0.033 0.023 0.023
EHO 0.027 0.022 0.035
COLSHADE 0.030 0.033 0.031
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B. BEST MODEL INTERPRETATION

The rationale behind decisions is often as crucial as the
decisions themselves. This is particularly true in higher
education settings, where understanding why a student may
be struggling or choosing to leave academia is paramount.
A fundamental understanding of the factors influencing these
decisions is vital for addressing challenges promptly and
improving outcomes.

Therefore, interpreting the models of student dropout is
crucial for gaining deeper insights into students’ behavior.
There are several techniques for interpreting ML model
decisions, while in recent times the application of SHAP [9]
and SAGE [10] techniques has become popular among
researchers due to their efficiency and humble computing
resources utilization. These techniques are game theory
inspired approaches, treating models as competitors in a
simulated game. This not only enables accounting for the
importance of individual features but also enhances under-
standing of their interactions at both local and global scales.

Based on experimental findings for binary classification
simulations, the best results were captured by the XG-
AGbSCHO, with achieved accuracy of 88.86% and Cohen
Kappa score of 0.7368. Consequently, this model was
employed for binary classification interpretation. The best
binary dropout detection model SHAP analysis outcomes are
provided in Figure 17, followed by SAGE analysis shown
in Figure 18. The SHAP analysis indicates that on a local
level, the number of curricular units in the second semester
alongside tuition fees and curricular units in the first semester
play the highest role in student dropout. Tuition fees being
up to date are also a high-impact feature on model decisions.
Fees not being up to date can hint at student’ outlook towards
their education, as well as financial struggles. Students
struggling with feelings might be forced to take part-time
work and thus have less time to dedicate to working on their
degree. Age of enrolment is also a contributing factor. Older
students often have more personal responsibilities in their
lives but can also feel more pressure to complete their studies
on time. Furthermore, it’s also important to note that not all
features are actionable. While these contribute to a model’s
decision little to nothing can be done to change these factors
by both the students as well as institutions.

The SAGE analysis outcomes are provided in Figure 18.
Global importance provides valuable insight into the features
of the effect entire student body. Insight in this regard
provides information on actionable factors that can influence
the whole student body. Tuition fees and 2nd curriculum
units have the highest importance. These indicate overall
ability to tackle academic responsibilities as well as overall
economic well-being. Student outlook on education also
plays an important role, as it hits towards a student’s devotion
towards education. Certain factors that are not actionable
also play a factor, such as the mother’s occupation and age
of enrolment. These factors cannot directly be addressed by
students and educational institutions but might be affected by
longer-term policy. It is vital to consider expert opinions when

122396

Curricular units 2nd sem (approved) _
Tuition fees up to date _
Curricular units 1st sem (approved) -
Course -
Age at enrollment -
Unemployment rate -
Admission grade -
Curricular units 2nd sem (grade) -
Previous qualification (grade -
]
||
Curricular units 2nd sem (evaluations -
Mother's occupation -
Scholarship holder -
Father's occupation -
Application order -
Gender -
Father's qualification .
Displaced .

Application mode .

Curricular units 1st sem (grade

)
)
Curricular units 2nd sem (enrolled)
)

0.00 0.25 0.50 0.75 1.00 125 1.50 175 2.00
mean(|SHAP value|) (average impact on model output magnitude)

High

Curricular units 2nd sem (approved)

>

?'+‘1*T¢*++‘f**l¢*:

Tuition fees up to date

Curricular units 1st sem (approved)
Course

Age at enrollment

Unemployment rate

Admission grade

Curricular units 2nd sem (grade)
Previous qualification (grade)

Curricular units 1st sem (grade

Feature value

)
Curricular units 2nd sem (enrolled)
)

Curricular units 2nd sem (evaluations

Mother's occupation
Scholarship holder
Father's occupation
Application order
Gender

Father's qualification
Displaced

Application mode

Low

-4 -2 0 2 4
SHAP value (impact on model output)

FIGURE 17. The best binary classifier SHAP bar and swarm impact plots
for highest impact features.

considering policy. While certain factors might be important
to a model, such impacts can also hint at biases within the
training data. To detect and understand these experts in the
field of higher education should be consulted.

Since the multi-class student dropout classification was
conducted by using only tuned XGBoost models, the
best model with accuracy of 88.0% and Cohen Kappa
score of 0.6662, which was generated by XG-AGbSCHO,
was employed for interpretation purposes. Multi-class
classification interpretations provides an insight for each of
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the three classes in Figure 19. This allows for understanding
what are the key factors that determine a graduate student
from a dropout and addresses factors accordingly. Factors
such as the number of approved curriculum units per semester
have a high impact on students who are still enrolled and
who have graduated. However, this feature shows little
importance for students who are at risk of dropping out. Units
under evaluation have a high impact on dropout detection,
meaning that students who have not completed courses have
a high chance of leaving academia. Tuition fees play a
less significant role in dropout in multi-class classification.
Employment rate plays an important role in the differentiation
between graduating and current students. Scholarships also
have a high impact on student graduation.
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FIGURE 19. The best multi-class classifier SHAP bar plots for highest
impact features.

While model interpretation outcomes can be usefully for
improving outcomes ad refining models, policy makers need
to be cautious at taking interpretations at face value. Other
factors not accounted for in the available dataset play a role in
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decisions. Additionally, different models may place different
weight on different factors and each interpretation is specific
to the given model and needs to be treated as such.

C. PROPOSED APPROACH IMPLEMENTATION STRATEGY
Student retention is an essential part of college operations.
Improving overall outcomes and institutional relations is
at the core of academic success. However, various factors
influence student decisions to abandon education. Economic,
cultural, and personal reasons can lead students to leave
school, and certain factors are outside the sphere of influence
of an institution. Nevertheless, offering better study plans or
payment plans to students at risk of being overwhelmed can
improve student outcomes and foster student loyalty towards
an institution. Continuous monitoring can help reduce student
loss through timely detection and the data drive approach
would allow models to adjust to the changing situations
without explicit programming.

Identifying students at risk is the first step toward
addressing dropout. Depending on the information available
to an institution, an adapted model can be trained to detect
students at risk of leaving academia. This model can then
be optimized using a proposed modified optimizer to refine
detection capabilities. Once a sufficiently accurate model is
formulated, this classifier can be analyzed further to identify
factors that influence student dropout on both a global and
individual level.

Evaluations using explainable AI techniques have a
twofold contribution. Firstly, major factors influencing
dropout are identified. Global interpretations can help
institutions implement institution-wide policies that improve
overall retention. Local interpretations can be leveraged
to identify the factors that influence individual students’
decisions, helping formulate customized strategies with the
guidance of experts and counselors, especially for high-risk
students. This may include providing better payment plans,
reduced workload, or more flexible hours to help working
students attend lectures more often.

However, it is important to note that expert opinions are
essential when implementing such a system. Each institution,
administration, and student is different, and different cultures,
regions, and education systems have their own specific needs
and expectations. Therefore, consulting experts is crucial for
proper policy implementation.

VII. CONCLUSION

This work explored the increasingly pressing challenge of
student retention in higher education facilities through a data-
driven approach. Detecting students dropout is a challenging
task with many internal, external, student-specific factors,
and personal motivations affecting student choices. Even with
the severe consequences for individuals, groups, and society
at large, figuring out and treating these causes is still a
highly challenging task. Given the importance of identifying
nuanced explanations for dropout decision reasons that fac-
ulty members may overlook, this research explored a variety
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of variables, such as personal issues, financial difficulties,
social integration, and academic integration. Complicating
matters are challenges with re-enrollment, exam recognition,
and returning to academic work after a vacation.

The goal of the work was to use ML approaches tuned
by metaheuristics to enhance the prediction performance for
students dropout detection. Proposed research tried to fill the
noticeable gap in the application of ML for predicting student
dropout. Specifically, the gap in the area of applications
of simpler, less computationally demanding ML models for
student dropout prediction. Moreover, prior to this study, the
optimization of hyper-parameters for these models in this
context has not been thoroughly explored.

The proposed study examined two established classifiers,
AdaBoost and XGBoost models. Given the significant
impact of hyper-parameter selection on classifier perfor-
mance, a modified version of the SCHO metaheuristics
was introduced specifically for this study. The adapted
algorithm aimed to address limitations observed in the
baseline approach. Optimized models were evaluated using
a publicly available dataset, demonstrating promising results
with an accuracy exceeding 88.86% for binary student
dropout classification and a Cohen’s Kappa score of 0.7368.
Similarly, for multi-class student dropout identification, the
models achieved an accuracy of 88.0% with a Cohen’s Kappa
of 0.6662. These robust performances validate the proposed
methodology’s potential applicability in real-world higher
education environment.

Following rigorous statistical validation, the best models
were subjected to SHAP and SAGE analysis in order to
highlight the key factors affecting the academic career of
students and to provide further insight. Ultimately, by using
the explainable Al techniques, this research advances the
application of Al in higher education by giving organizations
and decision-makers essential data to develop targeted
student retention strategies. The findings have the potential to
enhance the general effectiveness and performance of higher
education institutions while fostering a more supportive and
resilient learning environment. In this way, proposed study
findings may have significant contributions in preventing
students dropout in practice.

However, several limitations, mostly practical, affecting
the scalability and efficiency of the proposed approach
were identified. A primary constraint was the limited
computational power available, which, combined with the
high computational demands of optimization, may have
restricted the performance and scalability of the proposed
methodology. Furthermore, the study was constrained to a
specific set of optimizers, potentially limiting the general-
izability of the findings. It is also crucial to consider the
influence of domain experts in interpreting results, as various
factors may vary in impact across different conditions,
locations, and socioeconomic environments. Additionally,
evolving privacy policies and data regulations could present
challenges for the practical implementation of the proposed
methodology.
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Future research will focus on discovering new applications
for the introduced optimizer, aiming to broaden its utility
beyond its current scope. This exploration may reveal
additional benefits and applications, thereby advancing this
field further. By addressing current limitations and pursuing
these future directions, significant contributions can be made
towards direction of refining the effectiveness and applica-
bility of Al-driven solutions for addressing student dropout.
These advancements are poised to profoundly impact higher
education, enhancing decision-makers’ understanding and
capabilities in tackling student retention challenges.
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