
Received 4 August 2024, accepted 13 August 2024, date of publication 20 August 2024, date of current version 29 August 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3446596

BitEA: BitVertex Evolutionary Algorithm
to Enhance Performance for
Register Allocation
GIZEM SUNGU TERCI 1, ENES ABDULHALIK1, ALP ARSLAN BAYRAKCI 1, AND BETUL BOZ 2
1Computer Engineering Department, Gebze Technical University, 41400 Kocaeli, Türkiye
2Computer Engineering Department, Marmara University, 34854 İstanbul, Türkiye

Corresponding author: Gizem Sungu Terci (gizemsungu@gtu.edu.tr)

This work was supported by The Scientific and Technological Research Council of Türkiye (TUBITAK) 1002-B Project 124E044.

ABSTRACT Register allocation is important in compiler design to enhance the execution time of programs,
as CPU registers operate significantly faster than memory locations. The challenge of optimally assigning
program variables to a limited number of CPU registers requires innovative solutions within constrained
timeframes, particularly when traditional methods are not applicable due to computational infeasibility
on current CPU architectures. This study introduces BitVertex Evolutionary Algorithm (BitEA), a novel
approach grounded in bitwise operations and bit-based solutions, designed to accelerate computational
performance in register allocation. Our experimental results show that BitEA outperforms the existing
methods by a factor of up to 60 across all tested scenarios in the DIMACS benchmarks. Furthermore, in terms
of solution quality, BitEA achieves lower chromatic numbers on 9 DIMACS benchmarks compared to its
closest contemporaries. This research underscores that BitEA has potential to set a new standard for register
allocation through its superior speed and solution quality.

INDEX TERMS Evolutionary optimization, parallel processing, register allocation, graph coloring problem,
vertex-weighted graphs, crossover operator, evolutionary algorithms, k-coloring, BitVertex representation,
bitwise operations.

I. INTRODUCTION
The register allocation problem is a crucial aspect of compiler
optimization [1], where the goal is to efficiently assign
program variables to a limited number of CPU registers.
Since registers are the fastest way for a CPU to access
data, optimal allocation is vital for enhancing the program
performance. This task presents several challenges, including
the limited number of available registers, the need to manage
variable lifetimes and overlaps (interference), and dealing
with spilling where some variables are stored in slower
memory instead of registers. Variable lifetimes refer to the
segments of code during which variables are active and
need to be stored in registers for rapid access. Interference
occurs when the lifetimes of two or more variables overlap,

The associate editor coordinating the review of this manuscript and

approving it for publication was Diego Oliva .

meaning they are simultaneously active and cannot share
the same register without causing errors. Due to these
challenges, the problem is NP-complete [2]. Strategies like
graph coloring [3] and linear scan allocation [4] are employed
to navigate these challenges, balancing performance opti-
mization with resource constraints. Despite the complexity,
the graph coloring strategy which is NP-hard [5], [6], is often
chosen to model the problem over simpler methods like linear
scan allocation because of its ability to efficiently manage the
patterns of variable interference and its global perspective on
register allocation.

Graph coloring constructs an interference graph where
vertices represent variables characterized by weights (life-
times), and edges indicate that two variables cannot share
the same register [7]. The goal is to color each vertex
(assigning registers) in such a way that no two adjacent
vertices (interfering variables) share the same color (register),

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 115497

https://orcid.org/0000-0001-6770-7674
https://orcid.org/0000-0002-2824-036X
https://orcid.org/0000-0001-7819-347X
https://orcid.org/0000-0001-8781-7993

G. S. Terci et al.: BitEA: BitVertex Evolutionary Algorithm to Enhance Performance for Register Allocation

while aiming to utilize a specified number k of available
colors (registers). In scenarios where the available k colors
are insufficient to color all vertices, some vertices remain
uncolored (spilled). This scenario defines the k-coloring
problem in graph coloring [8]. The fitness of a given solution
is evaluated by f (k), which is calculated as the sum of the
weights of uncolored vertices. Achieving an optimal solution
requires to minimize this fitness value. This study focuses
on solving the register allocation problem by tackling the
k-coloring problem in weighted-vertex graphs.

Algorithms in the literature strive to assign all vertices
in a given set of colors without spilling any vertices due to
conflicts [9]. Although these algorithms may achieve optimal
solutions for a given graph model, their computational time
makes them impractical for applications in CPU architectures
to enhance the performance of real-time systems, due to the
high complexity of the algorithms. One of the most effective
algorithms for solving the register allocation problem, known
as the Integrated Crossover-based Evolutionary Algorithm
(InCEA) [10], iteratively improves a population of candidate
solutions over a predefined number of iterations. However,
as the size of the problem instance increases, InCEA requires
significantly more computational time to complete these
iterations, rendering it impractical for register utilization in
CPU architectures. In this study, we aim to address this issue
by redesigning the evolutionary algorithms using bitwise
representation and operations. Our design is named BitVertex
Evolutionary Algorithm (BitEA) and presents the following
contributions to the literature:
• We introduce BitVertex, a novel bit-based structure for
graph coloring representation. In this approach, each bit
represents a vertex, allowing a single integer to encode
the coloring of graphs with up to 32 vertices. This
compact representation significantly reduces the storage
requirements for algorithms and problem instances,
enhancing computational efficiency compared to tradi-
tional representations that use a separate integer for each
vertex.

• We have developed a scalable architecture to extend
the BitVertex representation to graphs with more than
32 vertices. This enables the application of our efficient
bit-based encoding method to a wider range of problem
sizes with minimal complexity increase.

• By adapting the BitVertex representation, we propose
the BitVertex Evolutionary Algorithm (BitEA), a novel
evolutionary algorithm that employs bitwise logic
(OR, AND, XOR, NOT) for its essential algorithmic
processes such as recombination and local search
strategies. This integration allows for the parallelization
of the coloring process, significantly reducing the time
complexity of the algorithm. Our experiments show that
this approach speeds up computational performance by
an average of 25 times across 223 graph benchmarks.

• Furthermore, to enhance solution quality, BitEA incor-
porates a novel local search strategy within its crossover
operations. This approach improves the fitness values of

benchmark instances, outperforming the performance of
existing algorithms in the literature.

To detail these contributions, the remainder of this paper is
structured as follows. Following the introduction, we provide
the related work on solving the register allocation problem,
a review of existing heuristic algorithms and their limitations.
Section III offers a comprehensive explanation of the
preliminaries essential for understanding the basis of our
study, setting the groundwork for the subsequent discussions.
Section IV details the components of our proposed algorithm
highlighting its innovative use of bitwise operations for
efficiency improvements. We then present an extensive
experimental study in Section V, where the performance
of InCEA and our algorithm are compared across various
benchmark instances. Finally, Section VI concludes the paper
with a discussion of the key findings, the implications of our
research, and potential directions for future work in the field
of register allocation optimization.

II. RELATED WORK
Numerous algorithms have been proposed in the literature to
address the graph coloring model for the register allocation
problem. Chaitin’s algorithm [7] is the first algorithm that
introduces register allocation problem on graph coloring
and the following studies Briggs’s [11] and George and
Appel’s [12] algorithms improve its design by changing
the spilling heuristic and the coalescing strategy [13],
respectively. These studies have made significant contri-
butions in optimizing compiler efficiency. However, the
deterministic nature of the algorithms, when applied to the
diverse and complex nature of real-world programs, some-
times restricts the exploration of the full solution space for
spilling. This limitation can lead to suboptimal performance,
with potentially missingmore efficient allocations onmodern
architecture with specific hardware features, especially for
complex or unusual code structures.

Considering these challenges, approaches such as exact
algorithms [16], [17], [18], [19], [20], evolutionary algo-
rithms [10], [21], [22], [23], [24], [25], learningmethods [26],
[27], [28] and other heuristic approaches [29] have emerged
as promising alternatives due to their adaptability and
capacity to explore broader solution spaces by using graph
coloring. These methods offer an adaptive approach to
register allocation by adjusting strategies based on specific
program characteristics and navigating through a range
of potential solutions to find optimal or near-optimal
allocations.

Exact methods, such as the branch-and-price algo-
rithm [18] and Integer Linear Programming (ILP) models
presented in [19], [20], have shown effectiveness in solving
the weighted vertex coloring problem (WVCP). Specifically,
the ILP model proposed in [19], which casts the WVCP as a
maximum weight independent set problem [30], is currently
the best-performing exact method. These exact methods are
typically limited to efficiently solving problem instances with
up to 250 vertices. Despite their ability to ensure optimality,

115498 VOLUME 12, 2024

G. S. Terci et al.: BitEA: BitVertex Evolutionary Algorithm to Enhance Performance for Register Allocation

optimal solutions for instances with fewer than 250 vertices
were obtained using the Mixed-Integer Programming (MIP)
formulation in [19] within 10 hours of computation time
using CPLEX solver [31]. The required long computational
time makes the benefits of these exact methods controversial
for smaller instances. Therefore, heuristic and metaheuristic
approaches are necessary not only for larger and more
complex instances but also for smaller instances, as they
provide a broader exploration of potential solutions within a
reasonable amount of computational time.

Evolutionary algorithms are widely studied among the
heuristic approaches to solve register allocation problem in
the literature such as Hybrid Evolutionary Algorithm (HEA)
[24], Cost-OrientedMemetic Algorithm (COMA) [25], Pool-
based Evolutionary Algorithm (PBEA) [23], and Integrated
Crossover Based Evolutionary Algorithm (InCEA) [10]. The
evolutionary algorithms HEA, COMA, PBEA, and InCEA
use partition-based representation [32] for their solution
individuals. The algorithms create an initial population with
a predefined number of individuals using problem-specific
metrics which are detailed in Section III-B. The fitness
of each individual in the population is evaluated based on
criteria that consider both the coloring constraints and the
weights of the vertices, aiming to minimize conflicts and
possibly prioritize heavier-weighted vertices which is defined
in Section III-A. By selecting two individuals as parents
from the population, they apply their crossover operators and
local search techniques to produce an offspring as a new
solution. The algorithms iterate this process to explore and
exploit the solution space [33] to improve the fitness value
in a predefined number of times and they achieve to obtain
optimal or near-optimal solutions for most instances of the
problem. Among these evolutionary algorithms, InCEA [10]
stands out by computing the best solutions in terms of
fitness values and computational performance on the same
graph instances. Its algorithmic contributions have also
inspired the algorithms aimed at addressing the bin packing
problem [34] and the weighted vertex coloring problem [35]
in the literature. Given its demonstrated efficacy, we consider
the InCEA algorithm as a leading evolutionary approach in
the literature for this study.

While the literature has succeeded in obtaining high-quality
solutions for given graph instances of the problem, a recent
challenge has emerged that these methods are not practical
for real-time architectures due to their high computational
times. In the last few decades, various studies have proposed
methods to accelerate the traditional graph coloring problem.
These studies have proposed parallelizing genetic algorithms
to generate two or more offspring simultaneously using
crossover and mutation operators assigned to threads [36].
Additionally, GPU performance has been utilized to speed
up greedy algorithms for the graph coloring problem [37],
[38], [39], [40], [41], [42]. While GPU-based and parallel
methods decrease the computational time of algorithms, the
speedup achieved is primarily attributed to the performance

characteristics of the GPU architectures. This limitation
exists because these approaches cannot reduce the time
complexity of the fundamental operations in the algorithms
due to lack of parallelizing algorithmic structures and
constraints of GPU architectures and instruction sets.
Moreover, GPUs can consume a significant amount of power,
especially designed with its high-performance models,
to solve the problem instances [43].

The recent study about the acceleration of graph coloring
problem is called BitColor [44] which enhances performance
efficiency of the first greedy algorithm to solve graph
coloring problem in the literature calledDegree of Saturation
(DSATUR) [46] utilizing FPGA [45] where energy efficiency
is considered. BitColor refines DSATUR algorithm by inte-
grating bitwise operations to adapt it on FPGA architecture.
The algorithm assigns colors to the vertices of a graph to
ensure no two adjacent vertices have the same color while
minimizing the number of colors used. The process begins by
initializing a flag array of colors for each vertex and proceeds
through three main steps: first, it traverses the neighbors of a
vertex to identify which colors have been used, marking these
in the flag array. Then, it selects the first available color from
this array, defining an available color as one that has not been
used by any neighbors of the vertex. Finally, the selected color
is assigned to the vertex, and the flag array for each neighbor
is updated to indicate this color is no longer available for
them, thus preparing for next coloring decisions. This process
is repeated for all vertices to achieve an optimal color
distribution without conflicts. The study introduces BitColor
representation to optimize the traversal of color states for each
vertex, by encoding the color states as bits. Color assignments
and restrictions for vertices are managed through bitwise
AND and OR operations. Experimental results show that
DSATUR implemented with BitColor on FPGA architecture
outperforms traditional flag array representations on CPU
architecture, highlighting the efficiency of FPGA utilization.

BitColor employs a vertex-oriented and deterministic
strategy for coloring vertices, visiting them one by one in a
sequential manner. In contrast, evolutionary algorithms gen-
erate an initial population of colorings and iteratively improve
these through a blend of recombination and local search
strategies to diversify the population and obtain higher quality
solutions. Unlike BitColor’s vertex-oriented methodology,
evolutionary algorithms operate in a color-oriented manner,
manipulating colors along with their associated vertices.
Therefore, the vertex-specific design of BitColor does not
align well with the requirements of evolutionary algorithms
proposed for graph coloring problems, including register
allocation.

To bridge this gap, we introduce a novel bitwise repre-
sentation named BitVertex, which encodes vertices as bits
instead of colors. To develop genetic operators designed
for the register allocation problem using bitwise operations
in the BitVertex framework, we propose the BitVertex
Evolutionary Algorithm (BitEA) in this study. BitEA is the

VOLUME 12, 2024 115499

G. S. Terci et al.: BitEA: BitVertex Evolutionary Algorithm to Enhance Performance for Register Allocation

first evolutionary algorithm designed in a bitwise format
to accelerate the register allocation problem by reducing
time complexity. This methodology can serve as a guide to
efficiently accelerate other algorithms for related challenges.

III. PRELIMINARIES
A. PROBLEM DEFINITION
Consider G(V ,E,w), an undirected vertex-weighted graph
where V and E denote the sets of vertices and edges,
respectively and w represents the weight values of the
vertices. With n vertices in V , the cardinality of w, denoted
as |w|, is also n. The graph can have a maximum of
n×(n−1)

2 edges, and the number of edges, |E|, satisfies
0 ≤ |E| ≤ n×(n−1)

2 .
Each vertex v inV is associated with a color classCi, where

Ci is one of the disjoint independent sets belonging to the set
C = C1,C2, . . . ,Ck , with 1 ≤ k ≤ n.
The coloring of the vertices obeys the following rule: if u

and v are adjacent vertices, i.e., there exists an edge (u, v) in
E , then u and vmust belong to different color classes (1). This
constraint is referred to as a k-feasible coloring.

∀v, u ∈ Ci, (u, v) /∈ E, i = 1, 2, . . . , k (1)

The fitness function f (k) is defined for a given color class
value k and aims to assign a color class to each vertex while
minimizing the sum of weights of conflicting vertices (2).

minimize f (k) =
∑

v∈V\
⋃k
i=1 Ci

w(v) (2)

In other words, the objective is to achieve a coloring that
minimizes the total weight of conflicting vertices, where a
conflicting vertex is one that cannot be assigned to any color
class.

Algorithm 1 General Algorithm [10]
Input: Graph G, population size p, number of color

classes k, number of iterations ItNum
Output: Individual S∗ with the best fitness value
Pop = {S1, . . . , Sp} ← InitialPopulation()
for i← 1 to ItNum do

Randomly select individuals Sx and Sy from Pop
where x ̸= y
S0, Pool← CrossoverOperation(G, k, Sx , Sy)
if Pool ̸= ∅ then

S0← LocalSearch(k, S0, Pool)
end
f (k)← Evaluate fitness of S0

end
Pop← UpdatePopulation(S0, Sx , Sy)
S∗← BestIndividual(Pop)

B. INTEGRATED CROSSOVER BASED EVOLUTIONARY
ALGORITHM
Integrated Crossover Based Evolutionary Algorithm [10]
is designed for solving the vertex-weighted k-coloring

problem through a hybrid evolutionary approach. The general
procedure of the algorithm is built in Algorithm 1. The
inputs include a graph G, population size p, the number
of color classes k , and the desired number of iterations
ItNum. The primary objective is to discover an individual
S∗ with the optimal fitness value. The algorithm initializes
a population (Pop) of size p using the InitialPopulation()
function. It then enters an evolutionary loop, iterating over
ItNum cycles. At each iteration, it randomly selects two
distinct individuals (Sx and Sy) from the current population.
The algorithm applies Integrated Crossover (InCX) operation
(CrossoverOperation) to the selected parents, resulting in a
new individual (S0) and a pool of conflicting vertices (Pool).
If the pool is not empty, the local search technique W-SWAP
(LocalSearch) is applied to S0 using the pool to minimize
conflicts and improve the solution. The population (Pop) is
updated by replacing Sx or Sy with S0 if S0 represents a
better solution than at least one of its parents. The algorithm
outputs the individual S∗ with the best fitness value achieved
throughout the evolutionary process.

The InCEA evolutionary algorithm encodes vertices as
integers, with their corresponding color classes represented
as lists of integers. This study aims to improve both the design
and the effectiveness of the InCEA algorithm. Originally
built with a structure only based on integers, A significant
transformation is applied to InCEA algorithm to obtain
the bitwise framework, which includes converting list-based
computations used in various algorithmic operations into
more efficient bitwise calculations. The resulting algorithm
is now referred to as BitVertex Evolutionary Algorithm.

IV. BitVertex EVOLUTIONARY ALGORITHM
A. GRAPH REPRESENTATION
In the proposed BitVertex representation, adjacency infor-
mation of a graph is compacted into a single integer per
vertex, using binary encoding to denote edge presence or
absence. This binary representation takes advantage of the
fact that modern computers natively store and operate on
integers in binary format, allowing for a more space-efficient
storage of graphs in memory. The space complexity of this
representation is O(|V |), a significant improvement over the
O(|V | + |E|) required by an adjacency list and the O(|V |2)
required by an adjacency matrix as illustrated in Fig. 1.
For each vertex vi, the binary digits of its corresponding
integer directly map to the vertices to which vi is connected
to, with a ’1’ indicating the presence of an edge and a
’0’ the absence. For example, the adjacency of vertex v5
with vertices v0, v2, and v6 is encoded as the integer 69,
which corresponds to the binary string 1000101. Here, the
bit positions 0, 2, and 6 (from right to left) are set to ’1’,
indicating connections to vertices v0, v2, and v6, respectively.
This compact representation allows for a substantial reduc-
tion in the memory footprint for large graphs while still
supporting rapid adjacency queries typical in graph traversal
operations.

115500 VOLUME 12, 2024

G. S. Terci et al.: BitEA: BitVertex Evolutionary Algorithm to Enhance Performance for Register Allocation

FIGURE 1. BitVertex representation of the example graph [24].

B. SCALABLE COLOR CLASS REPRESENTATION OF
BITVERTEX DESIGN FOR LARGE GRAPHS
To effectively manage graphs with more than 32 vertices,
we propose a novel representation for color classes within
our graph coloring algorithm. Each color class is represented
as a sequence of 32-bit integers. The number of integers m
allocated for each color class is determined by the total count
of vertices |V | divided by 32, calculated as Eq. 3a. This
scheme allows each integer to represent a distinct block of
32 vertices, with the first integer corresponding to vertices v0
through v31, the second to vertices v32 through v63, and so on.
The precise location of a vertex within these color classes is
determined through a two-step computational process. First,
the integer index integerid that contains the bit representing
the vertex is identified by Eq. 3b where ≫ is the right
shift operation, equivalent to dividing vertexid by 32. The bit
index bitid within the target integer is subsequently calculated
using Eq. 3c with & representing the bitwise AND operation,
effectively computing vertexid modulo 32.

m =
⌈
|V |
32

⌉
, (3a)

integerid = vertexid ≫ 5, (3b)

bitid = vertexid&31. (3c)

Through these steps, the representation avoids overflow
and scales to handle an arbitrary number of vertices by
ensuring each vertex is unambiguously mapped to a specific
bit within an integer. This systematized approach is illustrated
in Fig. 2. For example, consider the vertex v45, which belongs
to the second block of vertices. The integerid for v45 is
calculated as 101101≫ 5, which equals 1, indicating that v45
is represented in the second integer. The bitid is calculated as
45&31 = 101101&011111, which equals 13, indicating that
the 14th bit (considering a zero-based index) of the second
integer is set to 1 as shown in Fig. 2.

C. INDIVIDUAL REPRESENTATION AND GENERATION
The conventional approach to representing individuals in
hybrid evolutionary algorithms for graph coloring problems
employs a two-dimensional array to denote color classes,
with each class comprising a list of vertices assigned a unique
color. Such an array is inherently integer vertex-based, with
each vertex identified by an integer within its respective color
class. Fig. 3 illustrates this representation through individuals
S1 and S2, where S1 is defined by three color classes
containing 3, 3, and 4 vertices respectively. Accordingly,
S1 requires 10 integers for representation, accounting for
40 bytes of memory allocation.

In contrast, the BitVertex-based representation introduces
a more compact binary encoding strategy. Here, each color
class is encoded as an integer, with the binary bits of the
integer signifying the presence (‘1’) or absence (‘0’) of each
vertex in the color class. This method is demonstrated in
Fig. 3 where individual S1 is represented by a list of three
integers 81, 388, 554, translating to a more economical
memory usage of merely 12 bytes. This binary encoding
not only reduces space requirements but also aligns with
computer architecture efficiencies in handling binary data
operations.

In the individual initialization phase of our proposed algo-
rithm, individuals in the population are denoted by Si, each
comprising a set of color classes {C1,C2, . . . ,Ck}. Each class
Cj encompasses a subset of non-adjacent vertices, thereby
avoiding conflicts and adhering to the algorithm’s constraint
of k color classes. This approach mirrors the population
initialization method employed by the InCEA algorithm,
ensuring consistency with established methodologies while
introducing our novel enhancements.

To facilitate a diverse initial population, we employ a spill
degree metric, proposed in [24], to sort the vertices. This
metric is calculated via three distinct methods, as defined
in equations (4a), (4b), and (4c), with respective application

VOLUME 12, 2024 115501

G. S. Terci et al.: BitEA: BitVertex Evolutionary Algorithm to Enhance Performance for Register Allocation

FIGURE 2. Scalable representation of color classes using a set of 32-bit integers. Each integer corresponds to a block of 32 vertices, allowing for the
representation of large graphs beyond the limits of a single integer.

FIGURE 3. Comparison of integer vertex and BitVertex individual representations.

to 40%, 40%, and 20% of the individuals, ensuring a
heterogeneous set of initial individuals.

Vertices are ranked in descending order of their spill
degrees. During the generation of an individual, the algorithm
selects the unassigned vertex with the highest spill degree and
attempts to assign it to the first available conflict-free color
class. If no such class exists, the vertex is placed in a random
color class. This procedure is iterated until all vertices are
assigned to one of the color classes, resulting in a complete
and valid individual representation for the population as given
in Algorithm 2.

S_Degree1(vi) = w(vi)× Degree(vi), (4a)

S_Degree2(vi) = w(vi)× Degree(vi)2, (4b)

S_Degree3(vi) = w(vi). (4c)

D. BitVertex CROSSOVER OPERATOR
Our crossover operation is inspired by the Integrated
Crossover Operator (InCX) used in the InCEA algorithm
and InCX is specifically adapted for the BitVertex design
through the use of bitwise operations such as AND, OR,
XOR and NOT. This adaptation significantly enhances the
computational efficiency of the InCX operator by reducing
the complexity of key computations involved in the process,
as outlined in Table 1. Furthermore, this BitVertex-adapted
crossover operator introduces improved search mechanisms
to produce offspring with lower fitness values. Thus, we have

named our new crossover operator the BitVertex Crossover
Operator (BitCX).

BitCX operates on two parent individuals, S1 =

{C1
0 ,C1

1 , . . . ,C1
k−1} and, S2 = {C

2
0 ,C2

1 , . . . ,C2
k−1} with a

graph G, as shown in Algorithm 3. Each parent, structured
in the BitVertex format, comprises k color classes. The
crossover process combines color classes from both parents
to create offspring. In each combination, one color class is
randomly selected from each parent, and the vertices within
these classes are combined into the corresponding color class
of the offspring using the OR operation. If conflicts arise in
the color class of the offspring, the conflict number of each
vertex is counted using Operation 3, which has a complexity
of O(|V | log |V |), and the vertex with the maximum conflict
number is moved to the pool. This process is iteratively
applied until all conflicts are resolved in the color class.
After each combination, except the first one, a search back
operation is performed. This operation attempts to reintegrate
vertices from the pool back into one of the color classes either
is conflict-free or is in conflict with only a single vertex which
has a lower weight than the vertex currently in the pool. The
search back operation is given in more detail in the following
subsection. At the end of each combination process, vertices
placed in the color classes of the offspring or in the pool
are removed from the parents, with a complexity of O(k),
to prevent recombination. This iterative process continues
until k conflict-free color classes are established within the
offspring. At the end of the crossover operation, if one or

115502 VOLUME 12, 2024

G. S. Terci et al.: BitEA: BitVertex Evolutionary Algorithm to Enhance Performance for Register Allocation

Algorithm 2 Initial Population Generation
Input: Graph G(V ,E), number of color classes k ,

population size p
Output: Initial population Population
Population← ∅
for each vertex v ∈ V do

S_Degree1(v)← w(v)× Degree(v)
S_Degree2(v)← w(v)× Degree(v)2

S_Degree3(v)← w(v);
end
L1← vertices sorted by S_Degree1(v) L2← vertices
sorted by S_Degree2(v) L3← vertices sorted by
S_Degree3(v)
for i = 1 to p do

VList ←


L1 if i ≤ 0.4p
L2 if 0.4p < i ≤ 0.8p
L3 otherwise

Si← Initialize an empty individual with k color
classes Cj where 1 ≤ j ≤ k
for each vertex v in VList do

for each color class Cj in Si do
if v can be added to Cj without conflicts then

Add v to Cj break
end

end
if v not added then

Assign v to a random color class
end

end
Add Si to Population

end

TABLE 1. Time complexity comparison: array-based vs. bitwise
operations in algorithms.

more vertices remain in conflict with all color classes, they
are kept in the pool to be placed to the offspring at the local
search operation.

Algorithm 3 BitVertex Crossover Operator

Input: Graph G, number of color classes k , 1st parent
S1 = {C1

0 ,C1
1 , . . . ,C1

k−1} in bitwise format, 2nd

parent S2 = {C2
0 ,C2

1 , . . . ,C2
k−1} in bitwise

format
Output: An offspring S0 = {C0,C1, . . . ,Ck−1} in

bitwise format, an updated pool P
Create an empty pool P as zero: P← 0
Create a bit set of selected vertices: Vs← 0
Mark color classes ∈ S1, S2 as unselected:
U1
← 0 and U2

← 0
for i← 0 to k − 1 do

Set ith color class of S0 Ci as zero: Ci← 0
Select an unselected color class C1

x from S1
Select an unselected color class C2

y from S2
Mark C1

x , C
2
y as selected: U1

← U1 AND 2x ,
U2
← U2 AND 2y

Combine color classes of parents using bitwise:
Ci← C1

x OR C2
y (Operation 1)

Mark the vertices as selected: Vs← Vs OR Ci
if P ̸= 0 then

Ci← Ci OR P (Operation 1)
P← 0

end
while Ci ̸= conflict-free do

Calculate the maximum conflicting vertex as
vmax (Operation 3)
Throw vmax into pool: P← P OR 2vmax

Remove vmax from the color: Ci←
Ci XOR 2vmax

end
if i ≥ 1 then

SearchBackOperation(i, S0,P,G)
end
Remove the vertices ∈ P|Ci from the parents
(Operation 2)

end

E. IMPROVED SEARCH BACK OPERATION
During the crossover operation BitCX, whenever a conflict
arises in the ith color class Ci, at the completion of Ci
where 1 ≤ i < k , it may result in one or more vertices
being relocated to the pool. Under such circumstances,
investigating the potential of reallocating any vertex in the
pool to a previous color class where no conflicts occur,
reduces the overall fitness value of the offspring. Therefore,
InCEA [10] proposes Search Back Operation (SB) to
integrate the vertices in the pool to the previous conflict-free
color classes before starting the next combination of the
crossover operation.

In this study, we introduce Improved Search Back oper-
ation (ISB) which refines the original SB strategy. Our
enhancement involves introducing a new criterion for vertex
reallocation. The ISB algorithm is the subpart of BitCX

VOLUME 12, 2024 115503

G. S. Terci et al.: BitEA: BitVertex Evolutionary Algorithm to Enhance Performance for Register Allocation

Algorithm 4 Improved Search Back Technique
Input: Number of color classes currently produced i, the

offspring S0 = {C0, . . . ,Ci−1}, the pool Pool, the
graph G

Output: Updated S0, Pool
foreach vertex vp in Pool do

Cbest ← -1
vbest ← -1
bestWeight ←∞
CF ← false
for j← 0 to i− 1 do

conflicts_num[vp]← Operation 3 for Cj
if conflicts_num = 0 then

Pool← Pool XOR 2vp

Cj← Cj OR 2vp

CF ← true
break

end
if conflicts_num = 1 then

conflict_weight ← w(log2(conflicts[vp]))
if bestWeight > conflict_weightandw(vp) >

conflict_weight then
Cbest ← Cj
vbest ← log2(conflicts[vp])
bestWeight ← conflict_weight
break

end
end

end
if !CFandCbest ̸= −1 then

Pool← (Pool XOR 2vp) OR 2vbest
Cbest ← (Cbest XOR 2vbest) OR 2vp

end
end

operation and it iterates through each vertex vp in the pool
at the end of each color class combination Ci. The conflicts
between each vp and each previously produced color class
Cj are calculated using Operation 3, detailed in Table 1,
with a complexity of O(k · |V | log |V |) for all color classes.
After Operation 3, if a vertex vp encounters more than one
conflict across all Cj, it remains in the pool for subsequent
combinations. Conversely, if a conflict-free Cj exists for vp,
the vertex is immediately assigned to Cj using OR operation,
which has a complexity of O(1).
A novel criterion in this study, is applied when exactly

one conflict is detected between vp and a color class Cj.
If the conflicting vertex vbest in Cj has a lower weight value
than vp, the two vertices are swapped by using bitwise OR
and XOR operations, each with a complexity of O(1), with
vp being integrated into Cj and vbest moving to the pool.
This criterion aims at optimizing the allocation of vertices
based on their weight, further enhancing the overall fitness
value of the offspring. Given the detailed breakdown of the
operations and their respective complexities, the overall time

complexity of the BitVertex Crossover Operator (BitCX) is
O(k2 · |V | log |V |) whereas the InCX operator [10] has a
time complexity of O(k · |V |3). This complexity reflects the
efficiency of the BitCX algorithm in handling large graphs,
utilizing bitwise operations to streamline the manipulation of
vertices and color classes.

F. ILLUSTRATION OF BitCX AND ISB OPERATORS
The ISB algorithm, outlined in Algorithm 4, represents a sig-
nificant step forward in the strategic manipulation of vertices
during BitCX. By refining the process of addressing conflicts
and reallocating vertices through algorithmic methods, ISB
contributes to the production of higher-quality offspring,
as highlighted in Fig. 6 and Fig. 7.
The process of BitCX is illustrated in Fig. 4. The graph

in Fig. 1 and its two parent configurations in Fig. 4 are rep-
resented to demonstrate HEA algorithm [24]. Additionally,
three subsequent studies [23], [25], including the InCEA [10],
have analyzed the same graph and parents to evaluate
the efficacy of their crossover operators as CFPX [24],
COPX [25], PBC [23] and InCX [10], respectively. To
ensure a standardized basis for comparison, we have also
applied BitCX to the same input arguments. We higlight
the performance enhancements achieved from CFPX [24]
to BitCX in terms of solution quality and computational
efficiency, especially when comparing InCX and BitCX.

In the crossover example illustrated in Fig. 4, the operator
selects the second color class C1

1 from the first parent S1 and
the third color class C2

2 from the second parent S2. These
classes are combined using the bitwise OR operation to form
the first color class C0 of the offspring S0. The connections
between the vertices within C0 are evaluated for each vertex
by applying the bitwise AND operation which is detailed
in Fig. 5 and Operation 3 in Table 1. For example, vertex
v8, which is connected to vertices v0, v1, and v9 in the
graph given in Fig. 1, has its edges represented in BitVertex
format as 1000000110, equivalent to the decimal number
518. To identify the vertices in C0 that conflict with v8,
a bitwiseANDoperation is performed betweenEdges(v8) and
C0. This operation reveals that all three conflicting vertices
are present in C0, as indicated by the Conflicts(v8). The
bits set to 1 in Conflicts(v8) are highlighted, and their count
is determined using Brian Kernighan’s Algorithm [14] as
described in Operation 3 in Table 1. The time complexity
of Operation 3 is O(|V | · log(|V |)) [14], in contrast to
O(|V |2) for the array-based implementation of the same
operation. After calculating the conflicts for all vertices inC0,
v8 is identified as having the maximum number of conflicts
and is thus moved from C0 to the pool P using bitwise
XOR operation. This conflict resolution process continues
until vertices v7 and v1 are also transferred to the pool.
At the end of the first combination phase, C0 comprises
vertices v0, v2, and v9 (represented as 100000101), while
the pool contains v1, v7, and v8 (0110000010). Before the
execution of the second combination, vertices in C0 and

115504 VOLUME 12, 2024

G. S. Terci et al.: BitEA: BitVertex Evolutionary Algorithm to Enhance Performance for Register Allocation

FIGURE 4. Illustration of BitCX operation using two parent configurations and a weighted graph [24].

the pool are temporarily excluded from color classes of
the parents (C1,2

i) using the AND NOT(Pool) operation,
as detailed in Operation 2 in Table 1. The time complexity
for Operation 2, when implemented using bitwise operations,
is O(k), where k denotes the number of color classes in
each parent. In contrast, the array-based implementation of
Operation 2 has a time complexity of O(|V | · k).

At the second combination, the first color class from the
first parent C1

0 and the first color class from the second
parent C2

0 are selected and the vertices in these color classes
v3, v4 and v6 are merged in the second color class of the

offspring C1. Since there are vertices in the pool from the
previous combination, v1, v7 and v8 are also moved to C1.
Operation 3 is executed on C1 until v3, v6 and v8 are thrown
to the pool to obtain C1 as a conflict-free color class.
At the end of the second combination, the search back

operation is performed on the vertices that have already been
mapped to the pool, v3 and v6 to check if they can be placed
in C0. The vertex v3 has only one edge with v1 in C0 but the
weight of v1, w(v1), is higher than w(v3) so v1 and v3 cannot
be swapped between C0 and the pool (see Algorithm 4).
Conversely, v6 does not share edges with any vertices in

VOLUME 12, 2024 115505

G. S. Terci et al.: BitEA: BitVertex Evolutionary Algorithm to Enhance Performance for Register Allocation

FIGURE 5. Example of calculation of the conflicts in the same color using Operation 3 in Table 1.

C0 and is therefore moved to C0 using bitwise OR and XOR
operations, as illustrated in the search back phase in Fig. 4.
In the final combination, only vertex v5 remains unassigned
in the parents. This vertex is merged with v3 and v8 into the
third color class of the offspring, C2. Since C2 is already
conflict-free and the pool is empty, the crossover operation
is terminated for this example.

FIGURE 6. The Example graph with some edge and vertex weight changes.

In the case illustrated by Fig. 4, the new criterion
introduced by the ISB algorithm is not applicable, as the
scenario doesn’t align with its prerequisites. Furthermore, the
conclusion of the crossover operation yields a conflict-free
solution so the local search strategy with bitwise operations
couldn’t be shown. Therefore, we present another example
to demonstrate the efficiency of the ISB algorithm and the
local search operation. To facilitate this, some modifications
are made to the graph shown in Fig. 1, resulting in a new
graph illustrated in Fig. 6. In the new graph, the weight values
of vertices v0, v1, and v8 have been updated to 3, 2, and 4,
respectively. Regarding the edges, the connection between
vertices v1 and v3 has been removed, while two new edges
have been added: one connecting v2 with v0, and another
connecting v2 with v1. Considering the graph in Fig. 6, the

same parent configurations as in Fig. 4 are used and BitCX,
ISB and the local search operations are executed on the
parents and illustrated in Fig. 7.
To form the first color class C0 of the offspring, the first

color class from the first parent C1
0 , and the third color

class from the second parent, C2
2 are selected randomly. The

vertices from these color classes v0, v1, v4, v6, and v9 are
combined in C0 using OR operation. Due to conflicts within
C0, vertices v4 and v1 are moved to the pool, leaving v0, v6,
and v9 in C0.
For the next step, the second color classes from both

parents, C1
1 and C2

1 are merged, along with v1 and v4 from
the pool, to create the second color class, C1. This process
results in v2 and v1 being moved to the pool due to conflicts,
prompting the start of the ISB algorithm.

The ISB algorithm, illustrated in the red phase in Fig. 7,
skips v1 (already in the pool from the first combination) and
focuses on v2. Using the bitwise operation of Operation 3 in
Table 1, it detects a single conflict between v0 and v2. Given
that v2 has a higher weight (4) than v0 (3), as shown in Fig. 6,
the vertices are swapped between the pool and C0. Therefore,
v2 is removed from the pool by XOR operation and added to
C0 using OR operation. The converse procedure is applied
on v0 and the designs of these bitwise operations are drawn
in Fig. 7.

In the final combination, only v3 remains unassigned in
the parents. It is combined with v0 and v1 from the pool into
the last color class, C2, of the offspring. v0 is moved back to
the pool due to conflicts with v1 and v3. The ISB operation
searchesC0 andC1 for a place for v0. Since v0 was previously
removed from C0, it checks C1. A conflict between v0 and
v5 prompts a swap because v5 has the lowest weight (1). Thus,
at the end of the crossover, v5 ends up in the pool, and the local
search operation is applied to the offspring.

To compare the performance of the InCX and BitCX
operators based on fitness values, we applied both operators
to the same parent combinations, as shown in Fig. 7,
to generate offspring. The offspring produced using the InCX
operator is shown in Fig. 8. The InCX operator results in
a solution where vertex v1 remains in the pool, leading to
the fitness value equal to w(v1), which is 2. Conversely, the
BitCX operator yields an offspring with the fitness value

115506 VOLUME 12, 2024

G. S. Terci et al.: BitEA: BitVertex Evolutionary Algorithm to Enhance Performance for Register Allocation

FIGURE 7. BitCX applies on the same parent configurations considering the new graph in Fig. 6.

VOLUME 12, 2024 115507

G. S. Terci et al.: BitEA: BitVertex Evolutionary Algorithm to Enhance Performance for Register Allocation

of 1, as it leaves vertex v5 in the pool. For a fair comparison
between the two operators, the solution obtained with BitCX
is also presented in an array format in Fig. 8. This analysis
demonstrates that the ISB operator effectively reduces the
fitness value of the solution under identical test conditions.

FIGURE 8. The solutions obtained after InCX and BitCX operators using
the graph in Fig. 6.

G. LOCAL SEARCH OPERATION
The local search mechanism in this study mimics the
W-SWAP proposed in the InCEA algorithm [10], introducing
a method based on bitwise operations named the Bit-SWAP.
This strategy is activated when one or more vertices remain
in the pool following the BitCX phase. Vertices within the
pool are sorted by their weights in descending order to ideally
position the vertex with the highest weight value first in a
color class in S0. For each vertex vp in the pool, the Bit-SWAP
calculates the sum of weights of any conflicting vertices
across all k classes within S0, aiming for the lowest sum.
If the lowest sum is smaller than the weight of vp, then a
swap is initiated, where the conflicting vertices are relocated
to the pool, and vp is inserted into the color class utilizing
bitwise OR and XOR operations as also defined in the ISB
operator. In the scenario where no suitable color class is found
for the swap, vp is taken out of the Pool and added to a list,
denoted as Uncolored , which stores vertices that couldn’t be
colored for S0. The local search proceeds by processing each
vertex in the Pool until the Pool becomes empty. All vertices
in Uncolored list are used for calculating the fitness of the
offspring, which is explained in the next section. Eventually,
the vertices in Uncolored are randomly assigned to color
classes, concluding the process.

Fig. 9 demonstrates the performance of Bit-SWAP on the
offspring, denoted S0, and the pool, both of which are the
outcomes of the BitCX operation shown in Fig. 7. The pool
contains a single vertex, v5 whose conflicts with the color
classes are calculated. Upon examination of each color class
within the offspring, C2 is identified as having no conflicts
with vertex v5. Consequently, v5 is integrated into C2 through
OR operation and concurrently removed from the pool with
XOR operation.

After the sequence of BitCX, ISB, and Bit-SWAP opera-
tions, BitEA is completed and a feasible solution in which all
vertices are successfully colored, is identified. The result of
BitEA is also shown in an array-based format in Fig. 10 to
observe the performance comparison with InCEA solution.

While BitEA achieves the optimal solution, InCEA is not
successful to color all verticeswithin three color classes under
the same experimental conditions. These findings underscore
the effectiveness of integrating the ISB operator with local
search strategies to enhance result quality.

H. FITNESS FUNCTION AND POPULATION UPDATE
As we formulized the fitness function of the problem in
Eq. 2 as the objective of the problem, the fitness value of
a solution for a given graph is calculated by summing the
weights of vertices which are assigned toUncolored list. The
optimal solution of a graph using k color classes is described
with a fitness value of 0, which means that all vertices are
successfully colored.

For our example graph, the fitness function computes the
solution of InCEAwhich is depicted in Fig. 10 and obtains the
fitness value w(v1) = 2 since vertex v1 belongs to Uncolored
list. Conversely, BitEA successfully assigns all vertices to
one of k = 3 color classes, achieving an optimal fitness
value of 0.

When the fitness value of the offspring outperforms that of
either or both parents, the algorithm selects the parent with the
highest fitness value. This selected parent is then replaced by
the offspring, adhering to the replacement strategy of BitEA.

V. EXPERIMENTAL STUDY
In this study, we conducted a comprehensive experimental
analysis to compare the performance of InCEA [10] and our
algorithmBitEA. The results demonstrate the effectiveness of
the BitVertex representation and bitwise operations in BitEA
in terms of computational time, as well as the ISB operator’s
impact on solution quality.

A. EXPERIMENTAL SETUP
The algorithms are evaluated using 150 InCEA benchmarks
introduced in [10] and 73 DIMACS benchmarks. Both
algorithms are implemented in C1 and compiled using gcc
on a computer equipped with a 3.3 GHz Intel Xeon 2670 V2
CPU and 64 GB of RAM.

The InCEA benchmarks are publicly available.2 These
benchmarks are named as ‘‘INCEAn.α.x.col’’, where n
represents the number of vertices, α denotes the edge density
as a percentage, and x signifies the x th graph generated with
the same parameters, with 1 ≤ x ≤ 5. The benchmarks were
created across five distinct values of n and six values of α,
each replicated five times, resulting in a total of 150 unique
benchmarks. Additionally, weight values were assigned to
each vertex within these benchmarks by the γ parameter. The
specific values for these parameters are detailed in Table 2.

The experimental setup in this study involves 73 instances
from the DIMACS benchmark suite, categorized into five
different types based on their origin and characteristics.

1InCEA: https://gitlab.com/gizemsungu/incea, BitEA: https://github.
com/ic-cad/BitEA

2Benchmark instances: https://gitlab.com/gizemsungu/incea

115508 VOLUME 12, 2024

G. S. Terci et al.: BitEA: BitVertex Evolutionary Algorithm to Enhance Performance for Register Allocation

FIGURE 9. Performance of Bit-SWAP technique on the offspring after the BitCX operation in Fig. 7 using the graph in Fig. 6.

FIGURE 10. Comparison of solutions obtained by InCEA and BitEA
represented in Integer Vertex-based format using the graph in Fig. 6.

TABLE 2. Parameters of InCEA benchmarks [10].

Graphs related to the register allocation problem are denoted
as ‘Rn_αg{b}.col’, where α represents the edge density of
the graph, and the suffix ‘g’ or ‘gb’ indicates a range of
vertex weights with ‘g’ for weights of γ = [1..5] and ‘gb’
for γ = [1..20]. GEOM graphs, which are geometric in
nature, are designated as ‘GEOMn{a, b}.col’, with ‘a’ and
‘b’ signifying the edge density percentage. The queen graphs,
originating from the n× n chessboard problem, are labeled as
‘queenn_n.col’. The DSJC graphs, used in the study of sim-
ulated annealing techniques, are named ‘DSJCn_αg{b}.col’.
Lastly, the myciel graphs, derived from the Mycielski
transformation, are identified as ‘myciel{5, 6, 7}g{b}.col’.

B. EXPERIMENTAL RESULTS
1) PERFORMANCE EVALUATION OF BitEA AND InCEA
VARYING ON TIME
The experimental analysis of BitEA and InCEA, as presented
in Fig. 11, investigates the convergence performance across

six different DIMACS benchmark graphs. The aim of this test
is to determine the time and number of iterations required
for both algorithms to stabilize in terms of the fitness value
of their proposed solutions. The graphs tested include R100
with various edge density ranges (1gb, 5gb, 9gb), a geometric
graph GEOM120a, and queen graphs with 100 vertices
(queen10_10g and queen10_10gb). The performance of the
algorithms are measured in terms of percentage improvement
from the best fitness of the individual in the initial population
over time. An improvement in performance corresponds to
a decrease in the fitness value. Therefore, the trajectories
in the plots are descending, indicating better performance
as the fitness value decreases. The algorithms are run for
100 seconds for each graph, with the maximum number of
seconds varying for each plot. The trajectories are drawn
for both algorithms until InCEA reached its best fitness for
the related graph. The performance trajectories demonstrate
that BitEA reaches a plateau quickly, indicating early con-
vergence, while InCEA shows a more gradual improvement
towards the fitness value. For the R100_1gb graph, BitEA
shows a rapid fitness improvement, plateauing beyond
approximately 1.5 seconds, whereas InCEA reaches the same
improvement level around 8 seconds. For the R100_5gb
and R100_9gb graphs, a similar trend is observed: BitEA
quickly stabilizes, while InCEA takes longer to converge
but continues to improve gradually over time. In the case of
the GEOM120a graph, both algorithms show a rapid initial
improvement, but BitEA reaches a plateau faster than InCEA.
InCEA continues to improve over a longer period before
stabilizing. For the queen10_10g and queen10_10gb graphs,
BitEA again exhibits early convergence, while InCEA takes
more time to reach its best fitness value. Overall, the
comparative analysis reveals that BitEA generally converges
faster than InCEA across different types of graphs. This
early convergence indicates that BitEA can quickly provide
high-quality solutions, making it particularly effective for
scenarios requiring rapid optimization. Moreover, BitEA
reaches its best solutions for most of the related graphs before

VOLUME 12, 2024 115509

G. S. Terci et al.: BitEA: BitVertex Evolutionary Algorithm to Enhance Performance for Register Allocation

10000 iterations. These findings determine that setting the
iteration number to 10000 in subsequent experimental studies
ensures both efficiency and effectiveness in reaching optimal
solutions with BitEA.

2) PERFORMANCE COMPARISON TESTS ON InCEA
BENCHMARKS
Table 3 and Table 4 present a comparative analysis of InCEA
and BitEA, examining their performance across a range of
graph sizes, represented by the number of vertices (n), and
two distinct density metrics: edge density (α) and color class
density (β), respectively. The evaluation metrics include the
fitness values, the number of uncolored vertices (denoted as
of U. Vertices), the execution time in seconds (Time(s)) and
the resulting speedup of BitEA over InCEA.

TABLE 3. Comparative performance analysis of InCEA and BitEA across
different graph sizes n and edge densities α.

Table 3 considers the graphs have sizes (number of
vertices, n) ranging from 100 to 500, with the edge density
(α) varying from 10% to 90%. The performance data for
each entry is the mean of 125 runs, which encompasses five
different color class density values (β) across five unique
graphs, with each graph configuration being executed five
times. Similarly, Table 4 examines graphs varying in size
from 100 to 500 vertices, but focuses on variations in color
class densities (β) from 0.04 to 0.2. This setup aims to
evaluate the efficiency and effectiveness of the algorithms in
assigning colors from a predefined set to the graph vertices.
The number of colors in this set is determined by the formula
n×β. A higher β indicates more available colors, potentially
making the coloring problem less constrained. Each row in
Table 4 represents the average outcome of 150 runs which
across six different edge densities (α), where for each edge

TABLE 4. Comparison of the algorithms with respect to fitness values and
number of uncolored vertices for 5 different color class density values.

density, five different graphs were generated and each was
run five times.

Across different configurations, the fitness values between
InCEA and BitEA are closely matched. However, BitEA
achieves slightly better results in some cases through
enhancement in its ability to search back for previous
color classes during the crossover operation, termed the
‘Improved Search Back’ (ISB) operation.While ISB operator
is decreasing the fitness value, it may sometimes leave
marginally more vertices uncolored, although this difference
is minimal and unlikely to impact the overall solution quality
significantly.

In terms of execution time, BitEA displays a remarkable
speed advantage across all scenarios. The speedup factor
indicates that BitEA is consistently faster than InCEA, with
the performance gap widening as the size of the graph,
denoted by n, increases. For smaller graphs (with n = 100),
the speedup of BitEA ranges from 5 to 8.5 times and from
3.4 to 13.2 faster than InCEA in Table 3 and in Table 4,
respectively. This improvement is even more pronounced for
larger graphs: for instance, with n = 300, BitEA achieves
a speedup factor as high as 121.7 at a 10% edge density
in Table 3, which gradually decreases as the edge density
increases, stabilizing at a still impressive 19.9 at a 90% edge
density. The trend continues with n = 400 and n = 500,
where the highest speedups are 237.1 and 577.4, respectively,
at the lowest edge densities. Conversely, in Table 4, the
speedup significantly increases with the color class density
β for all values of n.

3) PERFORMANCE COMPARISON TESTS ON DIMACS
BENCHMARKS
In this section, we present an evaluation of our proposed
algorithm BitEA against InCEA on DIMACS benchmark

115510 VOLUME 12, 2024

G. S. Terci et al.: BitEA: BitVertex Evolutionary Algorithm to Enhance Performance for Register Allocation

TABLE 5. Comparative analysis of the InCEA and BitEA algorithms across
various GEOM and DSJC graph instances.

graphs in terms of computational efficiency and solution
quality, denoted as the execution time measured in sec-
onds Time(s) and the chromatic number k, respectively.
The performance results for each graph represent the
best outcome of 20 runs for each algorithm, where each
run is conducted with 30000 iterations. Our findings are
summarized in Table 5 and Table 6, where |V | and |E|
represent the number of vertices and edges, respectively,
for each graph. The performance is also quantified by the
speed-up factor, which compares the time efficiency of BitEA
against InCEA, demonstrating the performance gains of our
approach.

In Table 5, for smaller graph instances such as GEOM20
through GEOM40, the speedup factor remains around 1 to 8,
indicating that while BitEA has a similar performance to
InCEA, it does not yet fully capitalize on its potential speed
improvements. However, as the size of the graphs increases,
we observe significant efficiency gains with BitEA. For
instance, in larger and more complex graphs such as
GEOM90a, GEOM120a, and GEOM120b, BitEA achieves
speedup factors ranging from 16 to 27. The standout cases

TABLE 6. Performance evaluation of the InCEA and BitEA algorithms on
R, myciel, and queen instances from the DIMACS benchmarks.

in this table are the DSJC graph with varying edge density
values, where BitEA achieves substantial speedup factors
from 8 to 60.

In Table 6, the R graphs demonstrate speedup factors
ranging from 2.5 to 26, showcasing the efficiency gains
of BitEA over InCEA. The myciel graphs also illus-
trate the time efficiency of BitEA with speedup factors
reaching up to 36.8. In the queen graphs, while increas-
ing number of vertices, BitEA maintains a consistent
speedup, highlighting its scalability. Similarly, graphs like
queen10_10g and queen10_10gb show that BitEA can
deliver a performance boost of over 13 as compared to
InCEA.

In terms of the chromatic number, represented by k ,
BitEA outperforms InCEA by requiring one fewer
color class for nine graphs: GEOM90a, GEOM110a,
GEOM120a, GEOM120b, DJSC125.5g, DSJC125.5gb,
queen9_9g, queen10_10g, and queen10_10gb. This enhanced
performance is highlighted in Table 5 and Table 6. The
observed enhancements in solution quality are a result of the
ISB operator in BitEA, which strategically swaps vertices
between the pool and the existing color classes in the
offspring. This is performed at the conclusion of each BitCX
color combination process to minimize the total weights of
the pool.

VOLUME 12, 2024 115511

G. S. Terci et al.: BitEA: BitVertex Evolutionary Algorithm to Enhance Performance for Register Allocation

FIGURE 11. Performance evaluation of BitEA for time-wise fitness enhancement on DIMACS graphs (R100_1gb.col, R100_5gb.col, R100_9gb.col,
GEOM120a.col, queen10_10g.col and queen10_10gb.col) using 5, 15, 36, 16, 12 and 12 color classes, respectively, within a time limit of 100 seconds.

VI. CONCLUSION AND FUTURE WORK
This study introduces BitVertex Evolutionary Algorithm
(BitEA), a novel approach for the register allocation
problem, building a bit-based representation and bitwise
operations to significantly enhance computational efficiency
and solution quality. Our extensive experimental evaluations
with 150 InCEA and 73 DIMACS benchmarks, demon-
strate BitEA has remarkable performance improvements
when compared to Integrated Crossover Based Evolutionary
Algorithm (InCEA). BitEA demonstrates substantial speedup
factors, ranging from 3 to 577.4 in specific configurations,
especially in larger graph instances. BitVertex representation
and the integration of improved search back (ISB) and
local search (Bit-SWAP) strategies do not only optimize
execution time but also improve solution quality by achieving
lower chromatic numbers. BitEA outperforms InCEA in all
InCEA benchmarks and in 9 DIMACS benchmarks, includ-
ing queen9_9g, queen10_10g, queen10_10gb, GEOM90a,
GEOM110a, GEOM120a, GEOM120b, DSJC125.5g, and
DSJC125.5gb, in terms of the number of colors used.

Our findings highlight the potential of bit-based solution
representation in reducing execution time and memory
usage, while also providing a path for future research
directions. These include exploring applicability of BitEA
to other related combinatorial optimization problems such as
scheduling problems [51], communication problems [52] and
refining the algorithmic components of BitEA for dynamic
problem settings. Furthermore, the compactness offered by
BitVertex representation and the computational efficiency of
bitwise operations to handle complex datasets or solution
spaces make BitEA a promising approach for applications

in various computational fields, including multithreading,
FPGA and GPU architectures especially while serving large-
scale graphs. BitEA can also inspire new solution approaches
to the register allocation problem using various algorithms
such as approximation algorithms.

REFERENCES
[1] R. Sethi, ‘‘Complete register allocation problems,’’ inProc. 5th Annu. ACM

Symp. Theory Comput., 1973, pp. 182–195.
[2] P. K. Krause, ‘‘The complexity of register allocation,’’ Discrete Appl.

Math., vol. 168, pp. 51–59, May 2014.
[3] R. W. Quong and S.-C. Chen, ‘‘Register allocation via weighted graph

coloring (technical summary),’’ Purdue Uni. Lib., West Lafayette, IN,
USA, ECE Tech. Rep. TR-EE 93-23 (232), Jun. 1993.

[4] M. Poletto and V. Sarkar, ‘‘Linear scan register allocation,’’ ACM Trans.
Program. Lang. Syst., vol. 21, no. 5, pp. 895–913, Sep. 1999.

[5] M. R. Garey and D. S. Johnson, Computers and Intractability, vol. 174.
San Francisco, CA, USA: Freeman, 1979.

[6] B. Escoffier, J. Monnot, and V. T. Paschos, ‘‘Weighted coloring: Further
complexity and approximability results,’’ in Proc. Italian Conf. Theor.
Comput. Sci., Siena, Italy. Berlin, Germany: Springer, 2005, pp. 205–214.

[7] G. J. Chaitin, ‘‘Register allocation & spilling via graph coloring,’’
ACM SIGPLAN Notices, vol. 17, no. 6, pp. 98–101, Jun. 1982, doi:
10.1145/872726.806984.

[8] H. Bouziri, K. Mellouli, and E.-G. Talbi, ‘‘The K-coloring fitness
landscape,’’ J. Combinat. Optim., vol. 21, no. 3, pp. 306–329, Apr. 2011.

[9] R. M. R. Lewis, A Guide to Graph Colouring, vol. 7. Berlin, Germany:
Springer, 2015, doi: 10.1007/978-3-319-25730-3.

[10] B. Boz and G. Süngü, ‘‘Integrated crossover based evolutionary
algorithm for coloring vertex-weighted graphs,’’ IEEE Access, vol. 8,
pp. 126743–126759, 2020.

[11] P. Briggs, K. D. Cooper, and L. Torczon, ‘‘Improvements to graph coloring
register allocation,’’ ACM Trans. Program. Lang. Syst., vol. 16, no. 3,
pp. 428–455, May 1994.

[12] L. George and A. W. Appel, ‘‘Iterated register coalescing,’’ ACM Trans.
Program. Lang. Syst., vol. 18, no. 3, pp. 300–324, May 1996.

115512 VOLUME 12, 2024

http://dx.doi.org/10.1145/872726.806984
http://dx.doi.org/10.1007/978-3-319-25730-3

G. S. Terci et al.: BitEA: BitVertex Evolutionary Algorithm to Enhance Performance for Register Allocation

[13] F. M. Q. Pereira, ‘‘A survey on register allocation,’’ Dept. Comput. Sci.,
Univ. California, Los Angeles, CA, USA, Tech. Rep., 2008.

[14] B. Kernighan and D. M. Ritchie, The C Programming Language.
Upper Saddle River, NJ, USA: Prentice-Hall, 2017.

[15] D. S. Johnson, C. R. Aragon, L. A. McGeoch, and C. Schevon,
‘‘Optimization by simulated annealing: An experimental evaluation; part
II, graph coloring and number partitioning,’’ Oper. Res., vol. 39, no. 3,
pp. 378–406, Jun. 1991.

[16] S. Gualandi and F. Malucelli, ‘‘Exact solution of graph coloring problems
via constraint programming and column generation,’’ INFORMS J.
Comput., vol. 24, no. 1, pp. 81–100, Feb. 2012.

[17] E. Malaguti, M. Monaci, and P. Toth, ‘‘An exact approach for the vertex
coloring problem,’’Discrete Optim., vol. 8, no. 2, pp. 174–190, May 2011,
doi: 10.1016/j.disopt.2010.07.005.

[18] F. Furini and E. Malaguti, ‘‘Exact weighted vertex coloring via branch-
and-price,’’ Discrete Optim., vol. 9, no. 2, pp. 130–136, May 2012.

[19] D. Cornaz, F. Furini, and E. Malaguti, ‘‘Solving vertex coloring problems
as maximum weight stable set problems,’’ Discrete Appl. Math., vol. 217,
pp. 151–162, Jan. 2017.

[20] E. Malaguti, M. Monaci, and P. Toth, ‘‘Models and heuristic algorithms
for a weighted vertex coloring problem,’’ J. Heuristics, vol. 15, no. 5,
pp. 503–526, Oct. 2009.

[21] S. Shamizi and S. Lotfi, ‘‘Register allocation via graph coloring using an
evolutionary algorithm,’’ in Proc. SEMCCO, Visakhapatnam, India, 2011,
pp. 1–8.

[22] P. Galinier, A. Hertz, and N. Zufferey, ‘‘An adaptive memory algorithm
for the k-colouring problem,’’ Discrete Appl. Math., vol. 156, no. 2,
pp. 267–279, 2008.

[23] G. Sungu and B. Boz, ‘‘An evolutionary algorithm for weighted graph
coloring problem,’’ in Proc. Companion Publication Annu. Conf. Genetic
Evol. Comput., Madrid, Spain, Jul. 2015, pp. 1233–1236.

[24] H. R. Topcuoglu, B. Demiroz, and M. Kandemir, ‘‘Solving the register
allocation problem for embedded systems using a hybrid evolutionary
algorithm,’’ IEEE Trans. Evol. Comput., vol. 11, no. 5, pp. 620–634,
Oct. 2007, doi: 10.1109/TEVC.2007.892766.

[25] J. Wu, Z. Chang, L. Yuan, Y. Hou, andM. Gong, ‘‘Amemetic algorithm for
resource allocation problem based on node-weighted graphs [application
notes],’’ IEEE Comput. Intell. Mag., vol. 9, no. 2, pp. 58–69, May 2014,
doi: 10.1109/MCI.2014.2307231.

[26] D. Das, S. A. Ahmad, and V. Kumar, ‘‘Deep learning-based approximate
graph-coloring algorithm for register allocation,’’ in Proc. IEEE/ACM
6th Workshop LLVM Compiler Infrastructure HPC (LLVM-HPC) Work-
shop Hierarchical Parallelism Exascale Comput. (HiPar), Nov. 2020,
pp. 23–32.

[27] S. VenkataKeerthy, S. Jain, A. Kundu, R. Aggarwal, A. Cohen, and
R. Upadrasta, ‘‘RL4ReAl: Reinforcement learning for register allocation,’’
inProc. 32nd ACMSIGPLAN Int. Conf. Compiler Construction, Feb. 2023,
pp. 133–144.

[28] G. S. Terci, ‘‘A learning-based coloring algorithm for register allocation
problem,’’ in Proc. 31st Signal Process. Commun. Appl. Conf. (SIU),
Jul. 2023, pp. 1–4.

[29] C. N. Lintzmayer, M. H. Mulati, and A. F. D. Silva, ‘‘Register allocation
with graph coloring by ant colony optimization,’’ in Proc. 30th Int. Conf.
Chilean Comput. Sci. Soc., Nov. 2011, pp. 247–255.

[30] B. Nogueira, R. G. S. Pinheiro, and A. Subramanian, ‘‘A hybrid iterated
local search heuristic for the maximum weight independent set problem,’’
Optim. Lett., vol. 12, no. 3, pp. 567–583, May 2018.

[31] B. Nogueira, E. Tavares, and P. Maciel, ‘‘Iterated local search with Tabu
search for the weighted vertex coloring problem,’’ Comput. Oper. Res.,
vol. 125, Jan. 2021, Art. no. 105087.

[32] P. Galinier and J. Hao, ‘‘Hybrid evolutionary algorithms for graph
coloring,’’ J. Comb. Optim., vol. 3, no. 4, pp. 379–397, Dec. 1999, doi:
10.1023/A:1009823419804.

[33] D. C. Porumbel, J. K. Hao, and P. Kuntz, ‘‘Diversity control and multi-
parent recombination for evolutionary graph coloring algorithms,’’ in
Proc. Eur. Conf. Evol. Comput. Combinat. Optim., Tübingen, Germany,
Apr. 2009, pp. 121–132.

[34] B. Betül and T. Yildiz, ‘‘Pool-based evolutionary algorithm for the bin
packing problem,’’ Int. J. Adv. Eng. Pure Sci., vol. 33, no. 3, pp. 406–414,
2021.

[35] S. Korkmaz, ‘‘Solving graph coloring problem by using an evolutionary
algorithm,’’ M.S. thesis, Dept. Comput. Eng., Marmara Univ., Istanbul,
2020.

[36] G. Rokos, G. Gorman, and P. H. Kelly, ‘‘A fast and scalable graph coloring
algorithm for multi-core and many-core architectures,’’ in Proc. 21st Int.
Conf. Parallel Distrib. Comput., Vienna, Austria, 2015, pp. 414–425.

[37] A. Borione, L. Cardone, A. Calabrese, and S. Quer, ‘‘An experimental eval-
uation of graph coloring heuristics onmulti- andmany-core architectures,’’
IEEE Access, vol. 11, pp. 125226–125243, 2023.

[38] M. Osama, M. Truong, C. Yang, A. Buluç, and J. Owens, ‘‘Graph
coloring on the GPU,’’ in Proc. IEEE Int. Parallel Distrib. Process. Symp.
Workshops (IPDPSW), May 2019, pp. 231–240.

[39] O. Goudet, C. Grelier, and J.-K. Hao, ‘‘A deep learning guided memetic
framework for graph coloring problems,’’ Knowl.-Based Syst., vol. 258,
Dec. 2022, Art. no. 109986.

[40] Z. Zheng, X. Shi, L. He, H. Jin, S. Wei, H. Dai, and X. Peng, ‘‘Feluca: A
two-stage graph coloring algorithm with color-centric paradigm on GPU,’’
IEEE Trans. Parallel Distrib. Syst., vol. 32, no. 1, pp. 160–173, Jan. 2021.

[41] R. Murooka, Y. Ito, and K. Nakano, ‘‘Accelerating ant colony optimization
for the vertex coloring problem on the GPU,’’ in Proc. 4th Int. Symp.
Comput. Netw. (CANDAR), Nov. 2016, pp. 469–475.

[42] K. Zhang, M. Qiu, L. Li, and X. Liu, ‘‘Accelerating genetic algorithm
for solving graph coloring problem based on CUDA architecture,’’ in
Proc. 9th Int. Conf., Wuhan, China. Berlin, Germany: Springer, Oct. 2014,
pp. 578–584.

[43] X. Ma, M. Dong, L. Zhong, and Z. Deng, ‘‘Statistical power consumption
analysis and modeling for GPU-based computing,’’ in Proc. ACM SOSP
Workshop Power Aware Comput. Syst. (HotPower), vol. 1, Oct. 2009,
pp. 1–5.

[44] H. Fan, M. Li, J. Wu, W. Lu, X. Li, and G. Yan, ‘‘BitColor: Accelerating
large-scale graph coloring on FPGA with parallel bit-wise engines,’’ in
Proc. 52nd Int. Conf. Parallel Process., Aug. 2023, pp. 492–502.

[45] I. Kuon, R. Tessier, and J. Rose, ‘‘FPGA architecture: Survey and
challenges,’’ Found. Trends Electron. Design Autom., vol. 2, no. 2,
pp. 135–253, 2008.

[46] D. Brélaz, ‘‘Newmethods to color the vertices of a graph,’’Commun. ACM,
vol. 22, no. 4, pp. 251–256, Apr. 1979.

[47] P. C. B. Lam, W. Lin, G. Gu, and Z. Song, ‘‘Circular chromatic number
and a generalization of the construction of mycielski,’’ J. Combinat.
Theory, Ser. B, vol. 89, no. 2, pp. 195–205, Nov. 2003, doi: 10.1016/s0095-
8956(03)00070-4.

[48] D. S. Johnson and M. A. Trick, Cliques, Coloring, and Satisfiability:
Second DIMACS Implementation Challenge. Providence, RI, USA:
American Mathematical Society, 1993.

[49] M. B. Dillencourt, D. Eppstein, and M. T. Goodrich, ‘‘Choosing colors for
geometric graphs via color space embeddings,’’ in Proc. Int. Symp. Graph
Drawing, Karlsruhe, Germany. Berlin, Germany: Springer, Sep. 2006,
pp. 294–305.

[50] M. Vasquez, ‘‘New results on the Queens_n2 graph coloring prob-
lem,’’ J. Heuristics, vol. 10, no. 4, pp. 407–413, Jul. 2004, doi:
10.1023/b:heur.0000034713.28244.e1.

[51] P. B. Myszkowski, ‘‘Solving scheduling problems by evolutionary
algorithms for graph coloring problem,’’ in Metaheuristics for Scheduling
in Industrial and Manufacturing Applications, vol. 145. Berlin, Germany:
Springer, 2008, p. 167.

[52] M. Miri, K. Mohamedpour, Y. Darmani, M. Sarkar, and R. L. Tummala,
‘‘An efficient resource allocation algorithm based on vertex coloring
to mitigate interference among coexisting WBANs,’’ Comput. Netw.,
vol. 151, pp. 132–146, Mar. 2019, doi: 10.1016/j.comnet.2019.01.014.

GIZEM SUNGU TERCI was born in Istanbul,
Türkiye, in 1993. She received the B.S. and
M.S. degrees in computer engineering from Mar-
mara University, Türkiye, in 2015 and 2018,
respectively. She is currently pursuing the Ph.D.
degree in computer engineering with Gebze Tech-
nical University, Türkiye. Since 2017, she has
been a Research Assistant with the Institute of
Information Technologies, Gebze Technical Uni-
versity. Her research interests include optimization

problems, such as graph coloring and path planning, evolutionary algorithms,
and performance acceleration. She was a recipient of the ACM-Woman
Scholarship to present her paper at the Genetic and Evolutionary Compu-
tation Conference (GECCO), Madrid, Spain, in 2015.

VOLUME 12, 2024 115513

http://dx.doi.org/10.1016/j.disopt.2010.07.005
http://dx.doi.org/10.1109/TEVC.2007.892766
http://dx.doi.org/10.1109/MCI.2014.2307231
http://dx.doi.org/10.1023/A:1009823419804
http://dx.doi.org/10.1016/s0095-8956(03)00070-4
http://dx.doi.org/10.1016/s0095-8956(03)00070-4
http://dx.doi.org/10.1023/b:heur.0000034713.28244.e1
http://dx.doi.org/10.1016/j.comnet.2019.01.014

G. S. Terci et al.: BitEA: BitVertex Evolutionary Algorithm to Enhance Performance for Register Allocation

ENES ABDULHALIK was born in Abu Dhabi,
United Arab Emirates, in 2001. He is currently
pursuing the B.S. degree with the Computer Engi-
neering Department, Gebze Technical University,
Türkiye, in 2024. His research interests include
algorithm acceleration using fast CPU imple-
mentations and FPGA, including graph coloring
algorithms, evolutionary algorithms, and image
processing algorithms. He gained scholarship
through TUBITAK’s 1002-B Program in a project

around an FPGA implementation of an evolutionary algorithm for graph
coloring problems.

ALP ARSLAN BAYRAKCI was born in Istanbul,
Türkiye, in 1982. He received the B.S. degree in
electrical and electronics engineering from Mid-
dle East Technical University, Ankara, Türkiye,
in 2004, and the Ph.D. degree in computer engi-
neering from Koc University, Istanbul, in 2010.
He is currently an Assistant Professor with the
Department of Computer Engineering, Gebze
Technical University. His current research inter-
ests include FPGA-based hardware acceleration,

statistical timing analysis of circuits, hardware security, and computer-aided
integrated circuit design methodologies.

BETUL BOZ was born in Ankara, Türkiye,
in 1980. She received the B.Sc. and M.Sc.
degrees in computer engineering from Marmara
University, Istanbul, Türkiye, in 2002 and 2004,
respectively, and the Ph.D. degree in computer
engineering from Boǧaziçi University, Istanbul,
in 2011. She is currently an Assistant Professor
with the Computer Engineering Department, Mar-
mara University. Her research interests include
design of efficient operators and techniques for

real-world problems using evolutionary algorithms, computational and
artificial intelligence, parallel processing, and computer architecture.

115514 VOLUME 12, 2024

